
HAL Id: hal-04195613
https://hal.science/hal-04195613

Submitted on 4 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PMNS for Cryptography : A Guided Tour
Nicolas Méloni, François Palma, Pascal Véron

To cite this version:
Nicolas Méloni, François Palma, Pascal Véron. PMNS for Cryptography : A Guided Tour. Advances
in Mathematics of Communications, inPress, �10.3934/amc.2023033�. �hal-04195613�

https://hal.science/hal-04195613
https://hal.archives-ouvertes.fr

Manuscript submitted to AIMS Journal

doi:

PMNS FOR CRYPTOGRAPHY : A GUIDED TOUR

Nicolas Méloni�, François Palma�, Pascal Véron�

Laboratoire IMath, Université de Toulon
La Garde, France

Abstract. The Polynomial Modular Number System (PMNS) offers an al-
ternative to the conventional binary multi-precision representation system for
large integers. Its effectiveness has been demonstrated for various cryptosys-
tems using prime field arithmetic [2, 4, 6], with prime sizes ranging from 256 to
736 bits. However, as the size of p increases, the relative performance of PMNS
compared to standard arithmetic diminishes. Furthermore, the generation pro-
cess of a PMNS has a worst-case complexity of O(2n), where n denotes the
number of symbols used to represent an integer modulo p in this representation
system. In this paper, we present several alternatives and improvements to the
construction and implementation processes of PMNS, which are tailored to the
size of p.

1. Introduction. Modern cryptography relies heavily on finite field arithmetic and
especially on modular arithmetic. The standard way to represent a field element
is through a 2k-ary positional number system. In this system, an element a of
Z/pZ, where p is a prime, is represented as an (n = ⌊log2(p)/k⌋+ 1)-element array
(a0, . . . , an−1) corresponding to the integer

a =

n−1∑
i=0

ai2
ki

with 0 ⩽ ai < 2k or −2k−1 ⩽ ai < 2k−1. All arithmetic operations are performed
modulo p. Modular multiplication is the most investigated operation, as many
cryptosystems rely heavily on it. It is typically performed by a standard integer
multiplication followed by a modular reduction. Various approaches have been
proposed to accelerate modular reduction modulo a prime number. Two main cases
are usually considered, depending on whether the prime can be freely chosen or
not. Mersenne primes, which are primes of the form 2t − 1, are a typical example
of the former case. In that case, a modular reduction can be computed easily as a
shift-and-add operation. Generalizations of Mersenne primes have been proposed
to extend the range of possible candidates, but they are limited to a small number
of primes [3]. In the latter case, when the cryptosystem does not allow for enough
freedom to choose a generalized Mersenne number, more generic algorithms must
be used.

The Polynomial Modular Number System (PMNS) was introduced by Bajard,
Imbert, and Plantard as an alternative to the standard radix 2k multi-precision rep-
resentation, with the goal of speeding up modular arithmetic when special primes

Key words and phrases. Polynomial Modular Number System, Finite field, Modular arithmetic.

1

http://dx.doi.org/
mailto:nicolas.meloni@univ-tln.fr
mailto:francois.palma@univ-tln.fr
mailto:pascal.veron@univ-tln.fr

2 F. PALMA, N. MÉLONI AND P. VÉRON

are not available [1]. In this system, a field element is represented as a poly-
nomial of bounded degree, and field arithmetic is performed using polynomial
arithmetic. Specifically, an element a of Z/pZ is represented as a polynomial
A(X) =

∑n−1
i=0 aiX

i mod E(X), where E is a degree n polynomial and |ai| < ρ for
some ρ.

A key advantage of PMNS is that, even if p has no special form, the polynomial
E can usually be chosen such that polynomial reduction modulo E(X) is fast (for
example, by setting E(X) = Xn − 1). In this case, the modular reduction that
occurs in the positional number system is replaced by a fast polynomial reduction
(known as external reduction) followed by a coefficient reduction (known as internal
reduction). However, the internal reduction operation becomes the critical point.

Previous studies have shown that the PMNS is highly competitive with state-of-
the-art algorithms for integers ranging from 256 to 736 bits [2, 4, 6]. However, as
the size of integers increases beyond 1024 bits, it becomes increasingly difficult to
generate good parameters to construct a PMNS for larger integers. On top of that
relative performance of PMNS compared to standard arithmetic decreases.

In this work we propose to address these issues with a two-fold approach. First,
we generalize the Montgomery-like internal reduction method to allow for the gen-
eration of good parameters for larger primes. Second, we address the decrease in
PMNS relative efficiency due to two phenomena.

First, as the size of p increases, the relative size of the PMNS data structure (i.e.,
the degree of the polynomials) increases faster than that of the radix 2k standard
representation leading to additional computations. To address this, we propose a
method to improve the relative size of the PMNS data structure.

Second, most libraries switch to subquadratic multiplication algorithms (such as
Karatsuba or Toom-Cook) beyond 2000 bits when PMNS uses quadratic matrix
vector products. To address this, we show that PMNS can be performed faster by
parallelizing the computation and taking advantage, under some conditions, of the
Toeplitz matrix form.

The rest of the paper is organized as follows. Section 2 provides the fundamental
knowledge required to understand PMNS. In Section 3, we present a generalized
Montgomery algorithm to generate PMNS for large primes. In Section 4 we ex-
amine the reasons for the decreasing efficiency of PMNS as p grows and propose
a practical solution for software implementation on 64- bit architecture, based on
128-bit arithmetic. In Section 5 two methods, based on parallelism and Toeplitz
matrices, are proposed to improve the PMNS efficiency, which can be combined. In
Section 6, we detail our software implementation and results.

2. Mathematical Background. In this section, we will provide a brief overview
of the necessary mathematical background related to PMNS.

2.1. PMNS.

Definition 2.1. Let p ⩾ 3, n ⩾ 2, γ ∈ [1, p − 1] and ρ ∈ [1, p − 1]. Let E ∈ Z[X]
a monic polynomial of degree n, such that E(γ) ≡ 0 (mod p). A PMNS is a set
B ⊂ Z[X] such that :

1. ∀A ∈ B, deg(A) < n,

2. ∀A(X) =

n−1∑
i=0

aiX
i ∈ B, −ρ < ai < ρ for all i,

PMNS FOR CRYPTOGRAPHY 3

3. ∀a ∈ Z/pZ, ∃A ∈ B such that A(γ) ≡ a (mod p).

