Hamed Kabiri Kenari
email: hamedkabiri@ieee.org

Arash Ahadi
email: arash.ahadi@nimasystem.com

Independent Reaserchers

Multilayer Heterogeneous Graph Attention Network

Keywords: Heterogeneous Network, Neural Network, Graph Analysis

Graph neural network, a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. It has been considered in graph neural networks for a heterogeneous graph, which contains different types of nodes and links. However, these graph neural networks are based on choosing meta-paths. When the heterogeneous graphs have a lot of node types and edge types, choosing meta-paths is difficult. One of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we look at heterogeneous networks as multilayer networks, which means each edge type shows one layer. We propose a novel heterogeneous graph neural network based on hierarchical attention, including intra-layer and inter-layer aggregations. Specifically, intra-layer aggregation aims to learn the importance between a node and its layer-based neighbours, while inter-layer aggregation is able to learn the importance of different layers. With the learned importance from both intra-layer and inter-layer attention, the importance of node and layer can be fully considered. Then, the proposed model can generate node embedding by aggregating features from layer-based neighbours in a hierarchical manner. Extensive experimental results on two real-world heterogeneous graphs show the superior performance of our proposed model over the state-of-the-art.

INTRODUCTION

Many real-world datasets are naturally represented in a graph data structure, where objects and the relationships among them are embodied by nodes and edges, respectively. Examples include social networks [START_REF] Hamilton | Inductive Representation Learning on Large Graphs[END_REF][START_REF] Wang | Structural Deep Network Embedding[END_REF], physical systems [START_REF] Battaglia | Interaction Networks for Learning about Objects, Relations and Physics[END_REF][START_REF] Fout | Protein Interface Prediction using Graph Convolutional Networks[END_REF], traffic networks [START_REF] Li | Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting[END_REF][START_REF] Zhang | GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs[END_REF], citation networks [START_REF] Atwood | Diffusion-Convolutional Neural Networks[END_REF][START_REF] Hamilton | Inductive Representation Learning on Large Graphs[END_REF][START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF], recommender systems [START_REF] Van Den | Graph Convolutional Matrix Completion[END_REF][START_REF] Zhang | STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems[END_REF], knowledge graphs [START_REF] Bordes | Translating Embeddings for Modeling Multi-relational Data[END_REF][START_REF] Sun | RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space[END_REF], and so on. The unique non-Euclidean nature of graphs renders them difficult to be modelled by traditional machine learning models. There is no order or size limit for each node's neighbourhood set. However, most statistical models assume an ordered and fixed-size input in the Euclidean space. Therefore, nodes could be represented by meaningful low-dimensional vectors in Euclidean space and then be taken as the input for other machine learning models.

Different graph embedding techniques have been proposed for the graph structure. LINE [START_REF] Tang | LINE: Largescale Information Network Embedding[END_REF] generates node embeddings by exploiting the first-order and second-order proximity between nodes. Random-walkbased methods including DeepWalk [START_REF] Perozzi | DeepWalk: Online Learning of Social Representations[END_REF], node2vec [START_REF] Grover | Node2Vec: Scalable Feature Learning for Networks[END_REF], and TADW [START_REF] Yang | Network Representation Learning with Rich Text Information[END_REF] feed node sequences generated by random walks to a skip-gram model [START_REF] Mikolov | Efficient Estimation of Word Representations in Vector Space[END_REF] to learn node embeddings. With the rapid development of deep learning, graph neural networks (GNNs) have been proposed, which learn the graph representations using specially designed neural layers. Spectral-based GNNs, including ChebNet [START_REF] Defferrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF] and GCN [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF], perform graph convolution operations in the Fourier domain of an entire graph. Recent spatial-based GNNs, including GraphSAGE [START_REF] Hamilton | Inductive Representation Learning on Large Graphs[END_REF], GAT [START_REF] Velickovic | Graph Attention Networks[END_REF], and many other variants [START_REF] Li | Gated Graph Sequence Neural Networks[END_REF][START_REF] Zhang | GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs[END_REF][START_REF] Zhang | STAR-GCN: Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems[END_REF], address the scalability and generalization ability of the spectral-based models by performing graph convolution operations directly in the graph domain. An increasing number of researchers have paid attention to this promising area.

