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Abstract. The National Institute of Standards and Technology (NIST)
started a competition for lightweight cryptography candidates for au-
thenticated encryption. Elephant is one of the ten finalists. Many physical
attacks exist on the different traditional cryptographic algorithms. New
standard are a new targets for this domain. In this paper, an improve-
ment of the first theoretical blind side channel attack against the authen-
ticated encryption algorithm Elephant is presented. More precisely, we
are targeting the LFSR-based counter used internally. LFSRs are clas-
sic functions used in symmetric cryptography. In the case of Elephant,
retrieving the initial state of the LFSR is equivalent to recovering the
encryption key. This paper is an extension of a previous version. So an
optimization of our previous theoretical attack is given. In the previous
version, in only half of the cases, the attack succeeds in less than two
days. In this extended paper, with optimization, the attack succeeds in
three quarters of the cases.

Keywords: Blind Side Channel Analysis, Hamming Weight, Elephant,
LFSR, NIST

1 Introduction

Internet of things (IoT) devices become more and more widespread within our
day-to-day life. From military grade to general-purpose hardware, the need for
strong security raises. The cryptosystems implemented on those devices must
ensure both security and low power consumption overhead. In this context, the
National Institute of Standards and Technology (NIST) started the competition
for lightweight cryptography candidates for authenticated encryption [32]. An
authenticated encryption algorithm should ensure confidentiality and integrity
of the communications.

The security of authenticated encryption schemes can be supported by several
strategies. Various approaches have been considered by the lightweight cryp-
tography competition candidates: cryptographic permutations with sponge or
duplex construction [16,3,15]; block cipher combined with a mode (e.g. AES
combined with Galois/Counter Mode) [21,7]; stream cipher paradigms [19].
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When discussing about the security of a cryptographic algorithm, numer-
ous tools allow the cryptographers to prove the security of a cipher. Unfortu-
nately, those tools do not consider the interaction of the computing unit with its
physical environment. Physical attacks are a real threat, even for cryptographic
algorithms proved secure mathematically. Physical attacks are divided in two
families: side-channel analysis (SCA) and the fault injection attacks.

Motivation
Many attacks exist on the different traditional cryptographic algorithms, as de-
tailed in the book [33]. Lightweight cryptography, much younger and used in
embedded devices and IoT, has been far less studied. For example, attacks on
stream ciphers [34] or sponge functions [35] are less common. That is why we
chose to study SCA against new authenticated encryptions. The chosen algo-
rithm is the cryptosystem Elephant [7]. More precisely, this paper focuses on its
underlying Linear Feedback Shift Registers (LFSR), in a block cipher combined
with a mode construction. Some attacks exist yet as in [34,22,10,11,24,23], but
this work differs from state-of-the-art attacks by its attacker model. To the best
of our knowledge, there is no blind side channel attack on LFSR in the context
of authenticated encryption except our previous contribution [20]. This paper is
an extension of [20], so motivation is to improve previous results.

Contribution
In this paper, we present a theoretical blind side channel attack targeting the
LFSR of the Elephant algorithm. We exploit the usage of intermediate variables
that are statistically dependent to the secret (here the secret LFSR initial state)
and show that this structure could threaten the security of a cryptosystem’s
regarding SCA. Also, the study of the influence of the choice of the LFSR is
presented. This paper is an extended version of a previous attack [20], so we
present a major improvement: an optimization to find the best time, relative to
the beginning of encryption, to start the attack is given in section 4.2.

Organization
The paper is organized as follows. In section 2, the context of blind side chan-
nel attack and the Elephant are introduced. The theoretical attack is explained
in section 3, it is a reminder of the short version of the paper [20]. Details of
implementated attack and new improvement are described in section 4. Then,
section 5 presents experimental results and discussion about LFSR design. Fi-
nally, a conclusion is drawn in section 6.

2 Context

The first section starts by presenting the Elephant cryptosystem. This first part
is extracted from the first shorted paper version [20] according the description
of the standard [7]. Then, the background contents on blind side channel attacks
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is introduced. Eventually, a brief state of the art of SCA attacks against LFSRs
is presented.

2.1 Elephant
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Fig. 1: Elephant associated data authentication (top), plaintext encryption (mid-
dle), and ciphertext authentication (bottom). This figure comes from [20] accord-
ing to the description of Elephant [7].

The purpose of an authenticated encryption algorithm is to ensure both
confidentiality and integrity. It takes as input different parameters: a plaintext,
data associated to the plaintext, a secret key, and an initialisation vector, also
called a nonce. The nonce is public but must be different for each new plaintext.
The algorithm ensures confidentiality of the plaintext and integrity of both the
plaintext and the associated data.
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x0 x1 x2 x3 x4 . . . x12 x13 x14 . . . x18 x19

≪ 3 � 7 � 7

Fig. 2: 160-bit LFSR φDumbo. This figure comes from [20] according to the de-
scription of Elephant [7].

x0 x1 x2 x3 x4 . . . x18 x19 x20 x21

≪ 1 � 7 � 7

Fig. 3: 176-bit LFSR φJumbo. This figure comes from [20] according to the de-
scription of Elephant [7].

x0 x1 x2 x3 . . . x12 x13 x14 . . . x23 x24

≪ 1 ≪ 1 � 7

Fig. 4: 200-bit LFSR φDelirium. This figure comes from [20] according to the de-
scription of Elephant [7].

