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Boundary control with integral action for a class of
gantry crane systems

Ling Ma, Vincent Andrieu, Daniele Astolfi, Cheng-Zhong Xu, and Xuyang Lou

Abstract—In this paper, we focus on the output regulation
problem of a class of gantry crane systems governed by partial
differential equations (PDEs) in the presence of unknown
constant disturbances. We first design a preliminary state-
feedback controller for the system without perturbations and
establish the existence of a strict Lyapunov function under the
preliminary control law. By employing the forwarding method,
we then add an integral action to the preliminary controller
and analyze the well-posedness of the resulting closed-loop
system, demonstrating its exponential stability. Furthermore, we
extend our analysis to consider the system with perturbations,
solving the output regulation problem. Finally, we provide
numerical simulation results to demonstrate the effectiveness
of our proposed strategy.

Index Terms—Integral action, boundary control, output reg-
ulation, forwarding method, gantry crane system.

I. INTRODUCTION

In this article, our main focus is on the output regulation
problem of a class of gantry crane systems that are widely
used in various industry settings. Due to the complexity of
the structure, gantry crane systems can be more accurately
described by partial differential equations (PDEs), which
has drawn the attention of many researchers, e.g. [1]–[3].
Controlling such systems has therefore been an important
research topic. For example, in [4] and [5], the authors
proposed feedback controllers to achieve asymptotic and
exponential stability of a PDE interconnected with an or-
dinary differential equation (ODE) system. More recently,
[6] introduced a nonlinear feedback law for a PDE-ODE
system that achieves finite-time stabilization of the closed-
loop system. However, to the best of the authors’ knowledge,
the output regulation problem and the use of integral actions
for this class of systems have not been studied yet.

With output regulation we refer to the problem of de-
signing a controller to ensure that the output converges to
a desired behavior despite external disturbances or model
uncertainties. This problem can be solved by following the
so-called internal model principle [7], [8] and it has attracted
a lot of attention in the context of PDE control, see, e.g. [9]–
[13]. In the context of constant references and perturbations,
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this implies adding an integral action in the control feedback.
Such an approach has been used in the context of PDE
control in many works. For instance, Trinh et al. design an
integral controller for nonlinear systems described by scalar
hyperbolic PDEs to tackle the output regulation problem and
achieve local exponential stability in [14]. Similarly, in [15],
a PI controller is suggested to regulate the bottom velocity
of a drill pipe, leading to exponential stability. Based on
these prior work, we aim to design a feedback controller
with integral action for regulating the trolley’s position of
the system with perturbations. This control design ensures
accurate control of the trolley’s position, which is crucial for
safe and efficient operation of the system. Other examples of
use of integral-based controllers in the context of PDEs and
linear operators can be found in [16]–[23].

The forwarding method has been shown to be an effec-
tive tool for obtaining an integral-based controller to solve
both regulation and stabilization problems [23]–[25]. This
approach involves constructing a strict Lyapunov function,
as demonstrated in [19], [26], and applying the Lyapunov
direct method to derive the controller and the feedback gains.
Besides, the forwarding method can be applied both in finite-
dimensional [27] and infinite-dimensional systems [22], [23].
Overall, the forwarding method offers a promising approach
to controller design in a variety of systems. Inspired by this
method, we prove that the regulation and stabilization control
goals can be achieved in this paper. The article makes two
main contributions:

1) the well-posedness of the closed-loop system under the
designed boundary controller with integral action is
proven by using semigroup theory;

2) the proposed boundary controller with integral action
achieves both exponential stability and output regulation
for the gantry crane system with perturbations.

The paper is structured as follows. Section II introduces
the problem to be addressed in this work, and Section III
presents the boundary controller with integral action. The
main results of this paper are outlined in Section IV. The
simulation results are illustrated in Section V, and concluded
remarks are given in Section VI.
Notation: In this article, the non-negative real numbers are
denoted by R+ := [0,∞). Given two vectors x ∈ Rn and y ∈
Rm, we will use the compact notation (x, y) := (x⊤, y⊤)⊤.
Given a function y : (x, t) 7→ y(x, t) defined on the domain
[0, L] × R+, we use the notation yt =

∂y
∂t , yx = ∂y

∂x , ytt =
∂2y
∂t2 , yxx = ∂2y

∂x2 , and yxt = ∂2y
∂x∂t .



