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Feature Selection to Forecast Cognitive Decline
Using Multimodal Alzheimer’s Disease Models

Benoit Sauty, Etienne Maheux and Stanley Durrleman

Inria, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM

Abstract. Multimodal medical data (e.g. MR and PET imaging, CSF
measurements, clinical assessments) reflect different aspects of Alzheimer’s
Disease, including early changes in brain structure and function that can
occur before the onset of the associated cognitive impairment. We pro-
pose to use a feature selection method within a disease progression model
to identify the combinations of imaging and non-imaging biomarkers
across modalities that allow the best predictions of the cognitive decline.
We first demonstrate that the chosen non-linear mixed-effect model out-
performs all benchmarked methods in the TADPOLE challenge, with
increasing performance as various modalities are added. We then intro-
duce a controlled protocol to compare the added value of each feature for
the forecast of cognition, at different stages of the disease, and for vary-
ing time-to-predictions. Notable findings include that the volumes of the
ventricles are predictive features at the later AD stages but not at early
stages, hippocampal volume is mostly important for intermediate stages
and cognitively unimpaired subjects, cortical thickness of temporal cor-
tex is most important for short-term predictions in AD patients at any
stages, and cortical summaries of glucose and amyloid PET uptakes are
only useful for intermediate AD stages. These conclusions may inform
the design of efficient prognosis scores that have been shown to decrease
sample size in clinical trials and can be adapted to the targeted disease
stages and the trial duration.

Keywords: Multimodal modeling - Cognitive Forecast - Disease pro-
gression models - Alzheimer’s Disease.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that affects millions
of individuals worldwide. It is characterized by an accumulation of pathological
proteins and the loss of neurons in the brain that lead to a gradual decline in cog-
nitive function, including memory loss and difficulty with language, reasoning,
and perception. Despite its high prevalence and significant personal and soci-
etal impact, current diagnostic and treatment strategies are limited. Data-driven
forecasting methods and enrichment strategies have the potential to substantially
decrease the sample size and inform the design of targeted clinical trials [4,/16].
In that spirit, disease progression models offer prognostic tools, identify the dis-
ease stage best suited for clinical intervention and predict individual progression
patterns.
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Forecasting cognitive decline in AD patients is challenging due to the complex
nature of the disease and the variability in its progression. Traditional diagnos-
tic tools, such as cognitive testing and clinical evaluations, may not be sensitive
enough to detect early changes in brain function. Multimodal imaging data, in-
cluding structural and functional imaging, may be valuable in detecting early
changes in brain function that occur before the onset of cognitive symptoms.
Longitudinal data, which capture changes in the brain over time, are particu-
larly informative in understanding the progression of the disease. However, the
combinations of modalities that best forecast the decline at different stages of
the disease have not yet been elucidated.

Disease progression models for biomarkers and imaging features can be for-
mulated using differential equations [9], time-to-event models for discretized ab-
normality thresholds [30], neural networks for scalar [19], imaging [6,24] and
multi-modal data [5], Gaussian processes [15] and various regression frameworks.
WEell suited to irregularly spaced or missing data, a very flexible approach is
proposed with mixed-effects models, which account for both the average trajec-
tory of the population, called the fixed-effects, and individual variations to that
trajectory that account for inter-subjects variability called the random-effects.
Early models used linear modeling [28] while non-linearities were later added
with polynomial [29], logistic [11], and exponential [20] regressions. Such mod-
els can make prediction about future outcomes. However, little focus has been
put on the selection of the most predictive features for cognitive forecast. In this
study, we investigate the potential of multimodal longitudinal data in forecasting
cognitive scores in AD patients using mixed-effects models, highlighting the most
relevant combinations of modalities for each stage of the disease progression.

