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Abstract: Monitoring stations have been established to combat water pollution, improve the ecosys-
tem, promote human health, and facilitate drinking water production. However, continuous and
extensive monitoring of water is costly and time-consuming, resulting in limited datasets and hinder-
ing water management research. This study focuses on developing an optimized K-nearest neighbor
(KNN) model using the improved grey wolf optimization (I-GWO) algorithm to predict dry residue
quantities. The model incorporates 20 physical and chemical parameters derived from a dataset of
400 samples. Cross-validation is employed to assess model performance, optimize parameters, and
mitigate the risk of overfitting. Four folds are created, and each fold is optimized using 11 distance
metrics and their corresponding weighting functions to determine the best model configuration.
Among the evaluated models, the Jaccard distance metric with inverse squared weighting function
consistently demonstrates the best performance in terms of statistical errors and coefficients for each
fold. By averaging predictions from the models in the four folds, an estimation of the overall model
performance is obtained. The resulting model exhibits high efficiency, with remarkably low errors
reflected in the values of R, R2, R2

ADJ, RMSE, and EPM, which are reported as 0.9979, 0.9958, 0.9956,
41.2639, and 3.1061, respectively. This study reveals a compelling non-linear correlation between
physico-chemical water attributes and the content of dry tailings, indicating the ability to accurately
predict dry tailing quantities. By employing the proposed methodology to enhance water quality
models, it becomes possible to overcome limitations in water quality management and significantly
improve the precision of predictions regarding critical water parameters.
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1. Introduction

Water is a vital resource essential for the survival and well-being of all living things on
Earth [1]. It serves various purposes, including consumption, irrigation, power generation,
temperature regulation, and industrial production [2]. Additionally, water plays a crucial
role in the ecosystem, influencing climate, biodiversity, and biological cycles [3]. However,
ensuring access to clean and safe water remains a significant challenge in many parts
of the world, emphasizing the need for responsible water resource management [1]. To
safeguard water quality, protect public health, and optimize water resource utilization,
wastewater treatment plants play a crucial role [4,5]. These plants employ biological
and physical processes to remove contaminants and waste from wastewater, including
feces, chemicals, heavy metals, and sediment [6,7]. By treating wastewater, these plants
contribute to preserving the water quality of rivers, lakes, and oceans, thus reducing the
presence of harmful contaminants [5]. Moreover, they protect public health by preventing
the contamination of drinking water sources and reducing the risks associated with harmful
bacteria and other contaminants [5,7]. Furthermore, wastewater treatment plants safeguard
the environment by preventing the pollution of soil and groundwater and the disruption of
local flora and fauna [6]. They also enable efficient resource management by facilitating the
reuse of treated water for purposes such as irrigation and energy production, alleviating the
strain on drinking water supplies [8]. However, water treatment processes are not without
drawbacks. They can be associated with high costs, substantial energy consumption,
production of residues, limitations in treating certain contaminants, and challenges in
their implementation for small communities [9]. Among these concerns, the management
of dry residue, which refers to the solid substances remaining after water purification,
is particularly important. Improper handling of dry residue, especially if it contains
toxic substances like heavy metals or dangerous chemicals, can have adverse effects on
human health and the environment. Discharged or stored dry residue has the potential
to contaminate soils and groundwater and harm local flora and fauna, thus disrupting
ecological balances. Furthermore, incorrect storage practices can pose safety hazards such
as fires or leaks. Hence, it is crucial to manage dry residue correctly to preserve both human
health and the environment. Nonetheless, continuous monitoring and sampling of large
volumes of water over extended periods can be a costly and time-consuming endeavor [8].
Efforts are being made to develop more efficient and cost-effective monitoring techniques,
including automated systems and remote sensing, to streamline water quality monitoring
processes. To overcome these limitations, several scientific articles on using artificial
intelligence (AI) in the field of water treatment have been published in recent years. A
paper explores the use of bootstrap aggregate (DT_Bag) and least squares (DT_Lsboost)
enhanced decision tree (DT) models to model organic matter in water as a function of
physico-chemical parameters [6]. Another article investigated the prediction of sulfate
levels in raw water using various machine learning models, including artificial neural
networks (ANNs), support vector machines (SVMs), Gaussian process regression (GPR),
DTs, and ensemble trees (ETs) [8]. Another article discusses the use of ANNs to predict
the rate of soluble bicarbonate in drinking water in the Médéa region of Algeria [10].
Another paper describes a study that uses ANN and multiple linear regression (MLR)
models to predict the soluble sulfate content in drinking water [11]. All of these papers
have demonstrated that the introduction of AI in the field of water treatment can bring
many benefits, such as improved efficiency, real-time monitoring, treatment customization,
and prediction of potential problems [12]. The K-nearest neighbor (KNN) method is
regarded as a cutting-edge approach for tackling complex modeling problems [13–18]. It
involves utilizing sets of nearest neighbors for data processing and using pre-processed
data to identify the closest neighbor match for the prediction process [18]. In addition,
optimization algorithms like the improved grey wolf optimization (I-GWO) algorithm
can also effectively evaluate the progression of the prediction process over time [18]. The
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I-GWO is a bio-inspired algorithm and can be used in conjunction with the KNN algorithm
to categorize data [19]. By analyzing the data, the prediction process can be enhanced,
enabling the validation of the properties measured during the optimization procedure [19].

