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Abstract

Feature selection in clustering is a hard task which
involves simultaneously the discovery of relevant
clusters as well as relevant variables with respect
to these clusters. While feature selection algo-
rithms are often model-based through optimised
model selection or strong assumptions on p(xxx),
we introduce a discriminative clustering model
trying to maximise a geometry-aware generalisa-
tion of the mutual information called GEMINI
with a simple `1 penalty: the Sparse GEMINI.
This algorithm avoids the burden of combinatorial
feature subset exploration and is easily scalable
to high-dimensional data and large amounts of
samples while only designing a clustering model
pθ(y|xxx). We demonstrate the performances of
Sparse GEMINI on synthetic datasets as well as
large-scale datasets. Our results show that Sparse
GEMINI is a competitive algorithm and has the
ability to select relevant subsets of variables with
respect to the clustering without using relevance
criteria or prior hypotheses.

1. Introduction
It is common that clustering algorithms as well as super-
vised models rely on all available features for the best perfor-
mance. Yet, as datasets become high-dimensional, cluster-
ing algorithms tend to break under the curse of dimension-
ality (Bouveyron & Brunet-Saumard, 2014b). To alleviate
this burden, feature selection is a method of choice. Indeed,
all features may not always be of interest. Some variables
can be perceived as relevant or not with respect to the clus-
tering objective. Relevant variables bring information that
is useful for the clustering operation whereas irrelevant vari-
ables do not bring any new knowledge regarding the cluster
distribution (Tadesse et al., 2005) and redundant variables

look relevant yet do not bring beneficial knowledge (Maugis
et al., 2009). The challenge of selecting the relevant vari-
ables often comes with the burden of combinatorial search
in the variable space. Solutions may thus be hardly scalable
to high-dimensional data (Raftery & Dean, 2006) or to the
number of samples (Witten & Tibshirani, 2010) when the
selection process is part of the model.

Therefore reducing the number of variables on which to
learn to a relevant few is of interest, notably in terms of
interpretation (Fop & Murphy, 2018). The necessity of
variable selection notably met successful applications in
genomics (Marbac et al., 2020), multi-omics (Meng et al.,
2016; Ramazzotti et al., 2018; Shen et al., 2012).

Often, integrating the selection process as part of the model
will lead to either not scaling well (Solorio-Fernández et al.,
2020) in terms of number of features (Raftery & Dean,
2006) or number of samples (Witten & Tibshirani, 2010)
or imposing too constrained decision boundaries due to the
nature of strong parametric assumptions. To alleviate both
problems, we present the Sparse GEMINI: a model that
combines the LassoNet architecture (Lemhadri et al., 2021)
and the discriminative clustering objective GEMINI (Ohl
et al., 2022) for a scalable discriminative clustering with
penalised feature selection. The contributions of Sparse
GEMINI are:

• A simple novel algorithm efficiently combining feature
selection and discriminative clustering.

• A scalable feature selection and clustering model com-
patible with deep learning architectures.

• Demonstrations of performances on multiple synthetic
and real datasets as well as a large-scale transcrip-
tomics dataset.
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Figure 1. Description of the complete Sparse GEMINI model. Through a proximal gradient, clusters learned by GEMINI drop irrelevant
features both in a skip connection and an MLP.

2. Related works
Feature selection algorithms can be divided into 2 distinct
categories (John et al., 1994; Dy, 2007): filter methods and
wrapper methods. Filter methods apply in an independent
step feature selection using a relevance criterion to eliminate
irrelevant features before performing clustering. This can
be done for example using information theory (Cover, 1999)
with the SVD-Entropy (Varshavsky et al., 2006) or spectral
analysis (von Luxburg, 2007; He et al., 2005; Zhao & Liu,
2007). Those methods are thus easily scalable and quick de-
spite bearing the challenge of defining unsupervised feature
interestingness (Dy, 2007). Wrapper methods encompass
the selection process within the model and exploit their
clustering results to guide the feature selection (Solorio-
Fernández et al., 2020). Other related works sometimes
refer to a third category named hybrid model (Alelyani
et al., 2018) or embedded models (Blum & Langley, 1997)
as compromises between the two first categories.

While the definition of the relevance of a variable is more
straightforward for supervised learning, its definition in un-
supervised learning clearly impacts the choice of selection
criterion for filter methods or distribution design in model-
based methods (Fop & Murphy, 2018). Often, the terms
relevant variables, irrelevant variables (Tadesse et al., 2005)
for the notion of conveying information are used. Others
may consider as well redundant variables as those that bring
already available information (Maugis et al., 2009). A key
difference in models would then be to consider whether
the informative variables are independent given the cluster
assignment (local independence) or dependent (global inde-
pendence from the uninformative variables), yet the latter
hardly accounts for redundant variables (Fop & Murphy,
2018).

