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Abstract—Inverse problems in imaging consider the recon-
struction of clean images from degraded observations, like
deblurring or inpainting. These inverse problems are generally
ill-posed. Solving them therefore requires regularization, which
exists in multiple approaches: plug-and-play (pnp) methods are
designed to generically solve any inverse problem by replacing a
regularizing proximal operator with a denoiser. Unrolled methods
perform a fixed number of iterations and train a network end-
to-end for a specific degradation, but necessitate re-training for
each specific degradation. Deep equilibrium models (DEQs), on
the other hand, iterate an unrolled method until convergence and
thereby enable end-to-end training on the reconstruction error
with simplified back-propagation. We have investigated to what
extent a solution for several inverse problems can be found by
employing a multi-task DEQ (MTDEQ). This MTDEQ is used
to train a prior on the actual estimation error, in contrast to
a theoretical noise model used for pnp methods. This has the
advantage that the resulting prior is trained for a range of
degradations beyond pure Gaussian denoising. The investigation
also demonstrates that different search methods can be used in
training (forward-backward) and in testing (alternating direction
method of multipliers).

Index Terms—Inverse Problems, Computer Vision, Image Re-
construction, Deep Equilibrium Models

I. INTRODUCTION

Inverse problems refer to a broad class of problems which
appear in a plethora of image processing and computer vision
applications. In imaging, inverse problems refer to the problem
of recovering images from a set of degraded or incomplete
observations, for instance inpainting, super-resolution, and de-
blurring. We consider an observed image y = Ax̂ + ε to be
the ground truth image x̂ ∈ Rd degraded by a degradation-
operator A : Rd → Rd′

with Additive White Gaussian Noise
(AWGN) ε ∈ Rd′

, and d, d′ ∈ N.
This problem is generally ill-posed and can be solved by

minimizing

min
x

1

2
∥Ax− y∥22 +R(x), (1)

where the first term is called the data-term, ∥·∥2 is the 2-norm
and R : Rd → R is a regularization term that is intended to
impose prior knowledge on the estimated image. To solve this
minimization, the combination of optimization methods and
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trainable, complex image priors have recently emerged as a
powerful tool for image reconstruction.

Plug-and-play (pnp) methods are one approach to combine
optimization and trainable priors: a pre-trained, network-based
prior is plugged into an iterative optimization algorithm, such
as the alternating direction method of multipliers (ADMM) [1],
or the forward backward algorithm (FB) [2]. These algorithms
use a proximal operator to implicitly represent the prior. A
proximal operator is defined as

proxσ2R(z) := argmin
x

1

2
∥x− z∥22 + σ2R(x). (2)

In the Gaussian case, this proximal operator for regulariza-
tion solves a Gaussian denoising problem, so [3] explains
that the proximal operator can be replaced with a denoiser,
because the proximal operator does not have to be exact
and it is sufficient for it to decrease the underlying objective
function. This approach has led to successful, general image-
reconstruction methods [1]–[5], but it is worth considering that
the regularizing proximal operator can be quite different from
a Gaussian denoiser when its input is not Gaussian - as is the
case for pixel-wise completion with no AWGN.

Priors can take several other forms, such as approximations
of a projection operator on a learned image subspace as in
[6]. Another well known approach is called regularization
by denoising (RED) [7]. This approach uses a Laplacian
regularizer that represents the cross-correlation between an
estimated image and its denoising residual produced by some
pre-trained denoiser. Finally, there are other ways to leverage
pre-trained priors for regularization, e.g. Regularizing Gradient
(pnp-ReG) [8], which trains the gradient of a Maximum A
Posteriori regularizer jointly with its corresponding denoiser
to be used in a gradient-based iterative algorithm. Pre-trained
priors have the advantage of being generic in the sense that
they can be used for any inverse problem without re-training.
However, being trained independently of the task at hand, pnp
methods may not result in optimal performance.

Unrolled optimization methods are less general in appli-
cation, but by coupling optimization algorithms with end-to-
end trained regularization, they recently emerged as powerful
solutions to inverse problems [9]–[11]. Similar to pnp meth-
ods, the neural network (NN) is used to regularize the inverse
problem. However, training such unrolled NNs end-to-end can



come with a large memory footprint and unrolled methods do
not generally train the underlying prior, because they have a
fixed number of iterations and do not generally converge [12].

