
HAL Id: hal-04196065
https://hal.science/hal-04196065v1

Preprint submitted on 2 May 2023 (v1), last revised 6 Sep 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A new second order Taylor-like theorem with an
optimized reduced remainder

Joël Chaskalovic, Franck Assous, Hessam Jamshidipour

To cite this version:
Joël Chaskalovic, Franck Assous, Hessam Jamshidipour. A new second order Taylor-like theorem with
an optimized reduced remainder. 2023. �hal-04196065v1�

https://hal.science/hal-04196065v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A new second order Taylor-like theorem

with an optimized reduced remainder

Joël Chaskalovic ∗ Franck Assous † Hessam Jamshidipour ‡

Abstract

In this paper, we derive a variant of the Taylor theorem to obtain a new minimized remainder.
For a given function f defined on the interval [a, b], this formula is derived by introducing
a linear combination of f ′ computed at n + 1 equally spaced points in [a, b], together with
f ′′(a) and f ′′(b). We then consider two classical applications of this Taylor-like expansion:
the interpolation error and the numerical quadrature formula. We show that using this
approach improves both the Lagrange P2- interpolation error estimate and the error bound
of the Simpson rule in numerical integration.

keywords: Taylor’s theorem, Lagrange interpolation, interpolation error, Simpson rule, quadra-
ture error.

1 Introduction

Even today, improving the accuracy of approximation remains a challenging problem in numer-
ical analysis. Here, we are concerned with the difficulty of accurately determining the error
estimate in numerical methods. This article is part of a series of articles in which this topic is
addressed. More precisely, we derive here a variant of Taylor’s theorem to obtain a new mini-
mized remainder that we apply to interpolation error and numerical quadrature formula.

From a mathematical point of view, the origin of such problems already appears in Rolle’s
theorem and in Lagrange and Taylor’s theorems, see for instance [3]. Indeed, there exists an
unknown point involved in the remainder of Taylor’s expansion, that leads to some “uncertainty”.

Consequently, most error estimates focus generally on the asymptotic behavior of the error. For
instance in finite element approximation, a priori error estimates consider the asymptotic be-
havior of the difference between the exact and the approximate solution, as the mesh size h
tends to zero.

In this context, several approaches have been proposed to determine a way to improve the ac-
curacy of approximation. For example, within the framework of numerical integration, we refer
the reader to [4], [6] or [17], and references therein. From another point of view, due to the lack
of information, heuristic methods were considered, basically based on a probabilistic approach,
see for instance [1], [2], [19], [22] or [7], [9] and [10]. This allows to compare different numerical
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methods, and more precisely finite element, for a given fixed mesh size, see [11].

Nevertheless, Taylor’s theorem introducing an unknown point in its remainder, this makes it
very difficult (often impossible) to compute the interpolation error, and consequently the ap-
proximation error of a given numerical method. Therefore, the possibility to accurately estimate
the upper bounds of the error remains an important issue. In this article, we study the values
of the numerical constants involved in such estimates, trying to reduce them as small as possible.

In this framework, we proposed in [12] a refined first-order expansion formula in Rn, to get an
reduced remainder, compared to the one obtained by usual Taylor’s formula. Then, we investi-
gate the related properties in the interpolation error estimates and in Lagrange finite element
error estimates. In the context of quadrature rules applications, such a problem was considered
in the past years, and is often referred as the perturbed (or corrected) quadrature rules, see for
instance [6] or [17]. In other examples, the authors obtained in [14], [18] or [21], the trapezoid
inequality by the difference of sup and inf bound of the first derivative.

In this paper, we are concerned by a second order Taylor-like theorem, leading to an opti-
mized reduced remainder. Applications we have in mind are the interpolation error based on
a second-order polynomial and the Simpson quadrature rule (see for instance [5]). Concerning
the Simpson inequality, we also refer the reader to [20].

The paper is organized as follows. In Section 2, we present the main result, which treats on the
improved second order Taylor-like formula. In Section 3, we consider two classical applications
of the Taylor expansion: the interpolation error is investigated in subsection 3.1, whereas the
Simpson’s quadrature rule is studied subsection 3.2. In both cases, we derive new results on
error estimate. Concluding remarks follow.

2 A new second order expansion formula

To begin with, let us recall the well known second order Taylor’s formula [23]. We consider
(a, b) ∈ R2, a < b, and a function f ∈ C3([a, b]). Then, following Taylor’s theorem in one real
variable, there exist two real constants m3 and M3 such that, for all x ∈ [a, b],

−∞ < m3 = inf
a≤x≤b

f ′′′(x) and M3 = sup
a≤x≤b

f ′′′(x) < +∞ , (1)

and we have

f(b) = f(a) + (b− a)f ′(a) +
(b− a)2

2
f ′′(a) + (b− a)2εa,2(b), (2)

where
lim
b→a

εa,2(b) = 0,

and
(b− a)

6
m3 6 εa,2(b) 6

(b− a)

6
M3. (3)

In the same spirit we proposed in [13] for the first order case, our aim is now to derive a new
second order Taylor-like formula that gives us a minimized remainder. To that aim, let us first
recall the main result obtained in [13] for the first order case. Given two reals a, b ∈ R, a < b
and an integer n ∈ N∗, we proved the following result
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Theorem 2.1 Let f be a real mapping define on [a, b] which belongs to C2([a, b]), such that:
∀x ∈ [a, b],−∞ < m2 6 f ′′(x) 6M2 < +∞.

Then we have the following first order expansion:

f(b) = f(a) + (b− a)

(
f ′(b) + f ′(a)

2n
+

1

n

n−1∑
k=1

f ′
(
a+ k

(b− a)

n

))
+ (b− a)ε

(1)
a,n+1(b), (4)

where :

|ε(1)
a,n+1(b)| 6 (b− a)

8n
(M2 −m2).

Moreover, this result is optimal in the sense that the weights in (4) involved in the linear com-

bination of f ′ at the equally spaced points a+ k
(b− a)

n
guarantee the remainder ε

(1)
a,n+1(b) to be

minimum.

In order to prove the main theorem for the second order case considered in this paper, we will
need the following lemma proved in [13]:

Lemma 2.2 Let u be a continuous function on [a, b], and, for n ∈ N∗, let (ak)06k6n be a finite
sequence of real numbers. We have the following formula:

n−1∑
k=0

∫ n

k
aku(t)dt =

n−1∑
k=0

∫ k+1

k
Sku(t)dt, with Sk =

k∑
j=0

aj .

