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ABSTRACT

Corpus-based concatenative sound synthesis is typically
used with a projection or reduction of the sound parameter
space to a 2-dimensional map where sound segments form
point clouds that can be visualized and explored with a
mouse or a touch interfaces. While this is satisfying with
visual feedback, where possibly sparse and heterogeneous
sound spaces can be easily controlled, this remains chal-
lenging or impractical without visual feedback and using
whole-body movements.

We present polyspring, a Python toolbox dedicated to
manipulating the distribution of a set of points in a 2-
Dimensional plane. This package implements an algorithm
based on a spring network simulation that can redistribute
points according to a density target within a given bounded
region while preserving the initial order between points. We
made several modifications and additions to the previously
published unispring algorithm to allow for concurrently in-
teracting with the dataset and manipulating the distribution
in real time. The toolbox is open-source and can be used
with Max/MSP. We also present different applications of
this toolbox in movement-based sound interaction.

1. INTRODUCTION

Sample-based sound synthesis techniques, such as corpus-
based concatenative synthesis, are particularly efficient for
real-time multidimensional control of sound textures, which
finds applications in music performance, gaming, or sound
design. Many approaches adopt point-based representa-
tions of databases to facilitate navigation and continuous
control, with examples including CataRT [1], earGram [2],
AudioStellar [3], and FluCoMa [4]. Sound samples can be
selected in real-time by navigating a parameter space, often
represented as 2D ‘sound clouds’, the dimensions of which
are either based on audio descriptors such as loudness, pitch,
spectral centroid, or noisiness, or extracted using dimen-
sionality reduction techniques. Such a visual representation
of the sound space enables direct gestural sample selection
using the mouse or touch gesture with pads. In this case,
direct visual feedback is key to ensure efficient navigation
in the sound space that might not be uniform [5, 6].
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The control of such sound spaces can be challenging
when no visual feedback is available for the performer.
Movement-based sound control, with sensor-based or video-
based movement tracking, represents exemplary use cases
where the performer must navigate, using body movements,
in the sound space without the help of any screen [7, 8]. In
such scenarios, movement parameters should be mapped
to the sound space parameters in a way that all the sound
clouds can be reached and explored. As illustrated in Fig-
ure 1, this is generally not guaranteed using simple parame-
ter scaling or rotation: the 2D sound map presents several
clusters of different sizes and densities, as well as empty
zones. As a result, it might be difficult or impossible for the
performer to access and control all the sound space continu-
ously, as certain movements might not trigger any specific
sound sample.

This paper aims to propose a method that enables both
the control of the points distribution, from homogenization
to custom density function, and the setting of adaptable
border geometries. The method presented here is based
on the unispring algorithm introduced by Lallemand and
Schwarz [9], with improvements at both theoretical and
practical levels.

First, we present several theoretical contributions that sim-
plify the use of the base physical model and facilitate the
real-time manipulation of the sound map structure. In par-
ticular, we propose to estimate a key parameter from the
dataset to provide users with a minimal number of control
parameters, allowing them to use this tool without knowl-
edge of the underlying physical models. Additionally, we
formalized a simpler density manipulation technique using
Gaussian mixtures as inputs, which allows users to manipu-
late the distribution of the sound clouds in real-time.

Second, we provide the community with an open-source
Python package called polyspring that can be used in con-
junction with several audio software. Polyspring enables
the control of a sound dataset distribution starting from
any type of 2D projection. It can be used to distribute the
dataset uniformly while preserving neighborhood relations
between points. A density function can be provided to fur-
ther shape the final distribution of sounds. This distribution
can also be restricted to custom boundaries (see figure 1).
Additionally, a Python script and a Max patch communicat-
ing over OSC are provided to manipulate a sound dataset in
the Max package Mubu. 1

1 MuBu download page: https://forum.ircam.fr/projects/detail/mubu/
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Figure 1. Exploration of a sound database using motion sensors mapped to the control space. Without visual feedback, the
2-D audio space might present empty space and tight clusters compared to the uniformly distributed space. The control
space can be adapted to the user’s motion range using a custom bounded region.

