Julien Maillard

Awaleh Houssein Meraneh

Modou Sarry

Christophe Clavier

Hélène Le Bouder

Gaël Thomas

Blind side channel analysis on the Elephant LFSR Extended version

Keywords: Blind Side Channel Analysis, Hamming Weight, Elephant, LFSR, NIST

The National Institute of Standards and Technology (NIST) started a competition for lightweight cryptography candidates for authenticated encryption. Elephant is one of the ten finalists. Many physical attacks exist on the different traditional cryptographic algorithms. New standard are a new targets for this domain. In this paper, an improvement of the first theoretical blind side channel attack against the authenticated encryption algorithm Elephant is presented. More precisely, we are targeting the LFSR-based counter used internally. LFSRs are classic functions used in symmetric cryptography. In the case of Elephant, retrieving the initial state of the LFSR is equivalent to recovering the encryption key. This paper is an extension of a previous version. So an optimization of our previous theoretical attack is given. In the previous version, in only half of the cases, the attack succeeds in less than two days. In this extended paper, with optimization, the attack succeeds in three quarters of the cases.

Introduction

Internet of things (IoT) devices become more and more widespread within our day-to-day life. From military grade to general-purpose hardware, the need for strong security raises. The cryptosystems implemented on those devices must ensure both security and low power consumption overhead. In this context, the National Institute of Standards and Technology (NIST) started the competition for lightweight cryptography candidates for authenticated encryption [START_REF]Lightweight Cryptography Standardization Process[END_REF]. An authenticated encryption algorithm should ensure confidentiality and integrity of the communications.

The security of authenticated encryption schemes can be supported by several strategies. Various approaches have been considered by the lightweight cryptography competition candidates: cryptographic permutations with sponge or duplex construction [START_REF] Dobraunig | Ascon. Submission to the CAESAR competition[END_REF][START_REF] Beierle | Schwaemm and esch: lightweight authenticated encryption and hashing using the sparkle permutation family[END_REF][START_REF] Daemen | Xoodyak, a lightweight cryptographic scheme[END_REF]; block cipher combined with a mode (e.g. AES combined with Galois/Counter Mode) [START_REF] Iwata | Duel of the titans: the romulus and remus families of lightweight aead algorithms[END_REF][START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF]; stream cipher paradigms [START_REF] Hell | Grain-128aead, round 3 tweak and motivation[END_REF].

When discussing about the security of a cryptographic algorithm, numerous tools allow the cryptographers to prove the security of a cipher. Unfortunately, those tools do not consider the interaction of the computing unit with its physical environment. Physical attacks are a real threat, even for cryptographic algorithms proved secure mathematically. Physical attacks are divided in two families: side-channel analysis (SCA) and the fault injection attacks.

Motivation

Many attacks exist on the different traditional cryptographic algorithms, as detailed in the book [START_REF] Ouladj | Side-Channel Analysis of Embedded Systems[END_REF]. Lightweight cryptography, much younger and used in embedded devices and IoT, has been far less studied. For example, attacks on stream ciphers [START_REF] Rechberger | Stream ciphers and side-channel analysis[END_REF] or sponge functions [START_REF] Samwel | DPA on hardware implementations of ascon and keyak[END_REF] are less common. That is why we chose to study SCA against new authenticated encryptions. The chosen algorithm is the cryptosystem Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF]. More precisely, this paper focuses on its underlying Linear Feedback Shift Registers (LFSR), in a block cipher combined with a mode construction. Some attacks exist yet as in [START_REF] Rechberger | Stream ciphers and side-channel analysis[END_REF][START_REF] Joux | Galois LFSR, Embedded Devices and Side Channel Weaknesses[END_REF][START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF][START_REF] Chakraborty | Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks?[END_REF][START_REF] Kazmi | Algebraic side channel attack on trivium and grain ciphers[END_REF][START_REF] Jurecek | Side-channel attack on the a5/1 stream cipher[END_REF], but this work differs from state-of-the-art attacks by its attacker model. To the best of our knowledge, there is no blind side channel attack on LFSR in the context of authenticated encryption except our previous contribution [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF]. This paper is an extension of [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF], so motivation is to improve previous results.

Contribution

In this paper, we present a theoretical blind side channel attack targeting the LFSR of the Elephant algorithm. We exploit the usage of intermediate variables that are statistically dependent to the secret (here the secret LFSR initial state) and show that this structure could threaten the security of a cryptosystem's regarding SCA. Also, the study of the influence of the choice of the LFSR is presented. This paper is an extended version of a previous attack [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF], so we present a major improvement: an optimization to find the best time, relative to the beginning of encryption, to start the attack is given in section 4.2.

Organization

The paper is organized as follows. In section 2, the context of blind side channel attack and the Elephant are introduced. The theoretical attack is explained in section 3, it is a reminder of the short version of the paper [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF]. Details of implementated attack and new improvement are described in section 4. Then, section 5 presents experimental results and discussion about LFSR design. Finally, a conclusion is drawn in section 6.

Context

The first section starts by presenting the Elephant cryptosystem. This first part is extracted from the first shorted paper version [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF] according the description of the standard [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF]. Then, the background contents on blind side channel attacks is introduced. Eventually, a brief state of the art of SCA attacks against LFSRs is presented.

