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We propose an approach for efficient, robust learning and reasoning under realistic conditions. Our approach emulates the way students acquire prior knowledge from the combination of practical and theoretical training. This prior knowledge then informs the interpretation of observations on the farm, and provides a causal model for the prediction of future events and the outcome of actions. Grounding the causal model in physical modeling fusing all sensors, enables future sensor data to be predicted. Recognition and segmentation of materials and objects is done on the physical model. This provides descriptions that are definitive, enabling one-shot, and zero-shot learning. Flow of mass, energy, momentum and force, facilitate recognition of actions and causes. Objects and actions are input to abstract causal model search. This allows tangible concepts of anatomy and physical examination to be linked to abstract concepts of physiology, nutrition and disease. The abstract causal model provides explanation in terms of counter-factuals, actions that would alter the outcome. Unlike deep networks, all the components are examinable and explicable

Introduction

We consider what is possible in machine perception for precision livestock farming (PLF), from evidence in cognitive science, information theory and computer vision. This leads to an approach for efficient, learning and reasoning under realistic conditions.

Problems with existing approaches PLF sensors [START_REF] Gómez | A systematic review on validated Precision Livestock Farming technologies for pig production and its potential to assess animal welfare[END_REF] can be broadly classified as either point sensors or imaging sensors. The interpretation of point sensors depends on where they are, and the significance the signal in that location. This leaves important tasks to the user including (a) ensuring that the instrument is measuring what is intended, and (b) integrating the sensor data with other information about the farm, to arrive at useful actions.

The use of imaging sensors depends on interpreting the scene. Advantages of imaging sensors are that fewer are needed, and that they last longer than sensors in contact with livestock. At present interpretation of image data in PLF is predominantly done with neural networks, with PLF as an end-user of techniques developed in computer vision research. Previously 'industrial vision' techniques relied on controlling causes of variation in the image, so that simpler measures could be used.

Limitations of big-data/deep-learning inference for PLF Deep-learning (DL) from big-data has been the dominant paradigm in artificial intelligence and computer vision since AlexNet in 2012, [START_REF] Oliveira | A review of deep learning algorithms for computer vision systems in livestock[END_REF]. However, the quantity of data and processing required for Deep Learning techniques to solve real-world problems can be extreme. For example, in 2021 Tesla announced (CNBC, 2021) that they are building a custom ExaFLOP computer to process billions of kilometers of driving videos, in the hope of making their autonomous driving system safe to use without a human supervisor. The fact that humans learn this task from a few hundred kilometers of driving shows that much more efficient algorithms are possible.

Obfuscation: DL systems are 'black boxes' that are prone to making errors that appear bizarre and obviously wrong to humans, [START_REF] Geirhos | Shortcut learning in deep neural networks[END_REF]. This tendency to make types of errors that a human would not is a major barrier to using DL in automation of any critical task. In particular, DL tends to short-cut recognition, by correlation with characteristic patches of texture and absolute value of image pixels, without consideration of how the image is caused by a scene of objects with 3D structure, illumination and material properties.

Limited transfer-ability: Lack of understanding makes DL systems sensitive to irrelevant changes, and unable to interpret novel scenes or events. Consequently, the training data must include many examples of every irrelevant cause of variation in the sensor data, for each thing that must be recognized. DL systems often need extensive retraining on each farm, if there are differences in breed of animal, illumination, cameras, or scenery, especially where superficially similar objects or actions need to be distinguished. Where rare events must be reliably recognized, under all conditions, it can be challenging to obtain adequate training data. For novel scenes and events, there is by definition no training data available.

By comparison non-neural network methods can be two orders of magnitude faster on the same task e.g. [START_REF] Yu | Plenoxels: Radiance Fields without Neural Networks[END_REF], and do not require a 'black box' stage. We now consider what is necessary to build a system with human-like causal understanding of PLF tasks.