From now on, we assume that n ∈ N∗. To obtain a second order Taylor-like formula, we first

consider the following generalization of (4) involving the “reminder” ε
(2)
a,n+1(b):

f(b) = f(a) + (b− a)

(
f ′(b) + f ′(a)

2n
+

1

n

n−1∑
k=1

f ′
(
a+ k

(b− a)

n

))

+(b− a)2
n∑
k=0

ωk(n)f ′′
(
a+ k

(b− a)

n

)
+ (b− a)2ε

(2)
a,n+1(b), (5)

that we rewrite for simplicity as

f(b) = f(a) + (b− a)Λ(1)
n (a, b) + (b− a)2Λ(2)

n (a, b) + (b− a)2ε
(2)
a,n+1(b),

with

Λ(1)
n (a, b) =

f ′(b) + f ′(a)

2n
+

1

n

n−1∑
k=1

f ′
(
a+ k

(b− a)

n

)
, (6)

and Λ
(2)
n (a, b) defined by determining

Λ(2)
n (a, b) =

n∑
k=0

ωk(n)f ′′
(
a+ k

(b− a)

n

)
, (7)

such that (5) holds, and so, ε
(2)
a,n+1(b) goes to 0 when b → a. Our aim is now to determine

the sequence of real weights (ωk(n))0≤k≤n that minimizes the remainder ε
(2)
a,n+1(b). this result is

stated in the following theorem:
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Theorem 2.3 Let f be a real mapping defined on [a, b] which belongs to C3([a, b]), such that:

∀x ∈ [a, b],−∞ < m3 6 f ′′′(x) 6M3 < +∞. If the weights (ωk(n))0≤k≤n satisfy
n∑
k=0

ωk(n) = 0,

then we have:

ω0(n) = −ωn(n) =
3

32n2
and ωk(n) = 0, ∀0 < k < n, (8)

and the following second order expansion hold:

f(b) = f(a) + (b− a)Λ(1)
n (a, b) + (b− a)2Λ(2)

n (a, b) + (b− a)2ε
(2)
a,n+1(b), (9)

where Λ(1)
n (a, b) is given by (6) and Λ(2)

n (a, b) is expressed as

Λ(2)
n (a, b) = − 3

32n2

(
f ′′(b)− f ′′(a)

)
. (10)

Moreover, this result is optimal since the weights introduced in (8) guarantee that the remainder

ε
(2)
a,n+1(b) is minimum, and satisfies:

(b− a)

96n2
(2m3 −M3) ≤ ε(2)

a,n+1(b) ≤ (b− a)

96n2
(2M3 −m3). (11)

Consequently, lim
b→a

ε
(2)
a,n+1(b) = 0.

Proof : Let us observe first that, using (4), ε
(2)
a,n+1(b) can be written as

ε
(2)
a,n+1(b) =

ε
(1)
a,n+1(b)

b− a
− Λ(2)

n (a, b) . (12)

In [13], it is proved (see expression (16) together with (28)) that the remainder ε
(1)
a,n+1(b) of the

expansion (4) can be expressed by

ε
(1)
a,n+1(b) =

n−1∑
k=0

∫ k+1
n

k
n

(
1

2n
+
k

n
− t
)
φ′(t)dt, (13)

where φ′ is the derivative of the function φ defined by:

φ : [0, 1] −→ R
t 7−→ f ′(a+ t(b− a)).

Now, we perform an integration by parts of the integral involved in (13) and we get∫ k+1
n

k
n

(
1

2n
+
k

n
− t
)
φ′(t)dt =

k(k + 1)

2n2

[
φ′
(
k + 1

n

)
− φ′

(
k

n

)]
−
∫ k+1

n

k
n

[(
1

2n
+
k

n

)
t− t2

2

]
φ′′(t)dt,

=

∫ k+1
n

k
n

[
k(k + 1)

2n2
−
(

1

2n
+
k

n

)
t+

t2

2

]
φ′′(t)dt.

Using this expression, ε
(1)
a,n+1(b) can be rewritten as:

ε
(1)
a,n+1(b) =

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−
(

1

2n
+
k

n

)
t+

k(k + 1)

2n2

]
φ′′(t)dt.
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Consequently, from (12), ε
(2)
a,n+1(b) can be written

ε
(2)
a,n+1(b) =

1

b− a

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−
(

1

2n
+
k

n

)
t+

k(k + 1)

2n2

]
φ′′(t)dt− 1

b− a

n∑
k=0

ωk(n)φ′
(
k

n

)
.

(14)

Now, using that φ′
(
k

n

)
= φ′(1)−

∫ 1

k
n

φ′′(t)dt together with Lemma 2.2, and a change of variable

t′ = nt, the last sum in (14) can be expressed as:

n∑
k=0

ωk(n)φ′
(
k

n

)
=

n∑
k=0

ωk(n)φ′(1)−
n−1∑
k=0

∫ k+1
n

k
n

Sk(n)φ′′(t)dt,

where Sk(n) =
k∑
j=0

ωj(n), for all 0 ≤ k ≤ n− 1.

Consequently, expression (14) becomes:

ε
(2)
a,n+1(b) =

1

b− a

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−
(

1

2n
+
k

n

)
t+

k(k + 1)

2n2
+ Sk(n)

]
φ′′(t)dt− 1

b− a
φ′(1)

n∑
k=0

ωk(n).

(15)
Let us assume for simplicity (see Remark 1 below) that:

n∑
k=0

ωk(n) = 0. (16)

Then, setting

λ = Sk(n) +
k(k + 1)

2n2
,

the expression (15) of ε
(2)
a,n+1(b) becomes:

ε
(2)
a,n+1(b) =

1

b− a

n−1∑
k=0

∫ k+1
n

k
n

[
t2

2
−
(

1

2n
+
k

n

)
t+ λ

]
φ′′(t)dt.

Substituting t =
k + s

n
in this integral, and setting Pλ̄(s) = s2 − s+ λ̄ with

λ̄ ≡ 2n2λ− k(k + 1) = 2n2Sk(n) , (17)

we get:

ε
(2)
a,n+1(b) =

1

2(b− a)n3

n−1∑
k=0

∫ 1

0
Pλ̄(s)φ′′

(
s+ k

n

)
ds. (18)

Now, assuming that the discriminant ∆ = 1 − 4λ̄ of Pλ̄ is strictly positive, it exists (t1, t2) ∈
R2, t1 < t2, such that: Pλ̄(t1) = Pλ̄(t2) = 0.