Elephant

K || 0 * P mask 0,0 K ϕ N || A1 mask 1,0 K ϕ A2 P • • • • • mask -1,0 K • • • • • • A || 10 * P • • ϕ ⊕ id mask 0,1 K N || 0 * P • • • ϕ ⊕ id mask 1,1 K N || 0 * P • • ϕ ⊕ id mask -1,1 K N || 0 * P • • Trunc|M | M C M1 C1 M2 C2 • • • • • • C || 10 * P mask -1,2 K ϕ ⊕ id • P mask 1,2 K ϕ ⊕ id • P mask 0,2 K ϕ ⊕ id • • • • • • • P Trunct T •
Fig. 1: Elephant associated data authentication (top), plaintext encryption (middle), and ciphertext authentication (bottom). This figure comes from [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF] according to the description of Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF].

The purpose of an authenticated encryption algorithm is to ensure both confidentiality and integrity. It takes as input different parameters: a plaintext, data associated to the plaintext, a secret key, and an initialisation vector, also called a nonce. The nonce is public but must be different for each new plaintext. The algorithm ensures confidentiality of the plaintext and integrity of both the plaintext and the associated data. Fig. 2: 160-bit LFSR φ Dumbo . This figure comes from [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF] according to the description of Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF].

x0 x1 x2 x3 x4 . . . x18 x19 x20 x21 ≪ 1 7 7
Fig. 3: 176-bit LFSR φ Jumbo . This figure comes from [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF] according to the description of Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF].

x0 x1 x2 x3 . . . x12 x13 x14 . . . x23 x24 ≪ 1 ≪ 1 7
Fig. 4: 200-bit LFSR φ Delirium . This figure comes from [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF] according to the description of Elephant [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF].

φ Dumbo : (x0, • • • , x19) → (x1, • • • , x19, x0 ≪ 3 ⊕ x3 ≪ 7 ⊕ x13 ≫ 7) (1)
φ Jumbo : (x0, • • • , x21) → (x1, • • • , x21, x0 ≪ 1 ⊕ x3 ≪ 7 ⊕ x19 ≫ 7) (2)
φ Delirium : (x0, • • • , x24) → (x1, • • • , x24, x0 ≪ 1 ⊕ x2 ≪ 1 ⊕ x13 ≪ 7) (3)
Elephant [START_REF] Beyne | Dumbo, Jumbo, and Delirium: Parallel Authenticated Encryption for the Lightweight Circus[END_REF][START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF] is a finalist to the NIST lightweight cryptography competition. It is a nonce-based authenticated encryption with associated data (AEAD). Its construction is based on an Encrypt-then-MAC that combines CTR-mode encryption with a variant of the protected counter sum [START_REF] Bernstein | How to Stretch Random Functions: The Security of Protected Counter Sums[END_REF][START_REF] Luykx | A MAC Mode for Lightweight Block Ciphers[END_REF]. Elephant uses a cryptographic permutation masked with LFSRs in an Even-Mansour-like fashion [START_REF] Granger | Improved Masking for Tweakable Blockciphers with Applications to Authenticated Encryption[END_REF] in place of a blockcipher.

Let P be an n-bit cryptographic permutation, and φ an n-bit LFSR. Let the function mask : {0, 1} 128 × N × {0, 1, 2} → {0, 1} n be defined as follows:

mask t,b K = (φ ⊕ id) b • φ t • P(K||0 n-128) (4)
Let Split(X) be the function that splits the input X into n-bit blocks, where the last block is zero-padded. Let Trunc τ (X) be the τ left-most bits of X.

Encryption enc under Elephant gets as input a 128-bit key K, a 96-bit nonce N , associated data A ∈ {0, 1} * , and a plaintext M ∈ {0, 1} * . It out-

Algorithm 1 Elephant encryption algorithm enc Require: (K, N, A, M) ∈ {0, 1} 128 × {0, 1} 96 × {0, 1} * × {0, 1} * Ensure: (C, T) ∈ {0, 1} |M | × {0, 1} t 1: M1, • • • , M ℓ M ← Split(M) 2: for t ← 1 to ℓM do 3: Ct ← Mt ⊕ P(N ||0 n-96 ⊕ mask t-1,1 K) ⊕ mask t-1,1 K 4: end for 5: C ← Trunc |M | (C1|| • • • ||C ℓ M) 6: T ← 0 n 7: A1, • • • , A ℓ A ← Split(N ||A||1) 8: C1, • • • , C ℓ C ← Split(C||1) 9: T ← A1 10: for t ← 2 to ℓA do 11: T ← T ⊕ P(At ⊕ mask t-1,0 K) ⊕ mask t-
T ← P(T ⊕ mask 0,0 K) ⊕ mask 0,0 K 17: return (C, Truncτ (T))
puts a ciphertext C as large as M , and a t-bit tag T . The description enc is given in Algorithm 1 and is depicted on Fig. 1. Decryption dec gets as input a 128-bit key K, a 96-bit nonce N , associated data A ∈ {0, 1} * , a ciphertext C ∈ {0, 1} * , and τ -bit tag T . It outputs a plaintext M as large as C if the tag T is correct, or the symbol ⊥ otherwise. The description of dec is analoguous to the one of enc.

Elephant comes in three flavours which differ on the n-bit cryptographic permutation P and the LFSR φ used, as well as the tag size t.

Dumbo uses the 160-bit permutation Spongent-π[160] [START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF], the LFSR φ Dumbo given by equation (1) and illustrated on Fig. 2, and has tag size τ = 64 bits.

