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Introduction

In Computer Science, the transmission of finite sequences of symbols (the socalled words) via some channel constitutes one of the most challenging research fields. With the notation of the free monoid, some classical models may be informally described as indicated in the following:

Two finite alphabets, say A and B, are required, every information being modeled by a unique word, say u, in B * (the free monoid generated by B). Usually, in order to facilitate the transmission, beforehand u is transformed in w ∈ A * , the so-called input word: this is done by applying some fixed oneto-one coding mapping φ : B * -→ A * . In numerous cases, φ is an injective monoid homomorphism, whence X = φ(B) is a variable-length code (for short, a code): equivalently every equation among the words of X is necessarily trivial. Such a translation is particularly illustrated by the well-known examples of the Morse and Huffman codes. Next, w is transmitted via a fixed channel into w ∈ A * , the so-called output word: should w be altered by some noise and then the resulting word φ -1 (w ) ∈ B * could be different from the initial word u. In the most general model of transmission, the channel is represented by some probabilistic transducer. However, in the framework of error detection, most of the models only require that highly likely errors need to be taken into account: in the present paper, we assume the transmission channel modeled by some binary word relation, namely τ ⊆ A * × A * . In order to retrieve u, the homomorphism φ, and thus the code X, must satisfy specific constraints, which of course depend on the channel τ : in view of some formalization, we denote by τ the reflexive closure of τ , and by τ its anti-reflexive restriction that is, τ \ {(w, w) : w ∈ A * }.

About the channel itself, the so-called synchronization constraint appears mandatory: it sets that, for each input word factorized w = x 1 • • • x n , where x 1 , • • • , x n are codewords in X, every output word has to be factorized w = x 1 • • • x n , with (x 1 , x 1 ), • • • , (x n , x n ) ∈ τ . In order to ensure such a constraint, as for the Morse code, some pause symbol could be inserted after each codeword x i .

Regarding the code X, in order to minimize the number of errors, in most cases some close neighborhood constraint is applied over τ (X), the set of the images of the codewords under τ . In the most frequent use, such a constraint consists of some minimal distance condition: the smaller the distance between the input codeword x ∈ X and any of its corresponding output words x ∈ τ (X), the more optimal is error detection. In view of that, we fix over A * a quasimetric d, in the meaning of [START_REF] Wilson | On Quasi-Metric Spaces[END_REF] (the difference with a metric is that d needs not to satisfy the symmetry axiom).

As outlined in [START_REF] Choffrut | Distances between languages and reflexivity of relations[END_REF], given an error tolerance level k ≥ 0, a corresponding binary word relation, denoted in the present paper by τ d,k , can be associated in such a way that we set (w, w ) ∈ τ d,k (or equivalently, w ∈ τ d,k (w)), whenever d(w, w ) ≤ k holds.

Below, in the spirit of [START_REF] Jürgensen | Codes. In Handbook of Formal Languages[END_REF][START_REF] Néraud | Variable-length codes independent or closed with respect to edit relations[END_REF], we draw some specification regarding error detection capability. Recall that a subset X of A * is independent with respect to τ ⊆ A * × A * (for short, τ -independent) iff. τ (X) ∩ X = ∅ holds. This notion, which appears dual with the one of closed set [START_REF] Néraud | Variable-length codes independent or closed with respect to edit relations[END_REF], relies on the famous dependence systems [START_REF] Cohn | Universal Algebra[END_REF][START_REF] Jürgensen | Codes. In Handbook of Formal Languages[END_REF]. In addition, given a family of codes, say F, a code X ∈ F is maximal in F whenever X ⊆ Y , with Y ∈ F, implies Y = X.

Given a code X ⊆ A * , we introduce the four following conditions:

(c1) Error detection: X is τ d,k -independent.

(c2) Error correction: x, y ∈ X and τ d,k (x) ∩ τ d,k (y) = ∅ implies x = y.

(c3) X is maximal in the family of τ d,k -independent codes.

(c4) τ d,k (X) is a code.