In the following, our aim is to derive an estimate of ε
(2)
a,n+1(b). For this purpose, we split the

integral above depending on the roots of Pλ̄. We get:∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt =

∫ t1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt+

∫ t2

t1

Pλ̄(t)φ′′
(
t+ k

n

)
dt+

∫ 1

t2

Pλ̄(t)φ′′
(
t+ k

n

)
dt.
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Keeping in mind that, for all x ∈ [0, 1] and for all t ∈ [a, b],

φ′′(x) = (b− a)2f ′′′(a+ x(b− a)) and m3 6 f ′′′(t) 6M3,

then, Pλ̄(t) keeps a constant sign on each of the three above integrals and we have:

m3(b− a)2

∫ t1

0
Pλ̄(t)dt ≤

∫ t1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt ≤M3(b− a)2

∫ t1

0
Pλ̄(t)dt,

M3(b− a)2

∫ t2

t1

Pλ̄(t)dt ≤
∫ t2

t1

Pλ̄(t)φ′′
(
t+ k

n

)
dt ≤ m3(b− a)2

∫ t2

t1

Pλ̄(t)dt,

m3(b− a)2

∫ 1

t2

Pλ̄(t)dt ≤
∫ 1

t2

Pλ̄(t)φ′′
(
t+ k

n

)
dt ≤M3(b− a)2

∫ 1

t2

Pλ̄(t)dt,

that yields the two following inequalities∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt ≤ m3(b− a)2

∫ t2

t1

Pλ̄(t)dt+M3(b− a)2

[∫ t1

0
Pλ̄(t)dt+

∫ 1

t2

Pλ̄(t)dt

]
, (19)

∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt ≥ M3(b− a)2

∫ t2

t1

Pλ̄(t)dt+m3(b− a)2

[∫ t1

0
Pλ̄(t)dt+

∫ 1

t2

Pλ̄(t)dt

]
. (20)

We have now to deal with these inequalities. Since they have the same structure, we will consider
only the first one, the second one can be treated in the same way.

Dividing by (b− a)2 and computing the integrals, Pλ̄(t) being a second-degree polynomial func-
tion, we easily get:∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt

(b− a)2
≤ (M3 −m3)(t1 − t2)

[
t21 + t1t2 + t22

3
− t1 + t2

2
+ λ̄

]
+M3

(
λ̄− 1

6

)
.

Using that ti, (i = 1, 2), are the roots of the polynomial Pλ̄(.), we have, for i = 1, 2, t2i = ti − λ̄
and this inequality becomes:∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt

(b− a)2
≤ (M3 −m3)(t1 − t2)

[
t1 + t2 + t1t2 − 2λ̄

3
− t1 + t2

2
+ λ̄

]
+M3

(
λ̄− 1

6

)
.

Since t1, t2 are the roots of the second-degree polynomial Pλ̄(.),

t1 + t2 = 1, t1t2 = λ̄ and t1 − t2 = −
√

1− 4λ̄ ,

that leads to: ∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt

(b− a)2
≤ (M3 −m3)

6
(1− 4λ̄)3/2 +M3

(
λ̄− 1

6

)
.

Finally, due to the symmetry between m3 and M3 in the right-hand sides of (19) and (20), we
can write

ϕ1(λ̄) ≤

∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt

(b− a)2
≤ ϕ2(λ̄), (21)
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where ϕi(λ̄), (i = 1, 2) are defined by:

ϕ1(λ̄) =
(m3 −M3)

6
(1− 4λ̄)3/2 +m3

(̄
λ− 1

6

)
,

ϕ2(λ̄) =
(M3 −m3)

6
(1− 4λ̄)3/2 +M3

(̄
λ− 1

6

)
.

We conclude the proof by determining the λ̄ that minimizes the distance between ϕ1(λ̄) and
ϕ2(λ̄). Let us define

ϕ(λ̄) = ϕ2(λ̄)− ϕ1(λ̄) = (M3 −m3)

[
(1− 4λ̄)3/2

3
+ λ̄− 1

6

]
,

which satisfies ϕ′(λ̄) = 0 for λ̄ =
3

16
, that is, the minimum of ϕ(λ̄). This also shows a posteriori

that 1 − 4λ̄ > 0, i.e. the discriminant of Pλ̄(t) is positive. For this value of λ̄, the inequalities
(21) are written as:

2m3 −M3

48
≤

∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt

(b− a)2
≤ 2M3 −m3

48
,

and summing then over k, we obtain for ε
(2)
a,n+1(b) in (18):

(b− a)

96n2
(2m3 −M3) ≤ ε(2)

a,n+1(b) ≤ (b− a)

96n2
(2M3 −m3).

Moreover, we can also get the weights ωk(n), (k = 0, n), involved in Λ
(2)
n (a, b) (cf. (7)). Indeed,

substituting λ̄ =
3

16
in the expression λ̄ = 2n2Sk(n), from (17), we get

Sk(n) =
k∑
j=0

ωj(n) =
3

32n2
,∀k = 0, . . . , n− 1.

Hence, for k = 0, ω0(n) =
3

32n2
whereas ωk(n) = 0 for all 0 ≤ k ≤ n− 1. Finally, we determine

the last weight wn(n) by using the assumption (16), that leads to

ωn(n) = −ω0(n) = − 3

32n2
.

and Λ
(2)
n (a, b) introduced in (7) satisfies (10).

Remark 1 Condition (16) on the weights ωk(n) in Theorem 2.3 is a kind of closure condition

but is not a restrictive one. Indeed, without (16), we will replace in (18) ε
(2)
a,n+1(b) by

ε
(2)
a,n+1(b) =

1

2(b− a)n3

n−1∑
k=0

∫ 1

0
Pλ̄(t)φ′′

(
t+ k

n

)
dt− 1

b− a
φ′(1)

n−1∑
k=0

ωk(n) ,

and consequently, the corresponding weights ωk(n) would be written as:

ω0(n) =
3

32n2
and ωk(n) = 0, ∀ 1 ≤ k ≤ n.

7



Then, following the same steps, we will get the following estimates for ε
(2)
a,n+1(b):

(2m3 −M3)(b− a)

96n2
− 3

32n2

φ′(1)

(b− a)
≤ ε(2)

a,n+1(b) ≤ (2M3 −m3)(b− a)

96n2
− 3

32n2

φ′(1)

(b− a)
,

or also
(2m3 −M3)(b− a)

96n2
− 3M2

32n2
≤ ε(2)

a,n+1(b) ≤ (2M3 −m3)(b− a)

96n2
− 3m2

32n2
.

Furthermore, still without the condition (16) on the weights, the second order Taylor’s-like for-
mula (9) would be expressed as

f(b) = f(a) + (b− a)Λ(1)
n (a, b) +

3

32n2
(b− a)2f ′′(a) + (b− a)2ε

(2)
a,n+1(b), (22)

the coefficient before f ′′(b) vanishes.

Let us compare now the remainder (11) of the new formula (9)-(10) with the reminder (3) of
the classical formula (2). As one can see, the former remainder is significantly smaller than the
latter one: indeed, we have to compare 1/6 with 1/32n2 whose ratio is equal 3/16n2. The worst
case of this ratio corresponds to n = 1 where the new remainder is approximatively 5 times
smaller than the one obtained by the classical formula.