In the context of image reconstruction, deep equilibrium
(DEQ) models [12]–[16] can be seen as an extension of
unrolled methods to with a theoretically infinite amount of
iterations - a mathematical description is found in [13]. DEQ
models leverage fixed-point properties (convergence for over-
parametrized structures is shown in [16]), allowing for simpler
back-propagation, which can even be done in a Jacobian-free
manner [14], visualized in Fig. 1.

DEQ models allow the training of an iterative method on the
resulting reconstruction-error [12], while still training the full
iterative method instead of limiting the amount of iterations.
While the Gaussian assumption made for pnp does provide
good results [1]–[5], it is worth exploring how one could
improve the training of a plug-and-play prior, as the noise
generated by a data-step in ADMM or FB is generally not
Gaussian in nature. DEQ models allow for this by allowing
end-to-end training the full iterative scheme on the reconstruc-
tion error.

Fig. 1. Traditional back-propagation and Jacobian-free back-propagation [14]
(only back-propagates through one step using the fixed-point x∞ as input).

The contributions of this paper are:
• An MTDEQ model is used to train a network

for multi-task proximal regularization on the result-
ing reconstruction-error, resulting in competitive perfor-
mance.

• We demonstrate that the resulting MTDEQ-prior outper-
forms a Gaussian denoiser when used in pnp-ADMM,
especially when the input to the regularization is very
different from an image that is perturbed by AWGN.

• Using hyper-parameters that were set up for the pnp-
ADMM with a Gaussian denoiser to test the MTDEQ-
prior shows that it is flexible with respect to hyper-
parameters.

• Training a prior with the FB algorithm and testing it in
a pnp-ADMM algorithm shows the trained regularization
is not constrained to the scheme it was trained in.

II. METHODS

We propose the MTDEQ model as a method of training a
multi-task prior that can be used for different problems and
different noise-levels. Since DEQ models can train a regular-
ization for an inverse problem on the resulting reconstruction-
error, we train a multi-task regularizer by exposing the NN to
different degradations and noise-levels in training.

To solve the inverse problem for multiple tasks, we use the
FB algorithm in conjuction with the DEQ model on a range of
noise-levels and degradations, resulting in our MTDEQ model.

We chose the FB algorithm for training, because it does not
rely on a proximal operator for the minimization of the data-
term.

Algorithm 1 MTDEQ
Require: Training Data D ⊂ Rd, d ∈ N>0

Set of problems A ⊂ {A : Rd → Rd̃ | d̃ ∈ N>0}
Set of noise-levels Σ ⊂ R
Jacobian-free back-propagation procedure Optim
Resizing procedure P : Rd̃ → Rd

for a number of epochs do
for x̂ ∈ D do

for i = 1, ..., N do
(Ai, σi) picked from A× Σ

AWGN εi ∈ Rd̃ with standard deviation σi

yi ← Ai(x̂) + εi ▷ Generate degraded images
zi ← P (yi)
while 1

d∥zi − fi,θ(zi)∥22 ≥ 10−7 do
zi ← fi,θ(zi) ▷ Find equilibrium point

end while
Li ← 1

d∥fi,θ(zi)− x̂∥22
end for
L← 1

N

∑N
i=1 Li ▷ Sum losses for all problems

θ̃ ← Optim(θ, L) ▷ Update NN-parameters
end for

end for

The MTDEQ that trains the prior is described in algorithm
1. For each ground truth image x̂, we pick N degradations
and noise-levels at random, leading to N degraded and noisy
observations. This in turn leads to N estimates produced by
the iterative procedure used. We use the FB algorithm in this
training of the prior:

fi,θ(z) := Qθ,σi

(
z − η

δ 1
2∥Aiz − yi∥22

δ z

)
, (3)

where Qθ,σ represents regularization in form of a DRUNet
(as in [4] and [5]) with parameters θ used on noise-level σi;
η ∈ R is a step size. The iteration in the while-loop results
in an equilibrium point z∞

i ∈ Rd, which is the estimated
reconstructed image. The loss Li for each of the N estimates
is averaged and then used for Jacobian-free back-propagation,
which finds a direction of descent p that minimizes the loss
for the N degradation problems considered:

p =
1

N

N∑
i=1

∂l(z, x̂)

∂z

∣∣∣∣
z=z∞

i

∂fi,θ(z
∞
i )

∂θ
, (4)

where l(z, x̂) = 1
d∥z − x̂∥22.