Although GNNs have achieved state-of-the-art results in many tasks, most GNN-based models assume that the input is a homogeneous graph with only one node type and one edge type. Most real-world graphs consist of various types of nodes and edges associated with attributes in different feature spaces. For example, a co-authorship network contains at least two types of nodes: authors and papers. Author attributes may include affiliations, citations, and research fields. Paper attributes may include keywords, venue, year, etc. We refer to graphs of this kind as heterogeneous information networks (HINs) or heterogeneous graphs. The heterogeneity in graph structure and node content makes it challenging for GNNs to encode their rich and diverse information into a low-dimensional vector space.

Most existing heterogeneous graph embedding methods are based on the idea of metapaths. A metapath is an ordered sequence of node types and edge types defined on the network schema, which describes a composite relation between the node types involved. For example, in a scholar network with authors, papers, and venues, Author-Paper-Author (APA) and Author-Paper-Venue-Paper-Author (APVPA) are metapaths describing two different relations among authors. The APA metapath associates two co-authors, while the APVPA metapath associates two authors who published papers in the same venue. Therefore, we can view a metapath as a high-order proximity between two nodes. Because traditional GNNs treat all nodes equally, they cannot model the complex structural and semantic information in heterogeneous graphs.

Although these metapath-based embedding methods outperform traditional network embedding methods on various tasks, such as node classification and clustering, they still suffer from at least one of the following limitations. (1) The model does not leverage node content features, so it rarely performs well on heterogeneous graphs with rich node content features (e.g., metapath2vec [START_REF] Dong | Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks[END_REF], ESim [START_REF] Shang | Meta-Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous Information Networks[END_REF], HIN2vec [START_REF] Fu | HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning[END_REF], and HERec [START_REF] Shi | Heterogeneous Information Network Embedding for Recommendation[END_REF]). [START_REF] Wang | Structural Deep Network Embedding[END_REF] The model requires a manual metapath selection process when number of node types and edges types are high, choosing methapaths is difficult (e.g., metapath2vec [START_REF] Dong | Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks[END_REF], HERec [START_REF] Shi | Heterogeneous Information Network Embedding for Recommendation[END_REF] and HAN [START_REF] Wang | Heterogeneous Graph Attention Network[END_REF])).

To address these limitations, we propose a novel Metapath Aggregated Graph Neural Network (MLHAN) for heterogeneous graph embedding. MLHAN addresses all the issues described above by applying node content transformation, intra-layer aggregation, and inter-layer aggregation to generate node embeddings. Specifically, MLHAN first applies type-specific linear transformations to project heterogeneous node attributes, with possibly unequal dimensions for different node types, to the same latent vector space. Next, MLHAN applies intra-layer aggregation with the attention mechanism [START_REF] Velickovic | Graph Attention Networks[END_REF] for every layer. During this intra-layer aggregation, each target node extracts and combines information from the node with its layerbased neighbors. In this way, MLHAN captures the structural and semantic information of heterogeneous graphs from both neighbor nodes. Following intra-layer aggregation, MLHAN further conducts inter-layer aggregation using the attention mechanism to fuse latent vectors obtained from multiple layers into final node embeddings. By integrating multiple layers, our model can learn the comprehensive semantics ingrained in the heterogeneous graph. In summary, this work makes several major contributions:

(1) We propose a novel multilayer aggregated graph neural network for heterogeneous graph embedding.

(2) We conduct extensive experiments on the IMDb and the DBLP datasets for node classification and node clustering to evaluate the performance of our proposed model. Experiments on all of these datasets and tasks show that the node embeddings learned by MLHAN are consistently better than those generated by other state-of-the-art baselines.

Graph Neural Network

Graph neural networks (GNNs) which aim to extend the deep neural network to deal with arbitrary graphstructured data are introduced in [START_REF] Gori | A new model for learning in graph domains[END_REF][START_REF] Scarselli | The graph neural network model[END_REF]. [START_REF] Li | Gated Graph Sequence Neural Networks[END_REF] proposes a propagation model incorporating gated recurrent units to propagate information across all nodes. Recently, there has been a surge of generalizing convolutional operations on graph-structured data. The graph convolutional neural work generally falls into two categories: spectral domain and non-spectral domain. On one hand, spectral approaches work with a spectral representation of the graphs. In [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF] extends convolution to general graphs by finding the corresponding Fourier basis. In [START_REF] Defferrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF] utilizes K-order Chebyshev polynomials to approximate smooth filters in the spectral domain. [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF] proposes a spectral approach named Graph Convolutional Network, which designs a graph convolutional network via a localized first-order approximation of spectral graph convolutions. On the other hand, we also have non-spectral approaches, which define convolutions directly on the graph, operating on groups of spatially close neighbors. [START_REF] Hamilton | Inductive Representation Learning on Large Graphs[END_REF] introduces GraphSAGE, which performs a neural network-based aggregator over a fixed-size node neighbor. It can learn a function that generates embeddings by aggregating features from a node's local neighborhood.