A few comments on Conds. (c1)-(c4):

-By definition, Cond. (c1) is satisfied iff. the quasi-distance between pairs of different elements of X is greater than k that is, X is able to detect at most k errors in the transmission of any codeword.

-Cond. (c2) sets a classical definition: it expresses that if some transmission error has been detected in an output word, necessarily such a word comes from a unique input codeword.

-With Cond. (c3), in the family of τ d,k -independent codes, X cannot be improved. From this point of view, fruitful investigations have been done in several famous classes determined by code properties [START_REF] Jürgensen | Maximal solid codes[END_REF][START_REF] Kari | On the maximality of languages with combined types of code properties[END_REF][START_REF] Nguyen | Finite maximal infix codes[END_REF][START_REF] Nguyen | Finite maximal solid codes[END_REF].

-At last, Cond. (c4) expresses that the factorization of any output message over the set τ d,k (X) is done in a unique way. Actually, since d is a quasi-metric, the corresponding relation τ d,k is reflexive, therefore Cond. (c4) is equivalent to τ d,k (X) itself being a code.

Actually, in most of the cases it could be very difficult, even impossible, to satisfy all together Conds. (c1)-(c4): for instance, as shown in [START_REF] Jürgensen | Codes. In Handbook of Formal Languages[END_REF][START_REF] Néraud | Variable-length codes independent or closed with respect to edit relations[END_REF], there are regular codes satisfying (c1) that cannot satisfy (c2). Furthermore some compromise has to be adopted: in view of this, given a regular code X, a natural question consists in examining whether each of those conds. is satisfied in the frameworks of classical free monoid quasi-metrics. From this point of view, in [START_REF] Néraud | Variable-length codes independent or closed with respect to edit relations[END_REF], we considered the so-called edit relations, some peculiar compositions of one-character deletion, insertion, and substitution: such relations involve the famous Levenshtein and Hamming metrics [START_REF] Hamming | Error detecting and error correcting codes[END_REF][START_REF]An overview of sequence comparison: Time warps, string edits, and macromolecules[END_REF][START_REF] Levenshtein | Binary codes capable of correcting deletions, insertion, and reversals[END_REF], which are prioritary related to subsequences in words. In the present paper, we focuse on the following quasi-metrics, the two first ones involving factors:

-The prefix metric is defined by d P (w, w ) = |w| + |w | -2|w ∧ w |, where |w| stands for the length of the word w, and w ∧ w denotes the maximum length common prefix of w and w : we set P k = τ d P ,k .

-The factor metric, for its part, is defined by d F (w, w ) = |w| + |w | -2|f |, where f is a maximum length common factor of w, w : we set

F k = τ d F ,k .
-A third type of topology can be introduced in connection with monoid automorphisms or anti-automorphisms (for short, we write (anti-)automorphisms): such a topology particularly involves the domain of DNA sequence comparison. By anti-automorphisms of the free monoid, we mean any one-to-one mapping onto A * , say θ, st. the equation θ(uv) = θ(v)θ(u) holds for any u, v ∈ A * : as in the case of automorphisms, each of those mappings actually extends to A * some permutation of A (for involvements in the framework of closed codes, see [START_REF] Néraud | Embedding a θ-invariant code into a complete one[END_REF]). With every (anti-)automorphism θ we associate the quasi-metric d θ , defined as follows:

(1) d θ (w, w ) = 0 is equivalent to w = w ;

(2) we set d θ (w, w ) = 1 whenever w = θ(w) holds, with w = w ;

(3) in all other cases we set d θ (w, w ) = 2.

It can be easily verified that, k ≥ 2 implies τ d,k = A * × A * . In other words, wrt. error detection constraints only the cond. k = 1 takes sense: by definition we have τ d θ ,1 = θ and τ θ ,1 = θ. This paper relates an extended and augmented version of the study we presented in [START_REF] Néraud | When variable-length codes meet the field of error detection[END_REF]. In particular, answers are provided to some of the open questions that were asked: they concern the behavior of regular codes wrt. F k . We prove the following result:

Theorem. With the preceding notation, given a regular code X ⊆ A * , for every k ≥ 1, it can be decided whether X satisfies any of Conds. (c1)-(c4) wrt. P k , F k , and θ. Some comments about the proof: -Regarding Cond. (c1), we establish that, for each of the mentioned quasimetrics, τ d,k (X) is a regular subset of A * . When d is the prefix metric, this is done by proving that τ d,k itself is a regular relation that is, a regular subset of the monoid A * × A * in the sense of [START_REF] Elgot | On relations defined by generalized finite automata[END_REF].