Feature selection is to be not mistaken with dimensional-
ity reduction, sometimes called feature reduction, which

is the process of finding a latent space of lower dimension
leveraging good manifolds for clustering, f.e. using matrix
factorisation (Shen et al., 2012). Moreover, by enforcing
the projection matrix to be sparse, feature selection can
be recovered in the original space (Bouveyron & Brunet-
Saumard, 2014a). Similarly, subspace clustering seeks to
find clusters in different subspaces of the data. (Zografos
et al., 2013; Chen et al., 2018) and is thus an extension of
feature selection (Parsons et al., 2004), notably with the
motivation that several latent variables could explain the het-
erogeneity of the data (Vandewalle, 2020). However, such
problems usually incorporate a mechanism to merge clus-
terings which is challenging as well while we are interested
in a method that selects features while producing a single
clustering output.

Finally, models for clustering in feature selection are often
model-based (Scrucca & Raftery, 2018; Raftery & Dean,
2006; Maugis et al., 2009), implying that they assume a
parametric mixture model that can either explain the distri-
bution of the data, as well as the distribution of the irrelevant
variables. To perform well, these methods need a good selec-
tion criterion to compare models with one another (Raftery
& Dean, 2006; Marbac et al., 2020; Maugis et al., 2009). To
the best of our knowledge, there does not exist models for
joint feature selection and clustering in the discriminative
sense of Minka (2005) and Krause et al. (2010), i.e. models
that only design pθ(y|xxx). Finally, most of these genera-
tive wrapper methods hardly scale both in sample quantity
and/or variable quantity.

3. The Sparse GEMINI
Sparse GEMINI is a combination of the generalised mu-
tual information objective for discriminative clustering (Ohl
et al., 2022) with the LassoNet framework for feature selec-
tion (Lemhadri et al., 2021) in neural networks. The model
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is summarised in Figure 1.

3.1. The GEMINI objective

Let D = {xxxNi=1}Ni=1 ⊂ X a dataset of N observations,
each of dimension d. We note each feature xxxj ∈ Xj , thus:
X =

∏d
j=1 Xj . We seek to cluster this dataset by learning

a distribution pθ(y|xxx) where y is a discrete variable taking
K values. This distribution is defined by a softmax-ended
function:

y|xxx ∼ Categorical(SoftMax ◦ fθ(xxx)), (1)

where fθ : X 7→ RK has parameters θ. In order to perform
clustering with f as a discriminative distribution, we train
the parameters θ using a generalised mutual information
(GEMINI) (Ohl et al., 2022). This objective was introduced
to circumvent the need for parametric assumptions regarding
p(x) in clustering and thus leads to designing only a discrim-
inative clustering model pθ(y|xxx). With the help of Bayes
theorem, this objective can be estimated without knowledge
of the data distribution p(xxx) using only the output of the
clustering distribution pθ(y|xxx). Overall, the GEMINI aims
at separating according to a distance D the cluster distribu-
tions from either the data distribution (one-vs-all):

Iova
D (θ) = Ey∼pθ(y) [D(pθ(xxx|y)‖p(xxx))] , (2)

or other cluster distributions (one-vs-one):

Iova
D (θ) = Ey1,y2∼pθ(y) [D(pθ(xxx|y1)‖p(xxx|y2))] . (3)

The novelty of GEMINI is to consider different types of dis-
tances D between distributions with a special focus on the
maximum mean discrepancy (MMD) (Gretton et al., 2012)
or the Wasserstein distance (Peyré & Cuturi, 2019). The
former corresponds to the distance between the expectations
of the respective distributions projected into a Hilbert space
and the second is an optimal transport distance describing
the minimum of energy necessary to reshape one distribu-
tion as the other. Both of them incorporate geometrical
information on the data respectively through a kernel κ or a
distance δ in the data space. Thus, any neural network that
is trainable through cross-entropy loss can be switched to
unsupervised learning at the cost of choosing a metric or
kernel in the data space.

3.2. The LassoNet architecture

To perform variable selection inside the neural network,
we chose to adapt the LassoNet (Lemhadri et al., 2021)
framework with GEMINIs. The neural network fθ : X 7→
RK is taken from a family of architectures F consisting
of one multi-layered perceptron (MLP) and a linear skip
connection:

F = {fθ : xxx 7→ gω(xxx) +WWW>xxx}, (4)

with θ = {ωωω,WWW} including ωωω the parameters of the MLP
and WWW ∈ RK×d the weights of a linear skip connec-
tion penalised by `1, similarly to the Lasso (Tibshirani,
1996). However, to properly ensure that an entire vector
weights is eliminated at once, a group-lasso penalty is pre-
ferred (Hastie et al., 2015, Section 3.3.3) also known as
`1/`2 penalty (Bach et al., 2012). Thus, the optimal param-
eters should satisfy:

θ̂ = argmaxθID(θ)− λ
d∑
j=1

‖WWW j‖2, (5)

with WWW j ∈ RK , the j-th column of WWW . Notice that λ is
positive because we seek to simultaneously maximise the
GEMINI and minimise the `1/`2 penalty. During training,
the sparsity-induced linear parameterWWW will remove some
feature subset I . In order to force the MLP to drop this same
subset of features as well, the weights of the first layer ωωω(1)

are constrained such that:

‖ωωω(1)
j ‖∞ ≤M‖WWW j‖2,∀j ≤ d. (6)

where M is called the hierarchy coefficient. When M = 0,
the method is equivalent to a penalised logistic regression.
Thus, when a feature j is eliminated, all weights starting
from this feature in the MLP will be equal to 0 as well.
Lemhadri et al. (2021) gracefully provide a proximal gradi-
ent operation to satisfy this constraint during training time
which guarantees true zeros in the first MLP layer and the
skip connection.