This study introduces advancements in predicting dry residue content in water sources,
addressing challenges associated with traditional monitoring methods. By establishing
monitoring stations and utilizing the KNN model optimized by the improved grey wolf op-
timization (I-GWO) algorithm, the study significantly improves water quality management
practices. The model incorporates 20 physical and chemical parameters as inputs, enabling
a comprehensive understanding of factors influencing dry residue content. Rigorous op-
timization and cross-validation ensure accurate model configuration and performance
assessment. The study highlights the non-linear correlation between water attributes and
dry residue content, validating the accuracy and practical applicability of the model. This
pioneering research enables the development of highly accurate and efficient water quality
models, empowering informed decision-making for better water management practices.
The novel combination of KNN and I-GWO provides a promising solution for predicting
dry residues, opening new perspectives in water quality management. This innovative
approach has implications for sustainable water resource management and environmental
protection.

The remaining part of this article is organized as follows: The second section discusses
the analysis of raw water and treated water from the Médéa region to establish the database,
and the modeling of dry residues through the combined KNN and I-GWO (KKN_I-GWO)
method. The third section provides an explanation of the developed model. Finally, the
last section concludes the paper.

2. Materials and Methods
2.1. Database

The database used in this study consists of 400 samples of both raw and treated water
collected from various locations in the Medea region throughout the year 2022. These
samples were carefully chosen to cover a wide range of environmental conditions and
potential sources of water contamination [20,21]. The samples were collected at regular
intervals to capture seasonal variations and any temporal trends in water quality.

To ensure comprehensive analysis, a total of 21 physico-chemical parameters were
measured in each water sample. These parameters were selected based on their known
influence on water quality and their relevance to the study objectives. They encompassed a
wide range of characteristics, including pH, conductivity, total dissolved solids, dissolved
oxygen, temperature, and turbidity, as well as the concentrations of various ions, metals,
organic compounds, and nutrients.

The analysis of the water samples and measurement of the physico-chemical parame-
ters were performed following established protocols and guidelines. Specifically, the rec-
ommendations outlined in the 9th edition of the book Analyse de l’eau by Jean Rodier [22]
were followed to ensure standardized and accurate measurements. These guidelines have
been widely accepted in the field and provide reliable methods for assessing water quality.

For the database established, the input variables, which include the physico-chemical
parameters, and the model output, dry residue, are given in Table 1 along with the statistical
analysis (minimum “min”, mean, maximum “max” and standard deviations “STD” data).
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Table 1. The model inputs and output with statistical analysis.

Variables Symbol Unit Min Mean Max STD

Inputs

Conductivity X1 µS/cm 223 1263.98 3570 754.59
Turbidity X2 NTU 0.10 7.87 1024 58.57

Potential hydrogen X3 – 2.10 9.62 797 37.07
Hardness X4 mg/L 8.13 53.42 160 24.27
Calcium X5 mg/L 16.03 121.87 360.72 47.40

Magnesium X6 mg/L 0 55.20 218.70 36.91
Total alkalimetric titre X7

◦F 6.50 117.71 663 133.39
Bicarbonate X8 mg/L 6.74 200.11 495.20 117.01
Chlorides X9 mg/L 10.50 150.76 609.39 125.91

Nitrogen dioxide X10 mg/L 0 0.01 0.50 0.07
Ammonium X11 mg/L 0 0.02 1.05 0.14

Nitrates X12 mg/L 0 8.13 195.09 15.89
Phosphate X13 mg/L 0 1.28 288 19.09

Sulfate X14 mg/L 10.55 342.25 1457 287.37
Sodium X15 mg/L 0 122.05 460 121.67

Potassium X16 mg/L 0.005 6.92 805 37.92
Manganese X17 mg/L 0 0.007 0.21 0.02

Iron X18 mg/L 0 0.013 0.53 0.03
Aluminum X19 mg/L 0 0.005 0.90 0.04

Organic matter X20 mg/L 0 3.26 29.20 3.86

Output

Dry residue Y mg/L 29 916.01 2980 635.64

2.2. Modeling Method

The modeling method employed in this study is the KNN algorithm, a well-known
and versatile machine learning technique. The KNN algorithm is particularly suitable
for this study as it can handle both classification and regression tasks, making it ideal for
predicting the dry residue in water based on the physico-chemical parameters [19,23].