2. RELATED WORK

Several popular sound synthesis methods rely on analyz-
ing and recombining databases of recorded sounds. Such
methods involve the segmentation of audio recordings, their
parametrization (for example, with audio descriptors), and
their resynthesis using selection methods. Various im-
plementations have been proposed, such as the real-time
corpus-based concatenative synthesis system CataRT [1],
used by several research groups and musicians [10–12], the
tools developed in the Fluid Corpus Manipulation project
(FluCoMa) [4, 13], earGram [2] or the AudioStellar sys-
tem [3]. 2D representation of the sound parameterization
greatly facilitates its direct manipulation by the performer
through projection or dimensionality reduction from the
possibly high dimension of the sound description. The rela-
tionship between the user gestural input and the selection
of such 2-D reduced space can be formalized as a special
case of the so-called gesture-sound mapping [14].

Over the years, many approaches have been proposed
to design complex multidimensional mappings, using di-
verse methods such as physical models [15, 16], machine
learning [17] or geometrical approaches [18]. In the lat-
ter approach, discrete points serve as control structures for
the generation of continuous mappings, where several tech-
niques can be used to define and transform the geometry
of the intermediate mapping layer. Zbyszynski et al. [11]
proposed a regression method (Neural Network Regression
Model) to set the mapping between gestural data to the au-
dio space. Nevertheless, with corpus-based approaches, the
problem often consists in mapping continuous movements
to a sound space that might be sparse and/or heterogeneous
in terms of sound density, requiring novel approaches to the
visualization or distribution of sound database.

Gerard Roma and colleagues made several contributions
concerning the visualization and mapping of sound collec-
tions. In [19], they present a novel framework for sound
space creation for interaction. Features are extracted from
the sound corpus using a neural encoder that produces high-
dimensionality features. A segmentation algorithm chops
initial files into sound fragments based on a novelty al-
gorithm. Eventually, each fragment is projected in a low
dimensional space (2-D or 3-D) using a dimensionality re-

duction technique. The playability highly depends on the vi-
sual characteristics of the 2-D representation obtained from
this last step. For Isomap and the Fruchterman-Reingold
algorithm, the authors highlight a trade-off between per-
ceptually meaningful clusters and good spatial occupation
when dealing with the number of neighbors. They also
experimented with Self-organizing Maps (SOMs), which is
a mapping technique between high-dimensional data and
a 2-D grid layout. Still, SOMs can assign multiple data
points to the same output location, which is not a feature
we want in our case.

More recently, Roma et al. produced a more general
framework for visualization [20] where they evaluated sev-
eral dimensionality reduction algorithms for music creation
applications. They found the uniform manifold approxima-
tion and projection (UMAP) algorithm to be more suited for
this use case. One of UMAP parameters is the number of
neighbors for projected points. This parameter impacts the
clustered aspect of the 2-D projection, therefore allowing
for control on the spread of the points over the space. They
presented a solution to de-clusterize points by mapping the
output of a dimensionality reduction technique to a grid
using the Hungarian algorithm. By oversampling the output
grid, the initial distribution of points can be preserved while
avoiding the overlapping of points. While useful to get a
uniform distribution, this technique requires to define a grid
matching the desired distribution and the right number of
points, which can be difficult to generate for general cases
(typically arrangements not initially following a grid).

3. THEORETICAL BACKGROUND

Polyspring builds upon several algorithms and methods to
manipulate a set of points in a 2-dimensional plane. After
introducing the base unispring algorithm initially proposed
by Lallemand and Schwarz [9], we present several modi-
fications and additions we made to this algorithm. Then,
we describe a cost-effective interactive method to shape the
density of the distribution.

3.1 Unispring Algorithm for Density Manipulation

The unispring algorithm [9] manipulates a 2-Dimensional
set of points to distribute it across a given region either
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uniformly or according to a user-defined distribution. The
unispring algorithm is composed of two steps explained
below: the pre-uniformization and uniformization as illus-
trated in Figure 2.