Attention mechanisms, e.g., self-attention [START_REF] Vaswani | Attention is All you Need[END_REF] and soft-attention [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF], have become one of the most influential mechanisms in deep learning. Some previous works introduce the attention mechanism for graph based applications, e.g., the recommendation [START_REF] Han | Aspect-Level Deep Collaborative Filtering via Heterogeneous Information Networks[END_REF][START_REF] Hu | Leveraging Meta-path based Context for Top-N Recommendation with A Neural Co-Attention Model[END_REF]. Inspired by the attention mechanism, the Graph Attention Network [START_REF] Velickovic | Graph Attention Networks[END_REF] is proposed to learn the importance between nodes and their neighbors and fuse the neighbors to perform node classification. However, the above graph neural network cannot deal with various types of nodes and edges and can only be applied to homogeneous graphs.

Network Embedding

Network embedding, i.e., network representation learning (NRL), is proposed to embed a network into a low-dimensional space while preserving the network structure and property to apply the learned embeddings to the downstream network tasks. For example, the random walk based methods [START_REF] Perozzi | DeepWalk: Online Learning of Social Representations[END_REF][START_REF] Grover | Node2Vec: Scalable Feature Learning for Networks[END_REF], the deep neural network based methods [START_REF] Wang | Structural Deep Network Embedding[END_REF], the matrix factorization based methods [START_REF] Ou | Asymmetric transitivity preserving graph embedding[END_REF][START_REF] Xiaowang | Community Preserving Network Embedding[END_REF], and others, e.g., LINE [START_REF] Tang | LINE: Largescale Information Network Embedding[END_REF]. However, all these algorithms are proposed for the homogeneous graphs. Some elaborate reviews can be found in [START_REF] Cui | A survey on network embedding[END_REF][START_REF] Goyal | Graph embedding techniques, applications, and performance: A survey[END_REF].

Heterogeneous graph embedding mainly focuses on preserving the meta-path based structural information. ESim [START_REF] Shang | Meta-Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous Information Networks[END_REF] accepts userdefined meta-paths as guidance to learn vertex vectors in a userpreferred embedding space for similarity search. Even through ESim can utilize multiple meta-paths, it cannot learn the importance of meta-paths. To achieve the best performance, ESim must conduct a grid search to find the optimal meta-path weights. It is hard to find the optimal combination for a specific task. Metapath2vec [START_REF] Dong | Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks[END_REF] designs a meta-path-based random walk and utilizes skip-gram to perform heterogeneous graph embedding. However, metapath2vec can only utilize one meta-path and may ignore some helpful information. Like metapath2vec, HERec [START_REF] Shi | Heterogeneous Information Network Embedding for Recommendation[END_REF] proposes a type constraint strategy to filter the node sequence and capture the complex semantics reflected in a heterogeneous graph. HIN2Vec [START_REF] Fu | HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning[END_REF] carries out multiple prediction training tasks, which simultaneously learn the latent vectors of nodes and meta-paths. [START_REF] Chen | PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction[END_REF] proposes a projected metric embedding model, PME, which can preserve node proximities via Euclidian Distance. PME projects different types of nodes into the same relation space and conducts heterogeneous link prediction. To study the problem of comprehensively describing heterogeneous graphs, [START_REF] Shi | Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks[END_REF] proposes HEER, which can embed heterogeneous graphs via edge representations. [START_REF] Fan | Gotcha-sly malware!: Scorpion a metagraph2vec based malware detection system[END_REF] proposes an embedding model metagraph2vec, where the structures and semantics are maximally preserved for malware detection.

In [START_REF] Sun | Joint embedding of meta-path and meta-graph for heterogeneous information networks[END_REF] proposes meta-graph-based network embedding models, which simultaneously consider the hidden relations of all meta information of a meta-graph.