The NN is exposed to different degradations in training,
and is so guided to represent a regularizer, as the data-fidelity
step (i.e. the gradient descent on the data-term) takes care
of degradation-dependent operations. Because a DEQ model
iterates until convergence, the resulting NN represents a prior
for the problem at hand that is not limited to the specific



architecture used. This means that if the regularizer is end-to-
end trained while being exposed to different degradations and
noise-levels, we can strive to train a more general prior that
contains information on what proper clean images look like -
beyond the assumption that a proximal regularization behaves
like a Gaussian denoiser.

III. EXPERIMENTS

A. Step-sizes and degradations

We chose a step-size of η = 0.49 in the FB algorithm for
the MTDEQ model. The noise-standard-deviations considered
in training are taken from Σnoise = {0.005 · s | s = 0, 1..., 49}
(pixel-values are normalized to be in [0, 1]). The degradations
used for training are:

• super-resolution by using bicubic down-sampling with
factor fdownscale ∈ {1, 2, 3, 4}, where the iterations are
initialized using bilinear resizing to the original size

• blurring with a Gaussian kernel with standard-deviation
σblur picked from Σblur = {0.4, 0.8, 1.2, 1.6, 2.0, 2.4}

• pixel-wise completion with each pixel having a chance
of pdrop ∈ {0.2, 0.4, 0.5, 0.6, 0.8, 0.9} of being dropped -
each selection of pdrop corresponds to a different degra-
dation

Each image is degraded by 5 degradations and the result-
ing losses are averaged for back-propagation, meaning one
ground-truth image is degraded five ways.

B. Dataset, architecture and optimizer

The dataset used in training is a collection of BSD500
(300 images [17]), flick2k (2650 images [18]), the Waterloo
exploration database (4744 images [19]) and DIV2k (900
images [20]), similar to the one used in [4], [5], [8]. When an
image is drawn from the dataset, it is cropped to be 128 times
128 pixels in size (the location of this cropping is random at
each iteration).

The NN used is a DRUNet that uses the noise-level-map
as additional input as in [5]; it is pre-trained as a Gaussian
denoiser, using the NN obtained in [5]. The noise-standard-
deviation given as input in each regularization step of the
FB algorithm is σdenoise = ησnoise, where σnoise ∈ Σnoise
is the noise-level considered. Back-propagation is done in a
Jacobian-free manner [14].

The algorithm is considered to have converged after the
mean square error (MSE) of the difference between iterates
is less than 10−7 and we capped the amount of iterations at
350. Further, we terminate iteration if any coordinate of the
estimate has an absolute value larger than 1010. In training,
the procedure properly converges before 350 iterations and
without any coordinate exceeding 1010 in more than 99% of
cases.

The weights of the NNs are updated using the adam
optimizer [21] with a batch-size of 16, using 250 epochs,
starting with a learning-rate of 10−5 and scaling it by a factor
of 0.25 every 25 epochs.

TABLE I
COMPARING OUR MTDEQ-BASED PRIOR USED IN PNP-ADMM ON THE
SET5 DATASET [22] FOR COMPLETION WITH σNOISE = 0 AND 80 AND 90

PERCENT OF PIXELS DROPPED, RESPECTIVELY AS WELL AS AND
GAUSSIAN DEBLURRING WITH DIFFERENT DEGREES OF BLURRING AND
σNOISE = 0.01. ST COMP AND ST SR ARE SINGLE-TASK DEQ PRIORS

TESTED IN PNP-ADMM (SEE III-C). THE RESULTS FOR EGULARIZATION
BY DENOISING (RED) [7], PNP-ADMM WITH THE GAUSSIAN DENOISER

(GAUSS) FROM [5] AND PNP-REG [8] ARE TAKEN FROM [8]. ALL
RESULTS ARE REPORTED IN PEAK-SIGNAL-TO-NOISE-RATIO (PSNR) AND

DB. THE HIGHEST PSNR PER TASK IS WRITTEN BOLD AND THE
SECOND-BEST IS UNDERLINED.