Jumbo uses the 176-bit permutation Spongent-π[176] [START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF], the LFSR φ Jumbo given by equation (2) and illustrated on Fig. 3, and has tag size τ = 64 bits.

Delirium uses the 200-bit permutation Keccak-f [200] [START_REF] Bertoni | The Keccak Reference[END_REF][START_REF]SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions[END_REF], the LFSR φ Delirium given by equation (3) and illustrated on Fig. 4, and has tag size τ = 128 bits.

State-of-the-art

Side channel analysis Even if an algorithm has been proven to be mathematically secure, its implementation can open the gate to physical attacks. SCA are a subcategory of physical attacks. They exploit the fact that some physical states of a device depend on intermediate values of the computation. This is the so-called leakage of information of the circuit. It could be used to retrieve sensitive data, such as secret keys, or to reverse engineer an algorithm. An SCA is often led with a divide-and-conquer approach. Namely, the secret is divided into small pieces that are analysed independently.

Different kinds of leakage sources can be exploited as execution time [START_REF] Handschuh | A timing attack on rc5[END_REF], power consumption [START_REF] Kocher | Differential power analysis[END_REF] or electromagnetic (EM) radiations [START_REF] Standaert | Introduction to side-channel attacks[END_REF]. In this paper, we consider a power consumption or EM leakage channel. At each instant, the measurement of the intensity of the electric current reflects the activity of the circuit. The power consumption of a device is a combination of the power consumption of each of its logic gates.

Several analysis paradigms have been described in the literature. The Simple Power Analysis (SPA) [START_REF] Mangard | A simple power-analysis (spa) attack on implementations of the aes key expansion[END_REF] are called simple because they determine directly, from an observation of the power consumption, during a normal execution of an algorithm, information on the calculation performed or the manipulated data. Other attacks like Correlation Power Analysis (CPA) [START_REF] Brier | Correlation power analysis with a leakage model[END_REF] use a mathematical model for the leakage. A confrontation between measurement and model is performed. More precisely, a statistic tool called distinguisher gives score to the different targets. Template attacks are statistical categorizations [START_REF] Archambeau | Template attacks in principal subspaces[END_REF] that require no leakage model a priori. It is a domain in its own right, as shown different books [START_REF] Mangard | Power analysis attacks: Revealing the secrets of smart cards[END_REF][START_REF] Ouladj | Side-Channel Analysis of Embedded Systems[END_REF].

Blind side channel analysis The blind side channel analysis (BSCA) family is new improvement in SCA. Linge et al. has presented the concept in [START_REF] Linge | Using the joint distributions of a cryptographic function in side channel analysis[END_REF]. In parallel, Le Bouder et al. published an attack in [START_REF] Bouder | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF]. Then, these works have been improved by Clavier et al. in [START_REF] Clavier | Improved blind side-channel analysis by exploitation of joint distributions of leakages[END_REF], moreover this contribution introduces for the first time, the term of blind side channel. Now it is a new family of SCA [START_REF] Clavier | Quadrivariate improved blind side-channel analysis on boolean masked aes[END_REF][START_REF] Azouaoui | Blind side-channel sifa[END_REF][START_REF] Yli-Mäyry | Diffusional side-channel leakage from unrolled lightweight block ciphers: A case study of power analysis on prince[END_REF][START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF].

The main idea is to only perform the attack on the leakage measurements i.e, without data such as plaintexts or ciphertexts.

In BSCA, the Hamming weight (HW) leakage model have often been used and a strong assumption is made: the attacker is supposed to retrieve a noisy HW from the leakage. In this paper, the considered adversary model is that the HW of all manipulated intermediate variables can be recovered by the attacker. Several techniques, such as signal filtering, trace averaging or templates [START_REF] Chari | Template attacks[END_REF], can be used in order to fulfill this prerequisite.

Overview of SCA attacks on LFSRs Linear feedback shift registers (LFSRs) with primitive polynomials are used in many symmetric cryptographic primitives because of their well-defined structure and remarkable properties such as long period, ideal autocorrelation and statistical properties.

The information leakage and the vulnerability of stream ciphers based on Galois LFSRs are studied in [START_REF] Joux | Galois LFSR, Embedded Devices and Side Channel Weaknesses[END_REF] and those based on Fibonacci LFSRs are analysed in [START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF]. In [START_REF] Joux | Galois LFSR, Embedded Devices and Side Channel Weaknesses[END_REF], the information leakage of XOR gates is exploited to perform a simple side-channel attack. However, if the leakage from the XOR gates is too low compared to other operations in the cipher, the attack fails. In [START_REF] Chakraborty | Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks?[END_REF], the attack recovers the initial state of a Galois LFSR by determining the output of the LFSR from the difference in power dissipation values in consecutive clock cycles.

In this paper, a theoretical blind side channel attack targeting the LFSR of the Elephant algorithm is presented. Whereas several attacks on LFSRs have been described in the literature, the specific structure of the Elephant cryptosystem allows us to elaborate a new approach that is depicted in the rest of this paper.

Theoretical attack

This section is a reminder of the first shorted paper version [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF].

Goal

LFSRs are used in different lightweight cryptography candidates, and its initial state often depends on both a key and a nonce. As the nonce needs to be changed for each encryption request, attacks on such schemes are limited to the decryption algorithm. In the case of Elephant, the LFSR only depends on the secret key. Consequently, our attack can be applied in an encryption scenario.