If y is a single-variable function, then y′ and ẏ repre-
sent its space and time derivatives, respectively. L2(0, L)
represents the space of the square-integral functions y in
[0, L] such that

∫ L

0
|y(x)|2dx < +∞ with associated norm

∥y(x)∥2L2 =
∫ L

0
|y(x)|2dx. Hp(0, L) denotes the Sobolev

space of order p. Given a Hilbert space X1, the notation
L(X1,X1) represents the set of linear bounded operators that
map from X1 to X1. Let T > 0, the function space C1([0, T ])
consists of continuous functions defined on the interval [0, T ]
that have a continuous first-order derivative on this interval.

II. PROBLEM STATEMENT

(a) Schematic diagram. (b) Physical system.

Fig. 1: The gantry crane system: schematic diagram and
physical system.

As illustrated in Fig. 1, a typical gantry crane system
contains three parts: the top cart of mass M , which can move
along the horizontal guide rail, a flexible cable of length L
and mass per unit length ρ, and a payload of mass m. In this
article we model the gantry crane system as in [28], with
the additional assumption (iii) in [5] that the acceleration of
the load mass is negligible with respect to the gravitational
acceleration g. As a consequence, the governing equation is
given by

ρytt(x, t)=(S(x)yx(x, t))x+d(x) (1a)

for all (x, t) ∈ (0, L) × R+, with two boundary conditions
given by

Mytt(0, t) = u(t) + S(0)yx(0, t) + ω0, (1b)
yx(L, t) = 0, (1c)

where y(x, t) describes the transversal displacement of the
cable at space variable x and time variable t, u is a control
force which is applied at the trolley and S(x) = mg +
ρg(L− x) is the tension of the flexible cable for x ∈ [0, L].
Note that S(x) ≥ S0 > 0 for some constant S0. The
parameter ω0 ∈ R is an unknown constant disturbance and d
is a constant unknown distributed perturbation acting on the
flexible cable, such as wind. These disturbances represent
model uncertainties that may impact the behavior of the
system.

Our control objective is to obtain both an asymptotic
stability property of an equilibrium point and moreover to

achieve output regulation for the output y(0, t) at a de-
sired reference. Specifically, for any constant perturbation
(ω0, d), the asymptotic stability of the equilibrium of the
resulting closed-loop system should be guaranteed (even in
the presence of small model uncertainties, see, e.g. [11]),
and moreover, at that equilibrium the output y(0, t) has to
be regulated to a given constant reference yref , i.e., the
regulation objective is

lim
t→∞

|y(0, t)− yref | = 0. (2)

III. PRELIMINARY STATE-FEEDBACK DESIGN

A. Change of coordinates and state space definition

To begin with, we consider the case in which the pertur-
bations d and ω0 and the reference yref are set to be zero. In
this case, the considering system can be rewritten as follows:ρytt(x, t) = (S(x)yx(x, t))x,

χ̇(t) =
1

M

(
u(t) + S(0)yx(0, t)

)
,

(3a)

with the boundary conditions

yt(0, t) = χ(t),

yx(L, t) = 0,
(3b)

for all (x, t) ∈ (0, L) × R+. We introduce now a linear
operator T , which is used to map the state variables (y, yt, χ)
into a set of new state variables (y, yt, ξ) and expressed as:

Θ =

 y
yt
χ

 7→ ζ =

 y
yt
ξ

 := T

 y
yt
χ

 , (4)

where ξ = −kay′(0)+kpy(0)+χ with ka > 0 and kp > 0 are
adjustable parameters. In the new coordinates, the boundary
conditions (3b) read

yt(0, t) = ξ(t) + kayx(0, t)− kpy(0, t),

yx(L, t) = 0.

We define now the following Hilbert spaces

X = H1(0, L)× L2(0, L)× R,
X1 = H2(0, L)×H1(0, L)× R,

which are respectively equipped with the following inner
products

⟨ζ1, ζ2⟩X :=ξ1ξ2 +

∫ L

0

yt1(x)yt2(x)dx

+

∫ L

0

(
y′1(x)y

′
2(x) + y1(x)y2(x)

)
dx,

(5)

⟨ζ1, ζ2⟩X1 :=

∫ L

0

(y′t1(x)y
′
t2(x) + yt1(x)yt2(x)) dx+ξ1ξ2

+

∫ L

0

(
y′′1 (x)y

′′
2 (x) + y′1(x)y

′
2(x) + y1(x)y2(x)

)
dx,

(6)

where ζi =
(
yi, yti, ξi

)
∈ X or ζi =

(
yi, yti, ξi

)
∈ X1 i =

1, 2. The following lemma shows that T is a bounded linear
operator in X1 which defines a valid change of coordinates.