In the case where d corresponds to the factor metric, although the question of the regularity of τ d,k still remains open, the result is obtained thanks to the construction of a peculiar finite set covering for F k ⊆ A * × A * . Actually F k is precisely the union of the sets in that finite family. Moreover the so-called conjugacy, some concept from combinatorics on words [START_REF] Lothaire | Combinatorics on Words[END_REF] allows to prove that each of those sets is regular. Regarding θ = τ d θ ,1 , we prove that in any case X satisfies Conds. (c1), (c2) .

-In the case of the relation P k (resp., F k ), we prove that X satisfies Cond. (c2) iff. it satisfies Cond. (c1) wrt. P 2k (resp., F 2k ).

-Wrt. each of the quasi-metrics raised in the paper we established that, given a regular code X ⊆ A * , X is maximal in the family of the codes independent wrt. τ d,k iff. it is complete that is, every word of A * is a factor of some word in X * , the free submonoid of A * generated by X. Actually this is done by proving that any non-complete τ d,k -independent code can be embedded into some complete one: in other words it cannot be maximal. In order to establish such a property, in the spirit of [START_REF] Bruyère | On completion of codes with finite deciphering delay[END_REF][START_REF] Nguyen | Completing comma-free codes[END_REF][START_REF] Néraud | On the completion of codes in submonoids with finite rank[END_REF][START_REF] Néraud | Completing circular codes in regular submonoids[END_REF][START_REF] Néraud | Embedding a θ-invariant code into a complete one[END_REF][START_REF] Zhang | Completion of recognizable bifix codes[END_REF], we provide specific regularity-preserving embedding formulas: their schemes are based upon the methodology from [START_REF] Ehrenfeucht | Each regular code is included in a maximal regular code[END_REF]. Notice that, in [START_REF] Jürgensen | Maximal solid codes[END_REF][START_REF] Konstantinidis | Embedding rationally independent languages into maximal ones[END_REF][START_REF] Nguyen | Finite maximal infix codes[END_REF][START_REF] Nguyen | Finite maximal solid codes[END_REF][START_REF] Do | Codes and lengthincreasing transitive binary relations[END_REF], wrt. peculiar families of sets, algorithmic methods for embedding a set into some maximal (but not necessarily complete) one were also provided.

-Regarding Cond. (c4), for each of the preceding relations, the set τ d,k (X) = τ d,k (X) is regular, therefore in any case, by applying the famous Sardinas and Patterson algorithm [START_REF] Sardinas | A necessary and sufficient condition for the unique decomposition of coded messages[END_REF], one can decide whether that cond. is satisfied.

We now shorty describe the contents of the paper:

-Section 2 is devoted to the preliminaries: we recall fundamental notions about words, word binary relations, regular sets, and codes. Taking account that d is a quasi-metric, wrt. τ d,k some equivalent formulations of the error correction cond. (c2) are provided.

-The aim of Sect. 3 is to study the relation P k . In addition, corresponding results wrt. the so-called suffix metric are set.

-Sect. 4 is devoted to a preliminary study about F k and F k . We construct the above-mentioned finite covering for

F k ⊆ A * × A * .
Furthermore we prove that F k is regularity-preserving.

-The decidability results involving the factor metric are established in Sect. 5.

-Sect. 6 is devoted to quasi-metrics associated to (anti-)automorphisms.

-The paper concludes with some possible directions for further research (Sect. 7).

-In order to make the decidability results clearer, if needed, an appendix is added at the end of the paper. It provides some basic support in order to further implementing corresponding algorithms. Regarding the main study, in no way that appendix can constitute any prerequisite.

