
HAL Id: hal-04195520
https://hal.science/hal-04195520

Submitted on 4 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Compression of PlenOctree Model Attributes Enabling
Fast Communication and Rendering of Neural Radiance

Fields
Davi R Freitas, Christine Guillemot, Ioan Tabus

To cite this version:
Davi R Freitas, Christine Guillemot, Ioan Tabus. Compression of PlenOctree Model Attributes En-
abling Fast Communication and Rendering of Neural Radiance Fields. EUSIPCO 2023 - European
Signal Processing Conference, Sep 2023, Helsinki, Finland. pp.1-5. �hal-04195520�

https://hal.science/hal-04195520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Compression of PlenOctree Model Attributes
Enabling Fast Communication and Rendering of

Neural Radiance Fields
Davi R. Freitas

INRIA
Rennes, France

davi-rabbouni.de-carvalho-freitas@inria.fr

Christine Guillemot
INRIA

Rennes, France
christine.guillemot@inria.fr

Ioan Tabus
Tampere University
Tampere, Finland
ioan.tabus@tuni.fi

Abstract—Neural Radiance Fields (NeRF) have led the ad-
vancement of techniques for 3D scene representations for syn-
thesizing views through the use of a multilayer perceptron.
Its inability to achieve real-time performance for photorealistic
image rendering, however, has enabled the advent of methods that
speed-up rendering time at the cost of rendering quality or model
complexity. In this work, we focus on the existing Plenoctree
method, which possesses high rendering speed but unfortunately
needs a large space for storing and transmitting its model. We
address this weakness by proposing improvements to the differ-
ent blocks of its pipeline and adding an efficient compression
stage, without modifying the underlying representation, while
maintaining high rendering quality and speed. Results over a set
of test camera poses – using our methods which were obtained
with data from the training and validation datasets – show that
we can reduce about eight times the bit rates of the encoded
models and still obtain a higher quality of the synthesized images
when comparing them to the original PlenOctree models or,
alternatively, a reduction of about 50 times while presenting
minimal degradation for novel view synthesis.

Index Terms—Compression, Real-Time Volume Rendering,
NeRF, G-PCC, PlenOctrees, Neural Scene Representation

I. INTRODUCTION

Modeling 3D scenes from image data to render novel
photorealistic views has been a central topic in the field of
computer graphics and vision. The most recent advances have
come from the use of neural volumetric representations, such
as the volumetric Neural Radiance Fields (NeRF) [1]. NeRF
is an implicit scene representation that models a scene as
a continuous neural function through the use of multi-layer
perceptrons (MLP). This function maps a 5D input – 3D
spatial coordinates and 2D viewing directions – into a view-
dependent RGB triplet and one value corresponding to the
volume density. NeRF’s success has led to several extension
works targeting its limitations, such as generalization [2],
relighting [3], and different imaging input types [4], [5].

In this work, our interest lies in the rendering performance
aspect of NeRF. Although the implicit representation of the
vanilla method is able to encapsulate the information about the
scenes very efficiently from a size point of view, its rendering

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant
agreement No 956770.

speed is very slow. Therefore, recent works have attempted
to improve the rendering time performance of NeRF [6]–
[9]. Nonetheless, these rendering time speed-ups come with a
tradeoff either as a decrease in the rendering quality [7], [9],
an increase in storage size [6], [9] or speed-ups in rendering
that are not as significant [8], [9]. Accordingly, PlenOctrees [6]
is, to the best of our knowledge, the state-of-the-art (SOTA)
solution in terms of combining rendering quality and speed.
Thus, we propose in this paper to improve upon Plenoctree’s
biggest drawback for real-time applications, which is storage
size, by working on the method’s pipeline in its entirety.

II. NERF: KEY CONCEPTS

Neural Radiance Fields (NeRF) [1] are an implicit scene
representation approach through a continuous function F :

(c, σ) = FΘ(x,d), (1)

where x = (x, y, z) are the 3D coordinates of a point and d =
(θ, ϕ) are the viewing direction. In NeRF, F is implemented
by two MLPs that predict a color c = (r, g, b) and a volume
density parameter σ required for volumetric rendering.

