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In this paper, we derive a variant of the Taylor theorem to obtain a new minimized remainder. For a given function f defined on the interval [a, b], this formula is derived by introducing a linear combination of f computed at n + 1 equally spaced points in [a, b], together with f (a) and f (b). We then consider two classical applications of this Taylor-like expansion: the interpolation error and the numerical quadrature formula. We show that using this approach improves both the Lagrange P 2 -interpolation error estimate and the error bound of the Simpson rule in numerical integration.

Introduction

Even today, improving the accuracy of approximation remains a challenging problem in numerical analysis. Here, we are concerned with the difficulty of accurately determining the error estimate in numerical methods. This article is part of a series of articles in which this topic is addressed. More precisely, we derive here a variant of Taylor's theorem to obtain a new minimized remainder that we apply to interpolation error and numerical quadrature formula.

From a mathematical point of view, the origin of such problems already appears in Rolle's theorem and in Lagrange and Taylor's theorems, see for instance [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF]. Indeed, there exists an unknown point involved in the remainder of Taylor's expansion, that leads to some "uncertainty".

Consequently, most error estimates focus generally on the asymptotic behavior of the error. For instance in finite element approximation, a priori error estimates consider the asymptotic behavior of the difference between the exact and the approximate solution, as the mesh size h tends to zero.

In this context, several approaches have been proposed to determine a way to improve the accuracy of approximation. For example, within the framework of numerical integration, we refer the reader to [START_REF] Barnett | Applications of Ostrowski's version of the Grüss inequality for trapezoid type rules[END_REF], [START_REF] Cerone | Trapezoidal-type rules from an inequalities point of view[END_REF] or [START_REF] Dragomir | Some remarks on the trapezoid rule in numerical integration[END_REF], and references therein. From another point of view, due to the lack of information, heuristic methods were considered, basically based on a probabilistic approach, see for instance [START_REF] Abdulle | A probabilistic finite element method based on random meshes: A posteriori error estimators and Bayesian inverse problems[END_REF], [START_REF] Assous | Indeterminate Constants in Numerical Approximations of PDE's: a Pilot Study Using Data Mining Techniques[END_REF], [START_REF] Hennig | Probabilistic numerics and uncertainty in computations[END_REF], [START_REF] Oates | A modern retrospective on probabilistic numerics[END_REF] or [START_REF] Chaskalovic | A probabilistic approach for solutions of determinist PDE's as well as their finite element approximations[END_REF], [START_REF] Chaskalovic | A new mixed functional-probabilistic approach for finite element accuracy[END_REF] and [START_REF] Chaskalovic | Explicit k-dependence for P k finite elements in W m,p error estimates: application to probabilistic laws for accuracy analysis[END_REF]. This allows to compare different numerical methods, and more precisely finite element, for a given fixed mesh size, see [START_REF] Chaskalovic | Numerical validation of probabilistic laws to evaluate finite element error estimates[END_REF].

Nevertheless, Taylor's theorem introducing an unknown point in its remainder, this makes it very difficult (often impossible) to compute the interpolation error, and consequently the approximation error of a given numerical method. Therefore, the possibility to accurately estimate the upper bounds of the error remains an important issue. In this article, we study the values of the numerical constants involved in such estimates, trying to reduce them as small as possible.

In this framework, we proposed in [START_REF] Chaskalovic | A refined first-order expansion formula in R n : Application to interpolation and finite element error estimates[END_REF] a refined first-order expansion formula in R n , to get an reduced remainder, compared to the one obtained by usual Taylor's formula. Then, we investigate the related properties in the interpolation error estimates and in Lagrange finite element error estimates. In the context of quadrature rules applications, such a problem was considered in the past years, and is often referred as the perturbed (or corrected) quadrature rules, see for instance [START_REF] Cerone | Trapezoidal-type rules from an inequalities point of view[END_REF] or [START_REF] Dragomir | Some remarks on the trapezoid rule in numerical integration[END_REF]. In other examples, the authors obtained in [START_REF] Cheng | Improvement of some Ostrowski-Grüss type inequalities[END_REF], [START_REF] Dragomir | An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules[END_REF] or [START_REF] Matic | Improvement and further generalization of inequalities of Ostrowski-Grüss type[END_REF], the trapezoid inequality by the difference of sup and inf bound of the first derivative.

In this paper, we are concerned by a second order Taylor-like theorem, leading to an optimized reduced remainder. Applications we have in mind are the interpolation error based on a second-order polynomial and the Simpson quadrature rule (see for instance [START_REF] Burden | Numerical Analysis[END_REF]). Concerning the Simpson inequality, we also refer the reader to [START_REF] Lui | A Inequality of Simpson type[END_REF].

The main difficulty addressed in this article concerns the development and use of a new Taylortype formula, with the smallest possible remainder. Another important aspect is the application of this new formula to interpolation error and numerical quadrature formulas. The paper is organized as follows. In Section 2, we present the main result, which treats on the improved second order Taylor-like formula. In Section 3, we consider two classical applications of the Taylor expansion: the interpolation error is investigated in subsection 3.1, whereas the Simpson's quadrature rule is studied subsection 3.2. In both cases, we derive new results on error estimate. Concluding remarks follow.

A new second order expansion formula

To begin with, let us recall the well known second order Taylor's formula [START_REF] Taylor | Methodus incrementorum directa and inversa[END_REF]. We consider (a, b) ∈ R 2 , a < b, and a function f ∈ C 3 ([a, b]). Then, following Taylor's theorem in one real variable, there exist two real constants m 3 and

M 3 such that, for all x ∈ [a, b], -∞ < m 3 = inf a≤x≤b f (x) and M 3 = sup a≤x≤b f (x) < +∞ , (1) 
and we have

f (b) = f (a) + (b -a)f (a) + (b -a) 2 2 f (a) + (b -a) 2 a,2 (b), (2) 
where lim 

In the same spirit we proposed in [START_REF] Chaskalovic | A new first order expansion formula with a reduced remainder[END_REF] for the first order case, our aim is now to derive a new second order Taylor-like formula that gives us a minimized remainder. To that aim, let us first recall the main result obtained in [START_REF] Chaskalovic | A new first order expansion formula with a reduced remainder[END_REF] for the first order case. Given two reals a, b ∈ R, a < b and an integer n ∈ N * , we proved the following result

Theorem 2.1 Let f be a real mapping define on [a, b] which belongs to C 2 ([a, b]), such that: ∀x ∈ [a, b], -∞ < m 2 f (x) M 2 < +∞.
Then we have the following first order expansion:

f (b) = f (a) + (b -a) f (b) + f (a) 2n + 1 n n-1 k=1 f a + k (b -a) n + (b -a) (1) a,n+1 (b), (4) 
where :

| (1) a,n+1 (b)| (b -a) 8n (M 2 -m 2 ).
Moreover, this result is optimal in the sense that the weights in (4) involved in the linear combination of f at the equally spaced points a + k (b -a) n guarantee the remainder

a,n+1 (b) to be minimum.