Initial Projection Pre-uniformization Uniformization

Figure 2. The unispring algorithm takes the 2D projection
of a dataset and distributes it uniformly in the space using a
mechanical analogy between a triangle mesh and a spring
network. A first pre-uniformization step is used to spread
the points in the space to make the simulation converge
faster.

3.1.1 Pre-uniformization

The first step of the algorithm consists in scattering the
initial distribution by performing a ”pre-uniformization”
step. It replaces the x (resp. y) coordinate of each point
with the index of this coordinate in the sorted list of all x
(resp. y) coordinates in the set. Note that these intermediate
coordinates are scaled so that the initial range of the x-axis
(resp. y-axis) is preserved. This intermediate distribution
fills the space while preserving the order between points
from the initial projection. This first step will help the
physical algorithm to converge faster.

3.1.2 Uniformization

The second step is based on the distmesh algorithm [21],
introduced by Persson and Strang, that is used to generate
meshes using a simple mechanical analogy between a trian-
gular mesh and a 2D spring network. The triangle mesh is
created using a Delaunay triangulation: each point is linked
with its neighbors, forming triangles whose circumcircles
do not contain any point. The physical model is created by
considering each connection between vertices as a spring.
The obtained model is a network of joints linked by springs.
Only the repulsive actions of the springs are considered.
Allowing for attractive forces would require complex simu-
lation schemes to ensure stability in every case. Therefore, a
point is subjected to a force whose direction and amplitude
depend on the distance from connected neighbors. Each
connected point applies a force in the direction of the con-
nection with an amplitude proportional to the length of the
connection:

f =

(
k(l0 � l) if l < l0
0 if l � l0

(1)

with l the current length of the spring, l0 the rest length, and
k the spring stiffness.

The position at a given step is solved using a forward Euler
method. To end the simulation, a stop criterion is checked
at every step: if for all points the displacement at a step is

under a certain threshold, then the simulation stops. Further
details on how the algorithm is implemented can be found
in the original distmesh article [21].

The region in which the points are distributed consists
of boundaries that cannot be crossed. If a point moves
past a boundary, it is brought back to the closest point
on the boundary. The region is defined by the user as a
signed distance function which returns the distance to the
closest point on the boundary, positive if inside the region
or negative if outside. We shall see in Section 4.1.1, that in
our implementation we modified this definition to simplify
user interaction.

The target density is defined by the element size function
h(x, y). For a uniform target density, all springs have the
same rest length so that the final distance between points is
the same everywhere. By specifying different rest lengths,
we can modify the density in certain parts of the region. It
is not required to specify the exact rest length of the springs,
h(x, y) only gives the relative distribution over the domain.
The actual rest length of a spring whose center is at a (x, y)
coordinate is then calculated using the following equation:

l0(x, y) =

s P
l2iP

h(xi, yi)2
⇤ h(x, y). (2)

3.2 Additions and Modifications to the Unispring
Algorithm

The aim of the polyspring toolbox is to allow users to ma-
nipulate a 2-D point distribution easily, without having to
tweak the parameters related to the underlying physical
model. We made the following additions and modifications
to the Unispring algorithm for this purpose.

3.2.1 Calculation of the Springs Rest Length for a
Uniform Distribution

The results of the physical model used to move the points
highly depend on the choice of the springs’ rest length since
the final distance between points will be, approximately,
the rest length. So it must be chosen according to the target
distribution, the number of points and the region dimensions.
We deduce an estimate of the target distance luni0 between
points for a uniform distribution from the region area and
the number of points.