NeRF uses the c, σ output parameters for a classic volume
rendering [10]. A predicted pixel color Ĉ(r) from the original
C(r) is given by accumulating the transmittance T of a ray
r(t) = o+ td, where o is the ray origin that is dependent of
the input image camera position,

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci, (2)

with Ti = exp(
∑i−1

j=1 σjδj) and δi = ti+1− ti is the step-size.
Then, the MLPs are trained by minimizing the squared error

with a rendering loss Lr between ground truth and predicted
pixels from a set of training images with known camera poses,

Lr =
∑
r∈R

∥ Ĉ(r)− C(r) ∥22, (3)

where R is the batch of rays.
From Eq. 2, each ray r (or pixel) has to be sampled N times,

where each one corresponds to a query to the MLP to fetch ci
and σi. Thus, an image of resolution 800×800 would require
millions of passes by the MLP, making the process slow.



Therefore, proposals that seek to improve the rendering
speed for real-time performance target the acceleration of
this procedure. Methods like PlenOctrees [6] and SNeRG [7]
achieve this by pre-baking the outputs from NeRF into explicit
structures such as sparse voxels, while KiloNeRF [9] does it by
breaking the MLP down into multiple smaller ones. DIVeR [8]
deviates from NeRF-based approaches by changing the volume
rendering integral into a deterministic integrator with the aid
of a voxel grid. Overall, PlenOctrees proves to be the SOTA
w.r.t. balance between rendering speed and quality, although
it has high storage requirements as its biggest hindrance. We
look to address this weakness in this work.

III. PROPOSED METHOD

Explicit neural representations are able to provide faster
rendering speeds compared to their implicit counterparts, for
the price of larger storage costs, which is why we look to
reduce PlenOctree’s storage footprint while keeping its speed.

The full pipeline of the work is shown in Fig. 1 and further
detailed in [6], while our proposed changes are explained in
the next subsections, divided by the blocks of Fig. 1. The scene
is encoded into a modified NeRF to be initially trained, where
we implemented changes to provide a higher baseline scene
representation. Then, the neural model is densely sampled for
the octree parameters extraction: the density σ, directly used
in Eq. 2; and the Spherical Harmonics (SH) coefficients k,
which are evaluated according to the ray direction (θ, ϕ) to
obtain the view-dependent color. After PlenOctree is built, it
is then optimized by the rendering loss (Eq. 3) on the training
images. Following that, we compress the fine-tuned octree by
encoding both the σ and k as if they were attributes of a point
cloud (PC), where the voxels corresponds to the octree leaves.
A. Neural Network Training

To populate the leaves of the octree, PlenOctrees use an
altered NeRF, called NeRF-SH [6]. Instead of outputting a
view-dependent RGB triplet, this NeRF-SH outputs a set k
of SH of degree ℓmax. SHs are a complete set of functions
defined on the surface of a sphere, where the absolute value
of each function Y m

ℓ (d) corresponds to the distance of the
surface from the origin in the direction d, has degree ℓ and
order m. Hence, any function that can be defined on the
surface of a sphere can be expressed as a sum of the product
between the Y m

ℓ (d) and kmℓ , and Eq. 1 becomes:

(k, σ) = FSH
Θ (x),where k = (kmℓ )m:−ℓ≤m≤ℓ

ℓ:0<ℓmax
. (4)

Since the outputs FSH are independent of the direction,
d is not necessary during the extraction, being required only
during inference time. When rendering, the color c(d;k) in
Eq. 2 can then be obtained by the sum over m and ℓ of the
products kmℓ Y m

ℓ (d), which in the end is normalized to the
color range (0, 1) by a sigmoidal function.

Our first modification to NeRF-SH stems from Mip-NeRF
[11]. When generating the rays, both during the neural network
(NN) stage and the octree optimization block, we add a half-
pixel offset to each ray’s direction, making them pass through
the center of each pixel instead of the corners, as in [1].

Moreover, we also look to reduce the generalization gap
between trained and novel views due to the lack of geometry
awareness in NeRF’s training. With that in mind, we do this by
regularizing NeRF’s loss function with a total variation term,

LT V =
η

R

∑
i,k

∥ ∇σ(ri(tk)) ∥2, (5)

where R is the size of the rays batch R and η is a hyper-
parameter which we empirically found as 10−11 for all scenes.