3 Applications to the approximation error

In this section, we consider two classical applications of the Taylor expansion: the Lagrange
polynomial interpolation and the numerical quadrature. In both cases, we will derive new
formula of interpolation and quadrature, obtained by using the refined second-order expansion
formula (9)-(10). Then, we will compare the errors obtained when using the standard Taylor
expansion and our generalized approach. We begin with the interpolation error.

3.1 The interpolation error

Consider first the generalized Taylor-like expansion (9)-(10) for n = 2 In this case, for any
function f which belongs to C3([a, b]), this formula is expressed as

f(b) = f(a)+(b−a)
f ′(b) + 2f ′(

a+ b

2
) + f ′(a)

4
− 3(b− a)2

128

(
f ′′(b)− f ′′(a)

)
+(b−a)2ε

(2)
a,3(b), (23)

where the remainder εa,3(b) satisfies

(b− a)

384
(2m3 −M3) ≤ ε(2)

a,3(b) ≤ (b− a)

384
(2M3 −m3). (24)

In order to derive a first application of this formula, let us consider the case of the P2-Lagrange
interpolation (see for instance [5], [3]), where a given function f is interpolated on [a, b] by a
polynomial Π[a,b](f) of degree less than or equal to two. Hence, we can write:

∀x ∈ [a, b] : Π[a,b](f)(x) =
(x− c)(x− b)
(a− c)(a− b)

f(a)+
(x− a)(x− c)
(b− a)(b− c)

f(b)+
(x− a)(x− b)
(c− a)(c− b)

f(c) , (25)

where c =
a+ b

2
denotes the midpoint of [a, b].
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As it is well known, one has by construction Π[a,b](f)(a) = f(a), Π[a,b](f)(b) = f(b) and
Π[a,b](f)(c) = f(c).

Let us investigate the consequences of formula (23) when it is used to evaluate the interpolation
error e(.) defined by

∀x ∈ [a, b] : e(x) = Π[a,b](f)(x)− f(x) ,

and compare it with the one obtained when using the classical first order Taylor’s formula.

The classical result [15] concerning the P2−Lagrange interpolation error claims that, for any
function f that belongs to C3([a, b]), we have:

|e(x)| ≤ (x− a)(b− x)|x− c|
6

sup
a≤x≤b

|f ′′′(x)| ,

and using that sup
a≤x≤b

(x− a)(b− x)|x− c| = (b− a)3

12
√

3
, we get

|e(x)| ≤ (x− a)(b− x)|x− c|
6

sup
a≤x≤b

|f ′′′(x)| ≤ (b− a)3

72
√

3
sup
a≤x≤b

|f ′′′(x)|. (26)

This result is usually derived by considering, for x ∈ [a, b], x different from a, b and c, the
function g(t) defined by

g(t) = f(t)−Π[a,b](f)(t)−
(
f(x)−Π[a,b](f)(x)

)
(t− a)(t− c)(t− b)

(x− a)(x− c)(x− b)
.

By construction, g(t) vanishes on a, c, b and on the point t = x. Then, by applying three times
Rolle’s theorem, we obtain that there exists a point ξx ∈]a, b[\{c, x} such that g′′′(ξx) = 0.

Moreover, the third-order derivative of Π[a,b](f)(t), which is a polynomial of degree 2, vanishes,
and the third-order derivative of the function t −→ (t− a)(t− c)(t− b) is a constant equal to 6.
Therefore, we obtain that there exists ξx ∈]a, b[\{c, x} such that

g′′′(ξx) = f ′′′(ξx)−
(
f(x)−Π[a,b](f)(x)

)
6

(x− a)(x− c)(x− b)
= 0 ,

that leads to (26).

Now, to evaluate the difference between the classical Taylor’s formula and the formula we derived
in (23), we consider the two constants m3 and M3 introduced in (1), and we reformulate estimate
(26) by using the classical Taylor formula (1). We get the following result:

Lemma 3.1 Let f be a function C3([a, b]) satisfying (1). Then the second order Taylor’s theo-
rem leads to the following interpolation error estimate:

|e(x)| ≤ (b− a)3

72
√

3
(2M3 −m3) . (27)

Proof : We begin by writing the Lagrange P2−polynomial Π[a,b](f) given by (25) by using the
classical second order Taylor’s formula (2).
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For this purpose, we substitute in (25), f(a), f(b) and f(c) expressed in the following form:

f(a) = f(x) + (a− x)f ′(x) +
(a− x)2

2
f ′′(x) + (a− x)2εx,2(a),

f(b) = f(x) + (b− x)f ′(x) +
(b− x)2

2
f ′′(x) + (b− x)2εx,2(b),

f(c) = f(x) + (c− x)f ′(x) +
(c− x)2

2
f ′′(x) + (c− x)2εx,2(c),

where, by the help of (3) and (1), the remainders εx,2(a), εx,2(b) and εx,1(c) satisfy the inequa-
tions, with M = max{|m3|, |M3|},

|εx,2(a)| ≤ (x− a)

6
M, |εx,2(b)| ≤ (b− x)

6
M and |εx,2(c)| ≤ |c− x|

6
M.

Then, (25) gives:

Π[a,b](f)(x) =
(x− c)(x− b)
(a− c)(a− b)

(
f(x) + (a− x)f ′(x) +

(a− x)2

2
f ′′(x) + (a− x)2εx,2(a)

)
+

(x− a)(x− c)
(b− a)(b− c)

(
f(x) + (b− x)f ′(x) +

(b− x)2

2
f ′′(x) + (b− x)2εx,2(b)

)
+

(x− a)(x− b)
(c− a)(c− b)

(
f(x) + (c− x)f ′(x) +

(c− x)2

2
f ′′(x) + (c− x)2εx,2(c)

)
.

From this expression, we can compute the coefficients of f(x), f ′(x) and f ′′(x). We get that
the first one is equal to 1, whereas the two others are equal to 0. Consequently, we obtain for
Π[a,b](f)(x):

Π[a,b](f)(x) = f(x) +
(x− c)(x− b)
(a− c)(a− b)

(a− x)2εx,2(a) +
(x− a)(x− c)
(b− a)(b− c)

(b− x)2εx,2(b)

+
(x− a)(x− b)
(c− a)(c− b)

(c− x)2εx,2(c) . (28)

In order to determine the error e(x) introduced above, we have to compute the three last terms
involved in (28), namely

(x− c)(x− b)
(a− c)(a− b)

(a− x)2εx,2(a) +
(x− a)(x− c)
(b− a)(b− c)

(b− x)2εx,2(b) +
(x− a)(x− b)
(c− a)(c− b)

(c− x)2εx,2(c) .