Atri
l uni
 0

Figure 3. For a uniform distribution, points should be ar-
ranged so that they form equilateral triangles. Therefore,
the spring rest length luni0 must be chosen to verify the tar-
get density.
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Let a uniform target distribution of density d = N
A with

N points contained in a region of area A. Since all pairs
of points linked by the Delaunay triangulation must be at
the same distance, they form equilateral triangles with their
neighbors, as shown in figure 3. Since each point is the
vertex of 6 different triangles, we can write the density of
points in a single triangle as:

d =
3

6Atri
(3)

with Atri = (luni0 )2
p
3
4 , the area of a triangle. Resulting in:

luni0 =

s
2p
3N
A

. (4)

This calculation does not take into account the points that
are on the borders of the region: a point on the border is
the vertex of fewer than 6 triangles. Therefore, the density
in Eq. (3) is underestimated in these cases, resulting in an
overestimation of the rest length. However, as stated in [21],
”it is important that most of the bars give repulsive forces to
help the points spread out across the whole geometry, [...]
which can be achieved by choosing l0 slightly larger than
the length we actually desire”.

3.2.2 User-defined Distribution: Non-uniform Rest Length

The distmesh algorithm introduces an element size function
h(x, y) that is used to specify the relative density in various
parts of the region through a non-uniform rest length of
the springs in the physical model. This method is imple-
mented in the toolbox, albeit with some differences in the
function that the user specifies. Instead of defining an ele-
ment size function, we introduce a density function ⇢, such
that h(x, y) = 1

⇢(x,y) , that specifies the relative density of
points in different parts of the region. We made this change
to focus the interaction on the density of points at certain
coordinates rather than the distance between points. The
element size function derives directly from the analogy of
the spring network, the elements refering to the connections
made by the Delauney Triangulation. Like h, this function
is relative and does not need to sum to any particular value
across the region. A location where ⇢ = 2 will be twice as
dense as if ⇢ = 1.

The rest length of a spring whose center is at the coor-
dinates (x, y) is calculated using the uniform rest length
luni0 that we obtain using Eq. (4) and the ⇢ function that is
provided by the user:

l0(x, y) = luni0 .

vuut
Nc

PNc

i=1

⇣
1

⇢(xi,yi)

⌘2 .
1

⇢(x, y)
(5)

where Nc is the number of connections and (xi, yi) is the
center of the connection i. Note that in Eq. (5), the sum
of l2i from Eq. (2) is replaced by the average rest length
luni0 from Eq. (4) which is a better estimate of the average
rest length when there are large empty spaces in the initial
distribution.

The user can specify any density function ⇢(x, y) as long
as it verifies that 8(x, y) 2 R2, ⇢(x, y) > 0. For instance
in figure 7, ⇢(x, y) = x+ y + 1. Which means that, since
⇢(0, 0) = 1, ⇢(1, 0) = ⇢(0, 1) = 2 and ⇢(1, 1) = 3, the
distribution is three times denser at (1, 1), and two times
denser at (1, 0) or (0, 1)), than at (0, 0). The resulting
distribution is displayed figure 7. Note that in this case
coordinates have been scaled to [0, 1].

3.3 Gaussian Attractors: Manipulating the
Distribution during Interaction

Originally, unispring was designed to obtain a ”static” rep-
resentation of the database, as stated by the authors: ”we
mean that the interface is determined once by the user and
does not require further adjustments in the course of the
interaction process” [9]. Our goal in designing polyspring
was to let users manipulate the distribution and interact
with it concurrently. While it is possible to interact with the
sound corpus during the mass-spring simulation process,
the speed of the simulation highly depends on the number
of points and cannot be anticipated easily.

We created a method to interact with the point distribution
using a force field that can move points away from their
stable position. This force field can be specified by users
through a mixture of Gaussians. After uniformization using
the spring network method, the points are pushed away from
their initial positions. The gradient of the force field directs
the displacement vector of a point, and its norm is equal to
the value of the field at the point coordinates. The field is
scaled between 0 and luni0 so that the points displacements
are bounded. An example of a distribution obtained with a
mixture of three Gaussians is given in Figure 8. While this
model allows for other inputs than Gaussian mixtures, it
is difficult to anticipate its behavior without understanding
the process behind the creation of the displacement vector.
So we restricted the input possibilities to make it more
accessible while allowing for complex final distributions.

4. TOOLBOX DESCRIPTION

The polyspring toolbox implements a modified unispring
algorithm with its extensions described above. This tool-
box consists of a Python package that provides classes to
manipulate the distribution of a set of points inside a given
region. It also includes a Cycling’ 74 Max package that
enables its use with the MuBu 2 library. All the scripts and
patches are provided in a repository 3 along with a video
demonstrating several features of the toolbox.

