Samuel Willingham 
email: samuel.willingham@inria.fr
  
Mårten Sjöström 
  
Christine Guillemot 
  
  
  
  
  
  
Prior for Multi-Task Inverse Problems in Image Reconstruction Using Deep Equilibrium Models

Keywords: Inverse Problems, Computer Vision, Image Reconstruction, Deep Equilibrium Models

Inverse problems in imaging consider the reconstruction of clean images from degraded observations, like deblurring or inpainting. These inverse problems are generally ill-posed. Solving them therefore requires regularization, which exists in multiple approaches: plug-and-play (pnp) methods are designed to generically solve any inverse problem by replacing a regularizing proximal operator with a denoiser. Unrolled methods perform a fixed number of iterations and train a network endto-end for a specific degradation, but necessitate re-training for each specific degradation. Deep equilibrium models (DEQs), on the other hand, iterate an unrolled method until convergence and thereby enable end-to-end training on the reconstruction error with simplified back-propagation. We have investigated to what extent a solution for several inverse problems can be found by employing a multi-task DEQ (MTDEQ). This MTDEQ is used to train a prior on the actual estimation error, in contrast to a theoretical noise model used for pnp methods. This has the advantage that the resulting prior is trained for a range of degradations beyond pure Gaussian denoising. The investigation also demonstrates that different search methods can be used in training (forward-backward) and in testing (alternating direction method of multipliers).

I. INTRODUCTION

Inverse problems refer to a broad class of problems which appear in a plethora of image processing and computer vision applications. In imaging, inverse problems refer to the problem of recovering images from a set of degraded or incomplete observations, for instance inpainting, super-resolution, and deblurring. We consider an observed image y = Ax + ε to be the ground truth image x ∈ R d degraded by a degradationoperator A : R d → R d ′ with Additive White Gaussian Noise (AWGN) ε ∈ R d ′ , and d, d ′ ∈ N. This problem is generally ill-posed and can be solved by minimizing

min x 1 2 ∥Ax -y∥ 2 2 + R(x), (1) 
where the first term is called the data-term, ∥•∥ 2 is the 2-norm and R : R d → R is a regularization term that is intended to impose prior knowledge on the estimated image. To solve this minimization, the combination of optimization methods and This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956770. trainable, complex image priors have recently emerged as a powerful tool for image reconstruction.

Plug-and-play (pnp) methods are one approach to combine optimization and trainable priors: a pre-trained, network-based prior is plugged into an iterative optimization algorithm, such as the alternating direction method of multipliers (ADMM) [START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF], or the forward backward algorithm (FB) [START_REF] Pesquet | Learning maximally monotone operators for image recovery[END_REF]. These algorithms use a proximal operator to implicitly represent the prior. A proximal operator is defined as

prox σ 2 R (z) := argmin x 1 2 ∥x -z∥ 2 2 + σ 2 R(x). (2) 
In the Gaussian case, this proximal operator for regularization solves a Gaussian denoising problem, so [START_REF] Venkatakrishnan | Plug-and-play priors for model based reconstruction[END_REF] explains that the proximal operator can be replaced with a denoiser, because the proximal operator does not have to be exact and it is sufficient for it to decrease the underlying objective function. This approach has led to successful, general imagereconstruction methods [START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF]- [START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF], but it is worth considering that the regularizing proximal operator can be quite different from a Gaussian denoiser when its input is not Gaussian -as is the case for pixel-wise completion with no AWGN. Priors can take several other forms, such as approximations of a projection operator on a learned image subspace as in [START_REF] Chang | One network to solve them all-solving linear inverse problems using deep projection models[END_REF]. Another well known approach is called regularization by denoising (RED) [START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF]. This approach uses a Laplacian regularizer that represents the cross-correlation between an estimated image and its denoising residual produced by some pre-trained denoiser. Finally, there are other ways to leverage pre-trained priors for regularization, e.g. Regularizing Gradient (pnp-ReG) [START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF], which trains the gradient of a Maximum A Posteriori regularizer jointly with its corresponding denoiser to be used in a gradient-based iterative algorithm. Pre-trained priors have the advantage of being generic in the sense that they can be used for any inverse problem without re-training. However, being trained independently of the task at hand, pnp methods may not result in optimal performance.