Preliminaries

Several definitions and notations have already been settled. In what follows, we bring precision about concepts such as words, automata, regular relations and variable-length codes. If necessary, we suggest the reader that he (she) report to classical books such as [START_REF] Berstel | Codes and Automata[END_REF][START_REF] Eilenberg | Automata, Languages and Machines[END_REF][START_REF] Hopcroft | Introduction to automata theory, languages and Computation[END_REF][START_REF] Sakarovitch | Elements of Automata Theory[END_REF]. Some classical decidability results are also set (for corresponding schemes of implementation see the appendix).

Words

In the whole paper, we fix a finite alphabet A, with |A| ≥ 2. We denote by ε the empty word that is, the word with length 0, and we set A + = A * \ {ε}. Given two words v, w ∈ A * , v is a prefix (resp., suffix, factor) of w if words u, u exist st. w = vu (resp., w = u v, w = u vu). In the case where the equation w = uv holds, we set u = wv -1 and v = u -1 w. We denote by P(w) (resp., S(w), F(w)) the set of the words that are prefixes (resp., suffixes, factors) of w.

In the case where we have v = w, with v ∈ P(w) (resp., v ∈ S(w)), we say that v is a proper prefix (resp., proper suffix) of w. More generally, given X ⊆ A * , we denote by P(X) the union of the sets P(x), for all the words x ∈ X (the sets S(X) and F(X) are defined in a similar way). Given a word w ∈ A * , we denote by w R its reversal that is, for

a 1 , • • • , a n ∈ A, we have w R = a n • • • a 1 whenever w = a 1 • • • a n holds.
A word w ∈ A * is overlapping whenever some v ∈ A * exists st. wv ∈ A * w, with 1 ≤ |v| ≤ |w| -1; otherwise, w is overlapping-free that is, wv ∈ A * w with |v| ≤ |w| -1 implies v = ε. For instance, w = ababa is overlapping: taking v = ba, we have wv = (ababa)(ba) = (ab)(ababa) ∈ A * w; on the contrary, w = ababb is overlapping-free. Note that w is overlapping-free iff. w R itself is overlapping free. Classically, the following property holds (see e. 

Words binary relations

Let M be an arbitrary monoid. The following basic concepts are involved by our study:

Operations among subsets of M Given two sets X, Y ⊆ M , their concatenation product is XY = {xy : x ∈ X, y ∈ Y } and the Kleene star of X is

X * = {x 1 , • • • , x n : x 1 , • • • x n ∈ X, n ≥ 1} ∪ {ε}.
Union, concatenation product, and Kleene star constitute the so-called regular operations into 2 M . In addition, the left quotient (resp., right quotient) of

X by Y is Y -1 X = {z ∈ M : (∃x ∈ X), (∃y ∈ Y ), x = yz} (resp., XY -1 = {z ∈ M : (∃x ∈ X), (∃y ∈ Y ), x = zy}).
M -automata A M -automaton, say A, is defined on the basis of a finite labeled graph. The vertices are the so-called states and the M -labeled edges are the transitions: let Q and E ⊆ Q × M × Q be the corresponding sets. The automaton is finite whenever E is a finite set. Two subsets of Q are actually distinguished namely I, the initial states, and T , the terminal ones. In the paper, the transition (q, m, q ) ∈ E is commonly denoted by q m -→ q . Denoting by 1 M the identity element in the monoid M , for any q ∈ Q, q 1 M --→ q is a transition: accordingly we left it out in any graphical representation of A. A successful path is a chain

(i m0 --→ q 1 , q 1 m1 --→ q 2 , • • • , q n mn --→ t), with i ∈ I and t ∈ T . For convenience, we denote it by i m0 --→ q 1 m1 --→ q 2 • • • q n mn --→ t.
The so-called behavior of A, which we denote by |A|, is the subset with elements all the labels m 0 m 1 • • • m n ∈ M of the corresponding successful paths. Classically, for any finite A * -automaton A there is another finite automaton A , with transitions labeled by characters of A, st. |A| = |A |.