4.1 Implementation

4.1.1 Polyspring Implementation in Python

The models described in section 3 are implemented with
Python using standard packages for scientific computing,
except for the region definition. All Matrix operations are
made using numpy, and we use the Delauney triangulation
from the scipy.spatial submodule. The gaussian attractors

2 https://forum.ircam.fr/projects/detail/mubu
3 https://github.com/ircam-ismm/polyspring
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use numpy.gradient to compute the gradient of the force
field over a grid and the scipy.interpolate.griddata to in-
terpolate the gradient at each datapoint from the gradient
grid.

In the base distmesh algorithm, the main difficulty for
region management user-wise is to create the signed dis-
tance function that returns the distance from a point to the
closest boundary point (positive if inside, negative if out-
side). While it allows for any region to be defined, it is
complicated to create in most cases.

We decided to use the shapely package 4 , a set of classes
aimed at set-theoretic analyses and manipulation of planar
feature that uses functions from GEOS, a C/C++ library
for computational geometry. Shapely provides a polygon
class with an highly efficient point-in-polygon (PIP) test
and closest points calculation. Using this package, any
region can be easily defined as a simple polygon or more
complex regions with holes using set operations. In our
implementation, the region is provided by the user as a
shapely Polygon or MultiPolygon object.

4.1.2 Using Polyspring in Max

We created a Max patch and a Python script to interface
polyspring with a MuBu container that we used to create
the example described above. The Max object can be used
to distribute any set of points contained in a MuBu track.

The Max patcher and the Python script communicate us-
ing OSC (Open Sound Control) over UDP (User Datagram
Protocol). On the Max side, data are sent and received
using the base Max UDP implementation (udpsend and
udpreceive objects). On the Python side, the communica-
tion is managed by the python-osc package 5 that allows
for an OSC address $ callback matching system. Thus,
the communication consists of packets sent over UDP from
one process to another. If both processes run on the same
machine, the packets are sent to the local host IP address
(127.0.0.1), and each process uses different receive ports
(8011 for Max and 8012 for Python by default).

4.2 Features

We now detail the main features of polyspring, illustrated
with an example built using the Max implementation for
CataRT-MuBu 6 . A screenshot of the Max patcher is shown
in Figure 4. The green and yellow parts (”Initialize Corpus”
and ”Choose Representation”) are dedicated to the creation
of the corpus and the initial projection, while the blue part
(”Shape Distribution”) uses polyspring to allow for manip-
ulating the sound fragment distribution. The visualizer on
the right side displays the current distribution in a square.
Note that it is automatically scaled to the initial distribution
range on both axes and does not change its limits unless the
descriptors are modified.

4.2.1 Initialization and uniformization

In our example, the corpus is created using CataRT’s auto-
mated segmentation and analysis process. The user imports

4 shapely documentation
5 python-osc reference
6 https://forum.ircam.fr/projects/detail/catart-mubu

Figure 4. Screenshot of a Max patch demonstrating
polyspring capabilities. The user can draw custom regions
directly on the visualizer and type any density function of
x and y such as ⇢(x, y) = 5(x+ y) + 1.

one or more sound files that are first segmented (using for
example a fixed segment length or onsets), then analyzed
with a series of N audio descriptors. Then, the user can
choose two audio descriptors used to visualize all the sound
segments as points in a 2D map, which corresponds techni-
cally to the projection of the 7-D audio descriptors space to
a 2-D plane. All of this is implemented using the externals
provided in the MuBu package.

The interest of polyspring lies in the possibility of mod-
ifying the distribution of points representing each sound
segment. By default, the region is set as the non-oriented
bounding box of the set of points, and the density function
is set to 1. When pressing the ”Distribute” button, the points
get uniformly distributed across this region. Since the visu-
alizer is scaled to the initial range in both directions, it is
equivalent to the default region, and the points fill the whole
visualization space. The projection of a sound corpus in a
descriptor space (spectral centroid and periodicity), before
and after uniformization, is represented in Figure 5.