1.1 Related work

The automatic prediction of the patient’s current diagnosis from multimodal
data at the time of the acquisition has been extensively studied, with an empha-
sis on T1-MRI [7,[14] and more broadly neuroimaging data [3,|21]. The study of
future conversion from MCI to AD, which is a more challenging and clinically
relevant task, has also been tackled with a variety of approaches. [2] proposes
a quantitative review of such studies to exhibit the best-performing methods
and set of modalities for this particular task. It concludes that for short-term
predictions (<2y), predicting the patient does not change clinical status works
as well as prediction models and that using FDG-PET data and cognition im-
proves prediction while T1-MRI does not. This task, however, depends on the
current clinical diagnostic practices that may not be reproducible among clini-
cians and countries and provides little dynamic information about the cognitive
changes of patients. Predicting the cognitive outcomes at varying time-points
in the future is of greater interest for clinical decision support systems. The
most notable step in this direction was the introduction of The Alzheimer’s Dis-
ease Prediction Of Longitudinal Evolution (TADPOLE) challenge 18] that uses
data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to provide a
benchmark to compare the forecasting performance of more than 90 multimodal
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progression models. However, amongst the official submissions, no method signif-
icantly outperformed a simple linear mixed model for the prediction of cognitive
decline [17]. The challenge has remained open and new methods have since pro-
vided better estimates, although the added value of each selected feature has
not been assessed. In this work, we:

e demonstrate that a mixed-effect logistic model outperforms all benchmarked
methods in the TADPOLE challenge, with increasing performance as imag-
ing data from various modalities are added,

e describe a protocol to fairly compare the added value of each imaging feature
for the forecast of cognition in different scenarios depending on the targeted
disease stage and the time to prediction,

e exhibit, for each prediction task (a given cohort and a given prediction hori-
zon), the features that are most useful or detrimental for the forecast.

2 Methodology

2.1 Longitudinal geometric model

Mixed-effects models describe each patient’s progression over time as a variation
— the random-effects — around the average population trajectory — the fixed-
effects. As suggested in [27], the inter-subjects variability is parametrized as the
combined effects of an individual onset age 7 and pace of decline o — for the
temporal variability — and a spaceshift w — for the intrinsic differences that are
independent of time. An affine time-warp ¢ — «(t — 7) maps the age at visits
to a pathological age on the common timeline of the average trajectory. These
individual parameters form the random-effects, which we model with Gaussian
priors. The reference positions, velocities, and time that define the average tra-
jectory, together with the variances of the random-effects and residual noise,
form the fixed-effects of the model. These models have also been demonstrated
to generalize well to different databases [16] and reach test-retest noise levels
for the modeling of cognitive scores and regional imaging features [12}23,[25],
hinting that the models could not be improved without over-fitting.
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Fig. 1: Illustration of the random-effects ”transforming” the average trajectory to ac-
count for the variability between patients, for a model with two features (blue and
orange). Dots are the actual measurements and plain lines are the modeled trajectory.
More details on this model are provided in |27]. Figure courtesy of [12].

2.2 Calibration and goodness of fit

These longitudinal models are part of a family of geometric models [26] that
can be calibrated using a Maximum a Posteriori estimation of both random and
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fixed-effects, using MCMC-SAEM procedure in which the estimation step of an
Expectation-Maximization algorithm is replaced by a stochastic approximation.
See [1,|13] for details on the procedure, description of the complete likelihood
and proof of convergence and stability. Once a model is calibrated and the fixed-
effects are estimated for a given cohort — a set of patients following inclusion
criteria, used as training data — random-effects can be learned for unseen patients
using a gradient-descent on the likelihood. All analysis is done using the open-
source Leaspy software with a 2.3GHz CPU. Fitting one model and making
predictions takes between 20”7 in a univariate setting and 10’ for a multivariate
model with 10 features.

2.3 Data processing

All analysis in this study is done on publicly available data from the ADNI
database (adni.loni.usc.edu), which provides repeated MRI, FDG-PET and AV45-
PET scans, as well as various clinical assessments for AD patients. Firstly, we
demonstrate the usefulness of using multimodal data on the well-studied TAD-
POLE benchmark [18]. This challenge uses a subset of ADNI database to make
monthly forecasts of the ADAS-Cog score that can be compared with the ac-
tual measurements. We use the processed features from the challenge data for
the volumes (hippocampi and ventricles), thicknesses (enthorinal and fusiform
cortex), and brain-average PET uptake (FDG and AV45). This challenge allows
demonstrating that a model performs well on a real life dataset, but does not
allow describing the most predictive features. In practice, the training cohort is
very heterogeneous (1667 patients with 8068 visits total, including 615 AD, 594
MCT and 458 healthy patients), and the prediction tasks are not designed with
a fixed amount of training visits per patients (7.6 + 3.9 visits), nor for a fixed
time-to prediction (2.7 £+ .8 years, with 219 predictions to make).