Lemma 1. T is a bounded linear operator from X1 to X1,
i.e., T ∈ L(X1,X1), and there exist two positive real numbers
C and C such that C∥Θ∥X1 ≤ ∥T Θ∥X1 ≤ C∥Θ∥X1 for all
Θ ∈ X1.

The proof is given in Appendix A.

Remark 1. In the rest of the article, we will state our main
results only for solutions in X1. This is motivated by two
reasons. First because the operator T is invertible only in
X1, and second because for output regulation more regular
solutions are typically required, see, e.g. [15].

B. Preliminary feedback and ISS Lyapunov functional
In the new coordinates system defined in (4), we introduce

a preliminary state-feedback control law, which employs
signals obtained from sensors located at the trolley end.

More specifically, we design a preliminary boundary con-
troller as follows

up(t) =− k1ξ(t)− S(0)yx(0, t) +Mkayxt(0, t)

−Mkpyt(0, t) + ν,
(7)

for all t on the time domain of existence of the solution and
where k1 > 0 is a controller gain and ν can be considered
either as an external perturbation taking values in C1(R+,R),
see, e.g., ω0 in (1b), or as extra control input (this will be the
case later in Section IV in order to incorporate the integral
action).

The closed-loop system under the preliminary controller
(7) is rewritten in the operator form as follows,

d
dtζ = Aζ + Bν (8)

:=

 yt
1
ρ

(
Sy′

)′
− k1

M ξ

+

0
0
1

 ν,

with the domain of operator A : D(A) → X given by

D(A) = {(y, yt, ξ) ∈ X1 : y′(L) = 0,

ξ = −kay′(0) + kpy(0) + yt(0)} .

In order to achieve the output regulation objective, we will
use the following strategy: 1) add an integral action and 2)
add a stabilizing feedback. For the design of the stabilizing
feedback we will rely on the forwarding method (see, e.g.
[22]–[24]). As a first step, we need to prove that an input-
to-state stable (ISS) Lyapunov functional (see [29] for more
details) exists for the dynamics given by equation (8).

Next, we introduce the following inner product ⟨·,·⟩Z
which is a symmetric bilinear form defined as

⟨ζ1,ζ2⟩Z :=
β

2

∫ L

0

S(x)y′1(x)y
′
2(x)dx

+
βS(0)kp

2ka
y1(0)y2(0) +

αM

2
ξ1ξ2 +

βρ

2

∫ L

0

yt1(x)yt2(x)dx

+
γσρ

2

∫ L

0

(
y1(x)yt2(x) + y2(x)yt1(x)

)
dx

+
γρ

2

∫ L

0

(x− L)S(x)
(
y′1(x)yt2(x) + y′2(x)yt1(x)

)
dx

(9)

for any ζi = (yi, yti, ξi) ∈ X, i = 1, 2, and where α, β, γ
and σ are positive constants to be chosen.

The linearity in both of its arguments and symmetry of
the above inner product (9) are readily seen. Furthermore, the
following lemma shows that if β is sufficiently large, ⟨·, ·⟩Z is
an inner product on X which satisfies the positive definiteness
condition and the conditions for equivalence between the
induced norm on X and the inner product ⟨·, ·⟩Z.

Lemma 2. Select

α1=
γρ(L+σ)

2 , α2=
γρ
(
LS(0)S(L)+4σL2

)
2S(L) , α3=σγρL,

and let β be a positive constant β satisfying

β>max
{

2α1

ρ , 2α2,
2kaα3

S(0)kp

}
. (10)

Then, the following inequality holds

a∥ζ∥2X ≤ ⟨ζ, ζ⟩Z ≤ ā∥ζ∥2X , ∀ ζ ∈ X, (11)

with the real numbers ā > a > 0 given by

a ≤ min
{

βρ−2α1

2 , (β−2α2)S(L)
2(1+4L2) ,

βS(0)kp−2kaα3

4Lka
, αM2

}
, (12)

ā ≥ max
{

βρ+2α1

2 , (β+2α2)S(L)
2(1+4L2) ,

βS(0)kp+2kaα3

4Lka
, αM2

}
. (13)

The proof can be found in Appendix B.
Based on the inner product (9), we can now show the

existence of an ISS-Lyapunov functional for the system (8).