Interestingly, while the constraints are designed to specif-
ically select features in the dataset, dimension reduction
can be performed as well by extracting representations from
lower-dimension layers in the network gωωω. However, this
intermediate representation would not be complete as it
misses the information from the skip connection.

3.3. Training and model selection

We follow Lemhadri et al. (2021) in proposing a dense-to-
sparse training strategy for the penalty coefficient. Training
is carried along a path where the `1 penalty parameter λ is
geometrically increased: λ = λ0ρ

t (ρ > 1) at time step t
after an initial step without `1 penalty. We stop when the
number of remaining features used by the model is below
an arbitrary threshold 0 < Fthres < d which can be thought
as the minimum number of useful variables required. Each
time the number of features decrease during training, we
save its associate intermediate model

Once the training is finished, we look again at all GEMINI
scores during the feature decrease and select the model with
the minimum of features that managed to remain in the
range of 90% of the best GEMINI value. This best value is
most of the time the loss evaluated with the model exploiting
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Table 1. Brief description of datasets involved in experiments

Name Samples Features #Classes

US-Congress 435 16 2
Heart-statlog 270 13 2

MNIST 12000 784 10
MNIST-BR 12000 784 10

Prostate-BCR 171 24508 2

all features. We propose as well a less grounded yet efficient
training mode in appendix A.

4. Experiments
A brief summary of the datasets used in these experiments
can be found in table 1.

4.1. Metrics

Depending on the experiments for comparison purposes, we
report 3 different metrics. The adjusted rand index (ARI, Hu-
bert & Arabie, 1985) describes how close the clustering is to
the classes, with a correction to random guesses. The vari-
able selection error rate (VSER), for instance used by Celeux
et al. (2014), describes the percentage of variables that the
model erroneously omitted or accepted, thus the lower the
better. We finally report the correct variable rate (CVR)
which describes how many of the expected variables were
selected: higher is better. For example, a model selecting all
variables of a dataset with d variables and d′ good variables
will get a CVR of 100% and a VSER of 1− d′

d . All metrics
are written in percentage form.

4.2. Default hyperparameters

We set the hierarchy coefficient to M = 10, as Lemhadri
et al. (2021) report that this value seems to “work well for
a variety of datasets”. The optimiser for the initial training
step with λ = 0 is Adam (Kingma & Ba, 2014) with a learn-
ing rate of 10−3 while other steps are done with SGD with
momentum 0.9 and the same learning rate like Lemhadri
et al. (2021). Most of our experiments are done with 100
epochs per step with early stopping as soon as the global
objective does not improve by 1% for 10 consecutive epochs.
The early stopping criterion is evaluated on the same train-
ing set since we do not seek to separate the dataset in train
and validation sets in clustering. All activation functions
are ReLUs. The default starting penalty is λ0 = 1 with a
5% increase per step. We keep the linear kernel and the Eu-
clidean distance respectively in conjunction with the MMD
and Wasserstein distances when evaluating the GEMINI.
Finally, we evaluate in most experiments the method with
the exact same number of clusters as the number of known

(supervised) labels.

4.3. Numerical experiments
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Figure 2. Example of convergence of the norm of the weights of the
skip connection for every feature during training for the Wasser-
stein OvA objective. Green lines are the informative variables,
black lines are the noise and red are the correlated variables. In
the case of noisy variables, Sparse GEMINI can recover the infor-
mative variables. In the presence of redundant variables, Sparse
GEMINI eliminates informative variables to keep the redundant
ones.

We experimented Sparse GEMINI on two synthetic datasets
proposed by Celeux et al. (2014) and also used by (Bou-
veyron & Brunet-Saumard, 2014a) to first highlight some
properties of the algorithm and compare it with competitors.

The first synthetic dataset consists of a few informative
variables amidst noisy independent variables. The first 5
variables are informative and drawn from an equiprobable
multivariate Gaussian mixture distribution of 3 components.
All covariances are set to the identity matrix. The means
are µµµ1 = −µµµ2 = α111 and µµµ3 = 000. All remaining p variables
follow independent noisy centred Gaussian distributions.
The number of samples N , the mean proximity α and the
number of non-informative variables p vary over 5 scenarios
described along results in Table 2.