In order to prove the main theorem for the second order case considered in this paper, we will need the following lemma proved in [START_REF] Chaskalovic | A new first order expansion formula with a reduced remainder[END_REF]: Lemma 2.2 Let u be a continuous function on [a, b], and, for n ∈ N * , let (a k ) 0 k n be a finite sequence of real numbers. We have the following formula:

n-1 k=0 n k a k u(t)dt = n-1 k=0 k+1 k S k u(t)dt, with S k = k j=0 a j .
From now on, we assume that n ∈ N * . To obtain a second order Taylor-like formula, we first consider the following generalization of (4) involving the "reminder"

(2) a,n+1 (b):

f (b) = f (a) + (b -a) f (b) + f (a) 2n + 1 n n-1 k=1 f a + k (b -a) n +(b -a) 2 n k=0 ω k (n)f a + k (b -a) n + (b -a) 2 (2) a,n+1 (b), (5) 
that we rewrite for simplicity as

f (b) = f (a) + (b -a)Λ (1) n (a, b) + (b -a) 2 Λ (2) n (a, b) + (b -a) 2 (2) a,n+1 (b), with Λ (1) n (a, b) = f (b) + f (a) 2n + 1 n n-1 k=1 f a + k (b -a) n , (6) and Λ 
(2)

n (a, b) defined by determining

Λ (2) n (a, b) = n k=0 ω k (n)f a + k (b -a) n , (7) 
such that (5) holds, and so,

a,n+1 (b) goes to 0 when b → a. Our aim is now to determine the sequence of real weights (ω k (n)) 0≤k≤n that minimizes the remainder

(2)
a,n+1 (b). this result is stated in the following theorem:

Theorem 2.3 Let f be a real mapping defined on [a, b] which belongs to C 3 ([a, b]), such that: ∀x ∈ [a, b], -∞ < m 3 f (x) M 3 < +∞. If the weights (ω k (n)) 0≤k≤n satisfy n k=0 ω k (n) = 0, then we have: ω 0 (n) = -ω n (n) = 3 32n 2 and ω k (n) = 0, ∀0 < k < n, (8) 
and the following second order expansion hold:

f (b) = f (a) + (b -a)Λ (1) n (a, b) + (b -a) 2 Λ (2) n (a, b) + (b -a) 2 (2) a,n+1 (b), (9) 
where Λ (1) n (a, b) is given by ( 6) and Λ (2) n (a, b) is expressed as

Λ (2) n (a, b) = - 3 32n 2 f (b) -f (a) . (10) 
Moreover, this result is optimal since the weights introduced in (8) guarantee that the remainder

a,n+1 (b) is minimum, and satisfies:

(b -a) 96n 2 (2m 3 -M 3 ) ≤ (2) a,n+1 (b) ≤ (b -a) 96n 2 (2M 3 -m 3 ). ( 11 
)
Consequently, lim b→a

a,n+1 (b) = 0.

Proof : Let us observe first that, using (4),

a,n+1 (b) can be written as

(2) a,n+1 (b) = (1) 
a,n+1 (b) b -a -Λ (2) n (a, b) . (12) 
In [START_REF] Chaskalovic | A new first order expansion formula with a reduced remainder[END_REF], it is proved (see expression [START_REF] Crouzeix | Analyse numérique des équations différentielles, Seconde édition, Collection mathématiques appliquées pour la maîtrise[END_REF] together with (28)) that the remainder

a,n+1 (b) of the expansion (4) can be expressed by

(1) a,n+1 (b) = n-1 k=0 k+1 n k n 1 2n + k n -t φ (t)dt, ( 13 
)
where φ is the derivative of the function φ defined by:

φ : [0, 1] -→ R t -→ f (a + t(b -a)).
Now, we perform an integration by parts of the integral involved in (13) and we get

k+1 n k n 1 2n + k n -t φ (t)dt = k(k + 1) 2n 2 φ k + 1 n -φ k n - k+1 n k n 1 2n + k n t - t 2 2 φ (t)dt, = k+1 n k n k(k + 1) 2n 2 - 1 2n + k n t + t 2 2 φ (t)dt.
Using this expression,

a,n+1 (b) can be rewritten as:

(1)

a,n+1 (b) = n-1 k=0 k+1 n k n t 2 2 - 1 2n + k n t + k(k + 1) 2n 2 φ (t)dt.
Consequently, from ( 12),

a,n+1 (b) can be written

(2) a,n+1 (b) = 1 b -a n-1 k=0 k+1 n k n t 2 2 - 1 2n + k n t + k(k + 1) 2n 2 φ (t)dt - 1 b -a n k=0 ω k (n)φ k n . (14) 
Now, using that φ k n = φ (1) -

1 k n
φ (t)dt together with Lemma 2.2, and a change of variable t = nt, the last sum in ( 14) can be expressed as:

n k=0 ω k (n)φ k n = n k=0 ω k (n)φ (1) - n-1 k=0 k+1 n k n S k (n)φ (t)dt,
where

S k (n) = k j=0 ω j (n), for all 0 ≤ k ≤ n -1.
Consequently, expression [START_REF] Cheng | Improvement of some Ostrowski-Grüss type inequalities[END_REF] becomes:

(2)

a,n+1 (b) = 1 b -a n-1 k=0 k+1 n k n t 2 2 - 1 2n + k n t + k(k + 1) 2n 2 + S k (n) φ (t)dt- 1 b -a φ (1) n k=0 ω k (n).
(15) Let us assume for simplicity (see Remark 1 below) that:

n k=0 ω k (n) = 0. (16) 
Then, setting

λ = S k (n) + k(k + 1) 2n 2 , the expression (15) of (2) 
a,n+1 (b) becomes:

(2)

a,n+1 (b) = 1 b -a n-1 k=0 k+1 n k n t 2 2 - 1 2n + k n t + λ φ (t)dt. Substituting t = k + s n in this integral, and setting Pλ(s) = s 2 -s + λ with λ ≡ 2n 2 λ -k(k + 1) = 2n 2 S k (n) , (17) 
we get:

(2)

a,n+1 (b) = 1 2(b -a)n 3 n-1 k=0 1 0 Pλ(s)φ s + k n ds. (18) 
Now, assuming that the discriminant ∆ = 1 -4 λ of Pλ is strictly positive, it exists (t 1 , t 2 ) ∈ R 2 , t 1 < t 2 , such that: Pλ(t 1 ) = Pλ(t 2 ) = 0.

In the following, our aim is to derive an estimate of

a,n+1 (b). For this purpose, we split the integral above depending on the roots of Pλ. We get:

1 0 Pλ(t)φ t + k n dt = t 1 0 Pλ(t)φ t + k n dt+ t 2 t 1 Pλ(t)φ t + k n dt+ 1 t 2 Pλ(t)φ t + k n dt.
Keeping in mind that, for all x ∈ [0, 1] and for all t ∈ [a, b],

φ (x) = (b -a) 2 f (a + x(b -a)) and m 3 f (t) M 3 ,
then, Pλ(t) keeps a constant sign on each of the three above integrals and we have:

m 3 (b -a) 2 t 1 0 Pλ(t)dt ≤ t 1 0 Pλ(t)φ t + k n dt ≤ M 3 (b -a) 2 t 1 0 Pλ(t)dt, M 3 (b -a) 2 t 2 t 1 Pλ(t)dt ≤ t 2 t 1 Pλ(t)φ t + k n dt ≤ m 3 (b -a) 2 t 2 t 1 Pλ(t)dt, m 3 (b -a) 2 1 t 2 Pλ(t)dt ≤ 1 t 2 Pλ(t)φ t + k n dt ≤ M 3 (b -a) 2 1 t 2 Pλ(t)dt,
that yields the two following inequalities

1 0 Pλ(t)φ t + k n dt ≤ m 3 (b -a) 2 t 2 t 1 Pλ(t)dt + M 3 (b -a) 2 t 1 0 Pλ(t)dt + 1 t 2 Pλ(t)dt , ( 19 
)
1 0 Pλ(t)φ t + k n dt ≥ M 3 (b -a) 2 t 2 t 1 Pλ(t)dt + m 3 (b -a) 2 t 1 0 Pλ(t)dt + 1 t 2 Pλ(t)dt . ( 20 
)
We have now to deal with these inequalities. Since they have the same structure, we will consider only the first one, the second one can be treated in the same way.