With the PMNS, elements of a finite field are represented by polynomials with
degree at most n − 1 and bounded coefficients. Finite field arithmetic operations
are then performed on these polynomials subject to additional constraints:

1. Given two field elements a and b, compute a polynomial A(X) representing a
and a polynomial B(X) representing b in B.

2. Compute C(X) = A(X) ⊙ B(X) mod E(X), where ⊙ denotes polynomial
multiplication or polynomial addition, E(X) is the external reduction poly-
nomial, and mod denotes the polynomial remainder operation. This step is
called external reduction.

3. Find a polynomial C̃(X) such that degC(X) = deg C̃(X), C̃(γ) ≡ C(γ) mod

p and |c̃i| < ρ for all coefficients c̃i of C̃(X). This step is called internal
reduction.

These additional constraints ensure that the arithmetic operations produce re-
sults in the appropriate residue class modulo the prime p and with coefficients
bounded by a given threshold ρ.

Step 3 is the most critical point from an efficiency standpoint. This is because
step 1 is carried out only once during the entire cryptographic computation and
is often precomputed offline. Step 2 involves polynomial arithmetic, which is a
fast operation. Therefore, only step 3 requires special attention and is the main
bottleneck in terms of performance.

2.2. Montgomery Algorithm. Let Zn−1[X] be the set of polynomials of degree
at most n− 1 in Z[X]. Let us consider the set L given by:

L =

{
(x0, . . . , xn−1) ∈ Zn :

n−1∑
i=0

xiγ
i ≡ 0 mod p

}
.

It is an n-dimensional lattice that can be viewed as a subset of Zn−1[X] which
consists of polynomials that vanish at γ modulo p. In order to solve step 3, we can
look for a polynomial T (X) ∈ L such that |C(X) − T (X)|∞ < ρ. We can then
set C̃(X) = C(X)− T (X). Finding such a polynomial is closely related to solving
the closest vector problem in a lattice, which is known to be an NP-hard problem
[12]. Therefore, the efficiency of constructing a PMNS for a given integer p mainly
depends on the efficiency of the algorithm used to solve step 3.

To summarize, in order to generate a PMNS with efficient internal reduction for
a given integer p, we need an efficient process to generate all the parameters of the
PMNS that guarantee the existence of an efficient internal reduction process. The
choice of parameters and the way they are defined depend mainly on the internal
reduction algorithm used.

The classical algorithm used to perform step 3 is called the Montgomery-like
reduction algorithm and is described in [11] (see Alg. 1). This algorithm depends
on a parameter ϕ which for practical reasons is set to 2k where k is the size of the
hardware register being used, typically 264. The algorithm also mainly depends on
the existence of a polynomial M(X) ∈ L invertible modulo (E, ϕ). The existence
and the effective construction of this polynomial has been widely studied in [5, 6].
It is proven in [6] that the output of Algorithm 1 is in B as soon as ρ and ϕ satisfy

ρ ⩾ 2∥M∥1 and ϕ ⩾ 2wρ ,

4 F. PALMA, N. MÉLONI AND P. VÉRON

Algorithm 1 Coefficients reduction [11]

Require: B = (p, n, γ, ρ, E) a PMNS, V ∈ Zn−1[X], M ∈ Zn−1[X] such that
M(γ) ≡ 0 (mod p), ϕ ∈ N \ {0} and M ′ = −M−1 mod(E, ϕ).

Ensure: S(γ) = V (γ)ϕ−1 (mod p), with S ∈ Zn−1[X]
1: Q← V ×M ′ mod (E, ϕ)
2: T ← Q×M mod E
3: S ← (V + T)/ϕ
4: return S

where

M =

m0 m1 . . . mn−1

.
...

...
...

.

←M
← X.M mod E

← Xn−1.M mod E

(1)

and w is a constant depending on E(X).
With that in mind, for a given prime p, in the context of a software implemen-

tation, the PMNS parameter generation process requires the following steps :
1. Choose ϕ = 2k and n > log2 p

k .
2. Find an irreducible degree n polynomial E(X) and γ a root of E(X) mod p.
3. Build the lattice L.
4. Apply LLL on L to obtain a reduced basis L.
5. Find a polynomial M(X) ∈ L with small coefficients and invertible modulo

(E, ϕ).
6. Set ρ = 2∥M∥1.
7. Check that ϕ ⩾ 2wρ.
Note that, once the parameters have been generated, they induced a minimum

value for the parameter ρ. If it is larger than some expected value, or if step 7 fails,
one must go through the whole process all over again from either step 1 or 2. As
p grows in size, step 4 can become time-consuming but the LLL algorithm remains
a polynomial time algorithm. However, step 5, which involves finding a polynomial
M(X) with small coefficients, is the most critical step in terms of efficiency whose
worst case scenario complexity is exponential in the degree of E(X) [6, Algorithm
8]. The following section is devoted to addressing that critical issue.

3. Generating PMNS for large primes. The main challenge in the PMNS
parameter generation process is that, in the worst-case scenario, step 5 requires
an exhaustive search among a set of 2n polynomials in the lattice L. On a 64-bit
architecture, n is at least as large as nopt = ⌊(log2 p)/64⌋+1. For instance, for 256-
bit primes p, this exhaustive search involves only 25 iterations and is thus feasible.
However, for a 4096-bit integer, if we want to construct a PMNS with n ⩾ 65,
an exhaustive search among a set of at least 265 polynomials is required, which is
extremely challenging and computationally expensive.

To overcome this issue, we propose a generalized version of the Montgomery-like
algorithm that eliminates the need for any search.

3.1. Montgomery algorithm over lattices. The Montgomery algorithm for in-
tegers can be described as follows [10]. Let c ∈ Z, m ∈ N (m odd), such that
2k−1 ⩽ m < 2k(= ϕ). To compute a representative of c in Z/mZ, the algorithm

PMNS FOR CRYPTOGRAPHY 5

adds a multiple qm of m to c so that c and c + qm are in the same equivalence
class in Z/mZ. Now, q is chosen such that c + qm is a multiple of ϕ. In other
words, one computes q such that c + qm ≡ 0 mod ϕ. From this, one can deduce
that q ≡ −m−1c mod ϕ and the algorithm outputs the value (c+ qm)/ϕ which is a
representative of cϕ−1 in Z/mZ.

C. Negre and T. Plantard generalized this idea in [11] to design an internal re-
duction process on Z[X]. The operation c+ qm becomes C(X) +Q(X)M(X) and
this implies that M(X) must satisfy M(γ) ≡ 0 mod p so that the output result
be equal to C(γ)/ϕ in Z/pZ. Conditions on ϕ and ρ are given in [11] so that
∥(C(X) +Q(X)M(X) mod E(X))/ϕ∥∞ < ρ.