The second dataset consists of n = 2000 samples of 14 vari-
ables, 2 of them being informative and most others being
linearly dependent on the former. The Gaussian mixture is
equiprobable with 4 Gaussian distributions of means [0, 0],
[4, 0], [0, 2] and [4, 2] with identity covariances. The 9 fol-
lowing variables are sampled as follows:

xxx3−11 = [0, 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8]>+

xxx1−2
>
[

0.5 2 0 −1 2 0.5 4 3 2
1 0 3 2 −4 0 0.5 0 1

]
+ εεε, (7)

where εεε ∼ N (000,ΩΩΩ) with the covariance:
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Table 2. Performances of Sparse GEMINI using on synthetic datasets after 20 runs. We compare our performances against other methods.
S stands for a scenario of the first synthetic dataset and D2 stands for the second synthetic dataset. Standard deviation is reported in
parentheses

Method Sparse Clustvarsel vscc SFEM MMD Wasserstein

KMeans OvA OvO OvA OvO

S1 ARI 25 (5.9) 9.4 (0) -0.8 (0) 17 (1.5) 23 (5.9) 22 (6.8) 8.8 (7.1) 8.8 (8.4)

N = 30 VSER 30 (20) 28 (0) 80 (0) 27 (3.6) 29 (11) 32 (11) 54 (9.8) 47 (8.4)
α = 0.6 CVR 59 (28) 0 (0) 100 (0) 40 (0) 63 (15) 68 (15) 79 (22) 76 (20)
p = 20 # Var 8.4 (7.9) 2.0 (0) 25 (0) 5.8 (0.9) 8.5 (3.1) 9.8 (3.0) 16.4 (2.0) 14.2 (3.2)

S2 ARI 82 (0) 9.4 (0) -0.8 (0) 90 (0) 49 (4.1) 89 (8.7) 54 (18) 56 (14)

N = 30 VSER 80 (0) 28 (0) 80 (0) 40 (0) 8.2 (6.0) 0 (0) 18 (12) 14 (9.9)
α = 1.7 CVR 100 (0) 0(0) 100 (0) 20 (0) 78 (16) 100 (0) 83 (18) 81 (18)
p = 20 # Var 25 (0) 2 (0) 25 (0) 7 (0) 4.8 (0.37) 5 (0) 7.8 (2.9) 6.5 (2.0)

S3 ARI 9.1 (0.1) 0.5 (0) 24 (0) 19 (0) 21 (2.0) 20 (2.4) 9.1 (5.2) 11 (4.7)

N = 300 VSER 80 (0) 24 (0) 80 (0) 18 (0) 21 (7.9) 20 (8.8) 67 (9.5) 49 (18)
α = 0.6 CVR 100 (0) 20 (0) 100 (0) 33 (9.8) 99 (4.5) 100 (0) 96 (11) 85 (19)
p = 20 # Var 25 (0) 3.0 (0) 25 (0) 2.8 (0.64) 10.2 (2.2) 9.9 (2.2) 21.4 (2.8) 15.7 (5.3)

S4 ARI 86 (0) 87 (0) 50 (0) 86 (0) 50 (5.77) 86 (0.6) 80 (12) 81 (12)

N = 300 VSER 80 (0) 4 (0) 80 (0) 24 (0) 0 (0) 0 (0) 0.8 (2.5) 0.4 (1.2)
α = 1.7 CVR 100 (0) 100 (0) 100 (0) 60 (0) 100 (0) 100 (0) 100 (0) 100 (0)
p = 20 # Var 25 (0) 6 (0) 25 (0) 7 (0) 5 (0) 5 (0) 5.2 (0.6) 5.1 (0.3)

S5 ARI 86 (0) 87 (0) 0 (0) 86 (0) 77 (7.63) 86 (0.5) 58 (19) 74 (16)

N = 300 VSER 95 (0) 1 (0) 95 (0) 12 (0) 0 (0) 0 (0) 5.6 (6.4) 0.8 (2.0)
α = 1.7 CVR 100 (0) 100 (0) 100 (0) 60 (0) 1 (0) 100 (0) 95 (11) 97 (7.3)
p = 95 # Var 100 (0) 6 (0) 100 (0) 13 (0) 5 (0) 5 (0) 10.1 (5.9) 5.5 (1.4)

D2

ARI 30 (0) 60 (0) 54 (0) 57 (0) 56 (4.2) 55 (2.8) 56 (2.2) 55 (3.0)
VSER 86 (0) 0 (0) 71 (0) 50 (0) 29 (0) 29 (0) 30 (3.7) 29 (0)
CVR 100 (0) 100 (0) 100 (0) 100 (0) 0 (0) 0 (0) 0 (0) 0 (0)
# Var 14 (0) 2 (0) 12 (0) 9 (0) 2.1 (0.3) 2.1 (0.3) 2.2 (0.5) 2 (0)

ΩΩΩ = diag
(
III3, 0.5III2, diag([1, 3])Rot(

π

3
),

diag[2, 6]Rot(
π

6
)
)
. (8)

Finally, the last 3 variables are independently sampled from
N ([3.2, 3.6, 4], III3).