Now recall that, from the classical Taylor formula, εx,2(a) =
a− x

6
f ′′′(ξ(a, x)) (the same for

εx,2(b) and εx,2(c)). Using that c is the midpoint of [a, b], we have c − a =
b− a

2
, and the

expression above is equal to

(a− x)(b− x)(c− x)

3(b− a)2

[
(x− a)2f ′′′(ξ(a, x)) + (b− x)2f ′′′(ξ(b, x))− 2(c− x)2f ′′′(ξ(c, x))

]
.(29)

To get an estimation of (29), we will bound separately the two terms involved. For the first one,
by studying the function f(x) = (a− x)(b− x)(c− x), we easily obtain that

−(b− a)

36
√

3
≤ (a− x)(b− x)(c− x)

3(b− a)2
≤ (b− a)

36
√

3
.
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or equivalently that
|(a− x)(b− x)(c− x)|

3(b− a)2
≤ (b− a)

36
√

3
.

For the second term of (29), using (1), we obtain that

gmin(x) ≤ (x− a)2f ′′′(ξ(a)) + (b− x)2f ′′′(ξ(b))− 2(c− x)2f ′′′(ξ(c)) ≤ gmax(x) ,

where

gmin(x) = m3(x− a)2 +m3(b− x)2 − 2M3(c− x)2 ,

gmax(x) = M3(x− a)2 +M3(b− x)2 − 2m3(c− x)2 .

To continue, we have to determine the extremum values of the functions gmin(x) and gmax(x).
We will consider only gmax(x), the case of gmin(x) being analogous. A simple computation gives
that the maximum of gmax is reached at the boundaries x = a, x = b , with

gmax(a) = gmax(b) = (b− a)2

(
M3 −

m3

2

)
.

Similarly, we obtain the minimum of gmin(x) is equal to

gmin(a) = gmin(b) = (b− a)2

(
m3 −

M3

2

)
,

so that the second term of (29) can be bounded as follows:

(2m3−M3)
(b− a)2

2
≤ (x−a)2f ′′′(ξ(a))+(b−x)2f ′′′(ξ(b))−2(c−x)2f ′′′(ξ(c)) ≤ (2M3−m3)

(b− a)2

2
.

Now, putting these results together, we finally get that

|e(x)| ≤ (b− a)3

72
√

3
(2M3 −m3)

Remark 2 This result can be compared with the more classical one recalled in (26). In fact
the only difference comes from the term supa≤x≤b |f ′′′(x)| that is replaced here by 2M3 − m3,
that takes care of the difference between the sup and the inf of the function f ′′′(x), rather than
considering their maximum.

Let us now derive the corresponding result when we use the new first order Taylor-like formula
(23) in the expression of the interpolation polynomial Π[a,b](f) defined by (25). This is the
purpose of the following lemma.

Lemma 3.2 Let f ∈ C3([a, b]), then we have the following interpolation error estimate:

∀x ∈ [a, b] :

∣∣∣∣f(x)−Π∗[a,b](f)(x)

∣∣∣∣ ≤ (b− a)3

1536
√

3
(2M3 −m3) , (30)

where Π∗[a,b](f)(x) is defined by

Π∗[a,b](f)(x) = Π[a,b](f)(x)

−(x− a)(b− x)(c− x)

(b− a)3

[
f ′(a)− 2f ′(c) + f ′(b)

2
+ f ′

(
x+ a

2

)
− 2f ′

(
x+ c

2

)
+ f ′

(
x+ b

2

)]
−3(x− a)(b− x)(c− x)

64(b− a)2

(
f ′′(a)(a− x) + 2f ′′(c)(x− c) + f ′′(b)(b− x)

)
(31)
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Proof : We begin to write f(a), f(b) and f(c) by the help of (23):

f(a) = f(x) + (a− x)
f ′(a) + 2f ′(

x+ a

2
) + f ′(x)

4
− 3(a− x)2

128

(
f ′′(a)− f ′′(x)

)
+ (a− x)2ε

(2)
x,3(a),

f(b) = f(x) + (b− x)
f ′(b) + 2f ′(

x+ b

2
) + f ′(x)

4
− 3(b− x)2

128

(
f ′′(b)− f ′′(x)

)
+ (b− x)2ε

(2)
x,3(b),

f(c) = f(x) + (c− x)
f ′(c) + 2f ′(

x+ c

2
) + f ′(x)

4
− 3(c− x)2

128

(
f ′′(c)− f ′′(x)

)
+ (c− x)2ε

(2)
x,3(c),

where εx,3 satisfies (24) with obvious changes of notations. More precisely, we have

|ε(2)
x,3(a)| ≤ (x− a)

384
(2M3−m3) , |ε(2)

x,3(b)| ≤ (b− x)

384
(2M3−m3) , |ε(2)

x,3(c)| ≤ |c− x|
384

(2M3−m3) .

(32)
Then, by substituting f(a), f(b) and f(c) in the interpolation polynomial (25), we obtain

Π[a,b](f)(x)=

(x− c)(x− b)
(a− c)(a− b)

(
f(x)+(a−x)

f ′(a)+2f ′
(
x+ a

2

)
+f ′(x)

4
− 3(a− x)2

128

(
f ′′(a)−f ′′(x)

)
+(a− x)2ε

(2)
x,3(a)

)

+
(x− a)(x− c)
(b− a)(b− c)

(
f(x)+(b−x)

f ′(b)+2f ′
(
x+ b

2

)
+f ′(x)

4
− 3(b− x)2

128

(
f ′′(b)−f ′′(x)

)
+(b− x)2ε

(2)
x,3(b)

)

+
(x− a)(x− b)
(c− a)(c− b)

(
f(x)+(c−x)

f ′(c)+2f ′
(
x+ c

2

)
+f ′(x)

4
− 3(c− x)2

128

(
f ′′(c)−f ′′(x)

)
+(c− x)2ε

(2)
x,3(c)

)
From this expression, we obtain that the coefficients of f(x) is equal to 1, whereas the one before
f ′(x) is equal to 0.

Let us compute now the terms before the other derivatives of f(x). For the first order derivatives,
we have the following expressions

(x− a)(b− x)(c− x)

(b− a)3

[
f ′(a)− 2f ′(c) + f ′(b)

2
+ f ′

(
x+ a

2

)
− 2f ′

(
x+ c

2

)
+ f ′

(
x+ b

2

)]
,

whereas the terms in f ′′(x) can be expressed as

3(x− a)(b− x)(c− x)

64(b− a)2

(
f ′′(a)(a− x) + 2f ′′(c)(x− c) + f ′′(b)(b− x)

)
.