In the Montgomery multiplication algorithm, adding qm to c means adding a
representative of 0 in Z/mZ. In the Montgomery internal reduction algorithm,
adding Q(X)M(X) mod E(X) is equivalent to adding a polynomial which vanishes
in γ mod p. We have seen in Subsection 2.2 that the set L is an n-dimensional
lattice. Any polynomial in L can be computed using a basis of this lattice. The
set of polynomials of the form Q(X)M(X) mod E(X) is only a sublattice of this
lattice. Thus, we propose to modify the computation of C(X) + Q(X)M(X) by
C(X) + Z(X) where Z(X) ∈ L.

Let L0(X), . . . , Ln−1(X) be a reduced basis of L, and let L be the matrix where
the ith row contains the coefficients of Li−1(X). Let C = (C0, . . . , Cn−1) be the
coefficients of C(X). We aim to find a vector q ∈ Zn such that C + qL ≡ 0 mod ϕ.
This equality gives q = C(−L−1) mod ϕ. From [11, Definition 3], we have that
det(L)=p which is coprime with ϕ for ϕ = 2k, hence −L−1 mod ϕ always exists.
Algorithm 2 sums up this new internal reduction. This algorithm does not need to
precompute a specific polynomial M(X) that might require an exhaustive search.

Algorithm 2 Coefficients reduction, new version

Require: B = (p, n, γ, ρ, E) a PMNS, C ∈ Zn−1[X], L a reduced basis of L,
ϕ ∈ N \ {0} and −L−1 mod ϕ.

Ensure: S(γ) ≡ C(γ)ϕ−1 mod p, with S ∈ Zn−1[X]
1: q ← C(−L−1) mod ϕ
2: S ← (C + qL)/ϕ
3: return S

Proposition 3.1. Let C(X) be a polynomial of degree at most n− 1, if

∥C∥∞ ⩽ ϕ(ρ− ∥L∥1)
then the output S of Algorithm 2 (with C as input) is such that ∥S∥∞ < ρ (i.e.,
S ∈ B).

Proof. Step 1 of algorithm 2 ensures that ∥q∥∞ < ϕ. Now,

∥qL∥∞ = maxi |
∑

j qjLji|
< ϕmaxi

∑
j |Lji|

Hence
∥qL∥∞ < ϕ∥L∥1 .

6 F. PALMA, N. MÉLONI AND P. VÉRON

Now,
∥C + qL∥∞ ⩽ ∥C∥∞ + ∥qL∥∞ < ∥C∥∞ + ϕ∥L∥1 .

Thus, as soon as
∥C∥∞ + ϕ∥L∥1 < ρϕ ,

then
∥S∥∞ < ρ .

Now, we give sufficient conditions on ϕ and ρ so that the polynomial C(X) meets
the requirements of proposition 3.1.

Proposition 3.2. Let A(X) and B(X) be two elements of B and let C(X) =
A(X)B(X) mod E(X). Let w > 0 such that ∥C(X)∥∞ ⩽ w∥A(X)∥∞∥B(X)∥∞, if
ϕ ⩾ 2wρ and ρ ⩾ 2∥L∥1 then ∥C∥∞ ⩽ ϕ(ρ− ∥L∥1).

Proof. Since A(X) and B(X) belong to B, then

∥C∥∞ ⩽ wρ2 ,

hence if
wρ2 < ϕρ− ϕ∥L∥1 ,

then C(X) will satisfy the constraint on its infinity norm. Now,

wρ2 < ϕρ− ϕ∥L∥1 ⇔ ϕ∥L∥1 + wρ2 < ϕρ

⇔ wρ2

ϕ + ∥L∥1 < ρ .

Hence, if
wρ2

ϕ
⩽

ρ

2
and ∥L∥1 ⩽

ρ

2
,

we obtain the required result.

Remark 1. A tight bound on the value w is given in [6, subsection 4.3]. It only
depends on the shape of the polynomial E(X).

Remark 2. For a software implementation, ϕ is often chosen equal to 264. Hence
to satisfy the bound ϕ ⩾ 2wρ, it is better to choose w and ρ “small”. The value w
depends on the coefficients of E(X), which explains why sparse polynomials with
small coefficients are used to build a PMNS.

With our generalized Montgomery algorithm, the PMNS parameter generation
process requires the following steps:

1. Let n ⩾ nopt(= ⌊(log2 p)/64⌋+ 1).
2. Find an irreducible degree n polynomial E(X) and γ a root of E(X) mod p.
3. Build the lattice L.
4. Apply LLL on L to obtain a reduced basis L.
5. Set ρ = 2∥L∥1 and ϕ = 2wρ (proposition 3.2).
Let us notice once again that we do not need to perform the exhaustive search of

a polynomial M(X), which ensures that a PMNS can always be generated, whatever
the prime p and the selected polynomial E(X). Practical implementations usually
set additional constraints on ρ and ϕ, typically ρ < 264 and ϕ = 264. If those are
not met, repeat the generation process either from step 1 or 2 with a different n or
polynomial E.

PMNS FOR CRYPTOGRAPHY 7

Alg./size of p 256 512 1024
Montgomery 121 432 1709
This work 122 443 1728

Table 1. Number of cycles to compute a PMNS modular multi-
plication, gcc 12.1.0, i9-11900KF.

Remark 3. As p grows in size, the PMNS becomes less efficient compared to
more standard approaches. Indeed, most software libraries switch to subquadratic
multiplication algorithms when p is too large and, to generate good PMNS pa-
rameters, it is often necessary to chose n further away from the optimal value
nopt = ⌊(log2 p)/k⌋ + 1 (where k is the target architecture register size) inducing
additional computational costs compared to standard representations. Throughout
the remainder of this paper, we explore these challenges and present two approaches
to address them.

Table 1 shows that, in practice, the performance of our internal reduction process
is similar to that of the Montgomery-like reduction. The test protocol is detailed
in Section 6.

4. PMNS 128-bit. In the previous section, we have demonstrated that it is feasi-
ble to generate PMNS parameters without requiring an exhaustive search of expo-
nential complexity. However, in this section, we show that even though the PMNS
parameter generation process can be performed efficiently, the data structure of
PMNS still grows at a faster rate than the standard binary representation. This
results in an automatic loss in competitiveness of the PMNS arithmetic. We pro-
pose a new implementation of the PMNS algorithm that addresses the issue of the
relative size of the PMNS data structure. This new implementation is based on
128-bit arithmetic and enables us to circumvent this issue.