The goal of the presented attack is to retrieve the LFSR secret initial state. One has to remark three important points:

-Retrieving the initial state of the LFSR, which is equal to mask 0,0 K , is equivalent to retrieving the secret key. Indeed, the initial state is the result of the known permutation P applied to the key.

-As the retroaction polynomial is publicly known, it is possible to shift the LFSR backwards: an attacker who recover enough consecutive bytes of the secret stream is able to reconstruct the initial state. -The smaller the LFSR is, the more the attack is able to succeed. As a consequence, the Dumbo instance (see Fig. 2) is the most vulnerable one: the following of this paper is focused on Dumbo.

Leakage in the LFSR

In this attack, it is assumed that the Hamming weight of every byte of the LFSR can be obtained by an attacker. Let x be a byte: it can take any of the 256 values in [[0, 255]]. With the HW of x, the attacker reduces the list of possible values, as shown in Table 1. [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF][START_REF] Bouder | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF].

HW (x)
Since the LFSR generates a single new byte at each iteration, let (x j , • • • , x j+19) = mask j,0 K be the content of the Dumbo LFSR and x j+20 the byte generated at iteration j. Precisely, the attacker has the following relation (L1), according to the equation [START_REF] Archambeau | Template attacks in principal subspaces[END_REF].

L1 x j+20 = (x j ≪ 3) ⊕ (x j+3 ≪ 7) ⊕ (x j+13 ≫ 7).
The first idea is to use the knowledge of the following Hamming weights: HW (x j+20), HW (x j+13) and HW (x j) = HW (x j ≪ 3) .

(

) 5
So with the two equations (L1) and (5) the attacker has:

HW (x j+20) =                HW (x j) HW (x j) + 1 HW (x j) -1 HW (x j) + 2 HW (x j) -2 (6)
Looking more precisely at equation (L1), it can be seen that the difference HW (x j+20) -HW (x j) only depends on four bits. Let x j [i] denote the i-th least significant bit of byte x j , these four bits are {x j+3 [0]; x j+13 [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF];

x j [4]; x j [5]}.
Table 2 gives the value of observed difference HW (x j+20) -HW (x j) depending on the values of these four bits. In the worst case, there are only 6 possibilities left, out of 16.

(xj+3[0], xj+13[7]) = HW (xj+20) -HW (xj) (0, 0) (0, 1) (1, 0) (1, 1) (xj[4], xj[5]) = (0, 0) 0 +1 +1 +2 (1, 0) 0 +1 -1 0 (0, 1) 0 -1 +1 0 (1, 1) 0 -1 -1 -2 Table 2: Values of HW (x j+20) -HW (x j) according to {x j+3 [0]; x j+13 [7]; x j [4]; x j [5]} [20] .

Link between the different masks

The value mask j,1 K can be expressed in terms of mask * ,0 K as in [START_REF] Beyne | Elephant v2. NIST lightweight competition[END_REF].

mask j,1 K = (φ ⊕ id) mask j,0 K = φ mask j,0 K ⊕ mask j,0 K = mask j+1,0 K ⊕ mask j,0 K . (7)
Likewise, for mask j,2 K , equation (8) holds.

mask j,2 K = (φ ⊕ id) 2 mask j,0 K = (φ 2 ⊕ id) mask j,0 K = φ 2 mask j,0 K ⊕ mask j,0 K = mask j+2,0 K ⊕ mask j,0 K (8)
As in the case of mask j,0 K , let y j denote either the byte j of mask 0,1 K when 0 ≤ j ≤ 19, or the new byte obtained after j iterations of the LFSR initialized with mask 0,1 K . Likewise, let z j denote either the byte j of mask 0,2 K when 0 ≤ j ≤ 19, or the new byte obtained after j iterations of the LFSR initialized with mask 0,2 K . Equation (7) then translates to equation [START_REF] Brier | Correlation power analysis with a leakage model[END_REF].

y j = x j ⊕ x j+1 (9)
Likewise, the equation 8 translates to [START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF].

z j = x j ⊕ x j+2 . (10)
The evolution of the LFSR is analogous to (L1):

y j+20 = (y j ≪ 3) ⊕ (y j+3 ≪ 7) ⊕ (y j+13 ≫ 7). (11)
z j+20 = (z j ≪ 3) ⊕ (z j+3 ≪ 7) ⊕ (z j+13 ≫ 7). (12)
The attacker can thus exploit two attack vectors: on the one hand, equations (L1), [START_REF] Chakraborty | Fibonacci LFSR vs. galois LFSR: which is more vulnerable to power attacks?[END_REF], and (12) coming from iterating the LFSR, and on the other hand, equations (9) and (10) coming from the different masks used for domain separation.

Attack strategy

For a byte x j of the Dumbo LFSR with j ≥ 0, let x ′ j denote a guess of its value by the attacker. Given m successive bytes (x j , • • • , x j+m-1), let X m j denote the set of guesses

(x ′ j , • • • , x ′ j+m-1
) satisfying the constraints of the Hamming weights of masks x, y and z depicted in Equations 9 and 10.