Unrolled optimization methods are less general in application, but by coupling optimization algorithms with end-toend trained regularization, they recently emerged as powerful solutions to inverse problems [START_REF] Diamond | Unrolled optimization with deep priors[END_REF]- [START_REF] Sun | Deep admm-net for compressive sensing mri[END_REF]. Similar to pnp methods, the neural network (NN) is used to regularize the inverse problem. However, training such unrolled NNs end-to-end can come with a large memory footprint and unrolled methods do not generally train the underlying prior, because they have a fixed number of iterations and do not generally converge [START_REF] Gilton | Deep equilibrium architectures for inverse problems in imaging[END_REF].

In the context of image reconstruction, deep equilibrium (DEQ) models [START_REF] Gilton | Deep equilibrium architectures for inverse problems in imaging[END_REF]- [START_REF] Ling | Global convergence of over-parameterized deep equilibrium models[END_REF] can be seen as an extension of unrolled methods to with a theoretically infinite amount of iterations -a mathematical description is found in [START_REF] Bai | Deep equilibrium models[END_REF]. DEQ models leverage fixed-point properties (convergence for overparametrized structures is shown in [START_REF] Ling | Global convergence of over-parameterized deep equilibrium models[END_REF]), allowing for simpler back-propagation, which can even be done in a Jacobian-free manner [START_REF] Fung | Fixed point networks: Implicit depth models with jacobian-free backprop[END_REF], visualized in Fig. 1.

DEQ models allow the training of an iterative method on the resulting reconstruction-error [START_REF] Gilton | Deep equilibrium architectures for inverse problems in imaging[END_REF], while still training the full iterative method instead of limiting the amount of iterations. While the Gaussian assumption made for pnp does provide good results [START_REF] Chan | Plug-and-play admm for image restoration: Fixed-point convergence and applications[END_REF]- [START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF], it is worth exploring how one could improve the training of a plug-and-play prior, as the noise generated by a data-step in ADMM or FB is generally not Gaussian in nature. DEQ models allow for this by allowing end-to-end training the full iterative scheme on the reconstruction error. The contributions of this paper are:

• An MTDEQ model is used to train a network for multi-task proximal regularization on the resulting reconstruction-error, resulting in competitive performance.

• We demonstrate that the resulting MTDEQ-prior outperforms a Gaussian denoiser when used in pnp-ADMM, especially when the input to the regularization is very different from an image that is perturbed by AWGN. • Using hyper-parameters that were set up for the pnp-ADMM with a Gaussian denoiser to test the MTDEQprior shows that it is flexible with respect to hyperparameters.

• Training a prior with the FB algorithm and testing it in a pnp-ADMM algorithm shows the trained regularization is not constrained to the scheme it was trained in.

II. METHODS

We propose the MTDEQ model as a method of training a multi-task prior that can be used for different problems and different noise-levels. Since DEQ models can train a regularization for an inverse problem on the resulting reconstructionerror, we train a multi-task regularizer by exposing the NN to different degradations and noise-levels in training.

To solve the inverse problem for multiple tasks, we use the FB algorithm in conjuction with the DEQ model on a range of noise-levels and degradations, resulting in our MTDEQ model.

We chose the FB algorithm for training, because it does not rely on a proximal operator for the minimization of the dataterm.

Algorithm 1 MTDEQ

Require: Training Data D ⊂ R d , d ∈ N >0 Set of problems A ⊂ {A : R d → R d | d ∈ N >0 } Set of noise-levels Σ ⊂ R
Jacobian-free back-propagation procedure Optim Resizing procedure P : R d → R d for a number of epochs do for x ∈ D do for i = 1, ..., N do

(A i , σ i ) picked from A × Σ AWGN ε i ∈ R d with standard deviation σ i y i ← A i (x) + ε i ▷ Generate degraded images z i ← P (y i ) while 1 d ∥z i -f i,θ (z i )∥ 2 2 ≥ 10 -7 do z i ← f i,θ (z i ) ▷ Find equilibrium point end while L i ← 1 d ∥f i,θ (z i ) -x∥ 2 2 end for L ← 1 N N i=1 L i ▷ Sum losses for all problems θ ← Optim(θ, L)
▷ Update NN-parameters end for end for