4.1. Data structure size problem. For a software implementation on a 64-bit
architecture, the parameter ϕ is set to 264. At the end of the parameter generation
process, if 2wρ ⩾ 264 then we increment n by 1 and repeat. This explains why, in
practice, n moves away from nopt, degrading performances. Hence, for any p, it is
of importance that n be not “too far” from nopt. Unfortunately, this condition is
hard to meet. Indeed, from proposition 3.2, the parameters ρ and ϕ must satisfy
the following bounds to guarantee the existence of the PMNS and the consistency
of the internal reduction process :

ϕ ⩾ 2wρ and ρ ⩾ 2∥L∥1 . (2)

A classical result in lattice theory states that the infinity-norm of a “short” vector
in L is about p1/n. Hence, among the lines of the matrix L, which is a reduced basis
of L, there is a line Li whose infinity norm is greater than p1/n. Hence,

p1/n ⩽ ∥Li∥∞ ⩽
∑
j

|Lji| ⩽ ∥L∥1 .

From equation 2, we deduce that n must be chosen such that

p1/n ⩽
ϕ

4w
.

8 F. PALMA, N. MÉLONI AND P. VÉRON

In practice, as ϕ is equal to 264, the more p grows , the more it will be difficult to
find an integer n near from nopt which satisfies this inequality.

Proposition 4.1. For any ε > 0, there exists an integer p such that

p
1

nopt+ε >
ϕ

4w
.

Proof. Notice that since w > 1, ϕ
4w < 262. Now,

nopt + ε <
log2 p

64
+ ε+ 1⇔ log2 p

nopt + ε
>

64 log2 p

log2 p+ 64ε+ 64
.

Hence
p

1
nopt+ε > (264)

log2 p
log2 p+64ε+64 .

As
lim
p→∞

log2 p

log2 p+ 64ε+ 64
= 1 ,

there still exists an integer p such that

p
1

nopt+ε > 262 .

This proves that as p grows, we must choose a n far away from nopt.
As an example, let us suppose that we aim to build a PMNS for a 2048-bit integer,
then nopt = 33. On one hand, we have

p1/nopt ≃ 262.06 ,

and on the other hand, since w ⩾ n (from the definition given in [6, subection 4.3]),

264

4w
≃ 256.96 .

To satisfy the required constraint, we have to choose n ⩾ 37. The global perfor-
mances of the PMNS suffer in consequence.

4.2. 128-bit PMNS vs 64-bit. We have shown that the parameters must satisfy
p1/n ⩽ ϕ

4w . Practically speaking, for a given p, there are thus two way to meet this
condition: either increase n or ϕ. The usual approach is to set ϕ = 264 so that
one must increase n. The reason why ϕ is set that way is that the reduction algo-
rithm involves divisions by ϕ that can be costly for a random value and virtually
free when ϕ = 2k where k matches the register size of the target device. Hence,
rather than increasing n, an alternative is thus to choose ϕ = 2128 instead of 264.
Doing so still guarantees fast divisions and allows to set much lower value for n.
As a consequence, the software implementation of the PMNS has to be upgraded
in order to deal with 128 and 256-bit integer operations on polynomial coefficients.

Let n64 (resp. n128), the actual value of n for ϕ = 264 (resp. for ϕ = 2128),
Table 2 shows how n moves away from nopt depending on the size of the prime
p. When ϕ = 264, for integers whose size exceeds 1024 bits, the value of n64 will
certainly give rise to a PMNS multiplication process whose complexity will be higher
than the classical multiplication algorithms when applied to the same operands
split into nopt 64-bit blocks (as it is done in various multi-precision libraries). For
ϕ = 2128, the gap between n128 and nopt remains negligible and justifies the use
of this value for ϕ. From a practical point of view, we can observe that n128 <

PMNS FOR CRYPTOGRAPHY 9

size of p 256 512 1024 2048 4096 8192
nopt64 5 9 17 33 65 129
n64 5 9 19 40 83 187

nopt128 3 5 9 17 33 65
n128 3 5 9 18 36 72

Table 2. Optimal polynomial degrees vs practical ones used in
implementation per size of prime considered.

size of p 256 512 1024 2048 4096 8192
Red-64 122 443 1709 7690 33471 169070
Red-128 245 720 2367 10920 39446 156310

Table 3. Comparative table of performances for Red-64 and Red-
128 in number of processor cycles for one modular multiplication
on Intel processor i9-11900KF with gcc 12.1.0.

2n64. Hence performances should be better using ϕ = 2128, but this has to be
tempered considering the cost of a software implementation of 128-bit arithmetic.
The reference implementation with ϕ = 264 makes use of internal compiler __int128
registers which are 128-bit integer words handled directly by the compiler. This
allows the algorithm to completely forgo any multi-precision considerations such as
dealing with carries and leave it all to the compiler to be done internally in assembly.
No such equivalent 256-bit register exists at the current time so, for ϕ = 2128, multi-
precision algorithms have to be used which lead to slower calculations mainly due
to carry propagation. Each 128-bit coefficient will be stored on two 64-bit registers
and arithmetic on this coefficient has to consider this representation.

Both Karatsuba and the Schoolbook version of the multiplication of two elements
were evaluated and the Schoolbook version has been found to be slightly faster
so far. This means that, for ϕ = 2128, any coefficient multiplication involves 4
distinct multiplication operations on 64-bit integers. Our internal reduction process
involves two vector-matrix products. For ϕ = 264, each operation involves n2

64

multiplications between 64-bit variables, whereas for ϕ = 2128 it involves 4n2
128

between 64-bit variables. For 1024-bit primes and beyond, since n64 > 2n128, it
means that for a given prime p, the 64-bit version of PMNS should be slower than
its 128-bit counterpart. Unfortunately, the 128-bit version has additional carry
operations dragging down the complexity function and giving us worse results until
higher values of p widen the gap substantially between n64 and n128. Table 3 shows
that for primes larger than 8000 bits, reducing the size of the data structure leads
to faster implementation as long as quadratic algorithms are used. For the sequel
of the paper, we will note :
• Red-64 : the 64-bit version of our internal reduction algorithm,
• Red-128 : the 128-bit version of our internal reduction algorithm.

5. Faster PMNS for large primes. As the size of the prime p exceeds 2000 bits,
modular multiplication implementations often switch from classical schoolbook algo-
rithms to subquadratic alternatives like Karatsuba or Toom-Cook. A first approach

10 F. PALMA, N. MÉLONI AND P. VÉRON

to lower our execution time is to optimize the computation of A(X)B(X) mod E(X)
using Toeplitz matrices.