Finally, we obtain for Π[a,b](f)(x):

Π[a,b](f)(x)= f(x)+
(x− a)(b− x)(c− x)

(b− a)3

[
f ′(a)− 2f ′(c) + f ′(b)

2
+ f ′

(
x+ a

2

)
− 2f ′

(
x+ c

2

)
+ f ′

(
x+ b

2

)]
+

3(x− a)(b− x)(c− x)

64(b− a)2

(
f ′′(a)(a− x) + 2f ′′(c)(x− c) + f ′′(b)(b− x)

)
+

(x− c)(x− b)
(a− c)(a− b)

(a− x)2ε
(2)
x,3(a) +

(x− a)(x− c)
(b− a)(b− c)

(b− x)2ε
(2)
x,3(b) +

(x− a)(x− b)
(c− a)(c− b)

(c− x)2ε
(2)
x,3(c). (33)
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Now, let us consider the new interpolation polynomial Π∗[a,b](f) introduced in (31). With this,

the interpolation polynomial Π[a,b](f) of (33) can be expressed as

Π∗[a,b](f) = f(x) + E(x, a, b) ,

where the function error E(x, a, b) is defined by

E(x, a, b) =
(x− c)(x− b)
(a− c)(a− b)

(a−x)2ε
(2)
x,3(a)+

(x− a)(x− c)
(b− a)(b− c)

(b−x)2ε
(2)
x,3(b)+

(x− a)(x− b)
(c− a)(c− b)

(c−x)2ε
(2)
x,3(c) .

Using (32), we obtain the following bound

|E(x, a, b)| ≤ 2
|(a− x)(b− x)(c− x)|

(b− a)2

2M3 −m3

384

(
(x− a)2 + (b− x)2 + 2(c− x)2

)
. (34)

We already saw before that

|(a− x)(b− x)(c− x)|
(b− a)2

≤ b− a
12
√

3
,

so we only have to bound the second term of (34), that is (x− a)2 + (b− x)2 + 2(c− x)2.

Using a method similar to the one used for (29), we obtain that

max
a≤x≤b

(
(x− a)2 + (b− x)2 + 2(c− x)2

)
=

3

2
(b− a)2 .

Putting all together, we obtain that

|E(x, a, b)| ≤ 2M3 −m3

1536
√

3
(b− a)3 ,

which completes the proof of this lemma.

Let us compare the interpolation errors of lemma 3.1 and 3.2, namely:∣∣∣∣f(x)−Π[a,b](f)(x)

∣∣∣∣ ≤ (b− a)3

72
√

3
(2M3 −m3) and

∣∣∣∣f(x)−Π∗[a,b](f)(x)

∣∣∣∣ ≤ (b− a)3

1536
√

3
(2M3 −m3)

1. By considering the modified interpolation polynomial Π∗[a,b](f) defined by (31), we obtain

in (30) a bound almost 22 times smaller than the corresponding one in (27), derived by
the classical Taylor formula.

Now, the price to be paid for this improvement is that Π∗[a,b](f) is a polynomial of degree

less than or equal to three which requires the computation of f ′(·) in 6 points, together
with f ′′(a), f ′′(b) and f ′′((a + b)/2). However, the consequent gain clearly appears in
the following application devoted to finite elements: indeed, from Céa’s lemma [8], the
approximation error is bounded by the interpolation error. In practical applications of
finite elements, we want to ensure that the upper bound of the interpolation error will not
be greater than a given value ε.

Now, let us denote by h = b− a the local mesh size used for the classical P2-Lagrange in-
terpolation, and by h∗ the one used with the interpolation Π∗[a,b](f). Since the convergence

is locally in h3 and h∗3 respectively, we can take a value of h∗ almost 3
√

22 ' 3 greater

13



than h for the same given accuracy, which leads to a significative gain of computation.

This improvement will be even more significant for three dimensional applications. Indeed,
consider a three-dimensional computational domain discretized by a mesh of size h in each
direction. To get the same accuracy with the new approach, we can use a mesh of size h∗

in each direction. Hence, the number of nodes of this new mesh can be 22 smaller than in
the former one, leading to a significant time reduction in terms of computational time.

2. Let us give an elementary numerical example. Consider the interval [a, b] = [0, 1], and the
function f(x) = ln(1 + x). Formula (23) gives

ln(2) = ln(1) +
1
2 + 22

3 + 1

4
− 3

128
(−1

4
+ 1) + ε

(2)
a,3 =

1061

1536
+ ε

(2)
a,3 ' 0.6907 + ε

(2)
a,3

and

|ε(2)
a,3| ≤

15

1536
' 1/100 .

With the same data, classical Taylor’s formula (2) gives

ln(2) = ln(1) + 1 +
1

2
(−1) + εa,2 = −1

2
+ εa,2

and

|εa,2| ≤
1

3
.

Hence, the improved formula leads to a much more accurate approximation of ln(2).

3.2 The quadrature error

We consider now, for any integrable function f defined on [a, b], the Simpson’s quadrature rule
[15] whose formula is given by∫ b

a
f(x)dx ' b− a

6

(
f(a) + 4 f

(
a+ b

2

)
+ f(b)

)
. (35)

The reason we consider (35) is that this quadrature formula corresponds to approximate the
function f by its Lagrange polynomial interpolation Π[a,b](f), of degree less than or equal to
two, which is given by (25).

Thus, in the classical literature of numerical integration (see for example [16], [15] and [6]), we
can find the standard Simpson inequality∣∣∣∣∫ b

a
f(x) dx− b− a

6

(
f(a) + 4 f

(
a+ b

2

)
+ f(b)

)∣∣∣∣ ≤ (b− a)5

180
sup
a≤x≤b

|f (4)(x)|, (36)

for any function four times differentiable f on ]a, b[, whose fourth derivative is accordingly
bounded on ]a, b[.

Now, if the function f is not four times differentiable, or if the fourth derivative f (4) is not
bounded on ]a, b[, we cannot apply the formula above. Therefore, if we consider a function f
that is only C3 on [a, b], we have the following estimation∣∣∣∣∫ b

a
f(x) dx− b− a

6

(
f(a) + 4 f

(
a+ b

2

)
+ f(b)

)∣∣∣∣ ≤ (b− a)4

192
sup
a≤x≤b

|f ′′′(x)|, (37)

Let us prove now a result that gives estimate (36) in an alternative display. It will also extend
estimation (37) to thrice differentiable functions f which satisfy (1).
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Lemma 3.3 Let f ∈ C3([a, b]) which satisfies (1). Then, we have the following estimate:∣∣∣∣∫ b

a
f(x) dx− b− a

6

(
f(a) + 4 f

(
a+ b

2

)
+ f(b)

)∣∣∣∣ ≤ 5(b− a)4

1152
(M3 −m3) .