For all synthetic datasets, we asked training to stop with
Fthres set to the expected quantity of variables. We report
the results of Sparse GEMINI in Table 2 after 20 runs. We
compare our results against our own runs of other methods
using their R package: SparseKMeans (Witten et al., 2013),
ClustVarSel (Scrucca & Raftery, 2018), vscc (Andrews &
McNicholas, 2013; 2014) and SparseFisherEM (Bouveyron
& Brunet, 2012).

It appears that the Sparse GEMINI is efficient in selecting
the relevant variables when several others are noisy, espe-
cially with the MMD-OvO objective. Moreover, while we
do not systematically get the best ARI, our performances
never fall far behind the most competitive method. We can
observe as well that the MMD objective learns well despite
the presence of few samples in scenarios 2 and 3. Addi-
tionally, the selection strategy often leads to selecting the
correct number of variables for the MMD, except in sce-
narios 1 and 3 where the Gaussian distributions are close
to each other. It also appears that we performed poorly at
selecting the correct variables in presence of redundancy in
the second dataset. However, since all variables except 3 are
correlated to the informative variables, we still managed to
get a correct ARI on the dataset while using other variables.
On average, the top-selected variables by our models were
the 6th and the 8th variables. We focus on this difference
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of convergence in Figure 2 where we plot the norm of the
skip connection per featureWWW j . In the case of noisy vari-
ables, we are able to recover them as the number of selected
features decreases whereas we eliminated the informative
variable of the second dataset during the first steps. Overall,
Clustvarsel (Scrucca & Raftery, 2018) performed better on
this type of synthetic dataset in terms of variable selections
because it explicitly assumes linear dependency between
relevant variables and others.

4.4. Examples on MNIST and variations

We demonstrate as well performances of the Sparse GEM-
INI algorithm by running it on the MNIST dataset. The
initial λ0 was set to 40. Following Lemhadri et al. (2021),
we chose to stop training after finding 50 features. We use
as well 5% of dropout inside an MLP with 2 hidden layers
of 1200 dimensions each (Hinton et al., 2012). We report in
Figure 3 the selected features by the clustering algorithms
and the evolution of the ARI. We extended this experiment
as well to the variations of MNIST (Larochelle et al., 2007)
by showing the performances on the MNIST-BR dataset1.
The former consists in samples of MNIST with the black
background being replaced by uniform noise hence display-
ing conditional noise on the data whereas the latter replaces
that background by real images. To be fair, we reduced
MNIST to the first 12,000 samples of the training set in
order to match the number of samples in MNIST-BR.

We observed that for both the default MNIST dataset and
the MNIST-BR dataset despite the presence of noise, the
feature map concentrates precisely on the good location of
the digits in the picture. Following the GEMINI curves
in figures 3(b) and 3(d), the respective optimal numbers
of features were 122 for MNIST and 243 for MNIST-BR.
These chosen models also have a respective ARI of 0.34 for
7 clusters and 0.28 for 8 clusters. The presence of empty
clusters is a possible outcome with GEMINI (Ohl et al.,
2022) which contributed here to lowering the ARI when
evaluating with the true digits targets.

4.5. Real datasets

4.5.1. OPENML DATASETS

We ran Sparse GEMINI on two OpenML datasets that are
often shown in related works: the US Congress dataset (Al-
manac, 1984) and the Heart-statlog dataset (Brown, 2004).
The US congress dataset describes the choice of the 435
representatives on 16 key votes in 1984. The labels used
for evaluation are the political affiliations: 164 Republican

1Datasets were available at https://web.archive.
org/web/20180519112150/http://www.iro.
umontreal.ca/˜lisa/twiki/bin/view.cgi/
Public/MnistVariations
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Figure 3. Relative importance of MNIST features after dynamic
training of Sparse GEMINI with a log-scale color map. Blue
features were eliminated at the first steps of λ and red features
were eliminated last. On the right: evolution of the GEMINI
depending on λ. F stands for the number of selected features.

against 267 Democrats. We replaced the missing values
with 0 and converted the yes/no answers to 1, -1. Thus,
an unknown label is equidistant from both answers. The
Heart-statlog dataset describes 13 clinical and heart-related
features with labels describing the presence or absence of
cardiac disease among patients. We preprocessed it with
standard scaling. For the US Congress dataset, we used
one hidden layer of 20 nodes and a batch size of 87 sam-
ples. For the Heart-statlog dataset, we used 10 nodes and 90
samples. As we seek only two clusters, we only ran the one-
vs-all versions of the GEMINI because it is strictly equal
to the one-vs-one in binary clustering. Both datasets had a
penalty increase of ρ = 10%. We first show the number of
selected features evolving with λ as well as the evolution
of the GEMINI score as the number of features decreases
respectively in Figure 5 for the US Congress dataset and
in Figure 4 for Heart-statlog. Table 4 contains the perfor-
mances for the US Congress dataset and Table 3 those of the
Heart-statlog dataset. Both reports the average number of
selected variables over 20 runs according to our postprocess-
ing selection criterion. We added as well the performances
of competitors from the previous section. However, we
only managed to run Sparse Fisher EM on the Heart-statlog
dataset, hence its presence only in Table 3. For comparison
purposes, the best unsupervised accuracy reported on the
Heart-statlog dataset in Solorio-Fernández et al. (2020) is
75.3% while Sparse GEMINI achieves 79% with the MMD.
The best score for all methods in the review is 79.6%, but