5.1. Toeplitz matrix version. When E(X) = Xn−λ, we can optimize the com-
putation of A(X)B(X) mod E(X) using Toeplitz matrices. Let A(X) and B(X)
be two elements of a PMNS B, to compute a representative of A(X)B(X) in B, we
first have to compute A(X)B(X) mod E(X). We could use Karatsuba algorithm
to compute the product of two polynomials and then reduce the result. It appears
that this operation can be more efficient if seen as a vector matrix product involving
Toeplitz matrices.

5.2. Toeplitz vs Karatsuba.
Definition 5.1. An n×n matrix is a matrix defined by 2n−1 values a0, a1, . . . , a2n−2

such that

a0 a1 a2 · · · · · · an−1

an a0 a1
. . .

...

an+1 an
.

...
...

. a1 a2
...

. . . an a0 a1
a2n−2 · · · · · · an+1 an a0

There is a natural link between Toeplitz matrices and modular polynomial mul-

tiplication when the reduction polynomial E(X) is equal to Xn−λ. As an example
let us consider A(X) = a0+a1X+a2X

2+a3X
3 and B(X) = b0+b1X+b2X

2+b3X
3,

and let C(X) = A(X)B(X) mod X4 − λ. A straight forward computation gives

C(X) = a3b0X
3 + a2b1X

3 + a1b2X
3 + a0b3X

3+
λa3b3X

2 + a2b0X
2 + a1b1X

2 + a0b2X
2+

λa3b2X + λa2b3X + a1b0X + a0b1X+
λa3b1 + λa2b2 + λa1b3 + a0b0 .

This last result can be computed as

(
b0 b1 b2 b3

)
×

a0 a1 a2 a3
λa3 a0 a1 a2
λa2 λa3 a0 a1
λa1 λa2 λa3 a0

The matrix used in this formula is a Toeplitz matrix defined by the values a0, a1,
a2, a3, λa3, λa2 and λa1. Now, a classical result states that the vector matrix
product in the Toeplitz context can be efficiently computed using the following
proposition [7].
Proposition 5.1. Let

A =

(
A0 A1

A2 A0

)
an n × n Toeplitz matrix where each submatrix is a n/2 square matrix. Let B =(
B0 B1

)
a vector of size n where each Bi is of size n/2. The product B × A can

be computed as (P0 − P2, P0 − P1), where

P0 = (B0 +B1)A0

P1 = B1(A0 −A2)
P2 = B0(A0 −A1) .

PMNS FOR CRYPTOGRAPHY 11

In [7] the authors show that this approach can be used recursively to obtain a
complexity ofO(nlog2 3) similar to that of Karatsuba. Although the two complexities
are asymptotically the same, in the next subsection we show that the Toeplitz
approach is less costly in practice.

Proposition 5.2. Let A(X) and B(X) be two polynomials of degree at most n −
1 and let E(X) = Xn − λ. Let T (n) be the execution time needed to compute
A(X)B(X) mod E(X), then, on a 64-bit architecture :
• T (n) = 3T (n/2) + nA64 + 4nA128 − 4A128, using Karatsuba method,
• T (n) = 3T (n/2) + (5n2 − 2)A64 + nA128, using Toeplitz method.

where A128 (resp. A64) is the execution time of a 128-bit (resp. 64-bit) addition.

Proof. Let A(X) = AH(X)Xn/2+AL(X) and B(X) = BH(X)Xn/2+BL(X) where
the degree of AH(X), AL(X), BH(X) and BL(X) is at most n

2 − 1, then

A(X)B(X) = AH(X)BH(X)Xn +N(X)Xn/2 +AL(X)BL(X)

with

N(X) = (AH(X) +AL(X))(BH(X) +BL(X))−AH(X)BH(X)−AL(X)BL(X) .

To reduce modulo E(X) the product A(X)B(X), let

• AHBH(X) = AHB
(H)
H (X)Xn/2 +AHB

(L)
H (X), with degAHB

(H)
H (X) ⩽ n

2 − 2

and degAHB
(L)
H (X) ⩽ n

2 − 1,
• ALBL(X) = ALB

(H)
L (X)Xn/2 + ALB

(L)
L (X), with degALB

(H)
L (X) ⩽ n

2 − 2

and degALB
(L)
L (X) ⩽ n

2 − 1,
• N(X) = NH(X)Xn/2 +NL(X), with degNH(X) ⩽ n

2 − 2 and degNL(X) ⩽
n
2 − 1.

We thus obtain

A(X)B(X) mod E(X) = ALB
(L)
L (X) + λNH(X) + λAHB

(L)
H (X)+

(NL(X) +AHB
(L)
H (X) + λAHB

(H)
H (X))Xn/2 .

For the sequel of this analysis, let us consider the case where A(X) and B(X) are
two elements of a PMNS, meaning that their coefficients are strictly less than ρ with
ρ < 263 on a 64-bit architecture (see equation 2). Then one step of the Karatsuba
algorithm needs to compute :
• AH(X) + AL(X) and BH(X) + BL(X), which involves at most n

2 additions
between 64-bit words,

• a recursive call to compute the three products in N(X),
• 2(n− 1) additions on 128-bit words to compute N(X),
• n

2 − 1+ n
2 additions on 128-bit words to compute ALB

(L)
L (X) + λNH(X) +

λAHB
(L)
H (X),

• n
2+n

2 − 1 additions on 128-bit words to compute NL(X) + AHB
(L)
H (X) +

λAHB
(H)
H (X).

which gives a total cost of n 64-bit additions, 4n−4 128-bit additions and 3 recursive
calls.
Now, concerning the Toeplitz approach, one step needs to compute :
• n

2 additions on 64-bit words for B0 +B1,
• 2n

2 − 1 additions on 64-bit words for A0 −A2 (resp. A0 −A1) since each one
is a n

2 ×
n
2 Toeplitz matrix depending only on 2n

2 − 1 coefficients,

12 F. PALMA, N. MÉLONI AND P. VÉRON

Size 1024 2048 4096 8192
GnuMP

n 16 32 64 128
Low level 1715 5501 16897 53042

Classical Mont. 1534 4653 14522 44587
Mont. CIOS 1187 4661 16793 61478

This work
n 19 40 84 187

Red-64 1709 7690 33471 169070
n - - - 72

Red-128 - - - 156310

Table 4. Number of cycles to compute a modular multiplication
using GnuMP and PMNS on Intel processor i9-11900KF with gcc
12.1.0.

• a recursive call to compute the three vectors P0, P1 and P2,
• 2n

2 additions on 128-bit words to compute P0 − P2 and P0 − P1 ,
which gives a total cost of n

2 + 2n − 2 64-bit additions, n 128-bit additions and 3
recursive calls.
Now we have to evaluate the complexity of the last step of each method. For
Karatsuba , the last step is a product of two 64-bit integers which has to be done
using the __int128 gcc type.
The same observation can be done for Toeplitz method. Hence, the difference
between the two methods relies on the splitting and reconstruction process. The
Toeplitz method has a lower complexity for these two steps.