We thus select four homogeneous cohorts from the ADNI database using
the baseline cognitive score and amyloid status based on A/42 measurements
in CSF or average AV45-PET uptake [8]. Cognitively unimpaired patients are
defined as having less than median score (<14/85 for ADAS-Cog13) and mildly
(resp. strongly) impaired patients as being below (resp. above) the third quan-
tile (< and >23/85 for ADAS-Cogl3) of the overall distribution. We refer to
those cohorts as A-/C-, A+/C-, A+/C+ and A+/C++. Subjects with A- and
C+ or C++ are few and likely to be suffering from a variety of conditions, so
they are not considered in our study. We process raw T1-MRI, FDG-PET and
AV45-PET images using the Clinica software [22] that wraps common image
processing pipelines to extract volumes (hippocampi, ventricles and striatum),
average thickness of the temporal cortex, average FDG uptakes (temporal and
occipital lobes) and brain-average AV45 uptake. Volumes are normalized by in-
tracranial volume, and we also use p-tau protein concentration from CSF.

In practice, biomarkers have long been hypothesized to follow sigmoid shapes
[10] so we elect to use logistic trajectories and features should be normalized to
the range [0,1]. We thus discard outliers using the so-called three sigma rule
for features that are not naturally bounded and add a min-max normalization
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within each cohort, providing realistic asymptotes. Since cortical thicknesses,
brain volumes and FDG uptakes decrease over time, we flip data around .5,
using the rotation x — 1—x, in order to ensure increasingness, which is required
for logistic modeling. For each cohort, we split the dataset in 5-folds and make
predictions based on the first two visits for all patients of one fold, using the
calibration made on all visits from the other folds.

| A+/C++ | A+/C+ [ A+/C- [ A-/C- |
Npatients/Nvisits 349 /1621 | 253 / 1431 | 321 / 1788 428 / 2596
Age at baseline (y) 740 £ 76 | 744 +68 | 725 +6.7 | 71.1 +6.8
Average follow-up (y) 23+ 1.8 3.5+ 25 4.2+ 3.0 4.8 +£3.1
Sex (M/F) 193/156 173/80 135/186 203/225
ADAS-cog baseline 285+ 75 | 171 + 4.4 9.1 +£ 3.8 8.2 +£ 3.7
ADAS-cog last visit 39.0 £ 12.6 | 23.5 £ 11.8 | 12.4 £ 10.5 9.1 +£5.1
Nacans (MRI/FDG/AV45)|1097/523/362(933/479/318|1018/474/583|1510/629,/915

Table 1: Demographics for the four selected cohorts.

2.4 Statistical testing of the usefulness of each feature

For a given cohort, once a model is calibrated for each possible combination of
features and predictions are made using the first two visits, we rank the models by
quality of prediction using R2 scores for a given time horizon. We then compare
the number of occurrences of each feature in the best and the worst-performing
models. We use 8 features, which yield a total of 256 models, and compare the
top and bottom 32 models. Under the null hypothesis that a feature does not
improve nor worsen prediction, the number of models that use it should follow
a binomial distribution under the normal approximation. We thus proceed to
Welch t-tests that compare the proportion of models that use the feature in the
best and worst performing models, providing a proxy for how much a feature
improves or hurts predictive abilities.

3 Experiments and results

3.1 Benchmark on the TADPOLE challenge

As displayed in Fig. [2] we evidence that multivariate models perform better, both
when adding a second cognitive score (MMSE) or imaging data, with the best-
performing model being the one that features all modalities. However, it is likely
that all modalities do not convey relevant information about neurodegeneration
at the same disease stage, and the added value of some effects are mitigated
by the heterogeneity of the cohort. Besides, some patients — especially the ones
that are most healthy and decline the least — have a lot more visits to train on,
driving the average error down. In order to rigorously assess the added value of
each modality for the forecast of cognitive decline at the different stages of AD,
a more controlled protocol is necessary.
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ADASI13 ADASI13 ADASI13 ADASI13 ADASI13 ADASI13 ADASI3 ADASI13 ADASI13
MMSE Hippocampus MMSE MMSE MMSE MMSE MMSE MMSE
Ventricles  Hippocampus Hippocampus Hippocampus Hippocampus Hippocampus Hippocampus
Ventricles Ventricles Ventricles Ventricles Ventricles Ventricles

FDG Entorhinal ~ Entorhinal FDG Entorhinal
Fusiform Fusiform AV45 Fusiform
AV45 FDG

AV45

MAE| 4.59 3.74 4.22 3.63 3.59 3.52 3.51 3.60 3.49
R2 0.53 0.66 0.50 0.67 0.67 0.68 0.70 0.68 0.70

Fig. 2: Distribution of prediction errors for the TADPOLE challenge. Circles are the
MAE for each model. Below are the first and second order statistics that measure MAE
and explained variance. Models without any cognitive features display MAE of 7.0 and
more on a scale of 85, so we only display models that include cognition.