Cognitive science of livestock management

It is worth considering the tasks required in livestock farming and how it is possible for humans to perform these. When we unpack the complexity of skills we take for granted, this can provide a guide as to what component problems must be solved, to produce a system with human-like competence. When a farm manager, consultant, or vet inspects a farm and its livestock they integrate information from many sources:

1. senses: vision, hearing, smell, and touch 2. prior knowledge 1. geographic: layout of buildings, the farm, its surroundings 2. ecological: soil types, biomes, field condition 3. procedural: farm routines, feeding methods, feed composition 4. medical: anatomy, physiology, nutrition, pathology, epidemiology Fig 1 sketches the sources of information that a farm manager or veterinarian would be expected to draw on when deciding what actions to take. This context is critical to the significance of the data from any sensory sample.

D esiderata of a PLF system

We need a general purpose system that: • makes optimal inference with limited data • transfers correctly between farms • is quick to train in new skills • explains its reasoning • reliably arrives at the correct answer • does not require hand-coding knowledge Prior information A critical insight from information theory is the "No-Free-Lunch" theorems, which show that for an algorithm to be efficient at solving a given problem it must contain relevant prior information about the problem [START_REF] Wolpert | What the no free lunch theorems really mean; how to improve search algorithms[END_REF].

To understand how this applies in agricultural decision making, consider an altered form of the Turing Test thought experiment: require competent farm manager or vet to perform their normal work via a data link. The sensors and data that must be sent, tell us the "data sufficient to perform" for a skilled person. A layperson without relevant expertise would not be able to interpret this data to perform the work of the skilled person. This indicates "professional prior knowledge" implied by competence.

Next, require a new student to attend agricultural or veterinary college via the data link. The sensors and data required tell us the "data sufficient to learn". This is the interaction required to acquire the prior knowledge of a competent professional. This is both more and different information from the "data sufficient to perform". Note that if we present topics in random order, then student will fail to understand critical parts of them. Likewise, if we omit key parts of practical training, then the student will not be able to relate their textbook knowledge to reality on the farm. Conversely, it would be prohibitively slow to leave the student to rediscover agricultural and veterinary science from personal experience.

If in the thought experiment we replace the student with a baby, we can consider the "data sufficient to learn", for the perceptual skills and "common sense" understanding of the physical world that we expect the student to already possess. Chief among these are (i) the ability to perceive materials, objects and actions as the cause of the data coming from all their senses (sensor fusion), (ii) to predict physical consequences (simulation) and (iii) to reason about causes of past and future events (causal inference). It is the ability to reason about causal relations abstractly, that enables the student to learn and apply theoretical knowledge. 

Components

Causal inference

Causal inference has been an increasingly active field of research since the 1990s (Spirtes et al., 2000a). Most researchers will be familiar with the maxim "Correlation does not imply causation". While this maxim is true in itself, idea that purely observational (non-experimental) correlation cannot be used to obtain information about causation is false [START_REF] Spirtes | Ch 5 Discovery Algorithms for Causally Sufficient Structures and Ch 6 Discovery Algorithms without Causal Sufficiency, of Causation, prediction, and search[END_REF]. What is true is that some initial causal information is required. This may be the ability to manipulate just one variable in the system, or confidence in the direction of causality between one pair of variables (e.g. sunrise wakes the rooster and not the other way around). Given this initial causal axiom, it is then often possible to infer a great deal of the causal structure from observational data, and also to define a minimal set of experiments for determining the unresolved causal relations.

Key insights include (i) the distinction between observing versus setting the value of a variable (fig 2), (ii) the use of graphical models to represent causal relations between variables, (NB a causal edge implies a "counterfactual" hypothesis about what would occur if the values of variables were changed) and (iii) the concept of dependence-separation "D-separation" between variables [START_REF] Pearl | Section 1.2.3 The d-Separation Criterion[END_REF]. Together these enable propagation of causal relations and effects across a causal model, even to variables that can neither be manipulated nor directly observed.

Causal model search

Of particular importance for PLF is the ability to discover the correct causal model for a system of interest. [START_REF] Glymour | Review of causal discovery methods based on graphical models[END_REF] reviewed of causal model discovery algorithms. The Tetrad library [START_REF] Ramsey | TETRAD-A toolbox for causal discovery[END_REF] provides implementations of many published algorithms. There are also algorithms such as PC-MCI [START_REF] Runge | Detecting and quantifying causal associations in large nonlinear time series datasets[END_REF] which model time-lagged relations between variables. The PC-MCI family of algorithms are implemented in the Tigramite software library [START_REF] Runge | Reconstructing causal pathways and optimal prediction from multivariate time series using the Tigramite package[END_REF].