Remark 4. There exists other ways to split the initial matrix [8]. For example one
can use a 3-way split or 5-way split depending on the initial size of the matrix, and
one can mix them during the recursive process. These multi-way splittings all lead
to subquadratic algorithms.

Even if, using Toeplitz matrices, computing A(X)B(X) mod E(X) becomes sub-
quadratic, the two other steps of our internal reduction algorithm (Algorithm 2) re-
main quadratic. We thus propose to take into account the parallel nature of PMNS
to optimize these last two steps.

5.3. Parallel PMNS (PPMNS). Proposition 3.2 guarantees that for any prime
p, we can build a PMNS with a suitable internal reduction process. Unfortunately,
for prime p whose size exceeds 1024, PMNS performances are not competitive with
GnuMP library if no parallelism is used. For 1024-bit primes our performances are
similar to low level GnuMP functions, but for higher sizes, our performances are
worse (see Table 4, where n stands for the number of 64-bits block – or 128-bit
blocks for Red-128 – used to represent an integer). It is all the more obvious when
taking into account the two undocumented implementations of the classical Mont-
gomery multiplication on integers (respectively named Classic Montgomery and
Montgomery CIOS [9] in Table 4). The PMNS multiplication process we propose,
involves three vector-matrix products whose complexity is quadratic in n, while
GnuMP (or OpenSSL) switches to algorithms whose complexity is subquadratic in

PMNS FOR CRYPTOGRAPHY 13

nopt, when nopt is larger than some threshold computed at compile time. More pre-
cisely, to compute ab mod p, first GnuMP low level functions computes ab using
subquadratic algorithm depending on the size of a and b, then the result is reduced
modulo p using a division algorithm depending on the size of the operands. The
more n moves away from nopt, the worse the PMNS performances get, compared
to a classical multi-precision library. Now, as the operations in PMNS can be par-
allelized, one can hope that on a multi-core processor, the PMNS will give better
performances despite the high difference between n and nopt. Let us denote by M(n)
the computational cost of ab, R(n) that of the modular reduction and VM(n) that of
the vector-matrix product. On a δ-core processor, if VM(n)/δ < M(nopt)+R(nopt),
then the PPMNS will perform better than any classical multi-precision library. In
section 6, we provide a proof of concept targeting 8192-bit integers.

6. Implementation and results. All the results given in this paper have been
computed using the following procedure :
• the Turbo-Boost® is deactivated during the tests;
• 1000 runs are executed in order to "heat" the cache memory, i.e. we ensure

that the cache memory (data and instruction) is in an enough stabilized state
in order to avoid untimely cache faults;

• one generates 500 random data sets, and for each data set the execution clock
cycle numbers over a batch of 1000 runs is recorded;

• the performance is the median value.
All the source code is available on Github1.

6.1. A proof of concept for 8192-bit integers. From the preceding results,
it appears that a suitable implementation of a PMNS depends on the size of the
parameter p. For integers used in elliptic curve cryptography (from 256 bits to
1024 bits), the internal reduction we proposed in section 3.1 guarantees that for any
prime p, one can always build a 64-bit version of a PMNS with an efficient reduction
process which outperforms low level GnuMP functions and is competitive with the
undocumented Montgomery multiplication functions (until 512 bits). Moreover any
polynomial E(X) can be used to build the PMNS which enlarges the set of PMNS
linked to a prime p.
For larger sizes, our internal reduction process is not competitive with subquadratic
algorithms used by GnuMP, hence we have to consider the parallel version of PMNS
(PPMNS). A major advantage is that, despite the increasing value of n, we can keep
ϕ = 264 and the corresponding source code only relies on processor 64-bit arithmetic
instead of a costly software 128-bit arithmetic. For any polynomial E(X), the
multiplication process in the PMNS will involve three vector-matrix product which
are well suited for parallel implementation. As a proof of concept, we consider in
this section 8192-bit integers. Depending on the size of the operands a and b ,
the GnuMP library switches to different algorithms in order to compute ab. The
thresholds to select the multiplication algorithm is chosen when compiling the source
code of the library. On a Skylake processor, for GnuMP 6.2.1, the thresholds for
sizes 1664 up to 13248 are (from mpn/x86_64/skylake/gmp-mparam.h):
#define MUL_TOOM22_THRESHOLD 26
#define MUL_TOOM33_THRESHOLD 73
#define MUL_TOOM44_THRESHOLD 208

1https://github.com/francoispalma/PMNS/

https://github.com/francoispalma/PMNS/

14 F. PALMA, N. MÉLONI AND P. VÉRON

...
#define DC_DIV_QR_THRESHOLD 55
This means that up to 25 × 64 = 1600-bit integers, GnuMP uses the classical
schoolbook algorithm to compute the product ab. For size in the range 1664 to
4608, GnuMP uses Toom22 which is similar to Karatsuba algorithm. Finally it
switches to the classical 3-way split Toom-Cook algorithm up to 13248-bit integers.
For 8192-bit integers, we can obtain a rough estimation of the number of multipli-
cation done by GnuMP. Such integers are split into 128 64-bit blocks. Then the
product of two such sequences is done using 3-way split Toom-Cook and involves
5 multiplications between 43 64-bit blocks. Each multiplication is done using a
Karatsuba-like method which in turn requests 3 multiplications on 22 64-bit blocks,
each one being computed using the classical schoolbook algorithm. Hence, the to-
tal process involves 222 × 3 × 5 multiplications on 64-bit integers, leading to 7260
multiplications. Notice that this is a very optimistic estimation as we do not take
into account all the pre and post processing of the Toom-Cook and Karatsuba al-
gorithms. Next to reduce modulo p, a divide and conquer algorithm is used for
integers whose size is greater than 55× 64 = 3520 bits2. As mentioned in GnuMP
documentation, for 8192-bit integers, the complexity is about 2.63M(8192) where
M(8192) is the cost of the product of two 8192-bit integers. Such a product will be
computed using a 3-way split Toom-Cook step followed by a Karatsuba step which
will boil down to a total of 15 schoolbook multiplications on 1350-bit integers, that
is to say about 19000 64-bit multiplications. To sum up to compute ab mod p at
least 26260 64-bit multiplications are performed.
Now, for 8192-bit integers, one can build a PMNS with n = 187. For such a value,
if E(X) has no particular shape, the multiplication process will exactly involve
3 × 187 × 187 = 104907 64-bit multiplications. On a δ-core processor, the paral-
lelized version of the PMNS will perform better if 104907/δ ⩽ 26260, which gives
δ ⩾ 4. In practice, we observe that on a 5-core processor the PPMNS gives better
performances than low-level GnuMP functions and , on a 8-core processor, we beat
the undocumented Montgomery modular multiplication functions (see Table 5).