Proof : To derive this estimate, let us begin with the classical second order Taylor’s formula
(2), from which we have derived above the expression (28) of polynomial Π[a,b](f). Then, by
integrating (28) between a and b, we get∫ b

a
(f(x)−Π[a,b](f)(x)) dx =

∫ b

a

(
(x− c)(b− x)

(c− a)(b− a)

(a− x)2

2
εx,2(a)

+
(x− a)(c− x)

(b− a)(b− c)
(b− x)2

2
εx,2(b)+

(x− a)(x− b)
(c− a)(b− c)

(c− x)2

2
εx,2(c)

)
dx.(38)

However, it is well known [3] that the P2−Lagrange interpolation polynomial Π[a,b](f) given by
(25) also fulfills: ∫ b

a
Π[a,b](f)(x) dx =

b− a
6

(f(a) + 4f(c) + f(b)) . (39)

Now, let us introduce the usual error in the quadrature rule E(f) defined by

E(f) ≡
∫ b

a
f(x)dx− b− a

6
(f(a) + 4f(c) + f(b)) .

Using the expressions εx,2(a), εx,2(b) and εx,2(c) (see proof of lemma 3.1), equations (38) and
(39) give

E(f) =

∫ b

a

(x− a)(b− x)(c− x)

3(b− a)2

(
(x− a)2f ′′′(ξ(a)) + (b− x)2f ′′′(ξ(b))− 2 (c− x)2f ′′′(ξ(c))

)
dx

that we split, for convenience, in three integrals I(a), I(b) and I(c), so that

E(f) = I(a) + I(b)− I(c)

with

I(a) =
1

3(b− a)2

∫ b

a
(x− a)3(b− x)(c− x)f ′′′(ξ(a))dx ,

I(b) =
1

3(b− a)2

∫ b

a
(x− a)(b− x)3(c− x)f ′′′(ξ(b))dx ,

I(c) =
2

3(b− a)2

∫ b

a
(x− a)(b− x)(c− x)3f ′′′(ξ(c))dx .

To obtain estimates of E(f), we will consider separately each of these integrals. We detailed
here the computations for I(a), the others terms can be treated similarly.

Noting that the term (x− a)3(b− x)(c− x) is positive for a ≤ x ≤ c and negative for c ≤ x ≤ b,
we split the integral and we get, using the mean value theorem, that there exists a constant
a < C1,a < c, (respectively c < C2,a < b), such that∫ c

a
(x− a)3(b− x)(c− x)f ′′′(ξ(a))dx = f ′′′(C1,a)

∫ c

a
(x− a)3(b− x)(c− x)dx ,∫ b

c
(x− a)3(b− x)(c− x)f ′′′(ξ(a))dx = f ′′′(C2,a)

∫ b

c
(x− a)3(b− x)(c− x)dx .
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It remains now to compute the integral above. Owing to the relation c = (a+ b)/2, a straight-
forward computation gives us∫ c

a
(x− a)3(b− x)(c− x)dx =

(b− a)6

960
, and

∫ b

c
(x− a)3(b− x)(c− x)dx = −3(b− a)6

320
.

Using now inequalities (1), we readily get

(m3 − 9M3)
(b− a)4

2880
≤ I(a) =

(b− a)4

2880

(
f ′′′(C1,a)− 9f ′′′(C2,a)

)
≤ (M3 − 9m3)

(b− a)4

2880
.

The same computations for I(b) gives∫ c

a
(x− a)(b− x)3(c− x)dx =

3(b− a)6

320
, and

∫ b

c
(x− a)(b− x)3(c− x)dx = −(b− a)6

960
,

so that

(9m3 −M3)
(b− a)4

2880
≤ I(b) =

(b− a)4

2880

(
9f ′′′(C1,b)− f ′′′(C2,b)

)
≤ (9M3 −m3)

(b− a)4

2880
.

Similarly for I(c), where the polynomial in the integral is odd with respect to x = c, we get∫ c

a
(x− a)(b− x)(c− x)3dx =

(b− a)6

768
, and

∫ b

c
(x− a)(b− x)(c− x)3dx = −(b− a)6

768
,

so that

(m3 −M3)
(b− a)4

1152
≤ I(c) =

(b− a)4

1152

(
f ′′′(C1,c)− f ′′′(C2,c)

)
≤ (M3 −m3)

(b− a)4

1152
.

Putting all together, we finally proved that

5(m3 −M3)
(b− a)4

1152
≤ E(f) = I(a) + I(b)− I(c) ≤ 5(M3 −m3)

(b− a)4

1152
.

Let us consider now the polynomial interpolation Π[a,b](f)(x). Our aim is to compute it by using
the generalized Taylor-like expansion (23). We obtain the following result

Lemma 3.4 Let f ∈ C3([a, b]) which satisfies (1). Then, we have the following estimate:∣∣∣∣∫ b

a
f(x) dx− b− a

6

(
f(a) + 4 f

(a+ b

2

)
+ f(b)

)

− 1

(b− a)3

∫ b

a

[
(b− x)(c− x)− (x− a)(c− x)− (x− a)(b− x)

]
Fa,b,c(x)dx

−(b− a)3

2560

(
f ′′(a) + 2f ′′(c) + f ′′(b)

)∣∣∣∣ ≤ 1

32

5(b− a)4

1152
(2M3 −m3) , (40)

where Fa,b,c(x) = 2f

(
x+ a

2

)
− 4f

(
x+ c

2

)
+ 2f

(
x+ b

2

)
.
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Proof : We consider the polynomial function Π[a,b](f)(x) introduced in (33). By integrating it
between a and b, we obtain∫ b

a

(
f(x)−Π[a,b](f)(x)

)
dx =

−
∫ b

a

(x− a)(b− x)(c− x)

(b− a)3

(
f ′(a)− 2f ′(c) + f ′(b)

2
+ f ′(

x+ a

2
)− 2f ′(

x+ c

2
) + f ′(

x+ b

2
)

)
(41)

−
∫ b

a

3(x− a)(b− x)(c− x)

64(b− a)2

(
f ′′(a)(a− x) + 2f ′′(c)(x− c) + f ′′(b)(b− x)

)
dx (42)

−
∫ b

a

(x− c)(x− b)
(a− c)(a− b)

(a− x)2ε
(2)
x,3(a) +

(x− a)(x− c)
(b− a)(b− c)

(b− x)2ε
(2)
x,3(b) +

(x− a)(x− b)
(c− a)(c− b)

(c− x)2ε
(2)
x,3(c)dx

(43)

In the following of the proof, we will consider one by one, each line of the above formula:

Using that ∫ b

a
(x− a)(b− x)(c− x)dx = 0 ,

the first line (41) can be written as

− 1

(b− a)3

∫ b

a
(x− a)(b− x)(c− x)F ′a,b,c(x)dx , (44)

where we denote F ′a,b,c(x) = f ′
(
x+ a

2

)
− 2f ′

(
x+ c

2

)
+ f ′

(
x+ b

2

)
.