The MTDEQ that trains the prior is described in algorithm 1. For each ground truth image x, we pick N degradations and noise-levels at random, leading to N degraded and noisy observations. This in turn leads to N estimates produced by the iterative procedure used. We use the FB algorithm in this training of the prior:

f i,θ (z) := Q θ,σi z -η δ 1 2 ∥A i z -y i ∥ 2 2 δ z , (3) 
where Q θ,σ represents regularization in form of a DRUNet (as in [START_REF] Pendu | Preconditioned plug-and-play admm with locally adjustable denoiser for image restoration[END_REF] and [START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF]) with parameters θ used on noise-level σ i ; η ∈ R is a step size. The iteration in the while-loop results in an equilibrium point z ∞ i ∈ R d , which is the estimated reconstructed image. The loss L i for each of the N estimates is averaged and then used for Jacobian-free back-propagation, which finds a direction of descent p that minimizes the loss for the N degradation problems considered:

p = 1 N N i=1 ∂l(z, x) ∂z z=z ∞ i ∂f i,θ (z ∞ i ) ∂θ , (4) 
where

l(z, x) = 1 d ∥z -x∥ 2 2 .
The NN is exposed to different degradations in training, and is so guided to represent a regularizer, as the data-fidelity step (i.e. the gradient descent on the data-term) takes care of degradation-dependent operations. Because a DEQ model iterates until convergence, the resulting NN represents a prior for the problem at hand that is not limited to the specific architecture used. This means that if the regularizer is end-toend trained while being exposed to different degradations and noise-levels, we can strive to train a more general prior that contains information on what proper clean images look likebeyond the assumption that a proximal regularization behaves like a Gaussian denoiser.

III. EXPERIMENTS

A. Step-sizes and degradations

We chose a step-size of η = 0.49 in the FB algorithm for the MTDEQ model. The noise-standard-deviations considered in training are taken from Σ noise = {0.005 • s | s = 0, 1..., 49} (pixel-values are normalized to be in [0, 1]). The degradations used for training are:

• super-resolution by using bicubic down-sampling with factor f downscale ∈ {1, 2, 3, 4}, where the iterations are initialized using bilinear resizing to the original size • blurring with a Gaussian kernel with standard-deviation σ blur picked from Σ blur = {0. 

B. Dataset, architecture and optimizer

The dataset used in training is a collection of BSD500 (300 images [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]), flick2k (2650 images [START_REF] Lim | Enhanced deep residual networks for single image super-resolution[END_REF]), the Waterloo exploration database (4744 images [START_REF] Ma | Waterloo exploration database: New challenges for image quality assessment models[END_REF]) and DIV2k (900 images [START_REF] Agustsson | Ntire 2017 challenge on single image super-resolution: Dataset and study[END_REF]), similar to the one used in [START_REF] Pendu | Preconditioned plug-and-play admm with locally adjustable denoiser for image restoration[END_REF], [START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF], [START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF]. When an image is drawn from the dataset, it is cropped to be 128 times 128 pixels in size (the location of this cropping is random at each iteration).

The NN used is a DRUNet that uses the noise-level-map as additional input as in [START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF]; it is pre-trained as a Gaussian denoiser, using the NN obtained in [START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF]. The noise-standarddeviation given as input in each regularization step of the FB algorithm is σ denoise = ησ noise , where σ noise ∈ Σ noise is the noise-level considered. Back-propagation is done in a Jacobian-free manner [START_REF] Fung | Fixed point networks: Implicit depth models with jacobian-free backprop[END_REF].

The algorithm is considered to have converged after the mean square error (MSE) of the difference between iterates is less than 10 -7 and we capped the amount of iterations at 350. Further, we terminate iteration if any coordinate of the estimate has an absolute value larger than 10 10 . In training, the procedure properly converges before 350 iterations and without any coordinate exceeding 10 10 in more than 99% of cases.

The weights of the NNs are updated using the adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a batch-size of 16, using 250 epochs, starting with a learning-rate of 10 -5 and scaling it by a factor of 0.25 every 25 epochs. 

C. Comparing to plug-and-play

We compare our prior to RED, pnp-ADMM with a Gaussian denoiser and pnp-ReG by plugging the prior resulting from the MTDEQ into the ADMM algorithm as described and used for testing in [START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF]. The number of iterations, minimal denoising standard-deviation σ 0 and maximal denoising standarddeviation σ m used in the ADMM are the ones that produced the best results for the pnp-ADMM reference method based on a Gaussian denoiser and are listed in [START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF]. This means that the hyperparameters were not fine-tuned for the MTDEQ-prior. The degradations that the MTDEQ model was trained on are Gaussian deblurring, dropped pixels and super-resolution on an image that was down-sampled using a bi-cubic kernel; this is significant because one of the degradations tested is super- resolution on a image that is degraded using a Gaussian kernel (with σ blur = 0.5). The results can be seen in Tables I and II and the visual results can be observed in Fig. 2. The pnp-ADMM is the closest comparison to our MTDEQ-prior, since it uses the same algorithm in testing, only with a Gaussian denoiser as prior.