https://web.archive.org/web/20180519112150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
https://web.archive.org/web/20180519112150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
https://web.archive.org/web/20180519112150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
https://web.archive.org/web/20180519112150/http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
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this encompasses filter methods which Sparse GEMINI is
not. We also get similar results to the best performances
of Marbac et al. (2020) who report 33% of ARI. Since most
competitors retained all variables in the dataset, we chose to
show as well the clustering performances without selection
and hence with the greatest GEMINI score as well.
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Figure 4. Average training curves of Sparse GEMINI on the Heart
Statlog dataset over 20 runs. Blue lines are Wasserstein, red lines
are MMD.
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Figure 5. Average training curves of Sparse GEMINI on the US
Congress dataset over 50 runs. Blue lines are Wasserstein, red
lines are MMD.

We averaged the number of times each feature was selected
according to the model over the 20 runs and sorted them
decreasingly. This post-process revealed that the Wasser-
stein objective consistently selected the El Salvador Aid and
the Aid to Nicaraguan contras votes as sufficient to perform
clustering. Indeed, these two votes are among the most dis-
criminating features between Republicans and Democrats
and were often chosen by other model-based methods (Fop
& Murphy, 2018). The MMD objective only added the
Physician fee freeze vote to this subset. Regarding the heart
dataset, the MMD consistently picked a subset of 8 features
out of 13, including for example age or chest pain type as
relevant variables. Contrarily, the Wasserstein objective did
not consistently choose the same subset of variables, yet its
top variables that were selected more than 80% of the runs
agree with the MMD selection as well.

4.5.2. PROSTATE-BCR DATASET

To show the scalability of Sparse GEMINI, we demon-
strate its performance as well on the Prostate-BCR dataset,
taken from (Vittrant et al., 2020) and publicly avail-

Table 3. ARI of Sparse GEMINI on the Heart-statlog dataset with
the average number of selected features. Standard deviation in
parentheses. Scores with an asterisk are the initial performances
when using all features.

ARI # Variables

SparseKMeans 18.1 (0) 13 (0)
Clustvarsel 2.8 (0) 13 (0)

vscc 27 (0) 1 (0)
Sparse Fisher EM 19 (0) 1 (0)

MMD 32 (1.4) 8 (0)
Wasserstein 32 (8.8) 8.4 (2.7)

MMD* 37 (2.0) 13 (-)
Wasserstein* 33 (9.1) 13 (-)

Table 4. ARI of Sparse GEMINI on the US Congress dataset with
the average number of selected features. Standard deviation in
parentheses. Scores with an asterisk are the initial performances
when using all features.

ARI # Variables

SparseKMeans 54 (0) 16 (0)
Clustvarsel 0.4 (0) 2 (0)

vscc 40 (0) 11 (0)

MMD 48 (0.2) 3.1 (0.08)
Wasserstein 47 (0) 2.0 (0)

MMD* 55 (0.7) 16 (-)
Wasserstein* 55 (1.7) 16 (-)

able at https://github.com/ArnaudDroitLab/
prostate_BCR_prediction. This dataset is a com-
bination of transcriptomics data from 3 different sources.
Those are the Cancer Genom atlas (Abeshouse et al., 2015),
the GSE54460 dataset from the NCBI website, and the PR-
JEB6530 project of the European Nucleotide Archive. The
combined dataset contains 25,904 transcripts over 171 fil-
tered patients with long-term follow-up, counting 52, 96
and 23 patients from the respective sources. The objective
is to find biochemical recurrences (BCR) of prostate cancer
through transcriptomic signature, hence binary targets.

To carefully eliminate the variables, we increase λ gradually
by 2%. We took a simple MLP with only one hidden layer
of 100 neurons. We chose to run until converging to 400
features or less, following (Vittrant et al., 2020). We trained
Sparse GEMINI 5 times to find either 2 clusters or 3 clusters
in order to break down possible substructures among the
supervised targets. For the evaluation of the 3 clusters case,
we binarised the results by mapping each cluster to the class
in which it had the most samples

https://github.com/ArnaudDroitLab/prostate_BCR_prediction
https://github.com/ArnaudDroitLab/prostate_BCR_prediction
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Table 5. ARI scores of the Prostate BCR dataset for various numbers of clusters depending on the chosen type of targets. We either use
the expected targets (BCR) regarding cancer prediction, or data source targets that identify the data origin of each sample.