Dividing by (b -a) 2 and computing the integrals, Pλ(t) being a second-degree polynomial function, we easily get:

1 0 Pλ(t)φ t + k n dt (b -a) 2 ≤ (M 3 -m 3 )(t 1 -t 2 ) t 2 1 + t 1 t 2 + t 2 2 3 - t 1 + t 2 2 + λ + M 3 λ - 1 6 .
Using that t i , (i = 1, 2), are the roots of the polynomial Pλ(.), we have, for i = 1, 2, t 2 i = t i -λ and this inequality becomes:

1 0 Pλ(t)φ t + k n dt (b -a) 2 ≤ (M 3 -m 3 )(t 1 -t 2 ) t 1 + t 2 + t 1 t 2 -2 λ 3 - t 1 + t 2 2 + λ + M 3 λ - 1 6 .
Since t 1 , t 2 are the roots of the second-degree polynomial Pλ(.),

t 1 + t 2 = 1, t 1 t 2 = λ and t 1 -t 2 = -1 -4 λ ,
that leads to:

1 0 Pλ(t)φ t + k n dt (b -a) 2 ≤ (M 3 -m 3 ) 6 (1 -4 λ) 3/2 + M 3 λ - 1 6 .
Finally, due to the symmetry between m 3 and M 3 in the right-hand sides of ( 19) and ( 20), we can write

ϕ 1 ( λ) ≤ 1 0 Pλ(t)φ t + k n dt (b -a) 2 ≤ ϕ 2 ( λ), (21) 
where ϕ i ( λ), (i = 1, 2) are defined by:

ϕ 1 ( λ) = (m 3 -M 3 ) 6 (1 -4 λ) 3/2 + m 3 λ - 1 6 , ϕ 2 ( λ) = (M 3 -m 3 ) 6 (1 -4 λ) 3/2 + M 3 λ - 1 6 .
We conclude the proof by determining the λ that minimizes the distance between ϕ 1 ( λ) and ϕ 2 ( λ). Let us define

ϕ( λ) = ϕ 2 ( λ) -ϕ 1 ( λ) = (M 3 -m 3 ) (1 -4 λ) 3/2 3 + λ - 1 6 , which satisfies ϕ ( λ) = 0 for λ = 3 16
, that is, the minimum of ϕ( λ). This also shows a posteriori that 1 -4 λ > 0, i.e. the discriminant of Pλ(t) is positive. For this value of λ, the inequalities ( 21) are written as:

2m 3 -M 3 48 ≤ 1 0 Pλ(t)φ t + k n dt (b -a) 2 ≤ 2M 3 -m 3 48 ,
and summing then over k, we obtain for

a,n+1 (b) in ( 18):

(b -a) 96n 2 (2m 3 -M 3 ) ≤ (2) a,n+1 (b) ≤ (b -a) 96n 2 (2M 3 -m 3 ).
Moreover, we can also get the weights

ω k (n), (k = 0, n), involved in Λ (2) 
n (a, b) (cf. ( 7)). Indeed, substituting λ = 3 16 in the expression λ = 2n 2 S k (n), from [START_REF] Dragomir | On Simpson's Inequality and Applications[END_REF], we get

S k (n) = k j=0 ω j (n) = 3 32n 2 , ∀k = 0, . . . , n -1.
Hence, for k = 0, ω 0 (n) = 3 32n 2 whereas ω k (n) = 0 for all 0 ≤ k ≤ n -1. Finally, we determine the last weight w n (n) by using the assumption [START_REF] Crouzeix | Analyse numérique des équations différentielles, Seconde édition, Collection mathématiques appliquées pour la maîtrise[END_REF], that leads to

ω n (n) = -ω 0 (n) = - 3 32n 2 .

and Λ

(2) n (a, b) introduced in ( 7) satisfies [START_REF] Chaskalovic | Explicit k-dependence for P k finite elements in W m,p error estimates: application to probabilistic laws for accuracy analysis[END_REF].

Remark 1 Condition (16) on the weights ω k (n) in Theorem 2.3 is a kind of closure condition but is not a restrictive one. Indeed, without (16), we will replace in [START_REF] Dragomir | Some remarks on the trapezoid rule in numerical integration[END_REF] (2)

a,n+1 (b) by (2) a,n+1 (b) = 1 2(b -a)n 3 n-1 k=0 1 0 Pλ(t)φ t + k n dt - 1 b -a φ (1) n-1 k=0 ω k (n) ,
and consequently, the corresponding weights ω k (n) would be written as:

ω 0 (n) = 3 32n 2 and ω k (n) = 0, ∀ 1 ≤ k ≤ n.
Then, following the same steps, we will get the following estimates for 

(2m 3 -M 3 )(b -a) 96n 2 - 3 32n 2 φ (1) (b -a) ≤ (2) a,n+1 (b) ≤ (2M 3 -m 3 )(b -a) 96n 2 - 3 32n 2 φ (1) (b -a) ,
or also

(2m 3 -M 3 )(b -a) 96n 2 - 3M 2 32n 2 ≤ (2) a,n+1 (b) ≤ (2M 3 -m 3 )(b -a) 96n 2 - 3m 2 32n 2
. Furthermore, still without the condition ( 16) on the weights, the second order Taylor's-like formula (9) would be expressed as (1) n (a, b) +

f (b) = f (a) + (b -a)Λ

The interpolation error

Consider first the generalized Taylor-like expansion ( 9)- [START_REF] Chaskalovic | Explicit k-dependence for P k finite elements in W m,p error estimates: application to probabilistic laws for accuracy analysis[END_REF] for n = 2 In this case, for any function f which belongs to C 3 ([a, b]), this formula is expressed as

f (b) = f (a)+(b-a) f (b) + 2f a + b 2 + f (a) 4 - 3(b -a) 2 128 f (b) -f (a) +(b-a) 2 (2) a,3 (b), ( 23 
)
where the remainder a,3 (b) satisfies

(b -a) 384 (2m 3 -M 3 ) ≤ (2) a,3 (b) ≤ (b -a) 384 (2M 3 -m 3 ). ( 24 
)
In order to derive a first application of this formula, let us consider the case of the P 2 -Lagrange interpolation (see for instance [START_REF] Burden | Numerical Analysis[END_REF], [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF]), where a given function f is interpolated on [a, b] by a polynomial Π [a,b] (f ) of degree less than or equal to two. Hence, we can write:

∀x ∈ [a, b] : Π [a,b] (f )(x) = (x -c)(x -b) (a -c)(a -b) f (a)+ (x -a)(x -c) (b -a)(b -c) f (b)+ (x -a)(x -b) (c -a)(c -b) f (c) , (25) 
where

c = a + b 2 denotes the midpoint of [a, b].
As it is well known, one has by construction Π

[a,b] (f )(a) = f (a), Π [a,b] (f )(b) = f (b) and Π [a,b] (f )(c) = f (c).
Let us investigate the consequences of formula [START_REF] Oates | A modern retrospective on probabilistic numerics[END_REF] when it is used to evaluate the interpolation error e(.)

defined by ∀x ∈ [a, b] : e(x) = Π [a,b] (f )(x) -f (x) ,
and compare it with the one obtained when using the classical second order Taylor's formula.