Theorem 1. For any choice of constant α, β, γ, σ > 0 and
controller gains k1, ka, kp > 0, satisfying

k1 >
βS(0)
2αka

, β > max{γσ
kp
, kaγρL}, LS(0)kp

ka
< σ < S(L)

2 ,
(14)

then, the Lyapunov functional V : X → R+, V (ζ) = ⟨ζ, ζ⟩Z,
is an exponentially input-to-state stable (ISS) Lyapunov func-
tional for the system (8), i.e., there exist constants λ, µ > 0
such that

⟨ζ,Aζ + Bν⟩Z + ⟨Aζ + Bν, ζ⟩Z ≤ −λ⟨ζ, ζ⟩Z + µ|ν|2 (15)

for all ζ ∈ D(A) and ν ∈ R.

The proof can be found in the in Appendix C.

C. Well-posedness and exponential stability via state feed-
back

With Theorem 1 in hand, the well-posedness and exponen-
tial stability of the origin of the closed-loop system (8) under
the preliminary controller (7) can be proved.

Corollary 1. Let α, β, γ, σ > 0 and the controller gains
k1, ka, kp > 0, be chosen according to Theorem 1. Then, the
operator A defined in (8) generates a C0-semigroup eAt on
X. Moreover, for any initial condition ζ0 ∈ X (resp. D(A)),
there exists a unique weak solution ζ in C0(R+;X)(resp.
strong solution ζ ∈ C1(R+;X) ∩ C0(R+;D(A))) to system
(8) satisfying

∥ζ(t)∥X ≤ ke−λt∥ζ(0)∥X, ∀ t ≥ 0

for some k, λ > 0.



The proof of Corollary 1 is omitted for space reasons.

Remark 2. Note that the convergence is obtained in X.
Going back to the coordinates Θ = (y, yt, χ), we obtain
exponential stability of the origin of system (3) with the
feedback law only in X1 since the bounds given in Lemma 1
holds only in X1.

IV. MAIN RESULTS

Consider now the following control law with integral
action, which is given as

u(t) = up(t)− kiη(t),

η̇(t) = y(0, t),
(16)

where ki > 0 is a positive constant and the integral action
η̇(t) is used to update the output error.

We study now the well-posedness of the new closed-loop
system after adding the integral action. To this end, we define
the following Hilbert space

H :=X× R
=H1(0, L)× L2(0, L)× R2

equipped with the inner product given by

⟨ϕ1, ϕ2⟩H := ⟨ζ1, ζ2⟩Z + (η1 −N ζ1)(η2 −N ζ2), (17)

where ϕi =
(
yi, yti, ξi, ηi

)
∈ H, i = 1, 2 and N : H1(0, L)×

L2(0, L)×R → R is a linear operator defined as solution to
the equation

NAζ = y(0) , (18)

with ζ defined in (4).
It can be verified that it takes the form

N ζ =

∫ L

0

(
n1(x)y(x)+n2(x)yt(x) + n3(x)y

′(x)
)
dx

− n4
(
y(0) + ξ

)
,

(19)

for some choice of ni ∈ R, i = 1, 2, 4 and n3 ∈ L2(0, L) to
be chosen. Under the designed control law (16) with integral
action, the closed-loop system can be expressed as

d
dtϕ = Fϕ :=


yt

1
ρ

(
Sy′

)′
− k1

M ξ − ki

M η
y(0)

, ϕ =

(
ζ
η

)
, (20)

with the domain of operator F : D(F) → H given as

D(F) =
{
(y, yt, ξ, η) ∈ H1 : y′(L) = 0,

ξ = −kay′(0) + kpy(0) + yt(0)
}
,

with H1 := H2(0, L)×H1(0, L)×R2. Based on the above
abstract form (20), we can obtain the following result.

Theorem 2. Consider system (20). There exists k∗i > 0
such that, for any ki ∈ (0, k∗i ), the operator F generates
a C0-semigroup eFt on H. Furthermore, for any initial
value ϕ0 ∈ H (resp. D(F)), system (20) admits a unique
weak solution ϕ ∈ C0(R+;H) (resp. strong solution in
C1(R+;H) ∩ C0(R+;D(F))) satisfying

∥ϕ(t)∥H ≤ ke−λt∥ϕ0∥H, ∀ t ≥ 0

for some k, λ > 0.

Proof. First, let’s consider the operator N introduced in (19).
We select the parameters ni, i = 1 . . . , 4 as

n1 = −k1 −M

k1kpL
, n2 = − ρka

kpS(0)
, n4 =

M

k1kp
,

n3(x) =
k1 −M

k1kp

(
L− x

L

)
.