In the KNN algorithm, the prediction for a given sample is based on the information
from its k nearest neighbors in the feature space. The choice of the appropriate value for k de-
pends on the specific characteristics of the dataset and the desired level of accuracy [19,23].
In this study, various values of k were considered and optimized using the improved grey
wolf optimizer (I-GWO) algorithm, a metaheuristic optimization technique.

The I-GWO algorithm, an enhancement of the grey wolf optimizer, introduces several
improvements to enhance its optimization capabilities [24,25]. These include a leader
selection mechanism based on the standard deviation of wolf positions, an improved
method for updating the wolf positions to prevent stagnation and facilitate convergence, as
well as adaptive parameter management for improved robustness and stability [24,25].

To ensure reliable model performance and mitigate the risk of overfitting, a four-fold
cross-validation approach was employed. The dataset was divided into four subsets, with
three subsets used for training the KNN model and the remaining subset used for validation.
This process was repeated four times, with each subset serving as the validation set once,
resulting in a comprehensive assessment of the model’s generalization capabilities.

Furthermore, to optimize the KNN model’s parameters, an extensive search was
conducted over a range of distance metrics, including Euclidean, Chebychev, Minkowski,
Mahalanobis, Cosine, Correlation, Spearman, Hamming, Jaccard, Cityblock, and Seuclidean.
Each distance metric was accompanied by its corresponding distance weighting functions,
such as equal, inverse, and squared inverse. The parameters of each distance metric were
fine-tuned using the I-GWO algorithm, optimizing factors such as the number of neighbors
and the exponent for the Minkowski distance metric.

During the optimization process, careful consideration was given to the computational
requirements and model performance. The number of neighbors ranged from 1 to 200, and
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the exponent for the Minkowski distance metric was explored within the range of 2 to 5.
The I-GWO algorithm was configured with a maximum number of iterations of 100, and
the number of agents, a parameter controlling the search space exploration, was optimized
between 30 and 200.

By utilizing this comprehensive approach, involving cross-validation, parameter
optimization, and the integration of KNN and I-GWO algorithms, we aimed to develop an
accurate and reliable prediction model for estimating the dry residue in water based on the
measured physico-chemical parameters.

A detailed design of the KNN_I-GWO model development method is presented in
Figure 1.
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In order to assess the performance of the models and select the optimal one, statistical
measures were used. These measures included the correlation coefficient (R), coefficient of
determination (R2), adjusted coefficient of determination (R2

adj), root mean square error
(RMSE), and Error Prediction of Model (EPM). The formulas used to calculate these criteria
were as follows [26–32]:
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N
∑
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(
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)(
ypred − ypred
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√
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∑
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)2 N
∑
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N
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[(
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)
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100
N

N

∑
i=1

∣∣∣∣∣∣
(
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)
yexp

∣∣∣∣∣∣ (4)

where N is the number of data samples; K is the number of variables (inputs); yexp and
ypred are the experimental and the predicted values, respectively; and yexp and ypred are
the average values of the experimental and the predicted values, respectively [33–35].
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3. Results and Discussion
3.1. Factors Affecting Water Quality and Dry Residue

Water quality can be significantly influenced by numerous factors throughout the
year, including precipitation, temperature, human activities, topography, and water man-
agement [20,21]. Intense precipitation events can lead to runoff and flooding, resulting in
higher levels of turbidity and increased concentrations of contaminants such as sediments,
nutrients, pesticides, and heavy metals. Additionally, warm temperatures create favorable
conditions for the growth of algae and bacteria, which deplete dissolved oxygen in the
water and harm aquatic organisms. Human activities, such as chemical and wastewater
discharge, as well as agricultural, industrial, and residential practices, contribute to water
pollution. Moreover, topography plays a crucial role, as steep slopes promote soil erosion
and sediment accumulation, while low-lying areas are more prone to flooding and stagnant
water. Practices associated with water management, including damming, reservoirs, and
wastewater and drinking water treatment, also have a significant impact on water quality.