φDumbo : (x0, · · · , x19) 7→ (x1, · · · , x19, x0 ≪ 3⊕ x3 ≪ 7⊕ x13 ≫ 7) (1)
φJumbo : (x0, · · · , x21) 7→ (x1, · · · , x21, x0 ≪ 1⊕ x3 ≪ 7⊕ x19 ≫ 7) (2)

φDelirium : (x0, · · · , x24) 7→ (x1, · · · , x24, x0 ≪ 1⊕ x2 ≪ 1⊕ x13 ≪ 7) (3)

Elephant [6,7] is a finalist to the NIST lightweight cryptography competition.
It is a nonce-based authenticated encryption with associated data (AEAD). Its
construction is based on an Encrypt-then-MAC that combines CTR-mode en-
cryption with a variant of the protected counter sum [4,28]. Elephant uses a
cryptographic permutation masked with LFSRs in an Even-Mansour-like fash-
ion [17] in place of a blockcipher.

Let P be an n-bit cryptographic permutation, and φ an n-bit LFSR. Let the
function mask : {0, 1}128 × N× {0, 1, 2} → {0, 1}n be defined as follows:

maskt,bK = (φ⊕ id)b ◦ φt ◦ P(K||0n−128) (4)

Let Split(X) be the function that splits the input X into n-bit blocks, where the
last block is zero-padded. Let Truncτ (X) be the τ left-most bits of X.

Encryption enc under Elephant gets as input a 128-bit key K, a 96-bit
nonce N , associated data A ∈ {0, 1}∗, and a plaintext M ∈ {0, 1}∗. It out-
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Algorithm 1 Elephant encryption algorithm enc

Require: (K,N,A,M) ∈ {0, 1}128 × {0, 1}96 × {0, 1}∗ × {0, 1}∗
Ensure: (C, T ) ∈ {0, 1}|M| × {0, 1}t
1: M1, · · · ,MℓM ← Split(M)
2: for t← 1 to ℓM do
3: Ct ←Mt ⊕ P(N ||0n−96 ⊕maskt−1,1

K )⊕maskt−1,1
K

4: end for
5: C ← Trunc|M|(C1|| · · · ||CℓM )
6: T ← 0n

7: A1, · · · , AℓA ← Split(N ||A||1)
8: C1, · · · , CℓC ← Split(C||1)
9: T ← A1

10: for t← 2 to ℓA do
11: T ← T ⊕ P(At ⊕maskt−1,0

K )⊕maskt−1,0
K

12: end for
13: for t← 1 to ℓC do
14: T ← T ⊕ P(Ct ⊕maskt−1,2

K )⊕maskt−1,2
K

15: end for
16: T ← P(T ⊕mask0,0K )⊕mask0,0K

17: return (C,Truncτ (T ))

puts a ciphertext C as large as M , and a t-bit tag T . The description enc is
given in Algorithm 1 and is depicted on Fig. 1.

Decryption dec gets as input a 128-bit key K, a 96-bit nonce N , associated
data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and τ -bit tag T . It outputs a plaintext
M as large as C if the tag T is correct, or the symbol⊥ otherwise. The description
of dec is analoguous to the one of enc.

Elephant comes in three flavours which differ on the n-bit cryptographic
permutation P and the LFSR φ used, as well as the tag size t.

Dumbo uses the 160-bit permutation Spongent-π[160] [8], the LFSR φDumbo

given by equation (1) and illustrated on Fig. 2, and has tag size τ = 64 bits.
Jumbo uses the 176-bit permutation Spongent-π[176] [8], the LFSR φJumbo

given by equation (2) and illustrated on Fig. 3, and has tag size τ = 64 bits.
Delirium uses the 200-bit permutation Keccak-f [200] [5,31], the LFSR φDelirium

given by equation (3) and illustrated on Fig. 4, and has tag size τ = 128 bits.

2.2 State-of-the-art

Side channel analysis Even if an algorithm has been proven to be mathe-
matically secure, its implementation can open the gate to physical attacks. SCA
are a subcategory of physical attacks. They exploit the fact that some physical
states of a device depend on intermediate values of the computation. This is
the so-called leakage of information of the circuit. It could be used to retrieve
sensitive data, such as secret keys, or to reverse engineer an algorithm. An SCA
is often led with a divide-and-conquer approach. Namely, the secret is divided
into small pieces that are analysed independently.
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Different kinds of leakage sources can be exploited as execution time [18],
power consumption [25] or electromagnetic (EM) radiations [36]. In this paper,
we consider a power consumption or EM leakage channel. At each instant, the
measurement of the intensity of the electric current reflects the activity of the
circuit. The power consumption of a device is a combination of the power con-
sumption of each of its logic gates.

Several analysis paradigms have been described in the literature. The Simple
Power Analysis (SPA) [29] are called simple because they determine directly,
from an observation of the power consumption, during a normal execution of an
algorithm, information on the calculation performed or the manipulated data.
Other attacks like Correlation Power Analysis (CPA) [9] use a mathematical
model for the leakage. A confrontation between measurement and model is per-
formed. More precisely, a statistic tool called distinguisher gives score to the
different targets. Template attacks are statistical categorizations [1] that require
no leakage model a priori. It is a domain in its own right, as shown different
books [30,33].