Finally, we also change the sparsity loss from PlenOctrees
for the Cauchy loss introduced in SNeRG [7]

Lcauchy = λs

∑
i,k

log(1 + 2σ(ri(tk))
2, (6)

where λs is a hyper-parameter set at 10−4 for all experi-
ments (see [7]). We use Lcauchy to promote sparsity rather than
the one in [6] due to how it concentrates opaque voxels around
the surfaces, hence creating a more consistent geometry [7].

All in all, the total training loss L of our network becomes

L = Lr + Lcauchy + LTV . (7)

B. Extraction and Optimization
The usage of SHs for the color with NeRF-SH is especially

important for the extraction. As the network does not require
the viewing direction on the input (Eq. 4), it allows the gener-
ation of Plenoctree nodes with just the positional information.
This representation gives PlenOctrees the ability to represent
the view-dependent appearances of non-Lambertian surfaces.

1) Data Format: The main disadvantage of building a
tabulated structure for rendering is the size: PlenOctrees can be
up to two orders of magnitude larger than NeRF-like models.
We detail in Table I the size distribution for a PlenOctree of
the Lego scene from the Blender dataset [1].

TABLE I: Breakdown of components and their sizes for a
PlenOctree checkpoint. Estimated sizes are given in bytes.

Name Shape Format Estimated Size (B)
Child 2, 982, 398× 8 32-bit 91.0× 220

Parent depth 2, 982, 398× 2 32-bit 22.8× 220

Data (σ, k) 2, 982, 398× 8× 49 16-bit 2.18× 230

Metadata - 32/64-bit 92
Total - - 2.29× 230

Table I shows that the σ and the SHs from the PlenOctree
nodes are responsible for about 95% of the 2.3 GB required
to store the PlenOctree model. From this aforementioned
95% of data, 98% stems from the 48 coefficients needed to
represent the SHs of degree ℓ = 3. Thus, the capability to
represent view-dependent effects, such as specularity and non-
Lambertian surfaces, proves to be the biggest bottleneck for a
reduced bit rate. Child and Parent depth, responsible for most
of the remaining 5%, are two data structures for fast traversing
the octree. Hence, for the fast renderer procedure to be as it
is, they have to be conveyed losslessly in our compression.



Fig. 1: Schematic for the pipeline of processing stages of the volumetric representation and rendering. A scene is encoded in a
NeRF-like network through training; then the trained network is evaluated in to extract the density and SHs into a PlenOctree
model; then, this octree is fine-tuned, from where it can be compressed so that it can be conveyed in a lesser bit-rate range.

2) Reducing the Number of Occupied Voxels During Op-
timization: The optimization in [6] uses the loss in Eq. 3.
To reduce the model complexity for further bit-rate savings
during compression, we introduce here an additional step
of thresholding over the σ after the fine-tuning with cross-
validation. This aims to reduce the number of points while
minimizing the degradation due to their removal, by taking out
the points that have a lesser influence for volume rendering.
This can be done by estimating the opacity α for each node,

α = 1− exp(−σδ), δ ≈ 2/2N (8)

where N is the corresponding octree’s depth (grid size of 2N ).
After that, the “distilled” PlenOctree is again fine-tuned with
cross-validation, which lets the model partially compensate for
the knowledge gap caused by the points removal.
C. Compression

PlenOctrees provided attempts to reduce the model’s size,
such as increasing the σ threshold during extraction, removing
the auto-bounding box scaling, and reducing the resolution
of the grid [6]. Also, a method for compressing PlenOctree’s
colors consisted of applying a median-cut algorithm [6] to
quantize these coefficients to a color map of 216 colors.

In this work, we aim to compress both the σ and the
k coefficients. Consider the coordinate indices in the grid
of the n-th child node of a PlenOctree of depth M to be
xoct(n) = [Xn, Yn, Zn]. We can view this set of nodes
as a depth-M voxelized PC P of N voxels, such that
the coordinates representing its geometry xpc are given by
xpc = xoct × 2M − 0.5. The attributes corresponding to
each point are then s(n) = [σn,k

0
n0,k

−1
n1 ,k

0
n1,k

1
n1, · · · ,kℓ

nℓ],
with km

nℓ ∈ R3. In other words, P is a voxelized PC
where instead of having a single attribute for the color, has
multiple attributes corresponding to the parameters needed
for PlenOctree’s volume rendering. Thus, P indirectly carries
view-dependent colors through this set of SH coefficients.