Figure 5. Example of basic uniformization of a sound
corpus. The left scatterplot represents the projection of
the segmented corpus over two descriptors: the spectral
centroid and the periodicity. The scatterplot on the right
depicts the representation resulting from a uniformization
of the control space.
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4.2.2 Custom region

Users can specify a custom region by drawing a polygon
on the visualization space. After clicking the ”Draw region”
button, they can click on the visualizer to specify each ver-
tex of the polygon sequentially. Clicking the ”Close region”
button will close the polygon by linking the last defined
vertex with the first one. The uniformization algorithm
then distributes points inside this region, as illustrated in
Figure 6.

Figure 6. Example of uniformization of a sound corpus
over a user-defined polygonal region.

Since the region definition relies on the package shapely,
any polygon that can be created in shapely can be used to
shape the distribution.

4.2.3 Custom density

The user can define the density function ⇢ as a function
of x and y (See section 3.2.2). For instance in figure 7,
⇢(x, y) = x + y + 1. The user can type any function
existing in the numpy package by specifying ”np.” before
the function name (eg. np.exp, np.sqrt...).

The Python class accepts any density function that takes
two coordinates as arguments and returns a float indicating
the relative density at this position. The example makes use
of a formal expression definition but we can also input a
function obtained from a Kernel Density Estimation (KDE).

Figure 7. Example of a distribution obtained with a user-
defined density function ⇢ = x+ y + 1

Real-time interactions with the distribution, based on
Gaussian attractors, are presented in a separate window
as three configurable 2-D gaussian functions exposing the
gaussian parameters: the center (µx, µy), the spread (�x,�y)
and the angle ✓. Figure 8 shows the Max window with the

chosen parameters and the resulting distribution. Since the
points are attracted from their original position by differ-
ent Gaussians spread around the space, it can create empty
spaces in the map. This distribution is not equivalent to
what would be obtained by providing the gaussian mix-
ture as the density function ⇢ in the spring network model,
which is significantly slower to compute – and therefore not
appropriate for real-time manipulation. For example, this
method takes less than 30ms compared to several seconds
with the spring network. However, the resulting distribution
does not guarantee the complete coverage of the space and
is more difficult to anticipate. This is complementary to the
density definition using the ⇢ function, which is slower but
affords more control on the final distribution.

Figure 8. A distribution made using 3 gaussian attractors.
The parameters for each gaussian are defined by the user.

5. EXAMPLES

In this section, we describe two case studies in which
we used the Max implementation of polyspring to design
movement-based interaction with concatenative synthesis
using CataRT. Both applications, to the design of a lab
experiment and for a dance performance, required sound
spaces to be carefully adjusted to specific spaces.

5.1 Sound Exploration with Motion Sensors Attached
to the Arm

In the context of experimental studies on sensorimotor learn-
ing, we are currently using motion sensors strapped to the
arms to control a textural sound space without visual feed-
back, as described in Figure 1. Inspired by the work of Van
Vugt and Ostry [8], we study the exploration of such con-
tinuous audiomotor space, which necessitates continuous
sonic output to movements. As shown in Figure 1, the 2-D
sound space is neither continuous nor homogeneous. To
make the sound exploration practical, we used polyspring to
distribute the sounds equally over the whole control space,
thus suppressing silent zones and ensuring that the entire
movement space is mapped to a unique sound output. Each
sound segment takes the same area in the control space, and
the density of points was the same everywhere, making the
sound synthesis behave identically over the whole space.
This enables users to explore the sound space with their arm
movement without any visual feedback. Qualitative reports
from the users confirmed that such uniformized textural
sound space was significantly easier to explore and learn
compared to the ‘raw’ sound cloud distributions.
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5.2 Sympoiesis performance

The toolbox helped design corpora for the sound design of
the dance performance Sympoiesis 7 by Laurane Le Goff.