Blind side channel analysis The blind side channel analysis (BSCA) family
is new improvement in SCA. Linge et al. has presented the concept in [27]. In
parallel, Le Bouder et al. published an attack in [26]. Then, these works have
been improved by Clavier et al. in [13], moreover this contribution introduces
for the first time, the term of blind side channel. Now it is a new family of
SCA [14,2,37,20].

The main idea is to only perform the attack on the leakage measurements
i.e, without data such as plaintexts or ciphertexts.

In BSCA, the Hamming weight (HW) leakage model have often been used
and a strong assumption is made: the attacker is supposed to retrieve a noisy
HW from the leakage. In this paper, the considered adversary model is that the
HW of all manipulated intermediate variables can be recovered by the attacker.
Several techniques, such as signal filtering, trace averaging or templates [12], can
be used in order to fulfill this prerequisite.

Overview of SCA attacks on LFSRs Linear feedback shift registers (LFSRs)
with primitive polynomials are used in many symmetric cryptographic primitives
because of their well-defined structure and remarkable properties such as long
period, ideal autocorrelation and statistical properties.

The information leakage and the vulnerability of stream ciphers based on Ga-
lois LFSRs are studied in [22] and those based on Fibonacci LFSRs are analysed
in [10]. In [22], the information leakage of XOR gates is exploited to perform a
simple side-channel attack. However, if the leakage from the XOR gates is too
low compared to other operations in the cipher, the attack fails. In [11], the
attack recovers the initial state of a Galois LFSR by determining the output of
the LFSR from the difference in power dissipation values in consecutive clock
cycles.
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In this paper, a theoretical blind side channel attack targeting the LFSR
of the Elephant algorithm is presented. Whereas several attacks on LFSRs have
been described in the literature, the specific structure of the Elephant cryptosys-
tem allows us to elaborate a new approach that is depicted in the rest of this
paper.

3 Theoretical attack

This section is a reminder of the first shorted paper version [20].

3.1 Goal

LFSRs are used in different lightweight cryptography candidates, and its ini-
tial state often depends on both a key and a nonce. As the nonce needs to be
changed for each encryption request, attacks on such schemes are limited to the
decryption algorithm. In the case of Elephant, the LFSR only depends on the
secret key. Consequently, our attack can be applied in an encryption scenario.

The goal of the presented attack is to retrieve the LFSR secret initial state.
One has to remark three important points:

– Retrieving the initial state of the LFSR, which is equal to mask0,0K , is equiv-
alent to retrieving the secret key. Indeed, the initial state is the result of the
known permutation P applied to the key.

– As the retroaction polynomial is publicly known, it is possible to shift the
LFSR backwards: an attacker who recover enough consecutive bytes of the
secret stream is able to reconstruct the initial state.

– The smaller the LFSR is, the more the attack is able to succeed. As a con-
sequence, the Dumbo instance (see Fig. 2) is the most vulnerable one: the
following of this paper is focused on Dumbo.

3.2 Leakage in the LFSR

In this attack, it is assumed that the Hamming weight of every byte of the LFSR
can be obtained by an attacker. Let x be a byte: it can take any of the 256 values
in [[0, 255]]. With the HW of x, the attacker reduces the list of possible values,
as shown in Table 1.

HW (x) 0 1 2 3 4 5 6 7 8

#x 1 8 28 56 70 56 28 8 1

Table 1: Number of possible values per Hamming weight value [20,26].

Since the LFSR generates a single new byte at each iteration, let (xj , · · · , xj+19) =

maskj,0K be the content of the Dumbo LFSR and xj+20 the byte generated at it-
eration j. Precisely, the attacker has the following relation (L1), according to the
equation (1).
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L1 xj+20 = (xj ≪ 3)⊕ (xj+3 ≪ 7)⊕ (xj+13 ≫ 7).

The first idea is to use the knowledge of the following Hamming weights: HW (xj+20),
HW (xj+13) and

HW (xj) = HW (xj ≪ 3) . (5)

So with the two equations (L1) and (5) the attacker has:

HW (xj+20) =



HW (xj)

HW (xj) + 1

HW (xj)− 1

HW (xj) + 2

HW (xj)− 2

(6)

Looking more precisely at equation (L1), it can be seen that the difference
HW (xj+20) − HW (xj) only depends on four bits. Let xj [i] denote the i-th
least significant bit of byte xj , these four bits are {xj+3[0];xj+13[7];xj [4];xj [5]}.
Table 2 gives the value of observed difference HW (xj+20)−HW (xj) depending
on the values of these four bits. In the worst case, there are only 6 possibilities
left, out of 16.

(xj+3[0], xj+13[7]) =
HW (xj+20)−HW (xj) (0, 0) (0, 1) (1, 0) (1, 1)

(xj [4], xj [5]) =

(0, 0) 0 +1 +1 +2
(1, 0) 0 +1 −1 0
(0, 1) 0 −1 +1 0
(1, 1) 0 −1 −1 −2

Table 2: Values of HW (xj+20) − HW (xj) according to
{xj+3[0];xj+13[7];xj [4];xj [5]} [20] .

3.3 Link between the different masks

The value maskj,1K can be expressed in terms of mask∗,0K as in (7).

maskj,1K = (φ⊕ id)
(
maskj,0K

)
= φ

(
maskj,0K

)
⊕maskj,0K

= maskj+1,0
K ⊕maskj,0K .