3.2 Experiments on homogeneous cohorts

Fig. [ represents the average progression of the multivariate model with all the
selected features for each cohort. Fig. [4] compares the best performing multi-
variate model to a univariate model that only uses the cognitive score and to a
constant prediction model. Predictions are stratified based on the time to the
last visit used for training (rounded to the unit). Fig. [5| displays, for each cohort
and time horizon, the features that increase or decrease prediction accuracy.

Best MAE in TADPOLE benchmark

o A+ / C4+ cohort A+ / C+ cohort A+ / C- cohort A- / C- cohort
3 1 T 1 T
—— T1-hip = Tl-striatum ~—— FDG-temp — AV45

084 ) —— Tlwvents —— Tl-temp —— FDG-oce —— p-tau
0.6 1
0.4+
0.2
0.0 T T T T T T T

60 70 80 90 70 80 90 70 80 90 60 70 80 90

Fig. 3: Average progression for the 4 learned models and corresponding cohorts. T1-
MRI features are the volumes of hippocampi, ventricles, striatum, and thickness of
the temporal cortex. FDG-PET features are the average FDG uptake in temporal and
occipital cortex, and AV45 is the average AV45 brain uptake. p-tau is the concentration
of phosphorylated tau protein in the CSF.
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Fig. 4: Best predictions across all models for each pre- 5-6y |53 |95 |177|268
diction horizons (y. is years). Amount of predicted visits 7-8y |22 |48 109|166

are shown in the right table. Predictions task with sam- 9-10y[3 |18 |24 |56

ple size <30 visits are discarded.

For predictions at less than 2 years, the constant prediction outperforms
progression models for the C- cohorts because of the very little change happen-
ing over such a period of time, which concurs with [2,|17]. For longer time-to-
prediction, multimodal models always outperform univariate models, even more
as the patients are at an advanced disease stage. The R2 score is more informa-
tive of the quality of the model as it penalizes large errors more and represents
the ability to explain the variability in the progression of patients, effectively
separating the slow and the fast progressors, while the MAE can be very small
for patients that do not progress a lot, while providing no specific information
about each patient. For instance, the lower MAE for A-/C- and A+/C- cohorts
correspond to similar R2 scores as the A+/C+ (see Table [I| for the average
progression of each cohort).

In the most advanced stages of the disease (A+4/C++), ventricles volumes
and thickness of temporal cortex are the most useful features. In the A+/C+
cohort, PET and CSF data are significantly more retained in the best mod-
els, highlighting the usefulness of multimodality during the “core progression”
of AD. In the A+/C- cohort, multimodality yields less information about the
progression, and only the thickness of temporal cortex and ptau concentration
significantly improve the forecast. The healthy A-/C- cohort, on the other hand,
only uses the volume of the hippocampus to predict the (small) progression of
patients. Interestingly, the ventricles are very useful for advanced AD patients
but get progressively detrimental as cohorts are selected at earlier stages of the
disease. It is also striking to see that gathering multimodal imaging from pa-
tients, at the cost of great expenses and inconveniences for the patient, does
not yield much improvement for the early stages of the disease, while it is most
useful for A4/C+ patients.

To validate those findings, we run the same pipeline with a standard linear
mixed-effects model for prediction and recover the same feature selection pat-
terns, except for the T1-striatum being more retained in the best models for all
horizons in the A-/C- cohort. Besides, we decided to rank models by R2 scores
for statistical testing, but it could be argued that progression models should
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Fig. 5: Difference in proportion of models that feature each outcome in the best and
worst models for a given cohort and time to prediction. 1 means the feature is selected
in all the best models and none of the worst, while -1 is the opposite. Non-significant
differences are not displayed. Green means that features are significantly more present
in the models with best R2 scores, and red means significantly less.

minimize the mean error instead of the tail of the distribution. The same figure
obtained by maximization of the MAE score yields the exact same trend, with
only slight variations in the t-values. Besides, selecting 16, 32, 64 or 128 of the
best /worst models do not change the trends of usefulness of features.