Methods Completion Deblurring

80% 90% σblur = 1.6 σblur = 2.0

RED 27.17 22.75 31.76 30.62
ST Comp 30.24 26.71 31.92 30.68
ST SR 29.48 24.96 32.38 31.43
Gauss 30.20 26.20 32.06 30.88
pnp-ReG 30.36 26.94 32.51 31.19
Proposed 30.72 27.09 32.82 31.83

Proposed vs. Gauss +0.52 +0.89 +0.76 +0.95

TABLE II
THIS TABLE SHOWS THE RESULTS FOR SUPER-RESOLUTION ON AN IMAGE

THAT WAS DOWN-SAMPLED USING A GAUSSIAN KERNEL WITH
σBLUR = 0.5 AND THE RESULTS FOR SUPER-RESOLUTION ON A

BICUBICALLY DOWN-SAMPLED IMAGE. THESE DEGRADATIONS WERE
TESTED ON TWO NOISE-LEVELS AND WITH SUPER-RESOLUTION FACTORS

TWO AND THREE, RESPECTIVELY.

Methods
Bicubic Gaussian
w/ σnoise w/ σnoise

0.00 0.01 0.00 0.01

2x
SR

RED 35.05 33.78 34.99 32.84
ST Comp 34.07 33.55 33.42 32.46
ST SR 35.71 34.29 35.57 33.23
Gauss 35.20 33.80 35.14 32.74
pnp-ReG 35.34 34.29 35.30 33.41
Proposed 35.61 34.43 35.42 33.45

Proposed vs. Gauss +0.41 +0.63 +0.28 +0.71

3x
SR

RED 31.47 30.78 31.44 30.05
ST Comp 30.69 30.09 30.28 28.80
ST SR 32.08 30.97 31.97 30.02
Gauss 31.49 30.39 31.45 29.17
pnp-ReG 31.75 31.13 31.60 30.39
Proposed 32.10 31.15 31.94 30.17

Proposed vs. Gauss +0.61 +0.76 +0.49 +1.00

C. Comparing to plug-and-play

We compare our prior to RED, pnp-ADMM with a Gaussian
denoiser and pnp-ReG by plugging the prior resulting from the
MTDEQ into the ADMM algorithm as described and used
for testing in [8]. The number of iterations, minimal denois-
ing standard-deviation σ0 and maximal denoising standard-
deviation σm used in the ADMM are the ones that produced
the best results for the pnp-ADMM reference method based on
a Gaussian denoiser and are listed in [8]. This means that the
hyperparameters were not fine-tuned for the MTDEQ-prior.
The degradations that the MTDEQ model was trained on are
Gaussian deblurring, dropped pixels and super-resolution on
an image that was down-sampled using a bi-cubic kernel; this
is significant because one of the degradations tested is super-



(a) Example for completion with 90 percent of pixels dropped and σnoise = 0.

(b) Example of Gaussian deblurring with σblur = 1.6 and σnoise = 0.01.

(c) Example for bicubic super-resolution with factor two and σnoise = 0.01.

Fig. 2. Image-comparisons with RED [7], pnp-ADMM with the Gaussian denoiser from [5] (Gauss), pnp-ReG [8], and pnp-ADMM with the prior obtained
via MTDEQ; results are reported in PSNR.

resolution on a image that is degraded using a Gaussian kernel
(with σblur = 0.5). The results can be seen in Tables I and II and
the visual results can be observed in Fig. 2. The pnp-ADMM
is the closest comparison to our MTDEQ-prior, since it uses
the same algorithm in testing, only with a Gaussian denoiser
as prior.