(7)
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Likewise, for maskj,2K , equation (8) holds.

maskj,2K = (φ⊕ id)2
(
maskj,0K

)
= (φ2 ⊕ id)

(
maskj,0K

)
= φ2

(
maskj,0K

)
⊕maskj,0K

= maskj+2,0
K ⊕maskj,0K

(8)

As in the case of maskj,0K , let yj denote either the byte j of mask0,1K when 0 ≤
j ≤ 19, or the new byte obtained after j iterations of the LFSR initialized with
mask0,1K . Likewise, let zj denote either the byte j of mask0,2K when 0 ≤ j ≤ 19, or
the new byte obtained after j iterations of the LFSR initialized with mask0,2K .

Equation (7) then translates to equation (9).

yj = xj ⊕ xj+1 (9)

Likewise, the equation 8 translates to (10).

zj = xj ⊕ xj+2. (10)

The evolution of the LFSR is analogous to (L1):

yj+20 = (yj ≪ 3)⊕ (yj+3 ≪ 7)⊕ (yj+13 ≫ 7). (11)
zj+20 = (zj ≪ 3)⊕ (zj+3 ≪ 7)⊕ (zj+13 ≫ 7). (12)

The attacker can thus exploit two attack vectors: on the one hand, equations (L1),
(11), and (12) coming from iterating the LFSR, and on the other hand, equa-
tions (9) and (10) coming from the different masks used for domain separation.

4 Attack strategy

For a byte xj of the Dumbo LFSR with j ≥ 0, let x′
j denote a guess of its value by

the attacker. Given m successive bytes (xj , · · · , xj+m−1), let Xm
j denote the set

of guesses (x′
j , · · · , x′

j+m−1) satisfying the constraints of the Hamming weights
of masks x, y and z depicted in Equations 9 and 10.

4.1 Algorithm of the attack

The whole search space corresponding to the initial state of the LFSR is rep-
resented as a rooted tree. The nodes at depth j correspond to all the possible
values for the bytes x0 to xj of the LFSR. The tested candidates are denoted by
(x′

0, · · · , x′
19). The nodes in the graph of the search space are labelled as follows:

– the nodes at depth j correspond to all the possible values of (x′
0, · · · , x′

j);
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Algorithm 2 isvalid(x′
0, · · · , x′

j)

Require: Byte-wise partial candidate (x′
0, · · · , x′

j) of length 1 ≤ j + 1 ≤ 20
Assumes isvalid(x′

0, · · · , x′
j−1) is true.

Ensure: true if candidate (x′
0, · · · , x′

j) is compatible with the observations, false
otherwise
# Hamming weights of the xors

1: if HW (x′
j) ̸= HW (xj) then

2: return false
3: end if
4: if HW (x′

j ⊕ x′
j−1) ̸= HW (yj−1) then

5: return false
6: end if
7: if HW (x′

j ⊕ x′
j−2) ̸= HW (zj−2) then

8: return false
9: end if

# Hamming weights of the feedbacks
10: if |HW (x′

j ≪ 3)−HW (xj+20)| > 2 then
11: return false
12: end if
13: if |HW (x′

j−3 ≪ 3⊕ x′
j ≪ 7)−HW (xj+17)| > 1 then

14: return false
15: end if
16: if HW (x′

j−13 ≪ 3⊕ x′
j−10 ≪ 7⊕ x′

j ≫ 7) ̸= HW (xj+7) then
17: return false
18: end if
19: return true

x′
0 = 03...

x′
0 = 03

x′
1 = 2F

x′
0 = 03

x′
1 = 1F

...
x′
0 = 03

x′
1 = F8

x′
0 = 03

x′
1 = 2F

x′
2 = 17

x′
0 = 03

x′
1 = 2F

x′
2 = 0F

...

x′
0 = 03

x′
1 = 2F

x′
2 = F0

x′
0 = 03

x′
1 = 1F

x′
2 = F0

...

x′
0 = 03

x′
1 = 1F

x′
2 = 17

x′
0 = 03

x′
1 = 1F

x′
2 = 0F

...

x′
0 = 03

x′
1 = F8

x′
2 = 0F

x′
0 = 03

x′
1 = F8

x′
2 = 17

...

x′
0 = 03

x′
1 = F8

x′
2 = F0

HW (x2) = 4

HW (x1) = 5

HW (x0) = 2

Fig. 5: Example of the tree representation of the LFSR initial state for the Ham-
ming weights given on the left. Only the first three layers of the subtree rooted
at x′

0 = 03 are shown.

– the children of node (x′
0, · · · , x′

j), are the nodes labelled: (x′
0, · · · , x′

j , x
′
j+1)

for all values of x′
j+1.
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Algorithm 3 Attack
Require: Observed Hamming weights HW (x0), · · · , HW (x19),

HW (y0), · · · , HW (y18), and HW (z0), · · · , HW (z17). For the sake of clarity,
they are seen as global variables.