(21)
It can be verified that with such a choice, the identity (18)
is verified. Details are omitted for space reasons.

Subsequently, we prove that under the designed boundary
controller (16), the closed-loop system (20) is well-posed. To
this end, we remark that the operator F can be alternatively
defined as

Fϕ =

(
Aζ − B ki

M η
y(0)

)
with B defined as in (8), and therefore, in view of the
definition of N given via the Sylvester equation (18), we
have

y(0)−N (Aζ − B ki

M η) = −n4
ki
M
η .

As a consequence, according to the definition of the inner
product in (17), we obtain

⟨Fϕ, ϕ⟩H + ⟨ϕ,Fϕ⟩H = ⟨Aζ − B ki

M η, ζ⟩Z

+ ⟨ζ,Aζ − B ki

M η⟩Z − 2n4
ki
M
η(η −N ζ).

Using inequality (15) one immediately gets

⟨Fϕ, ϕ⟩H + ⟨ϕ,Fϕ⟩H ≤

− λ⟨ζ, ζ⟩Z + µ
∣∣ ki

M η
∣∣2 − 2n4

ki
M
η2 + 2n4

ki
M
ηN ζ.

Then, since N is a bounded operator, there exists N > 0
such that ∥N ζ∥X ≤ N∥ζ∥X. This gives

⟨Fϕ, ϕ⟩H + ⟨ϕ,Fϕ⟩H ≤ −λ∥ζ∥2Z + λac∥ζ∥2X

−
[
n4 −

(
µ+

n24N
2

λac

)(
ki
M

)](
ki
M

)
η2

for any c > 0. Recalling inequality (11) and selecting k∗i as

k∗i =
Mn4λac

λacµ+ n24N
2

it can be shown that for any ki ∈ (0, k∗i ) we can select c < 1
and therefore there exists a ε > 0 such that

⟨Fϕ, ϕ⟩H + ⟨ϕ,Fϕ⟩H ≤ −ε∥ζ∥2Z − ε|η|2 ≤ −ε∥ϕ∥2H

showing the dissipativity of the operator F . Next, we show
that the operator F is maximal. To this end, we need to show
that there exists a λ̃0 > 0 such that the range Ran(λ̃0I −
F) is equal to H. For this purpose, we consider a function
vector ϕ̄ = (ψ̄(x), φ̄(x), h̄, b̄) ∈ H. By using the definition
of F given in (20), we can show that there exists a unique
ϕ ∈ D(F) satisfying the equation Fϕ = ϕ̄. Explicitly, the



solution ϕ = (y, yt, ξ, η) can be expressed in the following
form

y(x) = b̄− ρ

∫ x

0

1

S(s)

∫ L

s

φ̄(µ)dµds,

yt(x) = ψ̄(x),

ξ =
k1ρ

S(0)

∫ L

0

φ̄(µ)dµ+ kpb̄+ ψ̄(0),

η =
k1kaρ

kiS(0)

∫ L

0

φ̄(µ)dµ+
k1kp
ki

b̄+
k1
ki
ψ̄(0)− M

ki
h̄.

This shows that the operator F is m-dissipative. The state-
ment of the theorem follows from Lumer-Phillips theorem
[30, Theorem 4.3]. 2

Note that a precise estimation of the bound k∗i is given by

k∗i =
2Mk1kp

2M + k21k
2
p

. (22)

Computations are omitted for space reasons and the bound
given in the proof of Theorem 2 is more conservative.

The second main result concerns the output regulation
objective and stability of the gantry crane system (1a)-
(1c) with unknown disturbances. Here, we consider that
the gantry’s position y(0, t) should be regulated at a given
constant reference yref as illustrated in (2). To this end, we
propose the state-feedback controller with integral action η̇n
as follows:

u(t) =upn(t)− kiηn(t),

η̇n(t) =y(0, t)− yref ,

upn(t) =− k1ξn(t)− S(0)yx(0, t) +Mkayxt(0, t)

−Mkpyt(0, t),

ξn(t) =− kayx(0, t) + kp(y(0, t)− yref) + yt(0, t),

(23)

where k1 > 0, kp > 0, ka > 0, and ki > 0 are
the controller gains. We leverage on the stability result
of Theorem 2 in order to study the overall closed-loop
dynamics (20). In particular, we will show the existence of
an equilibrium (in general, different from the origin) which
is asymptotically stable on which the regulation objective
limt→∞ |y(0, t)− yref | = 0 is achieved.