The dry residue of water refers to the amount of dissolved matter remaining after com-
plete evaporation [36–40]. However, accurately predicting dry residues can be challenging
due to various factors, such as the water source, water treatment methods, environmental
conditions, and seasonal variations [36–40]. Therefore, considering these factors is essential
when attempting to predict dry residues in water. Additionally, regular collection of water
quality data is crucial to improve the accuracy of such predictions.

To address these concerns, water samples from different locations in the Medea region
were collected throughout 2022. These samples underwent analysis using 21 physico-
chemical parameters, following the recommendations outlined in the ninth edition of the
book Analyse de l’eau by Jean Rodier [22].

The selection of these 21 physico-chemical parameters was based on several important
considerations. Laboratory experience has shown that dry residue can contain a wide range
of components, including minerals, salts, metals, non-volatile organic compounds, residues
of chemical products, dissolved organic matter, and microorganisms [41–43].

The relationships between these physico-chemical parameters and the dry residue
are often non-linear, as evidenced by various studies in the literature [6]. For instance,
the presence of sulfate ions in water is associated with essential cations such as calcium,
magnesium, and sodium [44]. Calcium, being a dominant element in drinking water, is pri-
marily linked to the dissolution of carbonate formations or gypsum [45], while magnesium
significantly contributes to water hardness, existing in similar forms to calcium [22]. The
hardness of water, determined by the presence of calcium and magnesium salts, is directly
influenced by the geological nature of the surrounding land [44]. Furthermore, the sum of
cations is equal to the sum of anions due to ion balance considerations [6]. Considering
the composition of the dry residue and the aforementioned relationships, it can be inferred
that all 21 physico-chemical parameters have a non-linear influence on the dry residue,
justifying their inclusion in the analysis. Due to the complex nature of the relationships
among these parameters, their non-linear behavior, and their interdependence, conducting
sensitivity analysis and significance testing was not necessary.

In the context of data-driven modeling, a larger database increases the likelihood
of effectively covering the input and output space, thus representing various classes or
categories of data in the training data. This improves the accuracy of predictions by en-
abling the KNN model to identify the k nearest neighbors that closely match the input
datum [13,46,47]. Additionally, a larger database allows for a more accurate estimation of
the probability density distribution of the data, facilitating better modeling of the relation-
ships between different characteristics of the data. Furthermore, a larger dataset reduces
the risk of overfitting the model to specific data [13,46,47]. However, it is important to
strike a balance between the quantity of modeling data and the associated efforts required
for data collection. Therefore, in this study, a total of 400 samples of raw and treated water
were collected from different locations in the Medea region.
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3.2. KNN Model

As previously mentioned, this research utilized the KNN model with cross-validation
to assess predictive model performance, optimize model parameters, and reduce the
risk of overfitting during model fitting. The dataset was split into four folds, with each
fold serving once as the validation set and the other three folds forming the training
set. The KNN_I-GWO model was then trained on the training set and evaluated on the
validation set, with this process repeated four times. Model performance was assessed using
various statistical measures, including R, R2, R2

adj, RMSE, and EPM. The eleven distance
metrics used in the KNN model (Euclidean, Chebychev, Minkowski, Mahalanobis, Cosine,
Correlation, Spearman, Hamming, Jaccard, Cityblock, and Seuclidean) were optimized
alongside their corresponding distance weighting functions (such as equal, inverse, and
squared inverse) for each fold. The specific parameters of the metric distance checks,
particularly the implementation of Minkowski distance metrics and the neighboring noble,
were optimized using the I-GWO algorithm. It is important to note that the number of
neighbors has been optimized in the range from 1 to 200, and for the Minkowski distance
(cubic), the exponent has been optimized in the range from 2 to 5. For the I-GWO algorithm,
the number of iterations was set to 100, while the number of agents was optimized in the
range of 30 to 200.

Once the four optimal models were formed and tested, the prediction values produced
by these four optimal models were aggregated to calculate the average of the predictions
and obtain an estimate of the overall performance of the model.

Table 2 shows the performance of the best models obtained from the optimization of the
11 dissemination measures and their weighting functions. Table 2 shows the performance
measures, R, R2, R2

adj, RMSE, and EPM, for the best models on the training data, the
validation data, and all data.

Table 2. Performances of the best model.