5-core 6-core 8-core Low level Classical Mont. Mont. CIOS
n=187 n=128

51979 46224 40778 53042 44567 61478

Table 5. Number of cycles to compute a modular multiplication
between two 8192-bit integers using GnuMP and PPMNS (for any
E(X)) on Intel processor i9-11900KF with gcc 12.1.0.

When E(X) = Xn−λ, the first vector-matrix product can be done using a Toeplitz
decomposition if n is a multiple of 2 or 3. Even if n = 187 is the smallest
value that can be used to build a PMNS for a 8192-bit integer, we consider here
n = 189 = 3 × 63. This way, we can use the 3-way split decomposition which
involves 6 vector-matrix products between vectors of size 63 and 63 × 63 matrices
and perform them using a classical vector-matrix product since experimental results
show that there is no point in splitting further. The next two steps are done using
classical vector-matrix product. Hence, on a 6-core processor, the total number of
64-bit multiplications done by one core will be 632 + 2×1892

6 = 15876 which is less

2https://gmplib.org/manual/Divide-and-Conquer-Division

PMNS FOR CRYPTOGRAPHY 15

than the number of multiplications done by GnuMP. Table 6 gives the results we
obtained for the polynomial E(X) = X189 − 2.

6-core Low level Classical Mont. Mont. CIOS
n=189 n=128
42510 53042 44567 61478

Table 6. Number of cycles to compute a modular multiplica-
tion between two 8192-bit integers using GnuMP and PPMNS (for
E(X) = X189−2) on an Intel processor i9-11900KF with gcc 12.1.0.

The results we obtained show that the parallelized version of PMNS is the best
way to manage large integers. When the polynomial E(X) is arbitrary, the vector-
matrix product is well suited for parallelization since the use of δ-core leads to
approximately a gain factor of δ. When E(X) = Xn − λ and n = 0 mod 3, one can
take advantage of the 3-way split Toeplitz decomposition on a 6-core processor.
For integer ranging from 2048-bit up to 8192-bit, our experimental results show
that the PPMNS does not perform faster than GnuMP functions (see Table 7). For
2048-bit and 4096-bit integers we ran several benchmarks using from 1 core to 8
cores. The best performances are summarized in Table 7. For 2048-bit integers,
the size of the matrices are too small to benefit from multi-threading. For 4096-bit
integers, the performances of our 64-bit version using 6 cores are close to those of
low level GnuMP functions. In any case, it appears that within this size range,
PMNS are not well suited.

6.2. Toeplitz and internal Montgomery reduction. Even if there is no guar-
antee that a suitable polynomial M(X) can be computed in reasonable time when
E(X) = Xn − λ with λ odd, there is a huge advantage to consider again the
Montgomery-like internal reduction. Indeed, steps 1 and 2 of Algorithm 1 involve
polynomial modular reductions. As mentioned in the previous section, such an
operation leads to a vector-matrix product with a Toeplitz matrix. Hence, all the
internal reduction process can be performed using Toeplitz matrices. There are two
alternatives to perform the vector-matrix product :

• either using the recursive splitting detailed in Subsection 5.2,

Method/Size 2048 4096
n 32 64

Low level 5501 16897
Classical Mont. 4653 14524
Mont. CIOS 4607 16793

n 40 84
Red-64 7491 (1-core) 10165 (2-core) 36195 (1-core) 17756 (6-core)
Red-128 10920 (1-core) 15314 (2-core) 39446 (1-core) 25797 (4-core)

Table 7. Number of cycles to compute a modular multiplica-
tion for 2048-bit and 4096-bit integers using GnuMP, PMNS and
PPMNS on an Intel processor i9-11900KF with gcc 12.1.0.

16 F. PALMA, N. MÉLONI AND P. VÉRON

Size 2048 4096 8192
8 cores

Toeplitz Montgomery-like 14421 18193 37026
This work 14529 22782 40778

Table 8. Number of cycles to compute a modular multiplication
for 2048,4096 and 8192-bit integers using Toeplitz form vs random
matrix form on Intel processor i9-11900KF with gcc 12.1.0.

Size 1024 1664 2048
Low level 1715 4039 5501
Classical Mont. 1539 3466 4653
Montgomery CIOS 1187 3153 4607
Toeplitz (this work) 1449 3454 5489

Table 9. Number of cycles to compute a modular multiplication
for 1024, 1664 and 2048-bit integers using Toeplitz form vs GnuMP
on Intel processor i9-11900KF with gcc 12.1.0.

• or using a classical vector-matrix product algorithm taking into account that
a Toeplitz matrix is defined by 2n − 1 coefficients instead of n2 and is thus
stored in a 1-dimensional array.

Our experimental results show that the parallel version of the Montgomery-like re-
duction algorithm using the Toeplitz recursive splitting performs worse than the par-
allel version of the Montgomery-like reduction algorithm using the classical vector-
matrix product. For 8192-bit integers, if the polynomial M(X) exists and can
be computed in reasonable time, we obtain better performances than our internal
reduction process (see Table 8).

For integers ranging from 1024 to 2048 bits, we have shown that there is no point
in using the PPMNS. Within this range, the Toeplitz recursive splitting on a single
core outperforms some GnuMP functions as summarized in Table 9.

Concerning the polynomial M(X), if E(X) = Xn−λ with λ odd, we exhibit in the
next proposition, particular cases where it can be computed in linear time.

Proposition 6.1. Let n an odd integer such that 1+X+· · ·+Xn−1 is irreducible in
F2[X], then one can compute in linear time a polynomial M(X) invertible modulo
(E, ϕ).

Proof. From [6, corollary 2 and proposition 5], the polynomial M(X) exists iff the
determinant of the matrix M is odd, where

M =

m0 m1 . . . mn−1

.
...

...
...

.

←M
← X.M mod E

← Xn−1.M mod E

(3)

Equivalently, this means that this matrix is invertible over F2. Now, as E(X) =
Xn+1 over F2, the matrixM is a circulant one and there is an isomorphism between

PMNS FOR CRYPTOGRAPHY 17

the set of circulant matrices and the algebra of polynomials modulo Xn +1. Hence
M is invertible iff M(X) is coprime with Xn + 1 in F2[X].