Ensure: S set of keys compatible with the observed Hamming weights
1: (x′

0, · · · , x′
19)← (0, · · · , 0)

2: ℓ← 0
3: S ← {}
4: while true do
5: if j < 19 and isvalid(x′

0, · · · , x′
j) then

6: j ← j + 1
7: x′

j ← 0

8: else
9: if j = 19 and isvalid(x′

0, · · · , x′
j) then

10: S ← S ∪ {(x′
0, · · · , x′

j)}
11: end if
12: while j ≥ 0 and x′

j = FF do
13: j ← j − 1
14: end while
15: if j ≥ 0 then
16: x′

j ← x′
j + 1

17: else
18: break
19: end if
20: end if
21: end while
22: return S

In practice, to reduce the number of nodes, only the nodes having the correct
Hamming weights are considered. In other words, it suffices to consider nodes
with HW (x′

j) = HW (xj). An example of such a tree is given on Fig. 5.

A backtracking algorithm is used. The tree is traversed in a depth-first man-
ner. For each step, the attacker tests whether the current candidate (x′

0, · · · , x′
j)

satisfies the different conditions given by the observed Hamming weights. This
test is given by Algorithm 2.

If the test succeeds, the algorithm goes down to the next layer to test the
values of the byte x′

j+1. If it reaches the bottom of the tree, then a good candidate
has been found, and can be saved. The algorithm then iterates upon the next
untested node.

If, at some point, the Hamming weights conditions do not hold for the current
(partial) candidate, then no node in the sub-tree rooted at that node can lead to
a good candidate. Thus, it can be pruned from the whole tree, saving the cost of
browsing it. Finally, the algorithm ends when the whole tree has been explored.
A pseudocode of the attack is given by Algorithm 3.
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4.2 Optimisation of the attack

Goal of the optimization Recall from Algorithm 1 that for each new block
of data to encrypt, a different mask is used. Therefore the attacker actually can
choose which values of index t at lines 2, 10, and 13 of Algorithm 1 they would
rather attack.

The question raised at this point is: at which time t does the attacker mini-
mize the complexity of the attack? The attacker wants to establish a metric E(·)
such that E(t) allows estimating the complexity of an attack at time t. The
attacker constructs E such that the computation of E(t) :

1. is fast enough to allow exploring a large number of values of t and
2. is accurate enough so that the attacker can accurately select the value of t

with minimal attack complexity.

Principle The general idea for finding the best attack position is to obtain
an estimation of the attack complexity at a given time t. For this sake, the
LFSR state (xt, · · · , xt+19) at time t is divided into tuples that can be treated
with three different operations. Note that this approach does not exploit the
retroaction polynomial of the LFSR. This allows to use it for all the flavours of
the Elephant cryptosystem.

1. Enumerate This function takes as an input m indices (i, · · · , i + m − 1)
and returns all the candidates Xm

i for (x′
i, · · · , x′

i+m−1) satisfying the con-
straints of masks x, y and z depicted in equations (9) and (10), based on
the knowledge of corresponding 3m − 3 Hamming weights. This operation
explores all the possible combinations for each x′

i and only retains the can-
didates matching the conditions imposed by masks x, y and z. Note that the
enumerate function quickly becomes computationally intense as m grows. In
our experiments, we use this function for m ∈ {1, 2, 3}.

2. Merge When m grows, the attacker proceeds with a divide and conquer
strategy. Indeed, for k < m, the attacker first computes candidates Xk

i and
Xm−k

i+k thanks to the enumerate function. Then candidates Xk
i and Xm−k

i+k

are merged into Xm
i so that each remaining candidate in Xm

i satisfies the
constraints on masks y and z. This approach allows benefiting from the
reduced candidate sets Xk

i and Xm−k
i+k , allowing to reduce the size of the

search space for Xm
i . For a growing m, storing the Xm

i set in memory can
become impractical, hence the merge function comes with the merge_count
variant, that only returns the number | Xm

i | of candidates. We emphasize
that calling merge_count on Xm

i disables calling it for another merge.
3. Merge estimator The number of candidates | Xm

i | can be assessed by
applying a reduction factor r on the product of | Xk

i | and | Xm−k
i+k |. Namely,

it is defined as:

r =
| Xk

i | × | X
m−k
i+k |

| Xm
i |

(13)

Hence, the merging estimation procedure takes as input two indices tuples
(i, · · · , i+ k− 1) and (i+ k, · · · , i+m), for k < m, and their corresponding



Blind side channel analysis on the Elephant LFSR Extended version 13

number of candidates | Xk
i | and | Xm−k

i+k |. The aim of the estimator is to ap-
proximate r based on statistical tools without exploring the entire Cartesian
product of Xk

i and Xm−k
i+k . The construction of the estimator is discussed in

the following.

Gathering information The estimator E for the attack complexity can then
be defined by applying the previous three functions. The procedure used for the
Dumbo LFSR is depicted in Fig. 6.

Enumerate Enumerate Enumerate Enumerate Enumerate Enumerate Enumerate Enumerate

Merge Count Merge Count Merge Count Merge Count

Merge Estimator Merge Estimator

Merge Estimator

Fig. 6: Gathering information for the Dumbo LFSR.

The 20 LFSR bytes are split into 4 quintuplets. Each quintuplet is itself split
into a triplet and a pair of bytes. The attacker gathers the candidates for each
triplet and pair with the enumerate function, and then call the merge_count
function on the union of the triplets and pairs to count the exact number of can-
didates for the quintuplets. Eventually, the attacker applies the merge estimator
between the first and second, and the third and fourth quintuplets before calling
the estimator a last time on the full state.