Algorithm of the attack

The whole search space corresponding to the initial state of the LFSR is represented as a rooted tree. The nodes at depth j correspond to all the possible values for the bytes x 0 to x j of the LFSR. The tested candidates are denoted by

(x ′ 0 , • • • , x ′ 19
). The nodes in the graph of the search space are labelled as follows:

the nodes at depth j correspond to all the possible values of

(x ′ 0 , • • • , x ′ j); Algorithm 2 isvalid(x ′ 0 , • • • , x ′ j) Require: Byte-wise partial candidate (x ′ 0 , • • • , x ′ j) of length 1 ≤ j + 1 ≤ 20 Assumes isvalid(x ′ 0 , • • • , x ′ j-1) is true. Ensure: true if candidate (x ′ 0 , • • • , x ′ j) is
: if |HW (x ′ j-3 ≪ 3 ⊕ x ′ j ≪ 7) -HW (xj+17)| > 1 then 14: return false 15: end if 16: if HW (x ′ j-13 ≪ 3 ⊕ x ′ j-10 ≪ 7 ⊕ x ′ j ≫ 7) ̸ = HW (xj+7) then 17:
return false 18: end if 19: return true x 0 = 03 . . .

x 0 = 03 x 1 = 2F x 0 = 03 x 1 = 1F
. . .

x 0 = 03 x 1 = F8 x 0 = 03 x 1 = 2F x 2 = 17 x 0 = 03 x 1 = 2F x 2 = 0F
. . .

x 0 = 03 x 1 = 2F x 2 = F0 x 0 = 03 x 1 = 1F x 2 = F0
. . .

x 0 = 03 x 1 = 1F x 2 = 17 x 0 = 03 x 1 = 1F x 2 = 0F
. . .

x 0 = 03 x 1 = F8 x 2 = 0F x 0 = 03 x 1 = F8 x 2 = 17
. . . the children of node

x 0 = 03 x 1 = F8 x 2 = F0 HW (x2) = 4
HW (x1) = 5 HW (x0) = 2
(x ′ 0 , • • • , x ′ j), are the nodes labelled: (x ′ 0 , • • • , x ′ j , x ′ j+1
) for all values of x ′ j+1 .

Algorithm 3 Attack

Require: Observed Hamming weights HW (x0), • • • , HW (x19), HW (y0), • • • , HW (y18), and HW (z0), • • • , HW (z17). For the sake of clarity, they are seen as global variables. Ensure: S set of keys compatible with the observed Hamming weights 1:

(x ′ 0 , • • • , x ′ 19) ← (0, • • • , 0) 2: ℓ ← 0 3: S ← {} 4: while true do 5: if j < 19 and isvalid(x ′ 0 , • • • , x ′ j) then 6: j ← j + 1 7: x ′ j ← 0 8: else 9: if j = 19 and isvalid(x ′ 0 , • • • , x ′ j) then 10: S ← S ∪ {(x ′ 0 , • • • , x ′ j)} 11:
end if 12:

while j ≥ 0 and x ′ j = FF do 13: j ← j -1 14:

end while 15:

if j ≥ 0 then 16:

x In practice, to reduce the number of nodes, only the nodes having the correct Hamming weights are considered. In other words, it suffices to consider nodes with HW (x ′ j) = HW (x j). An example of such a tree is given on Fig. 5. A backtracking algorithm is used. The tree is traversed in a depth-first manner. For each step, the attacker tests whether the current candidate (x ′ 0 , • • • , x ′ j) satisfies the different conditions given by the observed Hamming weights. This test is given by Algorithm 2.

′ j ← x ′ j +
If the test succeeds, the algorithm goes down to the next layer to test the values of the byte x ′ j+1 . If it reaches the bottom of the tree, then a good candidate has been found, and can be saved. The algorithm then iterates upon the next untested node.

If, at some point, the Hamming weights conditions do not hold for the current (partial) candidate, then no node in the sub-tree rooted at that node can lead to a good candidate. Thus, it can be pruned from the whole tree, saving the cost of browsing it. Finally, the algorithm ends when the whole tree has been explored. A pseudocode of the attack is given by Algorithm 3.

Optimisation of the attack

Goal of the optimization Recall from Algorithm 1 that for each new block of data to encrypt, a different mask is used. Therefore the attacker actually can choose which values of index t at lines 2, 10, and 13 of Algorithm 1 they would rather attack.

The question raised at this point is: at which time t does the attacker minimize the complexity of the attack? The attacker wants to establish a metric E(•) such that E(t) allows estimating the complexity of an attack at time t. The attacker constructs E such that the computation of E(t) :

1. is fast enough to allow exploring a large number of values of t and 2. is accurate enough so that the attacker can accurately select the value of t with minimal attack complexity.

Principle The general idea for finding the best attack position is to obtain an estimation of the attack complexity at a given time t. For this sake, the LFSR state (x t , • • • , x t+19) at time t is divided into tuples that can be treated with three different operations. Note that this approach does not exploit the retroaction polynomial of the LFSR. This allows to use it for all the flavours of the Elephant cryptosystem.