Theorem 3. Consider system (1a)-(1c) in closed-loop with
the feedback (23). Let the parameters of the feedback (23)
be chosen according to Theorems 1 and 2. Then, for any
set of perturbations/references (d, yref , ω0) ∈ H1(0, L)×R2

and for any initial condition (ỹ(·, 0), ỹt(·, 0), ξ̃(0), η̃(0)) in
H2(0, L) × H1(0, L) × R2 the trolley’s position y(0, t) is
asymptotically regulated to the given reference yref , namely
(2) holds.

Proof. With the integral controller (23), the closed-loop

system is

ρytt(x, t) = (S(x)yx(x, t))x + d(x),

yt(0, t) = ξn(t) + kayx(0, t)− kp(y(0, t)− yref),

ξ̇n(t) = − k1
M
ξn(t)−

ki
M
ηn(t) +

1

M
ω0,

η̇n(t) = y(0, t)− yref ,

yx(L, t) = 0.
(24)

It is worth mentioning that due to the presence of ω0, d and
yref , the equilibrium (yne, ηne, ξne) of the closed-loop system
is not at (0, 0, 0). Instead, according to (24), it admits an
equilibrium (yne(x), ηne, ξne) given by

yne(x) = ye(0) +
∫ x

0
1

S(µ)

∫ L

µ
d(s)dsdµ,

ηne = −k1

ki
ξne +

1
ki
ω0,

ξne = − ka

S(0)

∫ L

0
d(s)ds,

on which ye(0) = yref . Changing the coordinates according
to such an equilibrium, one obtains an unperturbed system of
the form for which the origin is the equilibrium. Furthermore,
applying a second change of coordinates defined by T one
obtains a system of the form (20). As a consequence, apply-
ing Theorem 3 one can show that the origin is exponentially
stable. By restricting the analysis on strong solutions, that is,
on initial conditions on H1, one can show that these solution
satisfies also ∥F(ζ̃(t), η̃(t))∥H ≤ ke−λt∥F(ζ̃(0), η̃(0)∥H for
all t ≥ 0, which implies limt→∞ ∥ ˙̃η(t)∥ = 0. Hence, the
regulation is obtained. 2

V. SIMULATIONS

In order to verify the efficiency of the proposed boundary
integral controller (23), we present simulation results in this
section. The parameters of the gantry crane system (1a)-
(1c) are given as M = 2.1 kg, L = 1m, m = 10 kg,
ρ = 0.2 kg/m, and g = 9.8m/s2, in which the parameters
are consistent with those of the physical system made in
the lab, as shown in Fig.1(b). The distributed disturbance
is chosen as d(x) = 0.5x, the constant disturbance is
ω0 = 0.1, the constant reference is yref = 0.5m. The
numerical simulations are performed using a finite difference
method with a space step 0.01m and a time step 0.1ms. The
initial conditions are y(x, 0) = 0.1m and yt(x, 0) = 0m/s.
The control gains are set k1 = 100, ka = 60, and kp = 2.
Based on the Lyapunov control design, we obtain k∗i ≈ 0.02,
which is very restrictive. Hence, in simulations, larger ki is
used instead, we choose ki = 100.

The evolution of the states y(x, t) and y(0, t) are depicted
in Figs. 2(a) and 2(b), respectively. Fig. 2(a) displays that
the system can converge well to the given reference. In
particular, Fig. 2(b) demonstrates the successful regulation
of the trolley’s position y(0, t) to the given reference value
of yref = 0.5m. The evolution of the control law (23), which
is bounded, is shown in Fig. 2(c). Fig. 2(d) displays the
evolution of the error |y(0, t) − yref |, which also indicates
that the proposed controller (23) drives the output towards
the given reference.



(a) The position y(x, t).
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(b) The position y(0, t).
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(c) Evolution of controller u(t).
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(d) Evolution of |y(0, t)− yref |.

Fig. 2: The transient dynamics of the gantry crane system
with unknown perturbations.