Thus, a natural way to encode P is by using SOTA codecs
for PCs, such as the Geometry- and the Video-Based Point
Cloud Coding standards [12] (G-PCC and V-PCC, respec-
tively) from the Moving Picture Experts Group (MPEG). Since
we aim to keep the geometry xpc unchanged so it does not

affect Plenoctree’s structure, the choice of G-PCC [13] is due
to its “lossless geometry, lossy attributes” mode to encode P .

Due to P ’s multiple attributes, we proceed as in the modified
G-PCC for multiple attribute coding in [14]. While the work
in [14] compressed Plenoptic Point Clouds, the manner with
which the color attributes were encoded as coefficients of
a Karhunen–Loève Transform (KLT) over the camera space
makes it suitable for our work since our SHs in s are also
coefficients of an orthogonal basis. However, although it was
possible to cascade the SH decomposition with a KLT decorre-
lation stage, we found that SH decomposition has the channels
already decorrelated enough, making KLT unnecessary.

While on one hand the xpc is losslessly encoded by di-
rect geometry quantization using octrees (further explained
in [13]), we encode our attributes s with both predictive
coding schemes based on RAHT and Prediction and Lifting
transforms (Predlift [13]), using quantization stepsizes in the
bit-rate range expected from G-PCC’s common test conditions.

Each attribute is individually scaled for each attribute color
channel to the range of [0, T ], with T varying per attribute
type. For σ, T is chosen to be 2047 due to the range of α
and considering Eq. 8 with an expected grid size of 512. For
the SHs, T is selected as 1023 for the DC (ℓ,m = 0) and
511 the ACs (ℓ ̸= 0), due to the coefficients’ ranges. The
scaling on the SHs is done over their absolute values, with
their corresponding signs being sent as side information.

After the attributes are decoded and unscaled, the PC P can
be reconstructed into P̂ . From the geometry xpc of P̂ that was
encoded losslessly, we can create a reconstructed PlenOctree
with the same octree structure as the original, but with the
lossy reconstructed σ and k, hence fully reconstructing the
tree data structure of Table I for the fast renderer of [6].

IV. EXPERIMENTS
A. Experimental Setup

1) Dataset: We use in our experiments the NeRF-Synthetic
360 – also known as Blender – dataset from the original
NeRF [1]. Here we use the set of scenes {“chair”, “drums”,
“ficus”, “hotdog”, “lego”, “materials”, “mic”}, where each
one contains 100 training, 100 validation and 200 test images
of resolution 800 × 800 with ground truth camera poses.



Although the total training time takes on average 2 days per
scene as in [1] due to the NN stage, this step can be sped
up by terminating early while producing minimal rendering
losses, due to its optimization step with the octree (see [6]).

2) Baselines: We use the original PlenOctrees [6] as the
main baseline, since our work uses this method as a base due
to its balance between rendering quality and speed. Moreover,
we also use as references KiloNeRF [9] and DIVeR [8], which
are not as comparably fast, and SNeRG [7].

3) Performance evaluation: The models are evaluated using
the 100 training views (with training stoppage based on the
100 validation views). All PSNR values reported in the paper
(Fig. 2 and 3, Tab. II-IV) are the averages of the individual
image PSNRs according to the respective color spaces as it is
commonly done in reference methods such as [1], [6](measur-
ing the quality of the RGB synthesized images compared to
ground truth test image) at each of the 200 test poses in each
scene, further averaged over the reported scenes. Reported
sizes are given in either mebibytes (MiB) or gibibytes (GiB),
which correspond to 220 and 230 bytes, respectively.
B. Improved Neural Network Stage

We evaluate the changes to the NN step by performing an
ablation study by taking the average PSNR, SSIM, and LPIPS
for the testing data over the scenes lego and drums. Results
are summarized in Tab. II.

TABLE II: Quantitative ablation study of our solution by the
average of the “lego” and “drums” scenes.