1. Enumerate This function takes as an input m indices (i,

• • • , i + m -1)
and returns all the candidates X m i for

(x ′ i , • • • , x ′ i+m-1
) satisfying the constraints of masks x, y and z depicted in equations (9) and (10), based on the knowledge of corresponding 3m -3 Hamming weights. This operation explores all the possible combinations for each x ′ i and only retains the candidates matching the conditions imposed by masks x, y and z. Note that the enumerate function quickly becomes computationally intense as m grows. In our experiments, we use this function for m ∈ {1, 2, 3}. 2. Merge When m grows, the attacker proceeds with a divide and conquer strategy. Indeed, for k < m, the attacker first computes candidates X k i and X m-k i+k thanks to the enumerate function. Then candidates X k i and X m-k i+k are merged into X m i so that each remaining candidate in X m i satisfies the constraints on masks y and z. This approach allows benefiting from the reduced candidate sets X k i and X m-k i+k , allowing to reduce the size of the search space for X m i . For a growing m, storing the X m i set in memory can become impractical, hence the merge function comes with the merge_count variant, that only returns the number | X m i | of candidates. We emphasize that calling merge_count on X m i disables calling it for another merge. 3. Merge estimator The number of candidates | X m i | can be assessed by applying a reduction factor r on the product of

| X k i | and | X m-k i+k |.
Namely, it is defined as:

r = | X k i | × | X m-k i+k | | X m i | (13)
Hence, the merging estimation procedure takes as input two indices tuples

(i, • • • , i + k -1) and (i + k, • • • , i + m), for k < m, and their corresponding number of candidates | X k i | and | X m-k i+k |.
The aim of the estimator is to approximate r based on statistical tools without exploring the entire Cartesian product of X k i and X m-k i+k . The construction of the estimator is discussed in the following.

Gathering information

The estimator E for the attack complexity can then be defined by applying the previous three functions. The procedure used for the Dumbo LFSR is depicted in Fig. 6. The 20 LFSR bytes are split into 4 quintuplets. Each quintuplet is itself split into a triplet and a pair of bytes. The attacker gathers the candidates for each triplet and pair with the enumerate function, and then call the merge_count function on the union of the triplets and pairs to count the exact number of candidates for the quintuplets. Eventually, the attacker applies the merge estimator between the first and second, and the third and fourth quintuplets before calling the estimator a last time on the full state.

At this point, it can be seen that the accuracy of the complexity returned by E highly depends on the quality of the merge_estimator.

Crafting a merge estimator Naive estimator Equations (9) and (10) allow to derive a reduction triangle for the merge of two tuples (see Fig. 7).

This reduction triangle can be exploited to obtain a broad estimation on the information gained by a merge, hence, a estimation of the reduction factor of the Cartesian product of X k i and X m-k i+k . Let | X triangle | define the number of candidates for the reduction triangle. This corresponds to the product of the number of bytes values that match each three gathered Hamming weights. Then, r naive is defined by:

r naive = | X triangle | 2 24 (14
)
The estimation error of r naive is defined as follows:

err naive = r naive -r (15)
... When err naive > 0, reduction factor has been overestimated. This situation raises an issue for the attacker, as the complexity of the attack is falsely underestimated. On the contrary, err naive < 0 indicates that the reduction factor has been underestimated. This means that the attacker would probably not consider this step to perform the attack, even if, in reality, the attack complexity would have been much inferior. A distribution of the err naive values is depicted in Fig 8a. The attacker stresses that r naive , despite being fast to compute, has the flaw of not considering all the inter-mask depicted in equations (9) and [START_REF] Burman | LFSR based stream ciphers are vulnerable to power attacks[END_REF].

Neural network based estimator

Inter-masks dependencies are difficult to handle as-is for crafting a merge esti-mator. Luckily, the complex relations that bound these bytes can be exploited thanks to the power of a neural network. Hence, the Hamming weights of the bytes depicted in Fig. 7 can be fed to a neural network in order to predict r.

To do so, we create a dataset by performing 1.3M merges of candidates for two pairs of bytes. Merging pairs allows to quickly compute r, and thus allows building a significant dataset in a reasonable amount of time. We keep the real r values as labels that will be provided to the network in order for it to provide an estimator r network .

A neural network composed of 6 fully connected hidden layers is crafted, whose sizes are depicted in Fig 9a . The choice of the neural network architecture has been performed by progressively tuning the parameters in order to reduce the variance and standard deviation of the estimation error for r network . Each layer uses the Relu activation function, and the model is compiled with the adam optimizer and the Mean-Square-Error loss function. The model is trained upon 65 epochs upon a 1.287M sample datasets with a 0.01 validation ratio. Training and validation losses are depicted in Fig. 9b.

Input Dense Dense Dense Dense Dense Output Dense (9) (64) (32) (16) (8) (4) (2) (1)
(a) Architecture of the neural network for the merge estimator E. The total training time of the model is approximately 15 minutes on a Intel Core i7-8565U CPU. As for r naive , the estimation error of r network is measured as follows:

err network = r network -r (16)
The distribution of err network on a testing dataset of 13K samples (i.e., a dataset that has not been used to train the network) is displayed in Fig. 8b. Discussion Fig. 8a shows that our naive estimator highly underestimates the reduction factor of a merge between two tuples. Some instances even show more than a 50% delta between r naive and the real reduction factor r. Fig. 8b shows that the neural network provides an estimation of r which is more accurate than the naive estimator, as the mean is closer to 0. Moreover, the error variance and standard deviation of the distribution have been reduced compared to the naive estimator. More importantly, the err network distribution does not show outliers (i.e, predictions that are far from the mean) unlike err naive . In our experiment, we hence use r network as the reduction factor estimation for the metric E (see Fig. 6).