Objective #Var BCR targets ARI Data source targets ARI

MMD 2 clusters 385 (11) -0.5 (0) 79 (0)
3 clusters 8293 (11308) 8.2 (0.6) 98 (2)

Wasserstein 2 clusters 381 (16) -0.3 (0.2) 70 (6)
3 clusters 10598 (13971) 5.3 (4.9) 84 (12)

Interestingly, the clustering results did not catch up with
the actual BCR targets, with an ARI close to 0% most of
the time. However, upon evaluation of the clusters with
respect to the original source of each sample, we found
scores close to 100% ARI in the case of the MMD GEMINI.
Thus, the unsupervised algorithm was able to find suffi-
cient differences in distribution between each source of data
to discriminate them. We report these scores in Figure 5.
Additionally, consistent subsets of features were always se-
lected as the final subset on all 5 runs depending on the
GEMINI. This implies that even without the best GEMINI
within a range for feature selection, several runs can lead to
identifying subsets of relevant data as well.

These results can be viewed as discovering batch effect in
the data. Batch effect, also known as batch variation, is a
phenomenon that occurs in biological experiments where
the results are affected by factors unrelated to the experi-
mental variables being studied. These factors can include
variations in sample processing, measurement conditions,
people manipulating the samples, or equipment used. One
common example of a batch effect is observed in microar-
ray or RNA sequencing experiments, where the samples are
processed in different batches and the results are affected
by variations in the reagents or protocols used. It has been
demonstrated that batch effects in microarray experiments
originated from multiple causes, including variations in the
labelling and hybridization protocols used, which led to
differences in the intensity of gene expression signals (Luo
et al., 2010).

To minimise batch effects, it is important to control for vari-
ables such as reagents, protocols, and equipment used, and
to use appropriate normalisation and data analysis methods
to account for these variations. There are several approaches
that can be used to detect batch effects in RNA-seq experi-
ments, including PCA (Reese et al., 2013) and clustering.
For this latter, Hierarchical clustering is often used as a
method that groups samples based on their similarity in
gene expression patterns, and batch effects can be identified
based on dendrogram analysis (Leek et al., 2010).

5. Discussion
Our first observation from Table 2 is that the Sparse GEM-
INI algorithm can reach performances close to some com-
petitors in terms of ARI while performing better in variable
selection, especially for the one-vs-one MMD. The MMD
is a distance computed between expectations making it thus
insensible to small variations of the kernel, typically when
noisy variables are introduced contrary to the Wasserstein
distance which takes a global point of view on the distribu-
tion. Specifically, the algorithm is good at discarding noisy
variables, but less competitive regarding redundant variables
as illustrated with the second synthetic dataset. Nonetheless,
the ARI remains competitive even though the model failed
to give the correct ground for the clustering.

Additionally, the training path produces critical values of λ
at which features disappear. Thus, the algorithm produces
an explicit unsupervised metric of the relevance of each
feature according to the clustering. Typically, plateaus of
the number of used variables like in figures 5(b) and 4(b) for
the MMD shed light on different discriminating subsets. We
also find that the empirical threshold of 90% of the maximal
GEMINI to select fewer variables is an efficient criterion.
In case of a too sudden collapse of variables, we encourage
training over again models on iteratively selected subsets of
features. Indeed, as λ increases during training, the collapse
of the number of selected variables will often happen when
the geometric increase is too strong which might lead to
unstable selections.

6. Conclusion
We presented a novel algorithm named Sparse GEMINI that
jointly performs clustering and feature selection by combin-
ing GEMINI for objective and an `1 penalised skip connec-
tion. The algorithm shows good performances in eliminating
noisy irrelevant variables while maintaining relevant clus-
tering. Owing to the nature of multi-layered perceptrons,
Sparse GEMINI is easily scalable to high-dimensional data
and provides thus an unsupervised technique to get a pro-
jection of the data. However, the limits of the scalability
are the number of clusters and samples per batch due to the
complex nature of GEMINI. Thus, we believe that Sparse
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GEMINI is a relevant algorithm for multi-omics data where
the number of samples is often little and the number of
features large, especially when it is hard to design a good
generative model for such data. As a concluding remark, we
want to draw again the attention to the discriminative nature
of the algorithm: Sparse GEMINI focuses on the design of
a decision boundary instead of parametric assumptions.
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Peyré, G. and Cuturi, M. Computational Optimal Transport:
With Applications to Data Science. Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

Raftery, A. E. and Dean, N. Variable Selection for Model-
Based Clustering. Journal of the American Statistical
Association, 101(473):168–178, 2006.

Ramazzotti, D., Lal, A., Wang, B., Batzoglou, S., and Sidow,
A. Multi-Omic Tumor Data Reveal Diversity of Molec-
ular Mechanisms that Correlate with Survival. Nature
communications, 9(1):1–14, 2018.

Reese, S. E., Archer, K. J., Therneau, T. M., Atkinson,
E. J., Vachon, C. M., De Andrade, M., Kocher, J.-P. A.,
and Eckel-Passow, J. E. A New Statistic for Identifying
Batch Effects in High-Throughput Genomic Data that
uses Guided Principal Component Analysis. Bioinformat-
ics, 29(22):2877–2883, 2013.

Scrucca, L. and Raftery, A. E. clustvarsel: A Package
Implementing Variable Selection for Gaussian Model-
Based Clustering in R. J. Stat. Soft., 84(1):1 – 28, April
2018. doi: 10.18637/jss.v084.i01.