PRELIMINARY

A heterogeneous graph is a special kind of information network, which contains either multiple types of objects or multiple types of links. Definition 3.1. Heterogeneous Graph [START_REF] Sun | Mining heterogeneous information networks: a structural analysis approach[END_REF]. A heterogeneous graph, denoted as 𝐺 = (𝑉, 𝐸), consists of an object set 𝑉 and a link set 𝐸. A heterogeneous graph is also associated with a node type mapping function 𝜙: 𝑉 → 𝐴 and a link type mapping function 𝜑: 𝐸 → 𝑅. 𝐴

THE PROPOSED MODEL

This section proposes a novel semi-supervised graph neural network for heterogeneous graphs. Our model follows a hierarchical attention structure: intra-layer aggregation → inter-layer aggregation.

First, we propose intra-layer attention to learn the weight of layer based neighbors and aggregate them to get the layer-specific node embedding. After that, MLHAN can tell the difference of layers via inter-layer attention and get the optimal weighted combination of the inter-layer node embedding for the specific task.

Intra-layer Aggregation

Before aggregating the information from intra-layer neighbors for each node, we should notice that the layer-based neighbors of each node play a different role and show different importance in learning node embedding for the specific task. Here, we introduce intra-layer attention to learn the importance of layerbased neighbors for each node in a heterogeneous graph and aggregate the representation of these meaningful neighbors to form a node embedding.

According to our definition of multilayer heterogeneous graph, each node in heterogeneous graph can has same node type neighbors in unipartite layers or different node type neighbors in bipartite layers.

Due to the heterogeneity of nodes, different types of nodes have different feature spaces. Therefore, for each type of node (e.g., node with type 𝐴), we design the type-specific transformation matrix 𝑀 𝐴 to project the features of different types of nodes into the same feature space. Unlike [START_REF] Hamilton | Embedding logical queries on knowledge graphs[END_REF], the type-specific transformation matrix is based on node type rather than edge type. The projection process can be shown as follows:

ℎ 𝑖 / = 𝑀 𝐴 . ℎ 𝑖 (1)
where ℎ 𝑖 and ℎ 𝑖 / are the original and projected features of the node 𝑖, respectively. By type-specific projection operation, the inter-layer attention can handle arbitrary types of nodes.

After that, we leverage self-attention [START_REF] Vaswani | Attention is All you Need[END_REF] to learn the weight among various kinds of nodes. Given a node pair (𝑖, 𝑗) which are connected via layer Φ, the intra-layer attention 𝑒 𝑖𝑗 Φ can learn the importance 𝑒 𝑖𝑗 Φ , which means how important the node 𝑗 will be for the node 𝑖. The importance of layer-based node pairs (𝑖, 𝑗) can be formulated as follows:

𝑒 𝑖𝑗 Φ = 𝑎𝑡𝑡 𝑖𝑛𝑡𝑟𝑎-𝑙𝑎𝑦𝑒𝑟 (ℎ 𝑖 / , ℎ 𝑗 / ; Φ) (2)
Here 𝑎𝑡𝑡 𝑛𝑜𝑑𝑒 denotes the deep neural network, which performs the intra-layer attention. The above Eq. (2)

shows that the weight of layer-based node pairs (𝑖, 𝑗) depends on their features in a given layer Φ.

where 𝜎 denotes the activation function, || denotes the concatenate operation, and 𝑎 Φ is the intra-layer attention vector for the layer Φ. As we can see from Eq. (3), the weight coefficient of (𝑖, 𝑗) depends on their features. Also, please note that the weight coefficient 𝛼 𝑖𝑗 Φ is asymmetric, which means they make different contributions to each other, not only because of the concatenated order in the numerator but also because they have different neighbors, so the normalized term (denominator) will be quite different.

Then, the layer-based embedding of a node 𝑖 can be aggregated by the neighbor's projected features with the corresponding coefficients as follows:

𝑧 𝑖 Φ = 𝜎 (∑ 𝛼 𝑖𝑗 Φ . ℎ 𝑗 / 𝑗𝜖𝑁 𝑖 Φ) (4)
where 𝑧 𝑖 Φ is the learned embedding of a node 𝑖 in the layer Φ. Every node embedding is aggregated by its neighbors. Since the attention weight 𝛼 𝑖𝑗 Φ is generated for a single layer, it is layer-specific.