5.2.1 Dance Sound interactive setup

In the Sympoiesis performance, four dancers were equipped
with a motion sensor strapped to their right arm. Two
orientation angles were mapped to the x-axis and y-axis
of a CataRT sound space independently for each dancer.
For each dancer, we created a custom sound space with
approximately 200 sound fragments. Using polyspring, we
distributed the sound corpus of each dancer uniformly in
a different quarter of the space as represented Figure 9. In
these conditions, three-quarters of the space was empty,
and only a quarter contained sound. The position of the
sounds changed before each performance, such that they did
not know in advance where the sound segments would be
located. At one point in the performance, the sensors were
turned on, and the dancers started exploring a designed
audio space that can be reached within a specific range
of arms angles, which they must discover by improvising.
For this performance, the partial coverage of the sound
space was a desired and controlled property to bring an
exploratory side to the dance. The fine control of the shape
and the density of this audio space, as well as their real-time
adaptation, was thus made possible by the toolbox.

Figure 9. During the Sympoiesis performance, dancers were
equipped with a motion sensor embedded in their costume.
The sensor orientation was mapped to a 2-D CataRT space
with sound points located only on a quarter of the space.
Performance picture credit: Younguk Choi

5.2.2 Music Generation with Slime Molds

The second part of the Sympoiesis performance was cen-
tered around slime molds, a unicellular organism whose
growing behaviors have been thoroughly studied [22]. For
this performance, we wanted to use slime mold growth
video recordings to control sound synthesis. A dataset of
several hours of field recording in a laboratory has been
scattered in a CataRT space. Since the videos consisted
of upper views of a Petri dish, it was interesting to restrict
the sound grains to a circle using polyspring to be able to
superimpose them, as shown in Figure 10. The uniform
distribution also ensured that the sound could be triggered
everywhere in the circular region.

7 Laurane Le Goff Sympoiesis project website

Figure 10. Picture of Slime Molds after several days of
growth in a petri dish superimposed on a CataRT space of
4796 points uniformly distributed in a circular region. Slime
molds picture credit: Laurane Le Goff

6. DISCUSSION AND CONCLUSION

We presented the theoretical basis and the Python imple-
mentation of the polyspring toolbox. It allows for the design
of sound corpora where 2-D sound clouds are distributed
over a specific space while maintaining local neighborhood
relationships between sound parameters. We reported re-
cent applications of this method in movement-based sound
control, both for research and artistic endeavors. This opens
new possibilities by enabling more control, for example,
on the CataRT 2D representation. Beyond the examples
we described, other use cases might take advantage of the
toolkit, such as the one proposed by Jensenius et al., where
the position of a musician on stage, tracked by a camera, is
used to control a CataRT space [7]. With a simple one-to-
one mapping between the location on the floor and the 2D
sound parameters (centroid and periodicity), the performer
triggered segmented violin sounds. It is easy to imagine an
extension of such a paradigm with the possibility offered
by polyspring: other sound parameters could be easily ex-
plored while assuring that all the sound cloud points are
well distributed in a performance space of any geometrical
form.

Polyspring is sufficiently generic to be used in a variety
of applications. However, our main use cases always made
use of the MuBu package. Communicating between Max
and Python through OSC is not optimal in terms of perfor-
mance. To improve this, we are considering implementing
this toolbox as a MuBu external that would run in the Max
process and should be substantially faster than the Python
implementation.

Finally, the unispring algorithm should be generalizable
to 3-D or even higher-dimensional spaces. Allowing for
mapping between several movement descriptors and sound
space dimensions in the case of gesture control for instance.
Uniformization over N dimensions would guarantee the
presence of sound points in all directions, which is particu-
larly interesting when exploring high-dimensional spaces
that are difficult, if not impossible, to visualize. Delaunay
triangulation can be performed in n-Dimensions, which is
already implemented in the scipy.spatial.Delaunay function
and the repulsive action between two points could therefore
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be calculated using the n-D euclidean distance. However,
ensuring the convergence of the generalized model is not
trivial, the region borders would be harder to define and
to keep the simulation stable with a forward Euler method
would require a lot of experimenting with the parameters.
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