Physical grounding

Abstract causal inference algorithms require input of semantically meaningful variables, measurements of observed objects and actions. Relating abstract concepts to the tangible world is physical grounding. Modeling the physical world from sensor data is physical perception. These are a crucial part of the "common sense" skills expected of the new student, and applied in practical training to ground the abstract models taught in lectures and textbooks.

For visual perception (fig 3) physical grounding can be broken into four subsidiary problems (i) dynamic SLAM, and (ii) shape-from-shading, (iii) mechanical perception, and (iv) semantic perception, for which nearly complete 'white box' solutions are available. From image data to mechanical perception, the causal relations derive from the physical laws of geometry, optics and mechanics. Conversely, semantic perception is Observation vs action "set_Sprinkler" modifies the graph (Pearl 2009, fig1.2&1.4) a lossy compression of the physical model to produce a much more compact representation, that retains predictive accuracy.

Dynamic SLAM/SFM

In dynamic SLAM 1 the sensor can move and the object(s) can move and deform e.g. animals. The source of information in passive visual SLAM is parallax motion in the image sequence of a camera. For reconstruction from conventional video cameras "passive dense monocular dynamic SLAM" 2 is required. A monocular algorithm provides the advantage markerless auto-calibration e.g. [START_REF] Mahmoud | On-patient see-through augmented reality based on visual SLAM[END_REF]. Real-time passive dense monocular SLAM algorithms have been available since DTAM [START_REF] Newcombe | DTAM: Dense tracking and mapping in real-time[END_REF], however extension is required to accommodate dynamic scenes.

Shape, illumination and reflectance from shading

People perceive 3D scenes from single photographs.

Single image 3D reconstruction is a strictly ill posed problem (fig 4). By including prior information about natural scene statistics, it is possible to find the 3D reconstruction that represents the most probable cause of the image. Such algorithms are known as "shape from shading" algorithms. When people describe the color of an object in a scene, they refer to the constant material property of reflectance. Knowing the reflectance, the appearance can be predicted under different illumination, hence it is possible to recognize an object having seen it under only one illumination. Algorithms and code have been published for single-image shape illumination and reflectance reconstruction from shading, e.g. [START_REF] Barron | Shape, illumination, and reflectance from shading[END_REF]. Combining dynamic-SLAM and SIRFS algorithms would be particularly useful in PLF. Modeling reflectance and illumination would improve the robustness of the SLAM algorithm. This is particularly true for specular (shiny) materials, e.g. the fur and skin of animals, wet surfaces, glass, metals and plastics. 1Simultaneous location and mapping (SLAM), and structure from motion (SFM) refer to the same mathematical techniques to recover a spatial model of the environment from sensor data. SLAM/SFM algorithms exist for many types of sensors. In SLAM the sensor moves, whereas in SFM the object moves.

2Where passive = no active depth sensor, dense = every pixel 3D reconstruction, monocular = single camera.
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Mechanical perception

Perceiving and predicting forces and motion in the world is a critical part of the "common sense" skills that enable a student to learn from practicals. In particular it is critical to understanding the anatomy and mechanics of animals, machinery and all materials of importance in PLF (e.g. feed, bedding, soil, flooring).

If the moving visible surface is tracked then a mechanical model can be fitted under the surface using a differentiable soft matter physics simulator e.g. [START_REF] Hu | Difftaichi: Differentiable programming for physical simulation[END_REF].

From the observed deformation it is possible to infer the relative density, elasticity, viscosity and mechanical structure of objects. The mechanical simulation also provides constraints on plausible reconstruction of the moving surface. It is possible integrate force sensing and calibrate the absolute values of the parameters of the model. Multiphysics can fuse different classes of sensors, e.g. heat, sound and olfactory/chemo sensors.

Semantic and instance segmentation

Distinguishing and tracking individual animals in a herd, and distinguishing what part of the scene belongs to each animal, require instance segmentation and semantic segmentation.