VI. CONCLUSIONS

In this paper, we present a boundary controller with
integral action to address the output regulation problem for
a class of gantry crane systems with unknown perturbations.
The proposed controller design is based on the construction
of a strict Lyapunov function and the application of the for-
warding method to achieve the desired regulation objective.
Moreover, we establish the well-posedness of the closed-loop
system using semigroup theory. The effectiveness of the pro-
posed controller is demonstrated through simulation results,
which clearly illustrate the efficiency of output regulation in
the presence of unknown disturbances.
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APPENDIX

A. Proof of Lemma 1

A norm on X1 induced by the inner product (6) is
expressed as follows:

∥T Θ∥2X1
= ∥y∥2H2(0,L) + ∥yt∥2H1(0,L) + |ξ|2

≤ ∥y∥2H2(0,L) + 3|χ|2 + 3k2a|y′(0)|2

+ 3k2p|y(0)|2 + ∥yt∥2H1(0,L). (25)

Using the Sobolev embedding,

sup
x∈[0,L]

|y(x, t)|2 ≤ C1∥y(·, t)∥2H1(0,L),

sup
x∈[0,L]

|yx(x, t)|2 ≤ C2∥y(·, t)∥2H2(0,L).

the equation (25) can be rewritten as:

∥T Θ∥2X1
≤ (1 + 3C2k

2
a)∥y∥2H2(0,L) + ∥yt∥2H1(0,L)

+ 3C1k
2
p∥y∥2H1(0,L) + 3|χ|2

≤ (1 + 3C1k
2
p + 3C2k

2
a)∥y∥2H2(0,L)

+ ∥yt∥2H1(0,L) + 3|χ|2

≤ C∥Θ∥2X1
,

where C ≥ max{1 + C13k
2
p + 3C2k

2
a, 3}, C1 and C2 are

positive real numbers. Thus, we have shown that the operator
T is linear and bounded. Similarly, a lower bound can be
found.

B. Proof of Lemma 2

We can express the norm with respect to the inner product
defined in (9) as follows:

∥ζ∥2Z = ⟨ζ, ζ⟩Z

=
βρ

2

∫ L

0

y2t (x)dx+
β

2

∫ L

0

S(x)y′2(x)dx

+
βS(0)kp

2ka
y2(0) +

αM

2
ξ2 +A1,

(26)

where we denote

A1 = γρ

∫ L

0

(x− L)S(x)y′(x)yt(x)dx

+ γσρ

∫ L

0

y(x)yt(x)dx.

By using the inequality ab ≤ 1
2a

2+ 1
2b

2, Poincaré Inequality
(as shown in [31, Lemma 2.6]), and the fact that S(0) ≥
S(x) ≥ S(L) > 0, it gives that

A1 ≤ |A1| ≤
γρ

2

∫ L

0

|x− L|
(
S2(x)y′2(x) + y2t (x)

)
dx

+
γσρ

2

∫ L

0

(
y2(x) + y2t (x)

)
dx

≤ γρ(L+ σ)

2

∫ L

0

y2t (x)dx

+
γρ

(
LS(0)S(L) + 4σL2

)
2S(L)

∫ L

0

S(x)y′2(x)dx

+ σγρLy2(0).

Furthermore, we get

∥ζ∥2Z ≤
(βρ
2

+ α1

) ∫ L

0

y2t (x)dx+
(β
2
+ α2

) ∫ L

0

S(x)y′2(x)dx

+
(βS(0)kp

2ka
+ α3

)
y2(0) +

αM

2
ξ2, (27)

and

(βρ
2

− α1

) ∫ L

0

y2t (x)dx+
(β
2
− α2

) ∫ L

0

S(x)y′2(x)dx

+
(βS(0)kp

2ka
− α3

)
y2(0) +

αM

2
ξ2 ≤ ∥ζ∥2Z, (28)

where the positive constants α1 = γρ(L+σ)
2 , α2 =

γρ
(
LS(0)S(L)+4σL2

)
2S(L) , and α3 = σγρL. If the condition in

(10) is satisfied, then βρ
2 −α1, β

2 −α2, and βS(0)kp

2ka
−α3 are

positive.
Next, we need to show that there exist two positive

constants ā and a such that a∥ζ∥2X ≤ ∥ζ∥2Z ≤ ā∥ζ∥2X holds.
Based on the inner product defined in (5) on X and using

the Poincaré inequality (as shown in [31, Lemma 2.6]), we
obtain the following expression:

ā∥ζ∥2X = ā⟨ζ, ζ⟩X

= ā

∫ L

0

(
y′2(x) + y2(x)

)
dx+ āξ2 + ā

∫ L

0

y2t (x)dx

≤ ā(1 + 4L2)

S(L)

∫ L

0

S(x)y′2(x)dx+ āξ2

+ ā

∫ L

0

y2t (x)dx+ 2āLy2(0). (29)