Number of
Neighbors R/R2/R2

adj RMSE/EPM

Train VAL ALL Train VAL ALL

1st fold

3
0.9958 0.9951 0.9956 56.0000 70.2000 59.9000
0.9916 0.9902 0.9911 2.7000 3.2000 2.8000
0.9910 0.9877 0.9907

2nd fold

5
0.9948 0.9924 0.9941 65.8000 79.3000 69.4000
0.9896 0.9848 0.9882 3.2000 4.3000 3.5000
0.9888 0.9809 0.9876

3rd fold

6
0.9968 0.9880 0.9940 48.5000 110.9000 69.5000
0.9937 0.9761 0.9881 2.2000 5.1000 2.9000
0.9932 0.9700 0.9874

4th fold

7
0.9930 0.9948 0.9935 75.7000 63.0000 72.7000
0.9861 0.9897 0.9869 3.0000 3.8000 3.2000
0.9851 0.9871 0.9863

The average of the folds

/ / /
0.9979

/ /
41.2000

0.9958 3.1000
0.9956

Table 2 presents the results of optimizing a KNN model using the I-GWO algorithm.
The model was optimized by using different distances and distance weights, as well
as varying the number of neighbors. The values of R, R2, R2

adj, RMSE and EPM were
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calculated for each fold of the cross-validation and for the average of the folds for the
training (Train), validation (VAL), and overall (ALL) data.

The best results were achieved through a systematic and rigorous approach that
involved using a combination of distance and distance weighting for each ply in the model.
This optimal combination was obtained using the Jaccard distance with an inverse squared
distance weighting and with the number of iterations and the number of grey wolf agents
at 100 and 50, respectively, for each fold. The best models were obtained for the number of
neighbors ranging from three to seven (three neighbors for the first fold, five neighbors for
the second fold, six neighbors for the third fold, and seven neighbors for the fourth fold).
The values of R, R2, and R2

adj for the training data are all very high for each fold, which
indicates an excellent ability of each optimal model obtained to predict the dry residue
values for the training data. The values of RMSE are also low in each fold, indicating that
the predictions are on average very close to the true values, and the value of MAE was also
low, indicating that the predictions are on average very accurate.

The values of R, R2, and R2
adj for the validation data are also high in each fold,

suggesting that the model has good predictive ability and explains much of the variance in
the validation data. The RMSE and EPM values for the validation are higher than those for
the training data, but still relatively low compared to the optimal experimental value of
dry residue, 3000 mg/L.

In the first fold, utilizing three neighbors, the model demonstrated exceptional perfor-
mance. For the training data, the R, R2, and R2

adj values were 0.9958, 0.9916, and 0.9910,
respectively. These high values indicate that the optimized model can explain a significant
portion of the variance in the training data. The model also showed strong performance on
the validation data, with R, R2, and R2

adj values of 0.9951, 0.9902, and 0.9877, respectively.
These results suggest that the model has good predictive ability and can generalize well
to unseen data. The RMSE and EPM values for the training data were 56.0826 and 2.7224,
indicating that, on average, the predictions were close to the true values with low error.
The RMSE and EPM values for the validation data were 70.2751 and 3.2649, showing that
the model’s predictions were slightly less accurate for the validation phase but still within
an acceptable range. These values are relatively low compared to the optimal experimental
value of dry residue, 3000 mg/L, indicating the model’s effectiveness in predicting dry
residue values.

In the second fold, employing five neighbors, the model continued to exhibit strong
performance. The R, R2, and R2

adj values for the training data were 0.9948, 0.9896, and
0.9888, respectively. The values of R, R2, and R2

adj showed similar high values on the
validation data, with values of 0.9924, 0.9848, and 0.9809, respectively. The RMSE and EPM
values for the training data were 65.8544 and 3.2718, and for the validation data, they were
79.3686 and 4.3136. These values indicate that the model’s predictions were slightly less
accurate for the validation phase compared to the training phase, but still relatively low
compared to the optimal experimental value of dry residue, 3000 mg/L.

In the third fold, utilizing six neighbors, the model once again delivered strong
performance. The R, R2, and R2

adj values for the training data were 0.9968, 0.9937, and
0.9932, respectively. For the validation data, the corresponding values were 0.9880, 0.9761,
and 0.9700, suggesting that the model’s predictions explained a significant portion of the
variance in the validation data. The RMSE and EPM values for the training data were
48.5324 and 2.2022, respectively, and for the validation data were 110.9024 and 5.1410,
respectively. These values indicate that the model’s predictions were very close to the
true values for the training phase, but slightly higher for the validation phase, while still
relatively low compared to the optimal experimental value of dry residue, 3000 mg/L.

In the fourth fold, employing seven neighbors, the model continued to demonstrate
strong performance. The R, R2, and R2

adj values for the training data were 0.9930, 0.9861,
and 0.9851, respectively. For the validation data, the corresponding values were 0.9948,
0.9897, and 0.9871, respectively, suggesting that the model’s predictions explained a sig-
nificant portion of the variance in the validation data. The RMSE and EPM values for
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the training data were 75.7243 and 3.0832, and for the validation data, they were 63.0681
and 3.8588. These values confirm the model’s ability to provide accurate and consistent
predictions, while still being relatively low compared to the optimal experimental value of
dry residue, 3000 mg/L.