ST Comp and ST SR are single-task DEQ priors trained
using the MTDEQ with the following parameters: Both have
N=1 and ST Comp is trained for A only containing pixel-
wise completion with probability pdrop = 0.9 and no AWGN
(i.e. Σnoise = {0.00}). ST SR is trained for A containing only
bicubic down-sampling with factor fdownscale = 2 and AWGN
of Σnoise = {0.01}. In testing, both single-task priors were
plugged into the pnp-ADMM scheme from [8] with the same
parameters as the Gaussian denoiser and our MTDEQ-prior.

The following section will discuss the results found from
the above experiments and talk about the advantages and
disadvantages of our MTDEQ-prior when compared to other
methods.

IV. RESULTS AND DISCUSSION

Using the MTDEQ model to train on different degradations
and noise-levels leads to a multi-task prior usable for iterative
methods, like the pnp-ADMM algorithm we use for testing.
Different from pnp training, the prior trained with MTDEQ is
exposed to a larger range of qualitatively different inputs (i.e.
images that are not purely perturbed by AWGN).

The results were obtained using a different iterative algo-
rithm from the one used to train the MTDEQ-prior. This means
that the NN represents a regularization that is not closely
linked to the exact structure of the iterative algorithm used
and can be said to represent an image prior for the problems
at hand.

As discussed in III-A, the MTDEQ-prior is trained for a
single step size and still performs well when used in the
fine-tuned setting of the pnp-ADMM algorithm [8], where
different step-sizes and denoising-levels are used for different
degradations. This suggests that the method could be further
improved, if one could find a correspondence between different
degradations and step-sizes to be used for the MTDEQ.



The proposed MTDEQ-prior performs well on multi-task
image reconstruction and this is obvious on problems with
no AWGN added to the input, where the degradation itself
is responsible for the entire difference between observation
and ground truth. This is quite reasonable, because the best
denoiser for a zero-noise-problem is the identity, which pro-
vides no regularization at all. Pnp methods usually remedy
this by using a low denoising-level instead of zero, so the
denoiser still provides some regularization. A trick of this
sort is not necessary for a regularizer that was trained on
the reconstruction error, as it can learn to add meaningful
regularization, even when the ”noise-level-map” is set to zero.
Also, the closer the inverse problem is to a Gaussian denoising
problem, the more appropriate a Gaussian denoiser is for the
purpose of regularization. Thus, it can be seen that the use of
a Gaussian denoiser for proximal pnp methods can be further
improved using DEQ, especially when the inverse problems
considered differ significantly from pure Gaussian denoising
problems.

Single-task DEQ models do not perform especially well
when compared in a pnp-ADMM algorithm, but we have seen
that a single-task DEQ model clearly outperforms the MTDEQ
on the problem and noise-level it was trained on, when used
in FB. While the comparisons in Tables I and II are unfair
to single-task DEQ models because they are only trained for
a single noise-level and pnp-ADMM uses scaling denoising-
levels, the comparisons showcase that the MTDEQ model adds
significant performance when used on a range of noise-levels
and degradations. Thus, the multi-task training-structure does
add performance besides the performance single-task DEQ
models bring to the table.

We consider the pnp-ADMM using a Gaussian denoiser for
proximal regularization to be the closest comparison to our
prior, as the only difference is the used regularization. When
comparing the reconstruction results for the pnp-ADMM
which uses a Gaussian denoiser and our MTDEQ-prior, it
is clear that the MTDEQ-prior produces better performance
across all the degradations and noise-levels tested, meaning
that using an MTDEQ model to fine-tune a prior beyond a
Gaussian denoiser does indeed increase performance.

As the DEQ requires iterating until convergence before
allowing updates to the weights, it is significantly slower
in training when compared to a denoiser, which only has
one forward-operation. Combining the training objectives of
a denoiser with the loss function used by a MTDEQ model
approach may allow for a speed up in training while further
improving performance.

V. CONCLUSION

Among the different ways of solving inverse problems, DEQ
models permit end-to-end training of a regularization and are
well-suited to solve multi-task inverse problems, bridging the
gap between end-to-end trained methods like unrolled models
or single-task DEQ models and pnp methods: An MTDEQ
model can be used to train a multi-task prior that outperforms
a Gaussian denoiser in a pnp-ADMM scheme.
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