Shen, R., Mo, Q., Schultz, N., Seshan, V. E., Olshen, A. B.,
Huse, J., Ladanyi, M., and Sander, C. Integrative Subtype
Discovery in Glioblastoma using iCluster. PloS one, 7
(4):e35236, 2012.

Solorio-Fernández, S., Carrasco-Ochoa, J. A., and Martı́nez-
Trinidad, J. F. A Review of Unsupervised Feature Se-
lection Methods. Artificial Intelligence Review, 53(2):
907–948, 2020.

Tadesse, M. G., Sha, N., and Vannucci, M. Bayesian
Variable Selection in Clustering High-Dimensional Data.
Journal of the American Statistical Association, 100(470):
602–617, 2005.

Tibshirani, R. Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996.

Vandewalle, V. Multi-Partitions Subspace Clustering. Math-
ematics, 8(4):597, 2020.

Varshavsky, R., Gottlieb, A., Linial, M., and Horn, D. Novel
Unsupervised Feature Filtering of Biological Data. Bioin-
formatics, 22(14):e507–e513, July 2006. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btl214.

Vittrant, B., Leclercq, M., Martin-Magniette, M.-L., Collins,
C., Bergeron, A., Fradet, Y., and Droit, A. Identifica-
tion of a Transcriptomic Prognostic Signature by Ma-
chine Learning Using a Combination of Small Cohorts of
Prostate Cancer. Frontiers in Genetics, 11, 2020. ISSN
1664-8021. doi: 10.3389/fgene.2020.550894.



Sparse GEMINI for joint discriminative clustering and feature selection

von Luxburg, U. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416, December 2007. ISSN
1573-1375. doi: 10.1007/s11222-007-9033-z.

Witten, D. M. and Tibshirani, R. A Framework for Fea-
ture Selection in Clustering. Journal of the American
Statistical Association, 105(490):713–726, 2010.

Witten, D. M., Tibshirani, R., and Witten, M. D. Package
‘sparcl’. 2013.

Zhao, Z. and Liu, H. Spectral Feature Selection for Super-
vised and Unsupervised Learning. In Proceedings of the
24th international conference on Machine learning, pp.
1151–1157, 2007.

Zografos, V., Ellis, L., and Mester, R. Discriminative Sub-
space Clustering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2107–
2114, 2013.



Sparse GEMINI for joint discriminative clustering and feature selection

A. The dynamic training regime
As features get eliminated during the training, the notion of affinity and clustering with respect to GEMINI between two
samples changes. Indeed, GEMINI aims at maximising a distance between two related distributions using an affinity
computed between samples, yet removing features from the inference implies we do not cluster any longer the same original
data space, but rather a subspace at step t: Xt =

∏
j∈It Xj . If we still compute our affinity function using all features

from X the extra removed features may bring noise compared to the affinity between the relevant features, and thus bring
confusion with regards to the ideal decision boundary.

To respect the original notion of GEMINI in clustering, we introduce the dynamic training regime, where at each time step
t, the affinity function (distance δ or kernel κ) is computed using only the subset of relevant features It. We call static
regime the training with usage of all features at all times despite the selection of some. The advantage of the dynamic
training regime is that it respects the notion of GEMINI with regard to the decision boundary, while the static regime
yields comparable values of GEMINI independently of the number of selected features. However, the dynamic regime is
incompatible with the selection process described in section 3.3 because any change of data space implies a change of values
for kernels or distances and thus for GEMINI, making models incomparable. Moreover, we may have more theoretical
guarantees of convergence for the usual static regime than in the dynamic regime which may seem unstable.

We experiment this approach on the synthetic datasets again and report the results in Table 6. For this experiment, we
only evaluated the performances on the final subset of selected features. However, since the Sparse GEMINI is trained
until a user-defined number of features is reached, we avoid unfair comparisons with other variable selections methods and
do not report the VSER and the CVR. Our main observation on the introduction of the dynamic regime is that it greatly
improves the clustering performances of the Wasserstein-GEMINI while not affecting the MMD-GEMINI. This success
can be explained by the removal of variables as the removal of noise in the distance computation which is crucial for
the Wasserstein distance because it takes a global point of view on the complete distribution. Contrarily, the MMD only
considers expectation which helps getting rid of noisy variations of the distance around informative variables.

Table 6. Experiment on the synthetic datasets with the dynamic regime of training for Sparse GEMINI

Method MMD Wasserstein

OvA OvO OvA OvO

Scenario 1 21 (6.5) 19 (6.4) 17 (9.8) 15 (7.2)
Scenario 2 49 (4.4) 81 (16) 61 (22) 61 (16)
Scenario 3 24 (2.4) 19 (2.2) 16 (3.3) 11 (4.9)
Scenario 4 50 (5.3) 86 (0.6) 84 (9.2) 80 (13)
Scenario 5 47 (2.5) 86 (0.4) 80 (9.9) 81 (4.1)

Dataset 2 57 (2.4) 53 (7.0) 51 (8.9) 55 (5.9)