Considering all the folds, the average of the models yielded outstanding results. The
average R, R2, and R2

adj values were 0.9979, 0.9958, and 0.9956, respectively. The average
RMSE and EPM values were 41.2639 and 3.1061, respectively, further indicating the model’s
accuracy in predicting dry residue values with low error. These values are considerably
lower than the optimal experimental value of dry residue, 3000 mg/L, emphasizing the
model’s effectiveness in predicting dry residue values.

To evaluate the performance of the obtained KNN_I-GWO models, the average pre-
dictions of the models for all four folds were calculated in the cross-validation process,
which resulted in a highly efficient model. This model showed high statistical coefficients
(R = 0.9979, R2 = 0.9958, and R2

adj = 0.9956) as well as low statistical errors (RMSE = 41.2639
and EPM = 3.1061), indicating a high level of precision in the prediction of the target
variable. The results of the KNN_I-GWO model are very promising. The average values of
R, R2, and R2

adj indicate a strong correlation between the predicted values and the actual
values. Moreover, the values of RMSE and EPM are low, indicating that the KNN_I-GWO
model is accurate in predicting the values of dry residue and could be a valuable tool for
analyzing similar datasets. The best models obtained in each fold and also the average of
the models are graphically illustrated in Figure 2.
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3.3. Model Performance Test

The performance of the model was evaluated by testing it on a pre-existing database
of 54 experimental data points that were not used in the model-building process. The
pre-existing database was tested on the four best models obtained, and subsequently,
the average of the predicted values was calculated. These predicted values were then
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compared with the corresponding experimental values. The results derived from averaging
the outputs of the four models are eloquently displayed in Table 3.

Table 3. Model test performance.

R R2 R2
adj RMSE EPM

0.9901 0.9804 0.9685 87.7000 9.6000

The KNN model consistently demonstrates remarkable performance across all folds,
as evidenced by high values of R, R2, and R2

adj for each phase. In the training data, the
R values range from 0.9930 to 0.9968, indicating strong correlations between the predicted
and actual dry residue values. The corresponding R2 values are between 0.9861 and 0.9937,
indicating that the model explains a substantial portion of the variance in the training data.
Additionally, the R2

adj values range from 0.9851 to 0.9932, further confirming the model’s
ability to capture the underlying relationships in the data while adjusting for the number
of predictors.

For the validation data, the R values range from 0.9948 to 0.9948, indicating consistent
predictive ability across the folds. The R2 values range from 0.9848 to 0.9897, suggesting
that the model explains a significant proportion of the variance in the validation data.
Similarly, the R2

adj values range from 0.9809 to 0.9871, indicating a robust performance
even after adjusting for the number of predictors.

Furthermore, the values of RMSE and EPM provide insights into the accuracy and
precision of the model’s predictions. The RMSE values range from 63.0681 to 110.9024
for the validation data, suggesting that, on average, the predictions deviate from the
actual values by a relatively small margin. Similarly, the EPM values range from 3.0832 to
5.1410, indicating the model’s ability to estimate the dry residue values with a high level
of accuracy.

It is important to note that the RMSE and EPM values are all relatively low when
compared to the optimal experimental value of dry residue, which is 3000 mg/L. This
further underscores the effectiveness of the KNN model in accurately predicting the dry
residue values. The average results of the outputs from the four models are visually
depicted in Figure 3.
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Overall, the detailed analysis of the performance metrics for each phase and fold
highlights the robustness and accuracy of the KNN model. These results provide strong
evidence for the model’s potential to be a valuable tool for analyzing and predicting dry
residue values in similar datasets.

3.4. Analysis of Model Residuals

The residual analysis approach used in this study not only is a widely accepted method
for evaluating the performance of regression models but also offers valuable insights that
enhance the understanding of the model’s predictive capabilities. By visually comparing
the experimental and predicted values, researchers can go beyond numerical metrics
and gain a more intuitive understanding of the accuracy and precision of the model’s
predictions [8,11]. This visual assessment allows for the identification of any systematic
patterns or discrepancies between the observed and predicted values, providing a holistic
view of the model’s performance. Moreover, the examination of model residuals through a
histogram analysis adds another layer of depth to the evaluation. By grouping the errors
into intervals and plotting their frequencies, researchers can explore the distribution of
errors and determine if they adhere to certain patterns. In this study, the histogram analysis
provides insights into the nature of the errors associated with the KNN model’s predictions.
The presence of a normal distribution with a mean of zero suggests that the model’s
predictions are unbiased, without any significant tendency to consistently overestimate or
underestimate the dry residue values [8,11].