Since heterogeneous graphs present scale-free property, the variance of graph data is relatively high. To tackle the above challenge, we extend intra-layer attention to multihead attention to make the training process more stable. Specifically, we repeat the intra-layer attention for 𝐾 times and concatenate the learned embeddings as the layer-specific embedding:

𝑧 𝑖 Φ = || 𝑘=1 𝐾 𝜎 (∑ 𝛼 𝑖𝑗 Φ . ℎ 𝑗 / 𝑗𝜖𝑁 𝑖 Φ) (5)
To sum up, given the projected feature vectors ℎ 𝑢 / ∈ ℝ 𝑑 / ∀𝑢 ∈ 𝒱 that has node type 𝐴 ∈ 𝒜 and the set of layers {Φ 1 , … , Φ 𝑃 }, after feeding node features into intra-layer attention, we can obtain layer-specific vector representations of the target node 𝑢 ∈ 𝒱 𝐴 , denoted as {ℎ 𝑣 Φ 1 , ℎ 𝑣 Φ 2 , … , ℎ 𝑣 Φ 𝑝 }.

Inter-layer Aggregation

To learn a more comprehensive node embedding, we need to fuse layers. To address the challenge of layer fusion in a heterogeneous graph, we propose a novel inter-layer attention to automatically learn the importance of different layers and fuse them for the specific task. Now, we have |𝒱 𝐴 | sets of latent vectors for a node type 𝐴: {ℎ 𝑣 Φ 1 , ℎ 𝑣 Φ 2 , … , ℎ 𝑣 Φ 𝑝 } for 𝑣 ∈ 𝒱 𝐴 , where 𝑃 is the number of layers for type 𝐴.

Taking 𝑃 groups of layer-specific node embeddings for type 𝐴 learned from intra-layer attention as input, the learned weights of each layer (𝛽 𝐴 Φ 1 , … , 𝛽 𝐴 Φ 𝑝) can be shown as follows:

(𝛽 𝐴 Φ 1 , … , 𝛽 𝐴 Φ 𝑝) = 𝑎𝑡𝑡 𝑖𝑛𝑡𝑒𝑟-𝑙𝑎𝑦𝑒𝑟 (ℎ 𝐴 Φ 1 , ℎ 𝐴 Φ 2 , … , ℎ 𝐴 Φ 𝑝) (6)
Here 𝑎𝑡𝑡 𝑖𝑛𝑡𝑒𝑟-𝑙𝑎𝑦𝑒𝑟 denotes the deep neural network which performs the inter-layer attention. It shows that inter-layer attention can capture various types of relations information behind a heterogeneous graph.

To learn the importance of each layer, we first transform layer-specific embedding through a nonlinear transformation (e.g., one-layer MLP). Then, we measure the importance of layer-specific embedding as the similarity of transformed embedding with a type attention vector 𝑞 𝐴 . Furthermore, we average the importance of all the layer-specific node embedding, which can be explained as the importance of each layer for all nodes. The importance of each layer, denoted as 𝑤 Φ 𝑃 , is shown as follows:

𝑤 Φ 𝑝 = 1 |𝒱 𝐴 | ∑ (𝑞 𝐴) 𝑇 𝑖𝜖𝒱 𝐴 . tanh (𝑊 𝐴 . ℎ 𝑖 Φ 𝑝 + 𝑏 𝐴) (7)
Where 𝒱 𝐴 is nodes set in type 𝐴, 𝑊 𝐴 is the type specific weight matrix, 𝑏 𝐴 is the type specific bias vector, 𝑞 𝐴 is the type specific attention vector. After obtaining the importance of each layer, we normalize them via softmax function. The weight of layer Φ 𝑠 , denoted as 𝛽 Φ 𝑠 , can be obtained by normalizing the above importance of all layers using softmax function,

𝛽 Φ 𝑠 = 𝑒𝑥𝑝(𝑤 Φ 𝑠) ∑ 𝑒𝑥𝑝(𝑤 Φ 𝑟) 𝑃 𝑟=1 (8)
The higher 𝛽 Φ 𝑠 , the more important layer Φ 𝑠 is. With the learned weights as coefficients, we can fuse these layer-specific embeddings to obtain the final embedding ℎ 𝑣 as follows:

ℎ 𝑣 = ∑ 𝛽 Φ 𝑖 . ℎ 𝑣 Φ 𝑖 𝑃 𝑖=1 (9)
The final embedding is aggregated by all layer-specific embedding. After applying components introduced in the previous sections, we obtain the final node representations, which can then be used in different downstream tasks. We can train MLHAN in semi-supervised learning. For semi-supervised learning, with the guide of a small fraction of labeled nodes, we can optimize the model weights by minimizing the cross entropy via backpropagation and gradient descent, and thereby learn meaningful node embeddings for heterogeneous graphs. The cross entropy loss for this semi-supervised learning is formulated as: [START_REF] Van Den | Graph Convolutional Matrix Completion[END_REF] where 𝑉 𝐿 is the set of nodes that have labels, 𝐶 is the number of classes, 𝑦 𝑣 is the one-hot label vector of node 𝑣, and ℎ 𝑣 is the predicted probability vector of node 𝑣.