The classical result [START_REF] Crouzeix | Analyse numérique des équations différentielles, Seconde édition, Collection mathématiques appliquées pour la maîtrise[END_REF], [START_REF] Raviart | Introduction à l'analyse numérique des équations aux dérivées partielles[END_REF] concerning the P 2 -Lagrange interpolation error claims that, for any function f that belongs to C 3 ([a, b]), we have:

|e(x)| ≤ (x -a)(b -x)|x -c| 6 sup a≤x≤b |f (x)| ,
and using that sup

a≤x≤b (x -a)(b -x)|x -c| = (b -a) 3 12 √ 3 , we get |e(x)| ≤ (x -a)(b -x)|x -c| 6 sup a≤x≤b |f (x)| ≤ (b -a) 3 72 √ 3 sup a≤x≤b |f (x)|. ( 26 
)
This result is usually derived by considering, for x ∈ [a, b], x different from a, b and c, the function g(t) defined by

g(t) = f (t) -Π [a,b] (f )(t) -f (x) -Π [a,b] (f )(x) (t -a)(t -c)(t -b) (x -a)(x -c)(x -b) .
By construction, g(t) vanishes on a, c, b and on the point t = x. Then, by applying three times Rolle's theorem, we obtain that there exists a point ξ x ∈]a, b[\{c, x} such that g (ξ x ) = 0.

Moreover, the third-order derivative of Π [a,b] (f )(t), which is a polynomial of degree 2, vanishes, and the third-order derivative of the function t -→ (t -a)(t -c)(t -b) is a constant equal to 6. Therefore, we obtain that there exists

ξ x ∈]a, b[\{c, x} such that g (ξ x ) = f (ξ x ) -f (x) -Π [a,b] (f )(x) 6 (x -a)(x -c)(x -b) = 0 ,
that leads to [START_REF] Taylor | Methodus incrementorum directa and inversa[END_REF]. Now, to evaluate the difference between the classical Taylor's formula and the formula we derived in [START_REF] Oates | A modern retrospective on probabilistic numerics[END_REF], we consider the two constants m 3 and M 3 introduced in (1), and we reformulate estimate (26) by using the classical Taylor formula (1). We get the following result:

Lemma 3.1 Let f be a function C 3 ([a, b]) satisfying (1)
. Then the second order Taylor's theorem leads to the following interpolation error estimate:

|e(x)| ≤ (b -a) 3 72 √ 3 (2M 3 -m 3 ) . ( 27 
)
Proof : We begin by writing the Lagrange P 2 -polynomial Π [a,b] (f ) given by ( 25) by using the classical second order Taylor's formula [START_REF] Assous | Indeterminate Constants in Numerical Approximations of PDE's: a Pilot Study Using Data Mining Techniques[END_REF].

For this purpose, we substitute in [START_REF] Süli | An Introduction to Numerical Analysis[END_REF], f (a), f (b) and f (c) expressed in the following form:

f (a) = f (x) + (a -x)f (x) + (a -x) 2 2 f (x) + (a -x) 2 x,2 (a), f (b) = f (x) + (b -x)f (x) + (b -x) 2 2 f (x) + (b -x) 2 x,2 (b), f (c) = f (x) + (c -x)f (x) + (c -x) 2 2 f (x) + (c -x) 2 x,2 (c),
where, by the help of ( 3) and ( 1), the remainders x,2 (a), x,2 (b) and x,1 (c) satisfy the inequations, with

M = max{|m 3 |, |M 3 |}, | x,2 (a)| ≤ (x -a) 6 M, | x,2 (b)| ≤ (b -x) 6 M and | x,2 (c)| ≤ |c -x| 6 M.
Then, [START_REF] Süli | An Introduction to Numerical Analysis[END_REF] gives:

Π [a,b] (f )(x) = (x -c)(x -b) (a -c)(a -b) f (x) + (a -x)f (x) + (a -x) 2 2 f (x) + (a -x) 2 x,2 (a) + (x -a)(x -c) (b -a)(b -c) f (x) + (b -x)f (x) + (b -x) 2 2 f (x) + (b -x) 2 x,2 (b) 
+ (x -a)(x -b) (c -a)(c -b) f (x) + (c -x)f (x) + (c -x) 2 2 f (x) + (c -x) 2 x,2 (c) . 
From this expression, we can compute the coefficients of f (x), f (x) and f (x). We get that the first one is equal to 1, whereas the two others are equal to 0. Consequently, we obtain for

Π [a,b] (f )(x): Π [a,b] (f )(x) = f (x) + (x -c)(x -b) (a -c)(a -b) (a -x) 2 x,2 (a) + (x -a)(x -c) (b -a)(b -c) (b -x) 2 x,2 (b) + (x -a)(x -b) (c -a)(c -b) (c -x) 2 x,2 (c) . (28) 
In order to determine the error e(x) introduced above, we have to compute the three last terms involved in (28), namely 

(x -c)(x -b) (a -c)(a -b) (a -x) 2 x,2 (a) + (x -a)(x -c) (b -a)(b -c) (b -x) 2 x,2 (b) + (x -a)(x -b) (c -a)(c -b) (c -x) 2 x,2 (c) 
(a -x)(b -x)(c -x) 3(b -a) 2 (x -a) 2 f (ξ(a, x)) + (b -x) 2 f (ξ(b, x)) -2(c -x) 2 f (ξ(c, x)) .( 29 
)
To estimate (29), we will bound separately the two terms involved. For the first one, by studying the function f (x) = (a -x)(b -x)(c -x), we easily obtain that

- (b -a) 36 √ 3 ≤ (a -x)(b -x)(c -x) 3(b -a) 2 ≤ (b -a) 36 √ 3 .
or equivalently that

|(a -x)(b -x)(c -x)| 3(b -a) 2 ≤ (b -a) 36 √ 3 .
For the second term of (29), using (1), we obtain that

g min (x) ≤ (x -a) 2 f (ξ(a)) + (b -x) 2 f (ξ(b)) -2(c -x) 2 f (ξ(c)) ≤ g max (x) ,
where

g min (x) = m 3 (x -a) 2 + m 3 (b -x) 2 -2M 3 (c -x) 2 , g max (x) = M 3 (x -a) 2 + M 3 (b -x) 2 -2m 3 (c -x) 2 .
To continue, we have to determine the extremum values of the functions g min (x) and g max (x).