4 Discussion

Several methodological limitations need to be acknowledged. Firstly, as is typi-
cal of neuroimaging databases, the visits we use do not all feature each selected
modality, which can in turn mitigate the added-value of choosing a feature in our
model (see Table [I| for information on the amount of scans for each modality).
Secondly, it must be noted that this study used a selection of 8 features that
are plausibly associated with AD, but further work that scales this statistical
pipeline up for a wide variety of available features without pre-selection is un-
derway. It must also be noted that patients with very long follow-up periods are
usually less impaired, which can bias the prediction scores and selected features
for the long-term predictions.

As demonstrates, improving the forecast of cognitive decline allows to
drastically decrease sample size for clinical trials and could help provide person-
alized care and prognosis. Understanding the features that should be used and
are worth acquiring for each population is a crucial first step in that direction.



Multimodal cognition forecast for AD 9

References

10.

11.

12.

13.

14.

15.

Allassonniere, S., Kuhn, E., Trouvé, A.: Construction of bayesian deformable mod-
els via a stochastic approximation algorithm: a convergence study. Bernoulli 16(3),
641-678 (2010)

Ansart, M., Epelbaum, S., Bassignana, G., Béne, A., Bottani, S., Cattai, T.,
Couronné, R., Faouzi, J., Koval, 1., Louis, M., et al.: Predicting the progression of
mild cognitive impairment using machine learning: A systematic, quantitative and
critical review. Medical Image Analysis 67, 101848 (2021)

Arbabshirani, M.R., Plis, S., Sui, J., Calhoun, V.D.: Single subject prediction of
brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145, 137-165
(2017)

Ballard, C., Atri, A., Boneva, N., Cummings, J.L., Frolich, L., Molinuevo, J.L.,
Tariot, P.N., Raket, L.L.: Enrichment factors for clinical trials in mild-to-moderate
alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical
Interventions 5, 164-174 (2019)

Couronné, R., Louis, M., Durrleman, S.: Longitudinal autoencoder for multi-modal
disease progression modelling (Apr 2019), preprint

Cui, R., Liu, M.: RNN-based longitudinal analysis for diagnosis of Alzheimer’s
disease. Computerized Medical Imaging and Graphics 73, 1-10 (2019)

Falahati, F., Westman, E., Simmons, A.: Multivariate data analysis and machine
learning in alzheimer’s disease with a focus on structural magnetic resonance imag-
ing. Journal of Alzheimer’s disease 41(3), 685-708 (2014)

Hansson, O., Seibyl, J., Stomrud, E., Zetterberg, H., Trojanowski, J.Q., Bittner,
T., Lifke, V., Corradini, V., Eichenlaub, U., Batrla, R., et al.: Csf biomarkers of
alzheimer’s disease concord with amyloid-8 pet and predict clinical progression: a
study of fully automated immunoassays in biofinder and adni cohorts. Alzheimer’s
& dementia 14(11), 1470-1481 (2018)

Ito, K., Corrigan, B., Zhao, Q., French, J., Miller, R., Soares, H., Katz, E., Nicholas,
T., Billing, B., Anziano, R., et al.: Disease progression model for cognitive dete-
rioration from Alzheimer’s Disease Neuroimaging Initiative database. Alzheimer’s
& Dementia 7(2), 151-160 (2011)

Jack Jr, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen,
P.S., Shaw, L.M., Vemuri, P., Wiste, H.J., Weigand, S.D., et al.: Update on hypo-
thetical model of alzheimer’s disease biomarkers. Lancet neurology 12 (2013)
Jedynak, B., Lang, A., Liu, B., Katz, E., Zhang, Y., Wyman, B., et al.: A compu-
tational neurodegenerative disease progression score: method and results with the
Alzheimer’s disease neuroimaging initiative cohort. Neuroimage 63 (2012)

Koval, 1., Boéne, A., Louis, M., Lartigue, T., Bottani, S., Marcoux, A., Samper-
Gonzalez, J., Burgos, N., Charlier, B., Bertrand, A., et al.: Ad course map charts
alzheimer’s disease progression. Scientific Reports 11(1), 1-16 (2021)

Kuhn, E., Lavielle, M.: Coupling a stochastic approximation version of em with an
mcmc procedure. ESAIM: Probability and Statistics 8, 115-131 (2004)