Firstly, to verify the inequality ∥ζ∥2Z ≤ ā∥ζ∥2X, it
means to show the existence of a positive constant
ā. From (27) and (29), it is obvious that if we let
ā ≥ max

{
βρ+2α1

2 , (β+2α2)S(L)
2(1+4L2) ,

βS(0)kp+2kaα3

4Lka
, αM2

}
, then

∥ζ∥2Z ≤ ā∥ζ∥2X.
Similarly, to verify the inequality a∥ζ∥2X ≤ ∥ζ∥2Z,

it suffices to show the existence of a positive con-
stant a. As discussed above, we can choose a to be
the maximum of the following four quantities: a ≤
min

{
βρ−2α1

2 , (β−2α2)S(L)
2(1+4L2) ,

βS(0)kp−2kaα3

4Lka
, αM2

}
. This com-

pletes the proof.

C. Proof of Theorem 1

For each (ζ, ν) in D(A) × R, let us denote V̇ (ζ, ν) =
⟨ζ,Aζ +Bν⟩Z + ⟨Aζ +Bν, ζ⟩Z. Note that for each (ζ, ν) in
D(A)× R , the following decomposition can be made

V̇ (ζ, ν) = V̇1(ζ) + V̇2(ζ, ν) + V̇3(ζ), (30)



with

V̇1 =β

∫ L

0

S(x)y′(x)y′t(x)dx+
βS(0)kp
ka

y(0)yt(0)

+ βρ

∫ L

0

yt(x)
1

ρ

(
S(x)y′(x)

)′
dx

V̇2 =αMξ(− k1
M
ξ + ν)

V̇3 =γσρ

∫ L

0

(
y(x)

1

ρ

(
S(x)y′(x)

)′
+ yt(x)yt(x)

)
dx

+ γρ

∫ L

0

(x− L)S(x)
(
y′(x)

1

ρ

(
S(x)y′(x)

)′
+

y′t(x)yt(x)
)
dx

Hence, it implies with integration by parts and completion of
the square

V̇1 =
βS(0)

2ka
ξ2 − βS(0)

2ka
k2py

2(0)− βS(0)

2ka
y2t (0)

− βkaS(0)

2
y′2(0) + βS(L)yt(L)y

′(L)

+ βS(0)kpy(0)y
′(0),

V̇2 ≤− k1αξ
2 +

αM

2
ξ2 +

αM

2
ν2,

V̇3 ≤γρLS(0)
2

y2t (0) +
γL

2
S2(0)y′2(0)

− γ
(S(L)

2
+ σ

) ∫ L

0

S(x)y′2(x)dx

− γρ
(S(L)

2
− σ

) ∫ L

0

y2t (x)dx

+ γσy(L)S(L)y′(L)

− γσy(0)S(0)y′(0).

From this, we obtain

V̇ (ζ, ν) ≤ −2γ1

∫ L

0

y2t (x)dx− 2γ2

∫ L

0

S(x)y′2(x)dx

− 2γ3y
2(0)− 2(γ4 −

αM

4
)ξ2 − 2γ6y

′2(0)

− 2γ5
(
kay

′(0)− kpy(0, t)
)2 − 2γ7y

2
t (0)

+
αM

2
ν2, (31)

where γ1 = γρ
2 (S(L)

2 −σ), γ2 = γ
2 (

S(L)
2 +σ), γ3 =

γσS(0)kp

4ka
,

γ4 = 1
2 (k1α−

βS(0)
2ka

), γ5 = S(0)
4ka

(β− γσ
kp

), γ6 = γS(0)
4 (σka

kp
−

S(0)L), γ7 = S(0)
4ka

(β − kaγρL).
Using the conditions in (14) with γ4 >

αM
4 , it gives the

following inequality:

V̇ (ζ, ν) ≤ −2γ1

∫ L

0

y2t (x)dx− 2γ2

∫ L

0

S(x)y′2(x)dx

− 2γ3y
2(0)− 2(γ4 −

αM

4
)ξ2 +

αM

2
ν2

≤ −γ0(V1 + V2) +
αM

2
ν2

≤ −γ0
ā
V (ζ) +

αM

2
ν2, (32)

where γ0 = min{ 4γ1

βρ ,
4γ2

β , 4kaγ3

βS(0)kp
, 4γ4−αM

αM }. The above
inequality shows (15) with λ = γ0

ā and µ = αM
2 .
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