We will consider only g max (x), the case of g min (x) being analogous. A simple computation gives that the maximum of g max is reached at the boundaries x = a, x = b , with

g max (a) = g max (b) = (b -a) 2 M 3 - m 3 2 .
Similarly, we obtain the minimum of g min (x) is equal to

g min (a) = g min (b) = (b -a) 2 m 3 - M 3 2 ,
so that the second term of (29) can be bounded as follows:

(2m 3 -M 3 ) (b -a) 2 2 ≤ (x-a) 2 f (ξ(a))+(b-x) 2 f (ξ(b))-2(c-x) 2 f (ξ(c)) ≤ (2M 3 -m 3 ) (b -a) 2 2 .
Now, putting these results together, we finally get that

|e(x)| ≤ (b -a) 3 72 √ 3 (2M 3 -m 3 )
Remark 2 This result can be compared with the more classical one recalled in [START_REF] Taylor | Methodus incrementorum directa and inversa[END_REF]. In fact the only difference comes from the term sup a≤x≤b |f (x)| that is replaced here by 2M 3 -m 3 , that takes care of the difference between the sup and the inf of the function f (x), rather than considering their maximum.

Let us now derive the corresponding result when we use the new second order Taylor-like formula [START_REF] Oates | A modern retrospective on probabilistic numerics[END_REF] in the expression of the interpolation polynomial Π [a,b] (f ) defined by [START_REF] Süli | An Introduction to Numerical Analysis[END_REF]. This is the purpose of the following lemma.

Lemma 3.2 Let f ∈ C 3 ([a, b]
), then we have the following interpolation error estimate:

∀x ∈ [a, b] : f (x) -Π * [a,b] (f )(x) ≤ (b -a) 3 1536 √ 3 (2M 3 -m 3 ) , (30) 
where

Π * [a,b] (f )(x) is defined by Π * [a,b] (f )(x) = Π [a,b] (f )(x) - (x -a)(b -x)(c -x) (b -a) 2 f (a) -2f (c) + f (b) 2 + f x + a 2 -2f x + c 2 + f x + b 2 - 3(x -a)(b -x)(c -x) 64(b -a) 2 f (a)(a -x) + 2f (c)(x -c) + f (b)(b -x) (31) 
Proof : We begin to write f (a), f (b) and f (c) by the help of ( 23):

f (a) = f (x) + (a -x) f (a) + 2f x + a 2 + f (x) 4 - 3(a -x) 2 128 f (a) -f (x) + (a -x) 2 (2)
x,3 (a),

f (b) = f (x) + (b -x) f (b) + 2f x + b 2 + f (x) 4 - 3(b -x) 2 128 f (b) -f (x) + (b -x) 2 (2)
x,3 (b),

f (c) = f (x) + (c -x) f (c) + 2f x + c 2 + f (x) 4 - 3(c -x) 2 128 f (c) -f (x) + (c -x) 2 (2)
x,3 (c), where x,3 satisfies ( 24) with obvious changes of notations. More precisely, we have

| (2) x,3 (a)| ≤ (x -a) 384 (2M 3 -m 3 ) , | (2) 
x,3

(b)| ≤ (b -x) 384 (2M 3 -m 3 ) , | (2) 
x,3 (c

)| ≤ |c -x| 384 (2M 3 -m 3 ) .
(32) Then, by substituting f (a), f (b) and (c) in the interpolation polynomial [START_REF] Süli | An Introduction to Numerical Analysis[END_REF], we obtain

Π [a,b] (f )(x) = (x -c)(x -b) (a -c)(a -b) f (x)+(a-x) f (a)+2f x + a 2 +f (x) 4 - 3(a -x) 2 128 f (a)-f (x) +(a -x) 2 (2) x,3 (a) + (x -a)(x -c) (b -a)(b -c) f (x)+(b-x) f (b)+2f x + b 2 +f (x) 4 - 3(b -x) 2 128 f (b)-f (x) +(b -x) 2 (2) x,3 (b) + (x -a)(x -b) (c -a)(c -b) f (x)+(c-x) f (c)+2f x + c 2 +f (x) 4 - 3(c -x) 2 128 f (c)-f (x) +(c -x) 2 (2) x,3 (c) 
From this expression, we obtain that the coefficients of f (x) is equal to 1, whereas the one before f (x) is equal to 0.

Let us compute now the terms before the other derivatives of f (x). For the first order derivatives, we have the following expressions

(x -a)(b -x)(c -x) (b -a) 2 f (a) -2f (c) + f (b) 2 + f x + a 2 -2f x + c 2 + f x + b 2 ,
whereas the terms in f (x) can be expressed as

3(x -a)(b -x)(c -x) 64(b -a) 2 f (a)(a -x) + 2f (c)(x -c) + f (b)(b -x) .
Finally, we obtain for Π

[a,b] (f )(x): Π [a,b] (f )(x) = f (x)+ (x -a)(b -x)(c -x) (b -a) 2 f (a) -2f (c) + f (b) 2 + f x + a 2 -2f x + c 2 + f x + b 2 + 3(x -a)(b -x)(c -x) 64(b -a) 2 f (a)(a -x) + 2f (c)(x -c) + f (b)(b -x) + (x -c)(x -b) (a -c)(a -b) (a -x) 2 (2) x,3 (a) + (x -a)(x -c) (b -a)(b -c) (b -x) 2 (2) x,3 (b) + (x -a)(x -b) (c -a)(c -b) (c -x) 2 (2)
x,3 (c). 

E(x, a, b) = (x -c)(x -b) (a -c)(a -b) (a-x) 2 (2) x,3 (a)+ (x -a)(x -c) (b -a)(b -c) (b-x) 2 (2) x,3 (b)+ (x -a)(x -b) (c -a)(c -b) (c-x) 2 (2)
x,3 (c) .

Using (32), we obtain the following bound

|E(x, a, b)| ≤ 2 |(a -x)(b -x)(c -x)| (b -a) 2 2M 3 -m 3 384 (x a) 2 + (b -x) 2 + 2(c -x) 2 . ( 34 
)
We already saw before that

|(a -x)(b -x)(c -x)| (b -a) 2 ≤ b -a 12 √ 3 ,
so we only have to bound the second term of (34

), that is (x -a) 2 + (b -x) 2 + 2(c -x) 2 .
Using a method similar to the one used for (29), we obtain that

max a≤x≤b (x -a) 2 + (b -x) 2 + 2(c -x) 2 = 3 2 (b -a) 2 .
Putting all together, we obtain that

|E(x, a, b)| ≤ 2M 3 -m 3 1536 √ 3 (b -a) 3 ,
which completes the proof of this lemma.

Remark 3 Let us compare the interpolation errors of lemma 3.2 with the classical one of lemma 3.1. First, note that Π * [a,b] (f ) is a polynomial of degree less than or equal to 3. So, interpolation errors ( 27) and (30) can not be compared anymore, since Π [a,b] (f ) is a polynomial of degree less than or equal to 2.

However, if we consider the Lagrange polynomial Π Hence, denoting by M 4 = sup a≤x≤b f (4) (x) and by m 4 = inf a≤x≤b f (4) (x), the Lagrange interpolating polynomial error bound can be written (see for instance [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF], [START_REF] Süli | An Introduction to Numerical Analysis[END_REF])

f (x) -Π (3) [a,b] (f )(x) ≤ (b -a) 4 1296 M 4 , with M 4 := max(|M 4 |, |m 4 |) . ( 35 
)
Now, to compare this estimate with (30), we assume that variations of the third derivative f (3) are not "extreme", so that 2M 3 -m 3 can approximatively be replaced by

M 3 := max(|m 3 |, |M 3 |).
In addition, for a function f smooth enough (at least C 4 ([a, b])), we can (roughly speaking) also assume that |f (3) | behaves like (b -a)|f (4) |. Hence, the error estimate (30) can be expressed as

f (x) -Π * [a,b] (f )(x) ≤ (b -a) 4 1536 √ 3 M 4 .
This gives a bound which is more than 2 times smaller than the corresponding one in (35). Hence, the improved formula leads to a much more accurate approximation of ln(2).