At this point, it can be seen that the accuracy of the complexity returned by
E highly depends on the quality of the merge_estimator.

Crafting a merge estimator Naive estimator
Equations (9) and (10) allow to derive a reduction triangle for the merge of two
tuples (see Fig. 7).

This reduction triangle can be exploited to obtain a broad estimation on the
information gained by a merge, hence, a estimation of the reduction factor of
the Cartesian product of Xk

i and Xm−k
i+k . Let | Xtriangle | define the number

of candidates for the reduction triangle. This corresponds to the product of the
number of bytes values that match each three gathered Hamming weights. Then,
rnaive is defined by:

rnaive =
| Xtriangle |

224
(14)

The estimation error of rnaive is defined as follows:

errnaive = rnaive − r (15)
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...

...

...

...

...

...
Reduction triangle

Left tuple Right tupleNetwork input

Fig. 7: Necessary data for the naive estimator (reduction triangle) and the neural
network based merge estimator.

When errnaive > 0, reduction factor has been overestimated. This situation
raises an issue for the attacker, as the complexity of the attack is falsely un-
derestimated. On the contrary, errnaive < 0 indicates that the reduction factor
has been underestimated. This means that the attacker would probably not con-
sider this step to perform the attack, even if, in reality, the attack complexity
would have been much inferior. A distribution of the errnaive values is depicted
in Fig 8a.
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(a) Distribution of errnaive for m = 4.

0.10 0.05 0.00 0.05 0.10
Estimation error

0.0

1.92

3.85

5.77

7.69

9.62

11.54

13.46

Pe
rc

en
ta

ge

(b) Distribution of errnetwork for m = 4.

Fig. 8: Estimation error for the naive and the neural network approach.

The attacker stresses that rnaive, despite being fast to compute, has the
flaw of not considering all the inter-mask dependencies depicted in equations (9)
and (10).

Neural network based estimator
Inter-masks dependencies are difficult to handle as-is for crafting a merge esti-
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mator. Luckily, the complex relations that bound these bytes can be exploited
thanks to the power of a neural network. Hence, the Hamming weights of the
bytes depicted in Fig. 7 can be fed to a neural network in order to predict r.

To do so, we create a dataset by performing 1.3M merges of candidates for
two pairs of bytes. Merging pairs allows to quickly compute r, and thus allows
building a significant dataset in a reasonable amount of time. We keep the real
r values as labels that will be provided to the network in order for it to provide
an estimator rnetwork.

A neural network composed of 6 fully connected hidden layers is crafted,
whose sizes are depicted in Fig 9a. The choice of the neural network architecture
has been performed by progressively tuning the parameters in order to reduce
the variance and standard deviation of the estimation error for rnetwork. Each
layer uses the Relu activation function, and the model is compiled with the adam
optimizer and the Mean-Square-Error loss function. The model is trained upon
65 epochs upon a 1.287M sample datasets with a 0.01 validation ratio. Training
and validation losses are depicted in Fig. 9b.
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(a) Architecture of the neural network
for the merge estimator E.
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(b) Evolution of training and validation
losses of the neural network.

Fig. 9: Neural network architecture and training history.

The total training time of the model is approximately 15 minutes on a Intel
Core i7-8565U CPU. As for rnaive, the estimation error of rnetwork is measured
as follows:

errnetwork = rnetwork − r (16)

The distribution of errnetwork on a testing dataset of 13K samples (i.e., a dataset
that has not been used to train the network) is displayed in Fig. 8b.

Discussion
Fig. 8a shows that our naive estimator highly underestimates the reduction factor
of a merge between two tuples. Some instances even show more than a 50%
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delta between rnaive and the real reduction factor r. Fig. 8b shows that the
neural network provides an estimation of r which is more accurate than the
naive estimator, as the mean is closer to 0. Moreover, the error variance and
standard deviation of the distribution have been reduced compared to the naive
estimator. More importantly, the errnetwork distribution does not show outliers
(i.e, predictions that are far from the mean) unlike errnaive. In our experiment,
we hence use rnetwork as the reduction factor estimation for the metric E (see
Fig. 6).

Estimating the best position The best position for the attack is assessed
by applying estimator E in a sliding window fashion upon the iterations of the
LFSR. In terms of performance, the computation time is approximately one
second per iteration on a Intel Core i7-8565U CPU: this enables estimating
the attack complexity on several dozens of thousands of steps in less than a day.

Depending on the attacker’s computational power, several strategies can be
considered. First, the attacker can set up a threshold upon attack complexity.
When targeting an encryption stream, the attacker can apply the metric E on the
sliding window until it returns an attack complexity that is below this threshold.
Another approach is to fix a limit on the sliding window algorithm. Then, when
all the attack complexity estimations have been returned, the attacker chooses
the lowest one.

Fig. 10 illustrates a run of the sliding window algorithm on a Dumbo LFSR
with initial state bytes sampled from the uniform distribution. The metric E(t)
is computed for t ∈ {0, · · · , 20000}. In this example, minimal estimated attack
complexity is approximately 239.30 for t = 10909. Note that each E(t) can be
computed independently: the algorithm can easily be transformed into a parallel
version.
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Fig. 10: Example output of the sliding window E estimation algorithm.
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5 Results and discussion

5.1 Elephant attack

We have simulated the attack on randomly generated Dumbo keys. We selected
the lowest 25% of keys with respect to expected complexity given by the estima-
tor E derived in section 4.2. This gave us Nruns = 1275 keys to test. For each,
the number Nnodes of nodes effectively traversed in the tree has been counted.
This number roughly corresponds to the time complexity of the attack. Among
these nodes, we have specifically counted the number Nkeys of nodes on the last
layer; i.e. nodes that correspond to plausible guesses that remain to be brute
forced to finish the attack.