ST Comp and ST SR are single-task DEQ priors trained using the MTDEQ with the following parameters: Both have N=1 and ST Comp is trained for A only containing pixelwise completion with probability p drop = 0.9 and no AWGN (i.e. Σ noise = {0.00}). ST SR is trained for A containing only bicubic down-sampling with factor f downscale = 2 and AWGN of Σ noise = {0.01}. In testing, both single-task priors were plugged into the pnp-ADMM scheme from [START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF] with the same parameters as the Gaussian denoiser and our MTDEQ-prior.

The following section will discuss the results found from the above experiments and talk about the advantages and disadvantages of our MTDEQ-prior when compared to other methods.

IV. RESULTS AND DISCUSSION

Using the MTDEQ model to train on different degradations and noise-levels leads to a multi-task prior usable for iterative methods, like the pnp-ADMM algorithm we use for testing. Different from pnp training, the prior trained with MTDEQ is exposed to a larger range of qualitatively different inputs (i.e. images that are not purely perturbed by AWGN).

The results were obtained using a different iterative algorithm from the one used to train the MTDEQ-prior. This means that the NN represents a regularization that is not closely linked to the exact structure of the iterative algorithm used and can be said to represent an image prior for the problems at hand.

As discussed in III-A, the MTDEQ-prior is trained for a single step size and still performs well when used in the fine-tuned setting of the pnp-ADMM algorithm [START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF], where different step-sizes and denoising-levels are used for different degradations. This suggests that the method could be further improved, if one could find a correspondence between different degradations and step-sizes to be used for the MTDEQ.

The proposed MTDEQ-prior performs well on multi-task image reconstruction and this is obvious on problems with no AWGN added to the input, where the degradation itself is responsible for the entire difference between observation and ground truth. This is quite reasonable, because the best denoiser for a zero-noise-problem is the identity, which provides no regularization at all. Pnp methods usually remedy this by using a low denoising-level instead of zero, so the denoiser still provides some regularization. A trick of this sort is not necessary for a regularizer that was trained on the reconstruction error, as it can learn to add meaningful regularization, even when the "noise-level-map" is set to zero. Also, the closer the inverse problem is to a Gaussian denoising problem, the more appropriate a Gaussian denoiser is for the purpose of regularization. Thus, it can be seen that the use of a Gaussian denoiser for proximal pnp methods can be further improved using DEQ, especially when the inverse problems considered differ significantly from pure Gaussian denoising problems.

Single-task DEQ models do not perform especially well when compared in a pnp-ADMM algorithm, but we have seen that a single-task DEQ model clearly outperforms the MTDEQ on the problem and noise-level it was trained on, when used in FB. While the comparisons in Tables I and II are unfair to single-task DEQ models because they are only trained for a single noise-level and pnp-ADMM uses scaling denoisinglevels, the comparisons showcase that the MTDEQ model adds significant performance when used on a range of noise-levels and degradations. Thus, the multi-task training-structure does add performance besides the performance single-task DEQ models bring to the table.

We consider the pnp-ADMM using a Gaussian denoiser for proximal regularization to be the closest comparison to our prior, as the only difference is the used regularization. When comparing the reconstruction results for the pnp-ADMM which uses a Gaussian denoiser and our MTDEQ-prior, it is clear that the MTDEQ-prior produces better performance across all the degradations and noise-levels tested, meaning that using an MTDEQ model to fine-tune a prior beyond a Gaussian denoiser does indeed increase performance.

As the DEQ requires iterating until convergence before allowing updates to the weights, it is significantly slower in training when compared to a denoiser, which only has one forward-operation. Combining the training objectives of a denoiser with the loss function used by a MTDEQ model approach may allow for a speed up in training while further improving performance.

V. CONCLUSION Among the different ways of solving inverse problems, DEQ models permit end-to-end training of a regularization and are well-suited to solve multi-task inverse problems, bridging the gap between end-to-end trained methods like unrolled models or single-task DEQ models and pnp methods: An MTDEQ model can be used to train a multi-task prior that outperforms a Gaussian denoiser in a pnp-ADMM scheme.

Fig. 1 .

 1 Fig.1. Traditional back-propagation and Jacobian-free back-propagation[START_REF] Fung | Fixed point networks: Implicit depth models with jacobian-free backprop[END_REF] (only back-propagates through one step using the fixed-point x∞ as input).