The quadrature error

We consider now, for any integrable function f defined on [a, b], Simpson's quadrature rule [START_REF] Crouzeix | Analyse numérique des équations différentielles, Seconde édition, Collection mathématiques appliquées pour la maîtrise[END_REF] whose formula is given by

b a f (x)dx b -a 6 f (a) + 4 f a + b 2 + f (b) . (36) 
The reason we consider (36) is that this quadrature formula corresponds to approximate the function f by its Lagrange polynomial interpolation Π [a,b] (f ), of degree less than or equal to two, which is given by [START_REF] Süli | An Introduction to Numerical Analysis[END_REF].

Thus, in the classical literature of numerical integration (see for example [START_REF] Dragomir | On Simpson's Inequality and Applications[END_REF], [START_REF] Crouzeix | Analyse numérique des équations différentielles, Seconde édition, Collection mathématiques appliquées pour la maîtrise[END_REF] and [START_REF] Cerone | Trapezoidal-type rules from an inequalities point of view[END_REF]), we can find the standard Simpson inequality Now, if the function f is not four times differentiable, or if the fourth derivative f (4) is not bounded on [a, b], we cannot apply the formula above. Therefore, if we consider a function f that is only C 3 on [a, b], we have the following estimate [START_REF] Burden | Numerical Analysis[END_REF], [START_REF] Cheng | A Note on the Perturbed Trapezoid Inequality[END_REF] b a

b a f (x) dx - b -a 6 f (a) + 4 f a + b 2 + f (b) ≤ (b -a) 5 2880 sup a≤x≤b |f (4) (x)|, (37) 
f (x) dx - b -a 6 f (a) + 4 f a + b 2 + f (b) ≤ (b -a) 4 192 sup a≤x≤b |f (x)|, (38) 
Let us prove now a result that gives estimate (38) in an alternative display, based on the classical Taylor formula.

Lemma 3.3 Let f ∈ C 3 ([a, b]
) which satisfies [START_REF] Abdulle | A probabilistic finite element method based on random meshes: A posteriori error estimators and Bayesian inverse problems[END_REF]. Then, we have the following estimate:

b a f (x) dx - b -a 6 f (a) + 4 f a + b 2 + f (b) ≤ 5(b -a) 4 1152 (M 3 -m 3 ) .
Proof : To derive this estimate, let us begin with the classical second order Taylor's formula [START_REF] Assous | Indeterminate Constants in Numerical Approximations of PDE's: a Pilot Study Using Data Mining Techniques[END_REF], from which we have derived above the expression (28

) of polynomial Π [a,b] (f ). Then, by integrating the difference f (x) -Π [a,b] (f )(x) between a and b, we get b a (f (x) -Π [a,b] (f )(x)) dx = b a (x -c)(b -x) (c -a)(b -a) (a -x) 2 2 x,2 (a) + (x -a)(c -x) (b -a)(b -c) (b -x) 2 2 x,2 (b)+ (x -a)(x -b) (c -a)(b -c) (c -x) 2 2 x,2 (c) dx.(39)
However, it is well known [START_REF] Atkinson | An Introduction to Numerical Analysis[END_REF] that the P 2 -Lagrange interpolation polynomial Π [a,b] (f ) given by ( 25) also fulfills:

b a Π [a,b] (f )(x) dx = b -a 6 (f (a) + 4f (c) + f (b)) . (40) 
Now, let us introduce the usual error in the quadrature rule E(f ) defined by

E(f ) ≡ b a f (x)dx - b -a 6 (f (a) + 4f (c) + f (b)) .
Using the expressions x,2 (a), x,2 (b) and x,2 (c) (see proof of lemma 3.1), equations ( 39) and (40) give 

E(f ) = b a (x -a)(b -x)(c -x) 3(b -a) 2 (x -a) 2 f (ξ(a)) + (b -x) 2 f (ξ(b)) -2 (c -x) 2 f (ξ(c)) dx
I(a) = 1 3(b -a) 2 b a (x -a) 3 (b -x)(c -x)f (ξ(a))dx , I(b) = 1 3(b -a) 2 b a (x -a)(b -x) 3 (c -x)f (ξ(b))dx , I(c) = 2 3(b -a) 2 b a (x -a)(b -x)(c -x) 3 f (ξ(c))dx .
To obtain estimates of E(f ), we will consider separately each of these integrals. We detailed here the computations for I(a), the others terms can be treated similarly.

Noting that the term (x -a) 3 (b -x)(c -x) is positive for a ≤ x ≤ c and negative for c ≤ x ≤ b, we split the integral and we get, using the mean value theorem, that there exists a constant 

a < C 1,a < c, (respectively c < C 2,a < b), such that c a (x -a) 3 (b -x)(c -x)f (ξ(a))dx = f (C 1,a ) c a (x -a) 3 (b -x)(c -x)dx , b c (x -a) 3 (b -x)(c -x)f (ξ(a))dx = f (C 2,
(m 3 -M 3 ) (b -a) 4 1152 ≤ I(c) = (b -a) 4 1152 f (C 1,c ) -f (C 2,c ) ≤ (M 3 -m 3 ) (b -a) 4 1152 .
Putting all together, we finally proved that Let us consider now the corresponding quadrature formula denoted I(f ), based on the generalized Taylor-like expansion [START_REF] Oates | A modern retrospective on probabilistic numerics[END_REF] and defined by:

I(f ) = b -a 6 f (a) + 4 f a + b 2 + f (b) + (b -a) 3 240 f a 2 -2f c 2 + f b 2 - (b -a) 3 2560 f (a) + 2f (c) + f (b) (41) 
The corresponding quadrature error estimate is then given by the following lemma: 

a f (x) -Π [a,b] (f )(x) dx = - b a (x -a)(b -x)(c -x) (b -a) 2 f (a) -2f (c) + f (b) 2 + f x + a 2 -2f x + c 2 + f x + b 2 (44) - b a 3(x -a)(b -x)(c -x) 64(b -a) 2 f (a)(a -x) + 2f (c)(x -c) + f (b)(b -x) dx (45) - b a (x -c)(x -b) (a -c)(a -b) (a -x) 2 (2) x,3 (a) + (x -a)(x -c) (b -a)(b -c) (b -x) 2 (2) x,3 (b) + (x -a)(x -b) (c -a)(c -b) (c -x) 2 (2) x,3 (c)dx (46) 
In the following of the proof, we will consider one by one, each line (44), ( 45) and (46) of the above formula:

Given that b a (x -a)(b -x)(c -x)dx = 0 ,
the first line (44) can be written as

- 1 (b -a) 2 b a (x -a)(b -x)(c -x)F a,b,c (x)dx , (47) 
where we denote F a,b,c (x