Only just above three quarters (77.73%) of the runs have ended after two
days. This is an improvement (24.16% more) compared to [20] where only 53.57%
had finished in the same amount of time. On average, for the runs that finished
after two days, the number of nodes traversed is Nnodes = 241.92, and the number
of remaining keys is Nkeys = 236.52.

Figure 11 shows the link between the estimator E and the actual computation
time for the differents keys tested. Quartiles for estimator and time distributions
are given in Table 3. It should be remembered that data given here only represent
the lowest 25% of the estimator distrbution and that time is capped at 48h, and
therefore do not represent the full distributions.

quartile Q1 median Q2 quartile Q3

estimator E (log2) 51.62 53.64 55.07

time (hours) 1.61 8.88 37.96

Table 3: Quartiles for estimator and time distributions.

5.2 Impact of the generation of masks

The threat brought by this attack upon the Elephant cryptosystem implies a
discussion about mitigations. Apart from using generic countermeasures, like e.g.
Boolean masking, there seem to be two possibilities for improvement. Indeed,
the attacker gains information from two sources:

– from equations (7) and (8) used to derive the masks for domain separation;
– from the LFSR state update equation (L1).

Thus, either the mask derivation or the LFSR can be changed, or both. This
section studies the former case.

We ran two experiments, similar to section 5.1 except that the attacker does
not gain information from every Hamming weight. In the first experiment, they
only know the values of the HW (xj), and the HW (yj). In other words, compared
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Fig. 11: Estimator E versus actual computation time for finished runs (blue) and
unfinished runs (red). Quartiles are represented by dashed lines.

to the experiment in the section 5.1, they lost the knowledge of the HW (zj).
Likewise, in the second experiment, they only know the values of the HW (xj).
In both cases, none of the Nruns = 120 runs done has terminated after a week.

From these experiments, it seems that the combined knowledge of the HW (xj),
HW (yj), and HW (zj) contributed heavily on the success of the attack. It would
then seem a good idea to tweak the cryptographic mode of operation by finding
another way of generating masks for domain separation.

5.3 Studies on different LFSRs

This section is dedicated to the study of the influence of the choice of the LFSR.
We stress that the results shown here are obtained without the optimizations
the optimization presented in 4.2: in practice, an attacker can hope lowering the
attack complexity by exploiting the optimization.

To keep the spirit of the original Elephant algorithm, only Fibonacci-like
LFSRs, at the byte level, are considered. More specifically, LFSRs considered
are: LFSRs where a single new byte is computed from a combination of three
bytes using byte-wise shifts and rotations. As usual, the associated feedback
polynomial must be primitive to ensure only maximum-length sequences can be
generated. Among all possible candidates, different behaviours can be triggered.
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In this paper, the type of a LFSR is defined as the sequence of the number
of bits unknown to the attacker at each depth in the tree where a new feedback
occurs.

Looking at equation (L1), it can be seen that:

|HW (xj+20)−HW (xj ≪ 3)| ≤ 2

since there are only 2 bits that are modified by:

xj+3 ≪ 7⊕ xj+13 ≫ 7.

Thus, if other feedback functions are used, with more bits involved, it can be
expected to have an impact on the attack.

Later in the attack, when at depth 3 in the tree, the same idea can be applied
to check whether:

|HW (xj+17)−HW (xj−3 ≪ 3⊕ xj ≪ 7)| ≤ 1

So since now only the single bit xj+10 ≫ 7 is unknown. Consequently, the type
of the Dumbo LFSR is [2, 1].

LFSRs with different types can be a first criterion when testing our attack.
A second criterion is the spacing between the feedback bytes. Indeed, the

tighter they are, the faster the attacker can use equation (L1) at its full potential.
In the case of Dumbo, the feedback bytes are at indices 0, 3, and 13. We call

13 the depth, this is simply the highest index of the feedback.
We chose LFSRs based on these two criteria. Types is defined from [2, 1] to

[8, 8]. For types [2, 1], and [5, ∗], we looked at all the possible LFSRs in order to
study the influence of their depth.

The state update function of the different LFSR tested are given by equa-
tions (L2) to (L21). Their type and depth are given at the second, respectively
third, column of Table 4.