PSNR ↑ SSIM ↑ LPIPS ↓
NeRF-SH [6] 28.97 0.947 0.064
NeRF-SH + Recenter 29.45 0.951 0.061
Ours - (NN stage only) 29.48 0.951 0.062

The ablation results show a larger contribution of the
recentering pixels to the improvement of the model, at least
in terms of rendering quality – which is around 0.5 dB for
these two scenes. Moreover, the next sections show how our
changes affect the rest of the processing pipeline.
C. Octree model extraction with Thresholding

For our experiments with threshold and re-optimization, we
choose different values of σ in the set of [0.01, 0.1, 2, 10,
25, 50, 100]. Fig. 2 shows the decrease of the rendered PSNR
over the test data for the lego scene, due to the reduction of
points. Notice how, as the threshold value increases, the greater
the effect the re-optimization has. Values of σ of 2 and 10
provide a nice balance between quality loss and reduction of
the number of points, which is further shown in Tab. III.

Results over the test data of all scenes from Tab.III suggest
that for σ = 2, the loss of quality is minimal while eliminating
1/4 of the points from the original model. One notices an

TABLE III: Quality and size comparison of the octree accord-
ing to different σ values for thresholding with re-optimization.
Average from the test data of all scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ Points (107) ↓
W/O Threshold 32.33 0.970 0.039 2.10

σ = 2 32.31 0.970 0.039 1.44
σ = 10 32.11 0.968 0.043 1.02

Fig. 2: Results for lego in terms of PSNR (in dB) vs number
of points (in 107) for threshold + optimization stage. Each seg-
ment corresponds to a different σ value for the threshold. The
bottom points are the PSNR values before the re-optimization
procedure, while the points at the top are post-optimization.

insignificant drop of the test synthesis PSNR from the original
(σ = 0.01) to the thresholded at σ = 1, although the number of
points of the model is reduced by more than half on average.
D. Compression

Fig. 3: RD performance results for the lego scene comparing
PlenOctree’s [6] solutions and ours, using G-PCC’s attribute
coders based on Predlift and RAHT.

Our compression experiments with G-PCC were done with
the modified version proposed in [14], based on version 11.0.
Fig. 3 shows the rate-distortion (RD) performance of the
baseline (original models from [6]), where the rate is shown
in GiB versus the average PSNR over the synthesized views.
The RD line for each model is composed of two points, where
the rightmost one represents the uncompressed model and the
left point is the one compressed as in [6], based on median-cut
quantization. “1.4 GB” and “0.4 GB” are proposed in [6] to
reduce the model size. A label of “SH-n” means that n SH
coefficients are used for each color channel. Our curves for
both RAHT- and Predlift-based compression use the standard
quantization levels in G-PCC [13] for lossy attribute coding.
All our curves encode the geometry losslessly, and these bit
rate costs are taken into account. Hence, the “lossy/lossless”
terminology here refers to how G-PCC encodes the σ and k.



TABLE IV: Baseline comparisons on Synthetic scenes. “Ours
- lossless” is our solution using Predlift-based compression
in lossless attributes modes. “Ours - lossy” is our solution
compressed in lossy mode with RAHT in its highest bit rate.

PSNR ↑ SSIM ↑ LPIPS ↓ Size (MiB) ↓
PlenOctrees [6] 32.02 0.968 0.043 1900.50
SNeRG [7] 30.73 0.962 0.035 72.02
KiloNeRF [9] 31.25 0.964 0.023 159.29
DIVeR [8] 32.40 0.968 0.024 56.00
Ours 32.33 0.970 0.038 1748.3
Ours - lossless 32.29 0.970 0.039 233.09
Ours - lossy 32.04 0.966 0.047 39.40

Results show that our approach outperforms PlenOctree’s.
Our RAHT-based approach shows to be around three times
smaller than the compressed “0.4 GB” curve of the reference
while being more than 0.6 dB better in PSNR. Notice also how
the RAHT-based method outperforms the Predlift one, which
was expected from the performance results from [14] due to
the low correlation of the neighbors’ attributes. Our compres-
sion results between using 9 or 16 SHs per color channel also
show the importance of the more refined view-dependence
modeling capability of the SH-16 model. Finally, applying
KLT over the SH-transformed coefficients (“RAHT+KLT”)
does not seem to improve the overall performance.

E. Novel View Synthesis

(a) Ground truth (b) [6] (32.19 dB)

(c) Ours (32.49 dB) (d) Ours - lossy (32.09 dB)

Fig. 4: Qualitative results for a test view of lego from (b)
original Plenoctrees [6], (c) our uncompressed model, (d) our
compressed model with RAHT. The hole inside the truck’s
bucket is better rendered in our model.