Leandrou, S., Petroudi, S., Kyriacou, P.A., Reyes-Aldasoro, C.C., Pattichis, C.S.:
Quantitative mri brain studies in mild cognitive impairment and alzheimer’s dis-
ease: a methodological review. IEEE reviews in biomedical engineering 11 (2018)
Lorenzi, M., Filippone, M., Frisoni, G.B., Alexander, D.C., Ourselin, S., Initiative,
A.D.N., et al.: Probabilistic disease progression modeling to characterize diagnostic
uncertainty: application to staging and prediction in alzheimer’s disease. Neurolm-
age 190, 56-68 (2019)



10

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Benoit Sauty

Maheux, E., Koval, I., Ortholand, J., Birkenbihl, C., Archetti, D., Bouteloup, V.,
Epelbaum, S., Dufouil, C., Hofmann-Apitius, M., Durrleman, S.: Forecasting in-
dividual progression trajectories in alzheimer’s disease. Nature Communications
14(1), 761 (2023)

Marinescu, R.V., Oxtoby, N.P., Young, A.L., Bron, E.E., Toga, A.W., Weiner,
M.W., Barkhof, F., Fox, N.C., Eshaghi, A., Toni, T., et al.: The alzheimer’s disease
prediction of longitudinal evolution (tadpole) challenge: Results after 1 year follow-
up. arXiv preprint arXiv:2002.03419 (2020)

Marinescu, R.V., Oxtoby, N.P., Young, A.L., Bron, E.E., Toga, A.W., Weiner,
M.W., Barkhof, F., Fox, N.C., Klein, S., Alexander, D.C., et al.: Tadpole chal-
lenge: Prediction of longitudinal evolution in alzheimer’s disease. arXiv preprint
arXiv:1805.03909 (2018)

Nguyen, M., He, T., An, L., Alexander, D., Feng, J., Yeo, B., et al.: Predicting
Alzheimer’s disease progression using deep recurrent neural networks. Neurolmage
222, 117203 (2020)

Raket, L.L.: Statistical disease progression modeling in Alzheimer disease. Frontiers
in big Data 3 (2020)

Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C.: A review on
neuroimaging-based classification studies and associated feature extraction meth-
ods for alzheimer’s disease and its prodromal stages. Neurolmage 155 (2017)
Routier, A., Burgos, N., Diaz, M., Bacci, M., Bottani, S., El-Rifai, O., Fontanella,
S., Gori, P., Guillon, J., Guyot, A., et al.: Clinica: An open-source software platform
for reproducible clinical neuroscience studies. Frontiers in Neuroinformatics 15,
689675 (2021)

Sauty, B., Durrleman, S.: Impact of sex and apoe-£4 genotype on patterns of re-
gional brain atrophy in alzheimer’s disease and healthy ageing (2022)

Sauty, B., Durrleman, S.: Progression models for imaging data with longitudinal
variational auto encoders. In: Medical Image Computing and Computer Assisted
Intervention—-MICCAI 2022: 25th International Conference, Singapore, September
18-22, 2022, Proceedings, Part I. pp. 3—-13. Springer (2022)

Sauty, B., Durrleman, S.: Impact of sex and apoe-e4 genotype on regional brain
metabolism in alzheimer’s disease. In: 2023 IEEE 20th International Symposium
on Biomedical Imaging (ISBI) (2023)

Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: Learning spatiotem-
poral trajectories from manifold-valued longitudinal data. In: Neural Information
Processing Systems. No. 28 in Advances in Neural Information Processing Systems,
Montréal, Canada (Dec 2015)

Schiratti, J.B., Allassonniere, S., Colliot, O., Durrleman, S.: A bayesian mixed-
effects model to learn trajectories of changes from repeated manifold-valued obser-
vations. The Journal of Machine Learning Research 18(1), 48404872 (2017)
Verbeke, G.: Linear mixed models for longitudinal data. In: Linear mixed models
in practice. Springer (1997)

Wu, H., Zhang, J.: Local polynomial mixed-effects models for longitudinal data.
Journal of the American Statistical Association 97(459), 883-897 (2002)

Young, A., Oxtoby, N., Daga, P., Cash, D., Fox, N., Ourselin, S., Schott, J., Alexan-
der, D.: A data-driven model of biomarker changes in sporadic Alzheimer’s disease.
Brain 137(9), 2564-2577 (2014)



	Feature Selection to Forecast Cognitive Decline Using Multimodal Alzheimer’s Disease Models