ℒ = -∑ ∑ 𝑦 𝑣 [𝑐]. log ℎ 𝑣 [𝑐] 𝐶 𝑐=1 𝑣∈𝑉 𝐿

EXPERIMENTS

Datasets

The detailed descriptions of the heterogeneous graph used here are shown in Table 1.

• DBLP is a computer science bibliography website. We adopt a subset of DBLP extracted by [START_REF] Gao | Graph-based Consensus Maximization Among Multiple Supervised and Unsupervised Models[END_REF][START_REF] Ji | Graph Regularized Transductive Classification on Heterogeneous Information Networks[END_REF], containing 4057 authors, 14328 papers, 7723 terms, and 20 publication venues after data preprocessing. The authors are divided into four research areas (Database, Data Mining, Artificial Intelligence, and Information Retrieval). Each author is described by a bag-of-words representation of their paper keywords.

• IMDB is an online database about movies and television programs, including information such as cast, production crew, and plot summaries. We use a subset of IMDb scraped from online, containing 4278 movies, 2081 directors, and 5257 actors after data preprocessing. Movies are labeled as one of three classes (Action, Comedy, and Drama) based on their genre information. Each movie is also described by a bag-ofwords representation of its plot keywords.

Baselines

We compare with some state-of-art baselines, including the (heterogeneous) network embedding methods and graph neural network-based methods, to verify the effectiveness of the proposed MLHAN.

• DeepWalk [START_REF] Perozzi | DeepWalk: Online Learning of Social Representations[END_REF]: A random walk-based network embedding method which designs for homogeneous graphs. Here, we ignore the heterogeneity of nodes and perform DeepWalk on the whole heterogeneous graph. . node2vec [START_REF] Grover | Node2Vec: Scalable Feature Learning for Networks[END_REF] is a traditional homogeneous model serving as a generalized version of DeepWalk [START_REF] Perozzi | DeepWalk: Online Learning of Social Representations[END_REF]. We apply it to the heterogeneous graphs by ignoring the heterogeneity of the graph structure and dropping all node content features.

• ESim [START_REF] Shang | Meta-Path Guided Embedding for Similarity Search in Large-Scale Heterogeneous Information Networks[END_REF]: A heterogeneous graph embedding method that can capture semantic information from multiple meta-paths. Because it is difficult to search the weights of a set of meta-paths, we assign the weights learned from HAN to ESim.

• metapath2vec [START_REF] Dong | Metapath2Vec: Scalable Representation Learning for Heterogeneous Networks[END_REF]: A heterogeneous graph embedding method that performs meta-path-based random walk and utilizes skip-gram to embed the heterogeneous graphs. Here, we test all the metapaths for metapath2vec and report the best performance.

• HERec [START_REF] Shi | Heterogeneous Information Network Embedding for Recommendation[END_REF]: A heterogeneous graph embedding method that designs a type constraint strategy to filter the node sequence and utilizes skip-gram to embed the heterogeneous graphs. Here, we test all the meta-paths for HERec and report the best performance.

• GCN [START_REF] Kipf | Semi-Supervised Classification with Graph Convolutional Networks[END_REF]: It is a semi-supervised graph convolutional network designed for homogeneous graphs. Here, we test all the meta-paths for GCN and report the best performance.

• GAT [START_REF] Velickovic | Graph Attention Networks[END_REF]: It is a semi-supervised neural network that considers the attention mechanism on the homogeneous graphs. Here, we test all the meta-paths for GAT and report the best performance.

• HAN [START_REF] Wang | Heterogeneous Graph Attention Network[END_REF]: The proposed semi-supervised graph neural network simultaneously employs nodelevel and semantic-level attention.