) = f x + a 2 -2f x + c 2 + f x + b 2 .
We begin to write f x + a 2 , f x + c 2 and f x + b 2 , by the help of the first order Taylor's formula. We get

f x + a 2 = f a 2 + x 2 f a 2 + x 2 8 f ξ 1 (x) , a 2 < ξ 1 (x) < x + a 2 , f x + c 2 = f c 2 + x 2 f c 2 + x 2 8 f ξ 2 (x) , c 2 < ξ 1 (x) < x + c 2 , f x + b 2 = f b 2 + x 2 f b 2 + x 2 8 f ξ 3 (x) , b 2 < ξ 1 (x) < x + b 2 .
Substituting these expressions in (47), we obtain that the term with the first derivatives is equal to zero. The first non vanishing term in (47) (with the second derivatives) is equal to

- 1 (b -a) 2 f a 2 -2f c 2 + f b 2 b a x 2 (x -a)(b -x)(c -x)dx = - (b -a) 3 240 f a 2 -2f c 2 + f b 2 . ( 48 
)
Now, the last term of (47), that contributes to the error bound gives

- 1 8(b -a) 2 b a f ξ 1 (x) -2f ξ 2 (x) + f ξ 3 (x) x 2 (x -a)(b -x)(c -x)dx . (49) 
Let us consider the term with the third derivatives of (49). Using that f is L-Lipschitz, we have

|f ξ 1 (x) -2f ξ 2 (x) +f ξ 3 (x) | ≤ |f ξ 1 (x) -f ξ 2 (x) | + |f ξ 3 (x) -f ξ 2 (x) | ≤ L |ξ 1 (x) -ξ 2 (x)| + L |ξ 3 (x) -ξ 2 (x)| ≤ 3 4 L (b -a) + 3 4 L (b -a) = 3 2 L (b -a) , using that a < ξ 1 (x) < c, a + c 2 < ξ 2 (x) < b + c 2 and c < ξ 3 (x) < b.
In these conditions, (49) can be bounded in absolute value by Assuming (for instance) that ab < 0, as for example for [a, b] = [-1, 1], we readily get that

3 L 16(b -a) b a x 2 (x -a)(b -x)|c -x|dx . Given that b a x 2 (x -a)(b -x)|c -x|dx = (b -a) 4 96 (a 2 + ab + b 2 ) , ( 
a 2 + ab + b 2 ≤ (b -a) 2 and L (b -a) 3 512 (a 2 + ab + b 2 ) ≤ L (b -a) 5 512 . (50) 
Consider now the second line (45) that can be decomposed into three terms. Let us consider for example the first one, namely

- 3f (a) 64(b -a) 2 b a (x -a)(b -x)(c -x)(a -x)dx .
We can explicitly compute this integral that yields 

a (x -a)(b -x)(c -x)(a -x)dx = - (b -a) 5 120 .
Consequently, the first term of ( 45) is equal to

- 3f (a) 64(b -a) 2 b a (x -a)(b -x)(c -x)(a -x)dx = (b -a) 3 f (a) 2560 .
Similarly, for the second term of (45), we get

- 6f (c) 64(b -a) 2 b a (x -a)(b -x)(c -x)(x -c)dx = (b -a) 3 f (c) 1280 ,
and, for the last one of (45)

- 3f (b) 64(b -a) 2 b a (x -a)(b -x)(c -x)(b -x)dx = (b -a) 3 f (b) 2560 .
Summing up, the second line (45) gives the following contribution

(b -a) 3 2560 f (a) + 2f (c) + f (b) . (51) 
Let us consider now the last line (46) that can be expressed as, c being the midpoint of [a, b]:

2 (b -a) 2 b a -(x-a) 2 (b-x)(c-x) (2) x,3 (a) + (x-a)(b-x) 2 (c-x) (2) x,3 (b) -2(x-a)(b-x)(c-x) 2 (2)
x,3 (c) dx, the absolute value of which being bounded by the sum of three terms J(a) + J(b) + 2J(c), where we define

J(a) = 2 (b -a) 2 b a (x -a) 2 (b -x) c -x (2) x,3 (a) dx , J(b) = 2 (b -a) 2 b a (x -a)(b -x) 2 c -x (2) x,3 (b) dx , J(c) = 2 (b -a) 2 b a (x -a)(b -x)(c -x) 2 (2)
x,3 (c) dx .

Now, we will bound separately each of these 3 terms, using again the estimates (32) to bound

x,3 (a),

x,3 (c) and

(2)

x,3 (b). We have:

|J(a)| ≤ 2 (b -a) 2 2M 3 -m 3 384 b a (x -a) 3 (b -x)|c -x|dx , |J(b)| ≤ 2 (b -a) 2 2M 3 -m 3 384 b a (x -a)(b -x) 3 |c -x|dx , |J(c)| ≤ 2 (b -a) 2 2M 3 -m 3 384 b a (x -a)(b -x)|c -x| 3 dx .
Using similar computations as above (see proof of lemma 3.3), straightforward computations give As this comparison depends on the constants m 3 , M 3 and L, it is not reachable in a general case. Hence, we will consider a numerical example, where we will be able to avoid the numerical evaluation of L.

Namely, for a given interval For these values of p, the function f belongs to C 3 ([a, b]) but is not four times derivable at point a.

Then, to estimate the quadrature error (43), we have to evaluate the term (49), that is the absolute value of the quantity X defined by Let us deal with the first one, the second being similar. We have, assuming for instance ξ 1 (x) < ξ 2 (x), and the numerical quadrature formula. We showed that using this approach improves both the Lagrange P 2 -interpolation error estimate and the error bound of the Simpson rule in numerical integration.

X := - 1 
For the interpolation error, we showed that the upper bound of the errors we obtained is almost two times more precise than the one obtained by the classical Taylor formula. For the numerical integration, dealing with functions with only C 3 regularity, the new quadrature error based on Taylor-like formula was found to be bounded 1.33 times less than the best one derived for another numerical integration rule.

Other applications could also be concerned by this new second order Taylor-like formula. For instance, we could consider to improve the approximation error involved in ODE's approximation where Taylor's formula is the main tool used to derive numerical schemes.

Homages: The authors want to warmly dedicate this research to pay homage to the memory of Professors André Avez and Gérard Tronel who largely promote the passion of research and teaching in mathematics of their students.

.

  Now recall that, from the classical Taylor formula, x,2 (a) = a -x 6 f (ξ(a, x)) (the same for x,2 (b) and x,2 (c)). Using that c is the midpoint of [a, b], we have c -a = b -a 2 , and the expression above is equal to

  (33) Now, let us consider the new interpolation polynomial Π * [a,b] (f ) introduced in (31). With this, the interpolation polynomial Π [a,b] (f ) of (33) can be expressed as Π * [a,b] (f ) = f (x) + E(x, a, b) , where the function error E(x, a, b) is defined by

  b] (f ) of degree less than or equal to 3, we can compare the corresponding interpolation error with result (30), assuming that the function f ∈ C 4 ([a, b]). Indeed, the standard estimate in literature requires the function f to belong to C 4 ([a, b]).