L2 xj+20 ← xj ≪ 3⊕ xj+1 ≪ 7⊕ xj+11 ≫ 7
L3 xj+20 ← xj ≪ 3⊕ xj+14 ≫ 3⊕ xj+17 ≫ 7
L4 xj+20 ← xj ≪ 1⊕ xj+3 ≫ 3⊕ xj+13 ≫ 7
L5 xj+20 ← xj ≪ 1⊕ xj+9 ≫ 3⊕ xj+15 ≫ 7
L6 xj+20 ← xj ≪ 3⊕ xj+9 ≪ 4⊕ xj+19 ≫ 7
L7 xj+20 ← xj ≪ 3⊕ xj+1 ≪ 5⊕ xj+3 ≫ 6
L8 xj+20 ← xj ≪ 1⊕ xj+4 ≫ 3⊕ xj+19 ≫ 5
L9 xj+20 ← xj ≪ 1⊕ xj+7 ≫ 3⊕ xj+18 ≫ 5

L10 xj+20 ← xj ≪ 1⊕ xj+3 ≫ 3⊕ xj+9 ≫ 5
L11 xj+20 ← xj ≪ 3⊕ xj+1 ≫ 7⊕ xj+17 ≪ 4
L12 xj+20 ← xj ≪ 3⊕ xj+5 ≫ 7⊕ xj+19 ≫ 3
L13 xj+20 ← xj ≪ 1⊕ xj+5 ≪ 7⊕ xj+16 ≪ 3
L14 xj+20 ← xj ≪ 1⊕ xj+1 ≫ 7⊕ xj+9 ≫ 3
L15 xj+20 ← xj ≪ 1⊕ xj+13 ≪ 5⊕ xj+19 ≪ 3
L16 xj+20 ← xj ≪ 3⊕ xj+14 ≫ 7⊕ xj+17 ≫ 3
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L17 xj+20 ← xj ≪ 3⊕ xj+4 ≪ 1⊕ xj+5 ≫ 6

L18 xj+20 ← xj ≪ 1⊕ xj+3 ≫ 1⊕ xj+9 ≪ 1

L19 xj+20 ← xj ≪ 1⊕ xj+4 ≫ 1⊕ xj+5 ≪ 1

L20 xj+20 ← xj ≪ 3⊕ xj+1 ≫ 1⊕ xj+8 ≪ 7

L21 xj+20 ← xj ≪ 3⊕ xj+3 ≪ 5⊕ xj+4 ≪ 5

We ran the same experience as in section 5.1 for every considered LFSR with
Ntests = 120. For each LFSR, we noted the proportion of runs finished after
two days of computations, the average number of nodes effectively traversed in
the tree, and the average number of remaining keys. Results are summarized
in Table 4.

LFSR type depth finished Nnodes Nkeys

(L1) [2, 1] 13 53.57% 241.82 236.59

(L2) [2, 1] 11 82.5% 241.23 236.39

(L3) [5, 1] 17 0.83% 242.89 234.68

(L4) [5, 1] 13 94.17% 239.68 233.68

(L5) [5, 1] 15 28.33% 242.13 235.25

(L6) [5, 1] 19 11.67% 242.38 236.77

(L7) [5, 2] 3 100.0% 230.93 224.93

(L8) [5, 3] 19 0.83% 243.99 237.59

(L9) [5, 3] 18 0.0% − −
(L10) [5, 3] 9 95.83% 240.32 234.0

(L11) [5, 4] 17 0.83% 243.58 235.6

(L12) [5, 5] 19 0.0% − −
(L13) [5, 5] 16 0.0% − −
(L14) [5, 5] 9 82.5% 241.43 234.95

(L15) [5, 5] 19 0.0% − −
(L16) [5, 5] 17 0.0% − −
(L17) [8, 2] 5 100.0% 235.53 229.17

(L18) [8, 7] 9 78.75% 241.56 234.79

(L19) [8, 7] 5 100.0% 235.41 229.42

(L20) [8, 8] 8 79.17% 241.59 235.78

(L21) [8, 8] 4 100.0% 234.76 229.29

Table 4: Type, depth, proportion of runs finished after two days of computations,
the average number of nodes traversed, and the number of remaining keys for
Dumbo (L1), and LFSRs (L2) to (L21) [20].

From these experiments, it seems that the depth has a much more relevant
impact than the type. Yet, this seems to be quite tailored to our particular attack.
Changing the generation of the different masks is generally more impactful, since
it can cut down in three the amount of information given to the attacker.
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6 Conclusion

In this paper and its previous version, theoretical and simulated practical blind
side-channel attack targeting the LFSR of the Elephant algorithm have been pre-
sented. Elephant is a pertinent target. First, Elephant is a finalist for the (NIST)
competition for lightweight cryptography candidates for authenticated encryp-
tion. Moreover, Elephant is an interesting target because the internal LFSR only
depends on the secret key. In other words, in the use case of Elephant, retrieving
the initial state of the LFSR is equivalent to recovering the encryption key.

Different tweaking options have been considered. Going from the most im-
pactful to the least, they are changing the mask derivation for domain separation,
and modifying the LFSR, looking at the importance of depth and type.

Our attack is based on the fact that an attacker can retrieve the Hamming
weights of the different bytes in the LFSR. The Elephant design, where there
exist relations between the different masks of the LFSR, is an added vulnerabil-
ity to our attack. In the previous version, in half the cases, the key is retrieved
in less than two days. In this paper, an important improvement is made. The
result is that in three quarters of the cases, the key is retrieved in less than two
days. To have this new result the main idea has been that the attacker can wait
and decide when to begin the attack. In other words the attacker has to find the
best attack position in the LFSR computation progress.

Future works may consider the inclusion of noise in the simulations. To suc-
ceed we need a new tool able to treat errors resulting noisy measurement Ham-
ming weight. An idea is to use a belief propagation as in [26]. Ultimate future
work can be performing the attack on an actual implementation.
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