Implementation Details

For the proposed MLHAN, we randomly initialize parameters and optimize the model with Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF]. For the proposed MLHAN, we set the learning rate to 0.005, the regularization parameter to 0.001, the dimension of the inter-layer attention vector 𝑞 𝐴 to 128 for each type, the number of attention heads 𝐾 to 8, and the dropout of attention to 0.6. Moreover, we use early stopping with patience of 100, i.e., we stop training if the validation loss does not decrease for 100 consecutive epochs. For GCN and GAT, we optimize their parameters using the validation set. For semi-supervised graph neural networks, including GCN, GAT, HAN, and MLHAN, we split precisely the same training, validation, and test sets to ensure fairness. For random walk-based methods, including DeepWalk, ESim, metapath2vec, and HERec, we set the window size to 5, walk length to 100, walks per node to 40, and the number of negative samples to 5. We set the embedding dimension to 64 for all the above algorithms for a fair comparison.

Classification

Here, we employ the KNN classifier with 𝑘 = 5 to perform node classification. Since the variance of graphstructured data can be quite high, we repeat the process ten times and report the averaged Macro-F1 and Micro-F1 in Table 2 Based on Table 2, we can see that MLHAN achieves the best performance. ESim, which can leverage multiple meta-paths, performs better than metapath2vec for the traditional heterogeneous graph embedding method. Generally, graph neural network-based methods that combine the structure and feature information, e.g., GCN and GAT, usually perform better. To go deep into these methods, compared to simply average over node neighbors, e.g., GCN, HAN, and MLHAN. GAT, HAN, and MLHAN can weigh the information properly and improve the performance of the learned embedding. Compared to GAT, the proposed MLHAN, designed for heterogeneous graphs, shows its superiority. The above analysis shows that the proposed MLHAN achieves the best performance on all datasets. The results demonstrate that capturing the importance of nodes and layers in heterogeneous graph analysis is quite important.

Clustering

We also conduct the clustering task to evaluate the embeddings learned from the above algorithms. Once the proposed MLHAN is trained, we can get all the node embedding via feed-forward. Here, we utilize the KMeans to perform node clustering, and the number of clusters 𝐾 is set to the number of classes. We use the same ground truth as in node classification. Moreover, we adopt NMI and ARI to assess the quality of the clustering results. Since the performance of KMeans is affected by initial centroids, we repeat the process ten times and report the average results in Table 3. As can be seen in Table 3, we can find that MLHAN performs consistently much better than all baselines. Also, graph neural network-based algorithms usually achieve better performance. Based on the above analysis, the proposed MLHAN can give a comprehensive description of heterogeneous graph and achieve a significant improvements.

CONCLUSION

This paper tackles one fundamental problem in heterogeneous graph neural networks choosing meta-paths for specific problems. We propose a semi-supervised multilayer heterogeneous graph neural network based solely on the attention mechanism. The proposed MLHAN can capture complex structures behind heterogeneous graphs by looking at heterogeneous graphs as multilayer networks. The proposed model leverages intra-layer aggregation and inter-layer aggregation to learn the importance of nodes and layers.

Meanwhile, the proposed model utilizes the structural and feature information uniformly. Experimental results, including classification and clustering, demonstrate the effectiveness of MLHAN. Analyzing the proposed MLHAN has proven its good interpretability.

 and 𝑅 denote the sets of predefined object types and link types, where |𝐴| + |𝑅| > 2. We begin by defining a heterogeneous graph with 𝑀 different types of nodes as 𝐺 = (𝐺 𝑈 , 𝐺 𝐵) where 𝐺 𝑈 = {𝐿 𝑖 : 𝑖 ∈ {1,2, … , 𝑀}} is a set of 𝑀 unipartite graphs that each one interconnects one type of nodes. and 𝐺 𝐵 = {𝐿 𝑖𝑗 : 𝑖, 𝑗 ∈ {1,2, … , 𝑀}, 𝑖 ≠ 𝑗} is a set of bipartite graphs that each one interconnects two different types of nodes. Each layer 𝐿 𝑖 = (𝑉 𝑖 , 𝐸 𝑖) with 𝑉 𝑖 and 𝐸 𝑖 represent the nodes of type 𝑖 and inner edges between them, respectively. Similarly, we can have layers 𝐿 𝑖𝑗 = (𝑉 𝑖 , 𝑉 𝑖 , 𝐸 𝑖𝑗) where {𝐸 𝑖𝑗 ⊆ 𝑉 𝑖 × 𝑉 𝑗 : 𝑖, 𝑗 ∈ {1,2, … , 𝑀}, 𝑖 ≠ 𝑗} a bipartite graph that connects nodes of type 𝑖 and type 𝑗. We use the 𝑁 × 𝑁 adjacency matrix 𝐴 as adjacency matrix of 𝐺 that 𝑁 = ∑ 𝑀 𝑖=1 |𝑉 𝑖 | and the 𝑉 𝑚 × 𝑉 𝑙 adjacency matrix 𝐴 𝑚𝑙 that indicates edges of set 𝐸 𝑚𝑙 , which are related as