We can also try to rewrite (44). Indeed, using an integration by parts, and because the variation
between a and b is equal to 0, (41) is equal to

1

(b− a)3

∫ b

a

(
(b− x)(c− x)− (x− a)(c− x)− (x− a)(b− x)

)
Fa,b,c(x)dx ,

where we introduced the notation Fa,b,c(x) = 2f

(
x+ a

2

)
− 4f

(
x+ c

2

)
+ 2f

(
x+ b

2

)
.

Consider now the second line (42) that can be decomposed into three terms. Let us consider for
example the first one, namely

− 3f ′′(a)

64(b− a)2

∫ b

a
(x− a)(b− x)(c− x)(a− x)dx .

We can explicitly compute this integral that yields∫ b

a
(x− a)(b− x)(c− x)(a− x)dx = −(b− a)5

120
.

Consequently, the first term of (42) is equal to

− 3f ′′(a)

64(b− a)2

∫ b

a
(x− a)(b− x)(c− x)(a− x)dx =

(b− a)3f ′′(a)

40 · 64
. (45)
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Similarly, for the second term of (42), we get

− 6f ′′(c)

64(b− a)2

∫ b

a
(x− a)(b− x)(c− x)(x− c)dx =

(b− a)3f ′′(c)

20 · 64
,

and, for the last one of (42)

− 3f ′′(b)

64(b− a)2

∫ b

a
(x− a)(b− x)(c− x)(b− x)dx =

(b− a)3f ′′(b)

40 · 64
.

Summing up, the second line (42) gives the following contribution

(b− a)3

40 · 64

(
f ′′(a) + 2f ′′(c) + f ′′(b)

)
. (46)

Let us consider now the last line (43) that can be expressed as, c being the midpoint of [a, b]:

2

(b− a)2

∫ b

a
−(x−a)2(b−x)(c−x)ε

(2)
x,3(a)+(x−a)(b−x)2(c−x)ε

(2)
x,3(b)−2(x−a)(b−x)(c−x)2ε

(2)
x,3(c)dx ,

the absolute value of which being bounded by the sum of three terms J(a)+J(b)+2J(c), where
we define

J(a) =
2

(b− a)2

∫ b

a
(x− a)2(b− x)|c− x||ε(2)

x,3(a)|dx ,

J(b) =
2

(b− a)2

∫ b

a
(x− a)(b− x)2|c− x||ε(2)

x,3(b)|dx ,

J(c) =
2

(b− a)2

∫ b

a
(x− a)(b− x)(c− x)2|ε(2)

x,3(c)|dx .

Now, we will bound separately each of these 3 terms, using again the estimates (32) to bound

ε
(2)
x,3(a), ε

(2)
x,3(c) and ε

(2)
x,3(b). We first have:

|J(a)| ≤ 2

(b− a)2

2M3 −m3

384

∫ b

a
(x− a)3(b− x)|c− x|dx ,

|J(b)| ≤ 2

(b− a)2

2M3 −m3

384

∫ b

a
(x− a)(b− x)3|c− x|dx ,

|J(c)| ≤ 2

(b− a)2

2M3 −m3

384

∫ b

a
(x− a)(b− x)|c− x|3dx .

Using similar computations as above (see proof of lemma 3.3), straightforward computations
give ∫ b

a
(x− a)3(b− x)|c− x|dx =

∫ b

a
(x− a)(b− x)3|c− x|dx =

(b− a)6

96
,

and ∫ b

a
(x− a)(b− x)|c− x|3dx =

(b− a)6

384
.

Putting all together, we finally obtain that the last line (43) is bounded by the term

1

32

5(b− a)4

1152
(2M3 −m3) . (47)

Combining the estimates (45), (46) and (47), one can get the quadrature error estimate (40).

Let us conclude this section by several remarks.
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1. Using that 2M3 −m3 ≤ 3 supa≤x≤b |f ′′′|, the quadrature error derived in (40), based on
the modified second-order Taylor-like formula is at least bounded twenty times less than
the one derived in lemma 3.3, using the classical Taylor’s formula.

2. Interestingly, this result can also be compared to the optimized result obtained in [16] for
a four-times continuously differentiable function on [a, b], for which we have the inequality∣∣∣∣∫ b

a
f(x) dx− b− a

6

(
f(a) + 4 f

(
a+ b

2

)
+ f(b)

)∣∣∣∣ ≤ (b− a)5

2880
sup
a≤x≤b

|f (4)(x)| . (48)

Indeed, for a function f smooth enough (at least C4([a, b])),we can (roughly speaking)
assume that |f ′′′| behaves like (b− a)|f (4)|.

With these approximations, comparing the bounds of error estimates (40) and (48), namely,
the values 15/36864 ' 0.00040 with 1/2880 ' 0.00035, we observe that the two constants
are very comparable, despite the lower regularity required by our result.

4 Conclusion

In this paper we proposed a new second-order Taylor-like theorem to obtain some minimized
remainders. For a function f defined on the interval [a, b], this formula is derived by introduc-
ing a linear combination of the derivative f ′ computed at n + 1 equally spaced points in [a, b],
together with the second-order derivatives f ′′ computed at the limit points a and b.

We proved that the corresponding remainder can be minimized for an ad hoc choice of the
weights involved in this linear combination, and can be significantly smaller than the one ob-
tained with the classical second order Taylor’s formula.

Then, we considered two usual applications of this Taylor-like expansion: the interpolation error
and the numerical quadrature formula. We showed that using this approach improves both the
Lagrange P2- interpolation error estimate and the error bound of the Simpson rule in numerical
integration.

For the interpolation error applied to finite element approximation, we showed that the upper
bound of the errors we obtained is almost twenty two times more precise than the one obtained
by the classical Taylor formula. For the numerical integration, the quadrature error based on
the new modified formula was found to be bounded twenty times less than the one derived using
the classical Taylor’s formula.

Other applications could also be concerned by this new second order Taylor-like formula. For
instance, we could consider to improve the approximation error involved in ODE’s approxima-
tion where Taylor’s formula is the main tool used to derive numerical schemes.

Homages: The authors want to warmly dedicate this research to pay homage to the memory
of Professors André Avez and Gérard Tronel who largely promote the passion of research and
teaching in mathematics of their students.
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