In the specific context of this study, the results of the residual analysis solidify the
high performance and reliability of the KNN model in predicting dry residue values. The
visual comparison of the experimental and predicted values, as shown in Figure 4, reveals
a close match between the two, indicating a strong agreement and demonstrating the
model’s ability to capture the underlying patterns and relationships in the data [8,11]. The
consistent model performance on the modeling data and on the additional testing data
shown in Figure 4 provides crucial insights into the model’s generalization capacity and its
consistent performance across different datasets.
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Furthermore, Figure 5, displaying the histogram of model errors, reinforces the robust-
ness of the KNN model. The approximate normal distribution of errors around zero implies
that the model’s predictions are not skewed towards any specific direction, indicating its
stability and reliability across different scenarios. This finding enhances the confidence
in the KNN model’s practical applicability, as it suggests that the model can be trusted to
provide accurate predictions in real-world settings [8,11,32].

Overall, the comprehensive utilization of residual analysis in this study provides
valuable evidence supporting the effectiveness, efficiency, and robustness of the KNN
model in predicting dry residue values. The visual comparisons, along with the histogram
analysis, enhance the understanding of the model’s performance, ensuring its accuracy,
reliability, and practical relevance. These findings have significant implications for both
the scientific community and practical applications, contributing to the advancement and
utilization of the KNN model in various domains.
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Moreover, it is important to note that the residual analysis approach is widely used to
evaluate the performance of models in chemistry and other scientific fields. This approach
enables the examination of the correlation between predicted and experimental values,
and the identification of the sources of errors in the model. By employing this approach,
we were able to evaluate the performance of the KNN model in predicting dry residue
values accurately. The results of our study suggest that the KNN model is highly effective
in predicting dry residue values and can be potentially applied in practical settings. The
choice of the “Jaccard” distance metric and “squared inverse” distance weight have also
been demonstrated to be optimal for this specific case, and this finding could inform the
development of future models in related fields. Overall, the combination of the residual
approach and the visualization techniques used in this study provides a comprehensive
evaluation of the KNN model’s performance and demonstrates its potential to be used as a
reliable tool for predicting dry residue values.
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4. Conclusions

In conclusion, this research highlights the importance of modeling water quality
and treatment based on the dry residue parameter. The study collected and analyzed
water samples from the Médéa region of Algeria, utilizing the K-nearest neighbor (KNN)
algorithm combined with the improved grey wolf optimizer (I-GWO) algorithm to predict
dry residue content. Rigorous evaluation using cross-validation optimized the models and
minimized overfitting risks. The results revealed that the model incorporating the Jaccard
distance and the squared inverse weighting function outperformed other models in terms of
coefficients and statistical errors across the four folds. Averaging predictions from multiple
folds yielded an overall prediction with excellent performance, exhibiting high values for
R, R2, R2

adj, RMSE, and EPM (0.9979, 0.9958, 0.9956, 41.2639, and 3.1061, respectively).
Further testing on an independent dataset consistently confirmed the model’s efficiency
and accuracy, demonstrating low error values and a strong correlation coefficient. The
model’s effectiveness can be attributed to its ability to capture the non-linear relationship
between dry residue content and physico-chemical characteristics of water. Additionally,
the successful representation of the data played a crucial role in achieving outstanding
performance. Interpolation testing further reinforced the model’s efficiency and correlation
coefficient. In summary, this study underscores the importance of incorporating the dry
residue parameter in water quality modeling and treatment. The proposed KNN_I-GWO
model, which integrates the KNN and I-GWO algorithms and undergoes comprehensive
statistical analyses, demonstrated exceptional performance in terms of coefficients and
statistical errors. Its accurate representation of the non-linear relationship between dry
residue content and physico-chemical characteristics of water holds significant potential
for accurately predicting and managing water quality and treatment processes. This
research provides valuable insights and contributes to the advancement of water resource
management.