	𝐴 11 ⋯ 𝐴 1𝑀	
	𝐴 = [⋮	⋱ ⋮]
	𝐴 𝑀1 ⋯ 𝐴 𝑀𝑀	

 Please note that 𝑒 𝑖𝑗Φ is asymmetric, i.e., the importance of node 𝑖 to node 𝑗 and the importance of node 𝑗 to node 𝑖 in layer Φ can be quite different. It shows that intra-layer attention can preserve the asymmetry, a critical property of heterogeneous graphs.

		𝑖𝑗 Φ via
	the softmax function:	
	𝛼 𝑖𝑗 Φ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑖 (𝑒 𝑖𝑗 Φ) =	𝑒𝑥𝑝(𝜎(𝑎 Φ 𝑇 . [ℎ 𝑖 / ||ℎ 𝑗 /])) 𝑒𝑥𝑝(𝜎(𝑎 Φ 𝑇 . [ℎ 𝑖 / ||ℎ 𝑘 /])) 𝑘𝜖𝑁 𝑖 ∑ Φ

Then, we inject the structural information into the model via masked attention, which means we only calculate the 𝑒 𝑖𝑗 Φ for nodes 𝑗𝜖 𝑁 𝑖 Φ , where 𝑁 𝑖 Φ denotes the layer based neighbors of node 𝑖 in layer Φ. After obtaining the layer-based node pairs' importance, we normalize them to get the weight coefficient 𝛼

Table 1 .

 1 Statistics of datasets.

.

 Table2. Experiment results (%) on the IMDb and DBLP datasets for the node classification task.

	Dataset	Metrics	Train%	DeepWalk	Node2vex	ESim	Metapath2vec	HErec	GCN	GAT	HAN	MLHAN
			20%	41.84	50.12	49.49	47.17	46.73	53.85	54.76	57.31	59.07
		Macro-F1	40% 60%	46.31 49.25	51.75 52.77	51.21 52.57	48.69 49.29	47.92 47.96	54.79 55.36	56.62 57.58	57.27 58.41	59.99 60.38
	IMDb		80% 20%	51.47 47.50	52.61 51.06	52.49 50.44	51.11 48.34	48.85 47.35	55.89 53.92	58.55 54.76	59.63 57.44	61.16 59.32
		Micro-F1	40% 60%	51.11 53.33	52.89 53.91	52.33 53.65	49.29 50.99	49.01 49.31	54.88 55.35	56.68 57.59	58.44 59.54	60.22 60.60
			80%	55.45	53.84	53.66	51.62	50.23	55.75	58.52	60.36	61.25
			20%	78.55	87.82	91.80	89.59	91.94	89.12	92.17	92.81	93.85
		Macro-F1	40% 60%	82.14 84.79	89.19 89.81	92.73 92.96	91.03 91.62	92.56 93.20	90.22 90.55	92.36 92.54	93.08 93.26	93.95 94.59
	DBLP		80% 20%	85.93 80.49	90.05 88.33	93.39 92.33	91.98 90.14	93.37 92.61	91.10 89.63	92.85 92.73	93.62 93.45	94.82 94.33
		Micro-F1	40% 60%	83.85 86.39	89.69 90.21	93.17 93.40	91.48 92.06	93.17 93.78	90.34 90.69	92.89 93.09	93.69 93.84	94.40 95.71
			80%	87.38	90.49	93.80	92.43	93.90	91.45	93.36	94.35	95.19

Table 3 .

 3 Experiment results (%) on the IMDb and DBLP datasets for the node clustering task.

	Dataset	Metrics	Node2vex	DeepWalk	ESim	Metapath2vec	HErec	GCN	GAT	HAN	MLHAN
		NMI	5.78	2.01	1.63	1.45	0.95	8.02	8.40	11.35	12.94
	IMDb										
		ARI	6.58	2.71	1.57	0.78	0.67	8.25	9.43	11.67	14.10
		NMI	78.13	77.65	69.45	75.30	70.15	74.57	71.85	78.61	80.52
	DBLP										
		ARI	82.49	92.47	73.34	79.23	73.57	78.62	77.16	84.07	85.26