Estimating the best position The best position for the attack is assessed by applying estimator E in a sliding window fashion upon the iterations of the LFSR. In terms of performance, the computation time is approximately one second per iteration on a Intel Core i7-8565U CPU: this enables estimating the attack complexity on several dozens of thousands of steps in less than a day.

Depending on the attacker's computational power, several strategies can be considered. First, the attacker can set up a threshold upon attack complexity. When targeting an encryption stream, the attacker can apply the metric E on the sliding window until it returns an attack complexity that is below this threshold. Another approach is to fix a limit on the sliding window algorithm. Then, when all the attack complexity estimations have been returned, the attacker chooses the lowest one.

Results and discussion

Elephant attack

We have simulated the attack on randomly generated Dumbo keys. We selected the lowest 25% of keys with respect to expected complexity given by the estimator E derived in section 4.2. This gave us N runs = 1275 keys to test. For each, the number N nodes of nodes effectively traversed in the tree has been counted. This number roughly corresponds to the time complexity of the attack. Among these nodes, we have specifically counted the number N keys of nodes on the last layer; i.e. nodes that correspond to plausible guesses that remain to be brute forced to finish the attack.

Only just above three quarters (77.73%) of the runs have ended after two days. This is an improvement (24.16% more) compared to [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF] where only 53.57% had finished in the same amount of time. On average, for the runs that finished after two days, the number of nodes traversed is N nodes = 2 41.92 , and the number of remaining keys is N keys = 2 36.52 .

Figure 11 shows the link between the estimator E and the actual computation time for the differents keys tested. Quartiles for estimator and time distributions are given in Table 3. It should be remembered that data given here only represent the lowest 25% of the estimator distrbution and that time is capped at 48h, and therefore do not represent the full distributions.

Impact of the generation of masks

The threat brought by this attack upon the Elephant cryptosystem implies a discussion about mitigations. Apart from using generic countermeasures, like e.g. Boolean masking, there seem to be two possibilities for improvement. Indeed, the attacker gains information from two sources:

from equations (7) and (8) used to derive the masks for domain separation; from the LFSR state update equation (L1).

Thus, either the mask derivation or the LFSR can be changed, or both. This section studies the former case. We ran two experiments, similar to section 5.1 except that the attacker does not gain information from every Hamming weight. In the first experiment, they only know the values of the HW (x j), and the HW (y j). In other words, compared Fig. 11: Estimator E versus actual computation time for finished runs (blue) and unfinished runs (red). Quartiles are represented by dashed lines. to the experiment in the section 5.1, they lost the knowledge of the HW (z j). Likewise, in the second experiment, they only know the values of the HW (x j). In both cases, none of the N runs = 120 runs done has terminated after a week.

From these experiments, it seems that the combined knowledge of the HW (x j), HW (y j), and HW (z j) contributed heavily on the success of the attack. It would then seem a good idea to tweak the cryptographic mode of operation by finding another way of generating masks for domain separation.

Studies on different LFSRs

This section is dedicated to the study of the influence of the choice of the LFSR. We stress that the results shown here are obtained without the optimizations the optimization presented in 4.2: in practice, an attacker can hope lowering the attack complexity by exploiting the optimization.

To keep the spirit of the original Elephant algorithm, only Fibonacci-like LFSRs, at the byte level, are considered. More specifically, LFSRs considered are: LFSRs where a single new byte is computed from a combination of three bytes using byte-wise shifts and rotations. As usual, the associated feedback polynomial must be primitive to ensure only maximum-length sequences can be generated. Among all possible candidates, different behaviours can be triggered.

In this paper, the type of a LFSR is defined as the sequence of the number of bits unknown to the attacker at each depth in the tree where a new feedback occurs.

Looking at equation (L1), it can be seen that:

|HW (x j+20) -HW (x j ≪ 3)| ≤ 2
since there are only 2 bits that are modified by:

x j+3 ≪ 7 ⊕ x j+13 ≫ 7.
Thus, if other feedback functions are used, with more bits involved, it can be expected to have an impact on the attack. Later in the attack, when at depth 3 in the tree, the same idea can be applied to check whether:

|HW (x j+17) -HW (x j-3 ≪ 3 ⊕ x j ≪ 7)| ≤ 1
So since now only the single bit x j+10 ≫ 7 is unknown. Consequently, the type of the Dumbo LFSR is [START_REF] Azouaoui | Blind side-channel sifa[END_REF][START_REF] Archambeau | Template attacks in principal subspaces[END_REF].

LFSRs with different types can be a first criterion when testing our attack.

A second criterion is the spacing between the feedback bytes. Indeed, the tighter they are, the faster the attacker can use equation (L1) at its full potential.

In the case of Dumbo, the feedback bytes are at indices 0, 3, and 13. We call 13 the depth, this is simply the highest index of the feedback.

We chose LFSRs based on these two criteria. Types is defined from [2, 1] to [START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF][START_REF] Bogdanov | Spongent: a Lightweight Hash Function[END_REF]. For types [START_REF] Azouaoui | Blind side-channel sifa[END_REF][START_REF] Archambeau | Template attacks in principal subspaces[END_REF], and [5, *], we looked at all the possible LFSRs in order to study the influence of their depth.

The state update function of the different LFSR tested are given by equations (L2) to (L21). Their type and depth are given at the second, respectively third, column of Table 4.