  (a) Example for completion with 90 percent of pixels dropped and σ noise = 0. (b) Example of Gaussian deblurring with σ blur = 1.6 and σ noise = 0.01. (c) Example for bicubic super-resolution with factor two and σ noise = 0.01.

Fig. 2 .

 2 Fig.2. Image-comparisons with RED[START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF], pnp-ADMM with the Gaussian denoiser from[START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF] (Gauss), pnp-ReG[START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF], and pnp-ADMM with the prior obtained via MTDEQ; results are reported in PSNR.

  4, 0.8, 1.2, 1.6, 2.0, 2.4} • pixel-wise completion with each pixel having a chance of p drop ∈ {0.2, 0.4, 0.5, 0.6, 0.8, 0.9} of being droppedeach selection of p drop corresponds to a different degradation Each image is degraded by 5 degradations and the resulting losses are averaged for back-propagation, meaning one ground-truth image is degraded five ways.

TABLE I COMPARING

 I OUR MTDEQ-BASED PRIOR USED IN PNP-ADMM ON THE SET5 DATASET[START_REF] Bevilacqua | Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding[END_REF] FOR COMPLETION WITH σNOISE = 0 AND 80 AND 90 PERCENT OF PIXELS DROPPED, RESPECTIVELY AS WELL AS AND GAUSSIAN DEBLURRING WITH DIFFERENT DEGREES OF BLURRING AND σNOISE = 0.01. ST COMP AND ST SR ARE SINGLE-TASK DEQ PRIORS TESTED IN PNP-ADMM (SEE III-C). THE RESULTS FOR EGULARIZATION BY DENOISING (RED)[START_REF] Romano | The little engine that could: Regularization by denoising (red)[END_REF], PNP-ADMM WITH THE GAUSSIAN DENOISER (GAUSS) FROM[START_REF] Zhang | Plugand-play image restoration with deep denoiser prior[END_REF] AND PNP-REG[START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF] ARE TAKEN FROM[START_REF] Fermanian | Learned gradient of a regularizer for plug-and-play gradient descent[END_REF]. ALL RESULTS ARE REPORTED IN PEAK-SIGNAL-TO-NOISE-RATIO (PSNR) AND DB. THE HIGHEST PSNR PER TASK IS WRITTEN BOLD AND THE SECOND-BEST IS UNDERLINED.

	Methods		Completion	Deblurring
			80%	90%	σ blur = 1.6 σ blur = 2.0
	RED		27.17	22.75	31.76	30.62
	ST Comp	30.24	26.71	31.92	30.68
	ST SR		29.48	24.96	32.38	31.43
	Gauss		30.20	26.20	32.06	30.88
	pnp-ReG		30.36	26.94	32.51	31.19
	Proposed		30.72	27.09	32.82	31.83
	Proposed vs. Gauss +0.52 +0.89	+0.76	+0.95
				TABLE II		
	THIS TABLE SHOWS THE RESULTS FOR SUPER-RESOLUTION ON AN IMAGE
	THAT WAS DOWN-SAMPLED USING A GAUSSIAN KERNEL WITH
	σBLUR = 0.5 AND THE RESULTS FOR SUPER-RESOLUTION ON A
	BICUBICALLY DOWN-SAMPLED IMAGE. THESE DEGRADATIONS WERE
	TESTED ON TWO NOISE-LEVELS AND WITH SUPER-RESOLUTION FACTORS
		TWO AND THREE, RESPECTIVELY.
				Bicubic	Gaussian
		Methods		w/ σ noise	w/ σ noise
				0.00	0.01	0.00	0.01
		RED		35.05	33.78	34.99	32.84
	2x SR	ST Comp ST SR Gauss		34.07 35.71 35.20	33.55 34.29 33.80	33.42 35.57 35.14	32.46 33.23 32.74
		pnp-ReG		35.34	34.29	35.30	33.41
		Proposed		35.61	34.43	35.42	33.45
		Proposed vs. Gauss +0.41 +0.63 +0.28 +0.71
		RED		31.47	30.78	31.44	30.05
	3x SR	ST Comp ST SR Gauss		30.69 32.08 31.49	30.09 30.97 30.39	30.28 31.97 31.45	28.80 30.02 29.17
		pnp-ReG		31.75	31.13	31.60	30.39
		Proposed		32.10	31.15	31.94	30.17
		Proposed vs. Gauss +0.61 +0.76 +0.49 +1.00