Remark 4 1 2 + 2

 412 Let us give an elementary numerical example. Consider the interval [a, b] = [0, 1], and the function f (x) = ln(1 + x). Formula (23) gives ln(2) = ln(1) +

  for any function four times differentiable f on [a, b], whose fourth derivative is accordingly bounded on [a, b].

  that we split, for convenience, in three integrals I(a), I(b) and I(c), so that E(f ) = I(a) + I(b) -I(c) with

  a ) b c (x -a) 3 (b -x)(c -x)dx . It remains now to compute the integral above. Owing to the relation c = (a + b)/2, a straightforward computation gives us c a (x -a) 3 (b -x)(c -x)dx = (b -a) 6 960 , and b c (x -a) 3 (b -x)(c -x)dx = -3(b -a) 6 320 .Using now inequalities (1), we readily get(m 3 -9M 3 ) (b -a) 4 2880 ≤ I(a) = (b -a) 4 2880 f (C 1,a ) -9f (C 2,a ) ≤ (M 3 -9m 3 ) (b -a) 4 2880 .The same computations for I(b) gives c a (x -a)(b -x) 3 (c -x)dx = 3(b -a) 6 320 , and b c (x -a)(b -x) 3 (c -x)dx = -(b -a) 6 960 , so that(9m 3 -M 3 ) (b -a) 4 2880 ≤ I(b) = (b -a) 4 2880 9f (C 1,b ) -f (C 2,b ) ≤ (9M 3 -m 3 ) (b -a) 4 2880 .Similarly for I(c), where the polynomial in the integral is odd with respect to x = c, we get c a (x -a)(b -x)(c -x) 3 dx = (b -a) 6 768 , and b c (x -a)(b -x)(c -x) 3 dx = -(b -a) 6 768 , so that

5(m 3 -

 3 M 3 ) (b -a) 4 1152 ≤ E(f ) = I(a) + I(b) -I(c) ≤ 5(M 3 -m 3 ) (b -a) 4 1152 .

Lemma 3 . 4

 34 Let f ∈ C 3 ([a, b]) which satisfies (1), with a third derivative f L-Lipschitz. Then, we have the following estimate:ba f (x) dx -I(f ) ≤ L (b -a) 3 (a 2 + ab + b 2 ) 512 + 5(b -a) 4 36864 (2M 3 -m 3 ) . (42)Moreover, if ab < 0, we have: b a f (x) dx -I(f ) ≤ L (b -a) 5 512 + 5(b -a) 4 36864 (2M 3 -m 3 ) . (43) Proof : We consider the expression (33) of the polynomial function Π [a,b] (f )(x). By integrating between a and b the difference f (x) -Π [a,b] (f )(x), we obtain: b

  49) can be bounded by 3 L(b -a) 3 1536 (a + ab + b 2 ) = L (b -a) 3 512 (a 2 + ab + b 2 ) .

  b

1 .

 1 a) 3 (b -x)|c -x|dx = b a (x -a)(b -x) 3 |c -x|dx = (b -a) 6 96 , and b a (x -a)(b -x)|c -x| 3 dx = (b -a) 6 384 .Putting all together, we finally obtain that the last line (46) is bounded by the term 5 32(b -a) 4 1152 (2M 3 -m 3 ) .(52)Finally, combining estimates (50) and (52), and adding the contributions (48) and (51) to the quadrature approximation of the integral, we get the error estimate (43).Let us conclude this section by several remarks. To obtain estimate (43), we used that a 2 + ab + b 2 ≤ (b -a)2 . In fact, in several cases, we can derive a better estimate of the forma 2 + ab + b 2 ≤ (b-a) 2 m , m > 1. For instance, for [a, b] = [-1, 1], we readily get m = 4, leading to an improved error bound. 2. We are now interested to compare the relative numerical weights between the two terms involved in estimate (43), namely L (b -a) 5 512 and 5(b -a) 4 36864 (2M 3 -m 3 ).

  [a, b], (a < b and ab < 0), we introduce the functionf (x) = (x -a) p , 3 ≤ p < 4, where f (x) = p(p -1)(p -2)(x -a) p-3 .

  8(b -a) 2 b a f ξ 1 (x) -2f ξ 2 (x) + f ξ 3 (x) x 2 (x -a)(b -x)(c -x)dx .As in the proof of lemma 3.4, we have to bound the terms |f ξ 1 (x) -f ξ 2 (x) | and |f ξ 3 (x) -f ξ 2 (x) |.

f ξ 1 + c 2 < ξ 2 ( 3 (|f ξ 1 4 p- 3 (b -a) p- 3 .

 12231433 (x) -f ξ 2 (x) = p(p -1)(p -2) (ξ 1 (x) -a) p-3 -(ξ 2 (x) -a) p-3 . Now, recall that a < ξ 1 (x) < c whereas a b -a) p-3 ≤ (ξ 1 (x) -a) p-3 -(ξ 2 (x) -a) (x) -f ξ 2 (x) | ≤3Using the same estimate for |f ξ 3 (x) -f ξ 2 (x) |, and continuing the computation exactly as in the proof of Lemma 3.4, we obtain that |X| can be bounded by |X| ≤ 3 4 p-3 p(p -1)(p -2) 384 (b -a) p+1 ,

32n 2 (b -a) 2 f (a) + (b -a) 2 (2) a,n+1 (b),[START_REF] Matic | Improvement and further generalization of inequalities of Ostrowski-Grüss type[END_REF] the coefficient before f (b) vanishes.Let us compare now the remainder[START_REF] Chaskalovic | Numerical validation of probabilistic laws to evaluate finite element error estimates[END_REF] of the new formula (9)-(10) with the reminder (3) of the classical formula[START_REF] Assous | Indeterminate Constants in Numerical Approximations of PDE's: a Pilot Study Using Data Mining Techniques[END_REF]. As one can see, the former remainder is significantly smaller than the latter one: indeed, we have to compare 1/6 with 1/32n 2 whose ratio is equal 3/16n 2 . The worst case of this ratio corresponds to n = 1 where the new remainder is approximatively 5 times smaller than the one obtained by the classical formula.3 Applications to the approximation errorIn this section, we consider two classical applications of the Taylor expansion: the Lagrange polynomial interpolation and the numerical quadrature. In both cases, we will derive new formula of interpolation and quadrature, obtained by using the refined second-order expansion formula (9)-[START_REF] Chaskalovic | Explicit k-dependence for P k finite elements in W m,p error estimates: application to probabilistic laws for accuracy analysis[END_REF]. Then, we will compare the errors obtained when using the standard Taylor expansion and our generalized approach. We begin with the interpolation error.

3. Interestingly, error estimate (43) can also be compared to the optimized result obtained in [START_REF] Cheng | A Note on the Perturbed Trapezoid Inequality[END_REF], [START_REF] Dragomir | On Simpson's Inequality and Applications[END_REF] for a third-order differentiable function on [a, b]. There, it is proved that, for another numerical integration rule, we have

To be able to compare (53) to our result, we assume that, roughly speaking, Lipschitz Consequently, the first term appears to be much greater than second one. Hence, in that case, the error bound can be approximated by

and ( 54) is 1.33 times smaller than (53). However, the "price to pay" in the quadrature formula (41) is the computation of f at the points a, a + b 2 and b, compared with f at the points a and b in formula (53).

Conclusion

In this paper we proposed a new second-order Taylor-like theorem to obtain some minimized remainders. For a function f defined on the interval [a, b], this formula is derived by introducing a linear combination of the derivative f computed at n + 1 equally spaced points in [a, b], together with the second-order derivatives f computed at the limit points a and b.

We proved that the corresponding remainder can be minimized for an ad hoc choice of the weights involved in this linear combination, and can be significantly smaller than the one obtained with the classical second order Taylor's formula.

Then, we considered two usual applications of this Taylor-like expansion: the interpolation error