L2 x j+20 ← x j ≪ 3 ⊕ x j+1 ≪ 7 ⊕ x j+11 ≫ 7 L3 x j+20 ← x j ≪ 3 ⊕ x j+14 ≫ 3 ⊕ x j+17 ≫ 7 L4 x j+20 ← x j ≪ 1 ⊕ x j+3 ≫ 3 ⊕ x j+13 ≫ 7 L5 x j+20 ← x j ≪ 1 ⊕ x j+9 ≫ 3 ⊕ x j+15 ≫ 7 L6 x j+20 ← x j ≪ 3 ⊕ x j+9 ≪ 4 ⊕ x j+19 ≫ 7 L7 x j+20 ← x j ≪ 3 ⊕ x j+1 ≪ 5 ⊕ x j+3 ≫ 6 L8 x j+20 ← x j ≪ 1 ⊕ x j+4 ≫ 3 ⊕ x j+19 ≫ 5 L9 x j+20 ← x j ≪ 1 ⊕ x j+7 ≫ 3 ⊕ x j+18 ≫ 5 L10 x j+20 ← x j ≪ 1 ⊕ x j+3 ≫ 3 ⊕ x j+9 ≫ 5 L11 x j+20 ← x j ≪ 3 ⊕ x j+1 ≫ 7 ⊕ x j+17 ≪ 4 L12 x j+20 ← x j ≪ 3 ⊕ x j+5 ≫ 7 ⊕ x j+19 ≫ 3 L13 x j+20 ← x j ≪ 1 ⊕ x j+5 ≪ 7 ⊕ x j+16 ≪ 3 L14 x j+20 ← x j ≪ 1 ⊕ x j+1 ≫ 7 ⊕ x j+9 ≫ 3 L15 x j+20 ← x j ≪ 1 ⊕ x j+13 ≪ 5 ⊕ x j+19 ≪ 3 L16 x j+20 ← x j ≪ 3 ⊕ x j+14 ≫ 7 ⊕ x j+17 ≫ 3

Conclusion

In this paper and its previous version, theoretical and simulated practical blind side-channel attack targeting the LFSR of the Elephant algorithm have been presented. Elephant is a pertinent target. First, Elephant is a finalist for the (NIST) competition for lightweight cryptography candidates for authenticated encryption. Moreover, Elephant is an interesting target because the internal LFSR only depends on the secret key. In other words, in the use case of Elephant, retrieving the initial state of the LFSR is equivalent to recovering the encryption key. Different tweaking options have been considered. Going from the most impactful to the least, they are changing the mask derivation for domain separation, and modifying the LFSR, looking at the importance of depth and type.

Our attack is based on the fact that an attacker can retrieve the Hamming weights of the different bytes in the LFSR. The Elephant design, where there exist relations between the different masks of the LFSR, is an added vulnerability to our attack. In the previous version, in half the cases, the key is retrieved in less than two days. In this paper, an important improvement is made. The result is that in three quarters of the cases, the key is retrieved in less than two days. To have this new result the main idea has been that the attacker can wait and decide when to begin the attack. In other words the attacker has to find the best attack position in the LFSR computation progress.

Future works may consider the inclusion of noise in the simulations. To succeed we need a new tool able to treat errors resulting noisy measurement Hamming weight. An idea is to use a belief propagation as in [START_REF] Bouder | A Multi-round Side Channel Attack on AES Using Belief Propagation[END_REF]. Ultimate future work can be performing the attack on an actual implementation.

Fig. 5 :

 5 Fig. 5: Example of the tree representation of the LFSR initial state for the Hamming weights given on the left. Only the first three layers of the subtree rooted at x ′ 0 = 03 are shown.

Fig. 6 :

 6 Fig. 6: Gathering information for the Dumbo LFSR.

Fig. 7 :

 7 Fig. 7: Necessary data for the naive estimator (reduction triangle) and the neural network based merge estimator.

of errnaive for m = 4 .

 4 Distribution of err network for m = 4.

Fig. 8 :

 8 Fig.8: Estimation error for the naive and the neural network approach.

 Evolution of training and validation losses of the neural network.

Fig. 9 :

 9 Fig. 9: Neural network architecture and training history.

Fig. 10 Fig. 10 :

 1010 Fig.10illustrates a run of the sliding window algorithm on a Dumbo LFSR with initial state bytes sampled from the uniform distribution. The metric E(t) is computed for t ∈ {0, • • • , 20000}. In this example, minimal estimated attack complexity is approximately 2 39.30 for t = 10909. Note that each E(t) can be computed independently: the algorithm can easily be transformed into a parallel version.

Table 1 :

 1 Number of possible values per Hamming weight value

	0 1 2 3 4 5 6 7 8
	#x 1 8 28 56 70 56 28 8 1

Table 3 :

 3 Quartiles for estimator and time distributions.

Acknowledgments This research is part of the chair CyberCNI.fr with support of the FEDER development fund of the Brittany region and with APCIL project fund of the Brittany region too.

We ran the same experience as in section 5.1 for every considered LFSR with N tests = 120. For each LFSR, we noted the proportion of runs finished after two days of computations, the average number of nodes effectively traversed in the tree, and the average number of remaining keys. Results are summarized in Table 4. [START_REF] Houssein Meraneh | Blind side channel on the elephant lfsr[END_REF].

From these experiments, it seems that the depth has a much more relevant impact than the type. Yet, this seems to be quite tailored to our particular attack. Changing the generation of the different masks is generally more impactful, since it can cut down in three the amount of information given to the attacker.