Author Contributions: Conceptualization, H.T., S.T., A.H.H.-B., A.B. (Abla Bousselma), A.N.E.H.S.,
A.-E.B., Z.T., M.K., A.A., J.Z., A.A.A., D.C., A.B. (Abdallah Bouguettoucha) and L.M.; Methodology,
H.T., S.T., A.H.H.-B., A.B. (Abla Bousselma), A.N.E.H.S., A.-E.B., Z.T., M.K., A.A., J.Z., A.A.A., D.C.
and A.B. (Abdallah Bouguettoucha); Software, H.T., S.T., A.B. (Abla Bousselma), M.K., A.A., J.Z. and
A.A.A.; Validation, H.T., S.T., A.H.H.-B., A.B. (Abla Bousselma), A.N.E.H.S., A.-E.B., Z.T., M.K., A.A.,
J.Z., A.A.A., D.C. and A.B. (Abdallah Bouguettoucha); Formal analysis, H.T., S.T., A.B. (Abla Bous-
selma), A.N.E.H.S., A.-E.B., Z.T., M.K., A.A., J.Z., A.A.A., D.C. and A.B. (Abdallah Bouguettoucha);
Investigation, H.T., S.T., A.H.H.-B., A.N.E.H.S., A.-E.B., Z.T., M.K., A.A., J.Z., D.C., A.B. (Abdallah
Bouguettoucha) and L.M.; Resources, H.T., M.K., A.A., J.Z. and A.B. (Abdallah Bouguettoucha);
Data curation, H.T., S.T., Z.T., A.A. and J.Z.; Writing—original draft, H.T., S.T., A.N.E.H.S. and M.K.;
Writing—review & editing, A.-E.B., Z.T., A.A., J.Z., A.A.A., D.C., A.B. (Abdallah Bouguettoucha) and
L.M.; Visualization, H.T., S.T., A.H.H.-B., A.N.E.H.S., A.-E.B., Z.T., M.K., A.A., J.Z., A.A.A., D.C., A.B.
(Abdallah Bouguettoucha) and L.M.; Supervision, A.A. and J.Z.; Project administration, H.T., A.A.
and J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kılıç, Z. The Importance of Water and Conscious Use of Water. Int. J. Hydrol. 2020, 4, 239–241. [CrossRef]
2. Deng, W.; Wang, G.; Zhang, X. A Novel Hybrid Water Quality Time Series Prediction Method Based on Cloud Model and Fuzzy

Forecasting. Chemom. Intell. Lab. Syst. 2015, 149, 39–49. [CrossRef]
3. Hamid, A.; Bhat, S.U.; Jehangir, A. Local Determinants Influencing Stream Water Quality. Appl. Water Sci. 2020, 10, 24. [CrossRef]
4. Ding, Y.R.; Cai, Y.J.; Sun, P.D.; Chen, B. The Use of Combined Neural Networks and Genetic Algorithms for Prediction of River

Water Quality. J. Appl. Res. Technol. 2014, 12, 493–499. [CrossRef]
5. Ho, J.Y.; Afan, H.A.; El-Shafie, A.H.; Koting, S.B.; Mohd, N.S.; Jaafar, W.Z.B.; Lai Sai, H.; Malek, M.A.; Ahmed, A.N.; Mohtar,

W.H.M.W.; et al. Towards a Time and Cost Effective Approach to Water Quality Index Class Prediction. J. Hydrol. 2019, 575,
148–165. [CrossRef]

https://doi.org/10.15406/ijh.2020.04.00250
https://doi.org/10.1016/j.chemolab.2015.09.017
https://doi.org/10.1007/s13201-019-1043-4
https://doi.org/10.1016/S1665-6423(14)71629-3
https://doi.org/10.1016/j.jhydrol.2019.05.016


Water 2023, 15, 2631 16 of 17

6. Tahraoui, H.; Amrane, A.; Belhadj, A.-E.; Zhang, J. Modeling the Organic Matter of Water Using the Decision Tree Coupled with
Bootstrap Aggregated and Least-Squares Boosting. Environ. Technol. Innov. 2022, 27, 102419. [CrossRef]

7. Tahraoui, H.; Belhadj, A.-E.; Triki, Z.; Boudella, N.R.; Seder, S.; Amrane, A.; Zhang, J.; Moula, N.; Tifoura, A.; Ferhat, R.; et al.
Mixed Coagulant-Flocculant Optimization for Pharmaceutical Effluent Pretreatment Using Response Surface Methodology and
Gaussian Process Regression. Process Saf. Environ. Prot. 2022, 169, 909–927. [CrossRef]

8. Tahraoui, H.; Belhadj, A.-E.; Amrane, A.; Houssein, E.H. Predicting the Concentration of Sulfate Using Machine Learning
Methods. Earth Sci. Inform. 2022, 15, 1023–1044. [CrossRef]

9. Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the Main Disinfection Processes for Wastewater
and Drinking Water Treatment Plants. Sustainability 2017, 10, 86. [CrossRef]

10. Tahraoui, H.; Belhadj, A.-E.; Hamitouche, A.-E. Prediction of the Bicarbonate Amount in Drinking Water in the Region of Médéa
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