At last, we compare our uncompressed solution (“Ours”),
compressed in lossless mode (“Ours - lossless”), and with
RAHT-based coder at its highest rate (“Ours - lossy”) against
the SOTA. Results in Tab. IV are computed over the 200
testing views from the seven scenes of the Synthetic 360 [1].

Results support that our uncompressed method improves
upon the original PlenOctrees while reducing the average
model size. Our lossy compression method provides a size
reduction of almost 50 times at the cost of slight performance

degradation compared to our uncompressed solution, but still
at a similar quality to PlenOcrees, and outperforming SNeRG
and KiloNeRF. While our model is outperformed by DIVeR
in terms of quality, ours is about 30% smaller. Moreover,
PlenOctree’s high rendering speed results in our model also
being faster by 1.5+ times, as in [8]. Our lossless approach
reduces the model’s average size by around 8 times. Note
that the small degradation in the quality is due to the scaling
step required for it to be applied to G-PCC. In Fig. 4, we
also show a qualitative comparison of our uncompressed and
compressed with G-PCC methods against Plenoctrees. Notice
how the hole inside the truck’s bucket is more prominent in
our uncompressed model in 4-c) than in 4-b).

V. CONCLUSION
We proposed a method to address PlenOctree’s size dis-

advantages while keeping its rendering quality and speed,
by targeting changes in the different stages of its pipeline,
specifically the NN training, optimization and compression.
Results show that we achieve a size reduction of almost
50 times while producing reduced degradation in terms of
rendering quality for novel view synthesis. The metrics suggest
that our model is competitive with the SOTA.

REFERENCES

[1] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “Nerf: Representing scenes as neural radiance fields for view
synthesis,” in Computer Vision – ECCV 2020, A. Vedaldi, H. Bischof,
T. Brox, and J. Frahm, Eds., Cham, 2020, pp. 405–421, Springer
International Publishing.

[2] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su,
“Mvsnerf: Fast generalizable radiance field reconstruction from multi-
view stereo,” in ICCV, 2021, pp. 14124–14133.

[3] D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J.T. Barron, and
P.P. Srinivasan, “Ref-NeRF: Structured view-dependent appearance for
neural radiance fields,” CVPR, 2022.

[4] K. Gu, T. Maugey, S. Knorr, and C. Guillemot, “Omni-nerf: neural
radiance field from 360° image captures,” in ICME 2022, Taipei, Taiwan,
July 2022, pp. 1–6, IEEE.

[5] T. Otonari, S. Ikehata, and K. Aizawa, “Non-uniform sampling strategies
for nerf on 360° images,” in 33rd BMVC 2022, London, UK. 2022,
BMVA Press.

[6] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for real-time rendering of neural radiance fields,” in ICCV, 2021.

[7] P. Hedman, P.P. Srinivasan, B. Mildenhall, J.T. Barron, and P. Debevec,
“Baking neural radiance fields for real-time view synthesis,” ICCV,
2021.

[8] L. Wu, J.Y. Lee, A. Bhattad, Y. Wang, and D. Forsyth, “DIVeR: Real-
time and accurate neural radiance fields with deterministic integration
for volume rendering,” in CVPR, 2022, pp. 16200–16209.

[9] C. Reiser, S. Peng, Y. Liao, and A. Geiger, “Kilonerf: Speeding up
neural radiance fields with thousands of tiny mlps,” in CVPR, 2021, pp.
14335–14345.

[10] J.T. Kajiya and B.P. Von Herzen, “Ray tracing volume densities,” ACM
SIGGRAPH computer graphics, vol. 18, no. 3, pp. 165–174, 1984.

[11] J.T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla,
and P.P. Srinivasan, “Mip-nerf: A multiscale representation for anti-
aliasing neural radiance fields,” ICCV, 2021.

[12] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression
standardization activities: video-based (V-PCC) and geometry-based (G-
PCC),” APSIPA, vol. 9, 04 2020.

[13] “G-PCC Codec Description v10,” ISO/IEC JTC1/SC29/WG11 MPEG,
document N19331, Jun. 2020.

[14] D.R. Freitas, G.L. Sandri, and R.L. De Queiroz, “Geometry-based
compression of plenoptic point clouds,” in 2022 IEEE 24th MMSP,
2022, pp. 1–5.