Let L the matrix whose rows are a reduced basis of the set of polynomials that
vanishes in γ mod p. We know that det(L) = p, so L is invertible in F2. Hence,
there exists a line in L which has an odd number of odd coefficients. Otherwise, in
F2, all the lines of the matrix will contain an even number of ones, which implies
that the all one vector will be in the kernel of the linear application defined by L,
meaning that L is not invertible.

Let n such that O(X) = 1+X+ · · ·+Xn−1 is irreducible over F2 (which implies
n odd), then xn+1 is the product of two irreducible polynomials, X+1 and O(X).
Let M(X) the polynomial which contains an odd number of odd coefficients, if
M(X) is coprime with O(X) in F2[X], then M(X) is coprime with E(X) since it
does not vanish in 1. Otherwise, it means that M(X) = O(X). In this case, there
are only two alternatives:
• either there exists in the matrix L another line with an odd number of odd

coefficients, then the corresponding polynomial M̄(X) cannot be equal to
O(X), and thus M̄(X) is the polynomial we are searching for,

• or all the other lines of L have an even number δ of odd coefficients. Notice
that since det(L) = 1 mod 2, then δ > 0, otherwise L will contain a line with
only even coefficients which would give a null vector in F2. Let Li any line
with δ odd coefficients, add the corresponding polynomial to O(X) to obtain
a polynomial M(X) with an odd number of odd coefficients coprime with
O(X).

If we consider that until n = 40 an exhaustive search is reasonable to find M(X),
here are some n > 40 which meets our requirements : 53, 59, 61, 67, 83, 101, 107,
131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293.

7. A roadmap for using PMNS. In this work, we have developed several new
ways to use PMNS:
• the original Montgomery-like internal reduction adapted to the Toeplitz re-

cursive splitting (the drawback being that it relies on finding a suitable poly-
nomial M(X)),

• a novel internal reduction process that generalizes the Montgomery-like ver-
sion (the advantage being that there is no need to search for a suitable poly-
nomial M(X)),

• a 128-bit version of the two previous approaches,
• a parallel version of all of the above.

Performance wise, the 128-bit version outperforms its 64-bit counterpart only for
integers larger than 8192 bits. Unfortunately within this range GnuMP uses faster
algorithms so that there is no real point in considering the 128-bit version of PMNS.
As a consequence, it is important to carefully consider the specific requirements
of each application to determine the most appropriate method for using PMNS.
Considering this fact, the roadmap to use PMNS is as follows :
• up to 1024 bits, the 64-bit generalized version is competitive with GnuMP,
• from 1024 to 2048 bits, the Toeplitz splitting method is well suited,
• in the 2048 to 4096 bits range, it appears that PMNS are not well suited to

perform modular multiplications,

18 F. PALMA, N. MÉLONI AND P. VÉRON

• above 4096 bits, the parallel version PPMNS is a way to be competitive with
GnuMP again.

REFERENCES

1. J.-C. Bajard, Laurent Imbert, and Thomas Plantard, Modular number systems: Beyond the
mersenne family, Selected Areas in Cryptography, 11th International Workshop, SAC 2004,
Waterloo, Canada, 2004, pp. 159–169.

2. Cyril Bouvier and Laurent Imbert, An alternative approach for sidh arithmetic, Public-Key
Cryptography – PKC 2021 (Cham) (Juan A. Garay, ed.), Springer International Publishing,
2021, pp. 27–44.

3. Richard P. Brent and Paul Zimmermann, Modern Computer Arithmetic, Cambridge Mono-
graphs on Applied and Computational Mathematics, vol. 18, Cambridge University Press,
2010.

4. Titouan Coladon, Philippe Elbaz-Vincent, and Cyril Hugounenq, MPHELL: A fast and robust
library with unified and versatile arithmetics for elliptic curves cryptography, ARITH 2021
(Torino, Italy), Transactions on Emerging Topics in Computing, June 2021.

5. Laurent-Stéphane Didier, Fangan Yssouf Dosso, and Pascal Véron, Efficient modular oper-
ations using the Adapted Modular Number System, Journal of Cryptographic Engineering
(2020), 1–23.

6. Fangan Yssouf Dosso, Jean-Marc Robert, and Pascal Véron, PMNS for Efficient Arithmetic
and Small Memory Cost, IEEE Transactions on Emerging Topics in Computing 10 (2022),
no. 3, 1263 – 1277.

7. H. Fan and M.A. Hasan, Alternative to the karatsuba algorithm for software implementation
of GF(2n) multiplication, IET Information Security 3 (2009), 60–65(5).

8. M. Anwar Hasan and Christophe Nègre, Multiway splitting method for toeplitz matrix vector
product, IEEE Transactions on Computers 62 (2013), 1467–1471.

9. Çetin Kaya Koç, Tolga Acar, and Burton S. Kaliski, Analyzing and comparing montgomery
multiplication algorithms, IEEE Micro 16 (1996), no. 3, 26–33.

10. Peter L. Montgomery, Modular multiplication without trial division, Mathematics of Compu-
tation 44 (1985), no. 170, 519–521.

11. Christophe Negre and Thomas Plantard, Efficient modular arithmetic in adapted modular
number system using lagrange representation, Information Security and Privacy, 13th Aus-
tralasian Conference, ACISP 2008, Wollongong, Australia, 2008, pp. 463–477.

12. Peter van Emde Boas, Another np-complete problem and the complexity of computing short
vectors in a lattice, Tech. report, University of Amsterdam, Department of Mathemat-
ics,Netherlands, 1981.

Université de Toulon, Institut de Mathématiques, Toulon, France
E-mail address: francois.palma@univ-tln.fr
E-mail address: nicolas.meloni@univ-tln.fr
E-mail address: pascal.veron@univ-tln.fr

mailto:francois.palma@univ-tln.fr
mailto:nicolas.meloni@univ-tln.fr
mailto:pascal.veron@univ-tln.fr

	1. Introduction
	2. Mathematical Background
	2.1. PMNS
	2.2. Montgomery Algorithm

	3. Generating PMNS for large primes
	3.1. Montgomery algorithm over lattices

	4. PMNS 128-bit
	4.1. Data structure size problem
	4.2. 128-bit PMNS vs 64-bit

	5. Faster PMNS for large primes
	5.1. Toeplitz matrix version
	5.2. Toeplitz vs Karatsuba
	5.3. Parallel PMNS (PPMNS)

	6. Implementation and results
	6.1. A proof of concept for 8192-bit integers
	6.2. Toeplitz and internal Montgomery reduction

	7. A roadmap for using PMNS
	REFERENCES