In physical perception, objects are described in terms of their mechanical structure, topology of parts, material properties, and 3D geometry. This is sufficient to predict how they will behave and how they will appear. 3D geometry and topology facilitate instance segmentation. Mechanical simulation and SLAM provide robust tracking.

This physical causal definition of objects (1) is invariant in changing scenes, (2) enables classification to be completed with non-black-box methods, (3) "one-shot" learning from a single example, (4) "zero-shot" learning from description 3 , and (5) retains end-to-end differentiability 4 .

Action, cause and agent recognition

Mechanical perception provides a model of the forces, accelerations, and the flow of mass, momentum and energy in the scene. These provide a causal basis for recognizing actions and power sources. Agents (animals, people, and machinery) standout because they are power sources, whose behavior is more complex than inanimate objects. Agents can be modeled as having purposeful actions, selected based on goals and limited perception. Physical perception allows the sensory stimuli and behavior of other agents to be predicted via perspective transform, e.g. livestock may refuse to walk forwards because they perceive something nearby as threatening.

Interface between physical perception and abstract causal inference

Instance segmentation of objects and actions from physical perception provides the ability to learn and recognize high level semantic concepts that link abstract causal reasoning to sensor data. Together these provide the perceptual skills needed to learn professional knowledge.

Acquiring information

Sensors

The sensors needed for the system would also provide "data sufficient to perform" for remote consulting. Applying them in this role is a good way to acquire some of the training data. Eye tracking glasses capture what the wearer sees and where they focus their attention (Tobii, 2022). Force sensing is important for learning material properties and mechanical structure. If tools can be used to perform the handling work, then strain and vibration sensors can be added to them, and their motion tracked visually, to infer forces applied in the scene.

Prior knowledge

The required knowledge has sequential dependencies, so requires a similar syllabus to human learning. Much of the learning can be done passively and in parallel from recordings of student interaction in existing practicals. Theoretical knowledge would be initially acquired by parsing textbooks to generate abstract causal models, which are then linked to recognition and physical simulation from the practical learning. The abstract model can be inspected by the human trainer. It can also be used to find edge cases in its predictions and generate questions to verify and refine its understanding.

Application in service

Monitoring from fixed cameras and point sensors, taking account of professional and farm-specific knowledge, would (i) produce a warning and prediction system that is transferable between farms, and (ii) able to learn production systems and diseases in a human-like way.

The causal model can predict the outcome of potential actions (counterfactuals). This can be used (i) to recommend optimal plans of action for farm management, or treatment of individual animals, and (ii) combined with prediction of sensor data from physical simulation, to automate control of machines to do the work. The system would have the ability to learn the 'what, how, why and context' of manual tasks. Physically grounded causal modeling would enable the system to understand the tangible and meaningful risks and consequences that are crucial to "common sense" behavior.

Conclusions

Causal models predict the outcome of interventions. This allows optimization of planned actions. Physically grounded causal modeling provides a fully explicable system, capable of efficiently acquiring professional prior knowledge, to interpret sensory perception, and produce justified diagnoses and plans. The necessary components are nearly complete in the published literature, but need particular extensions and integration into a coherent system. Such physically grounded, causal AI systems, with human-like common sense, have become a focus of research in computational cognitive science, as solution to the shortcomings of deep-learning, [START_REF] Zhu | Dark, beyond deep: A paradigm shift to cognitive AI with humanlike common sense[END_REF].

Figure 1 :

 1 Figure 1: Information leading to actions.

Figure 2 .

 2 Figure 2. The Do operator : P(A|set_B,C) != P(A|B,C)

Figure 3 :

 3 Figure 3: Causal relations in physically grounded visual perception

  3These correspond to (i) the learning from minimal examples in student practicals and first encounters of new object classes, and (ii) learning from verbal information in textbooks or professional communication 4This enables (i) learning scene specific priors for SIRFS and SLAM and (ii) top-down refinement of physical reconstruction from recognition, e.g. completion of partially obscured objects.
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 4 Figure 4: Adelson and Pentland's "workshop" metaphor for different possible causes of the same image, from (Curtis & Baker 2011).