Regular sets A set X ⊆ M is regular (or equivalently rational) if it belongs to the regular closure of the finite subsets of M that is, the smallest (wrt. the inclusion) subset of 2 M that contains the finite subsets and which is closed under the regular operations (see [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]Sect. II.1]). By definition, the family of regular sets is closed under the regular operations. The following property is attributed to Elgot and Mezei [START_REF] Elgot | On relations defined by generalized finite automata[END_REF]: Theorem 2.3. Let M be a monoid and X ⊆ M . The following conds. are equivalent:

(i) X is regular.

(ii) X is the behavior of some finite M -automaton. In what follows, we recall some classical closure properties of regular sets:

Proposition 2.5. Given a pair of monoids M , N , and a monoid homomorphism h : M → N , the image of every regular subset of M under h is a regular subset of N .

In the most general case the family of regular subsets of M is not closed neither under intersection, nor complementation, nor inverse monoid homomorphism. However, in the case where M = A * , the following noticeable result holds:

Proposition 2.6. The family of regular subsets of A * is closed under boolean operations, regular operations, left-quotient (resp. right-quotient), and direct (resp. inverse) monoid endomorphism.

In particular the finite union (resp., intersection, concatenation) of regular sets is itself regular. At last, id A * = {(w, w)|w ∈ A * } and its complement id A * are regular relations (see Fig. 2 ). 

Regular relations

Variable-length codes

Given a subset X of A * , and w ∈ X * , let A set X is a variable-length code (a code for short) if for any pair of finite sequences of words in X, say (x i ) 1≤i≤n , (y j ) 1≤j≤p , the equation x 1 • • • x n = y 1 • • • y p implies n = p, and x i = y i for each integer i ∈ [1, n]. In other words, every element of X * has a unique factorization over X, equivalently the submonoid X * is free. In particular, X = {ε} is a prefix (resp., suffix) code whenever, for every pair of words x, y ∈ X, the cond. x ∈ P(y) (resp., x ∈ S(y)) implies x = y. In addition, X is a bifix code if it is both a prefix code and a suffix one. Any set X = {ε} whose elements have a common length is a complete bifix code, we say that it is a uniform code.

x 1 , • • • , x n ∈ X st.
A positive Bernoulli distribution consists in a total mapping µ from the alphabet A into R + = {x ∈ R : x ≥ 0} (the set of the non-negative real numbers) st. a∈A µ(a) = 1. Such a mapping is extended into a unique monoid homomorphism from A * into (R + , ×), which is itself extended into a unique positive Bernoulli measure µ : 2 A * -→ R + . In order to do so, for each word w ∈ A * , we set µ ({w}) = µ(w); in addition given two disjoint subsets X, Y of A * , we set µ(X ∪ Y ) = µ(X) + µ(Y ). According to the famous Kraft inequality, for every code X we have µ(X) ≤ 1. In the whole paper, we take for µ the so-called uniform Bernoulli measure: it is determined by µ(a) = 1/|A|, for each a ∈ A.

The two following results are classical: the first one is due to Schützenberger (see [START_REF] Berstel | Codes and Automata[END_REF]Theorem 2.5.16]) and the second provides some answer to a question actually set in [START_REF] Restivo | On codes having no finite completion[END_REF].

Theorem 2.8. Given a regular code X ⊆ A * , the following conds. are equivalent:

(i) X is complete. (ii) X is a maximal code. (iii) µ(X) = 1 holds.
Theorem 2.9. [START_REF] Ehrenfeucht | Each regular code is included in a maximal regular code[END_REF]. Let X ⊆ A * be a non-complete code and let z / ∈ F(X * ) be an overlapping-free word. Set

U = A * \ (X * ∪ A * zA * ) and Y = (zU ) * z. Then Z = X ∪ Y is a complete code.
With the cond. of Theorem 2.9 if X is regular then the same holds for the resulting code Z. In addition, since z is an overlapping-free word in A * \ F(U ), the following property holds: it will be applied further in the paper (see Prop.

3.11).

Lemma 2.10. With the preceding notation, the set U z is a prefix code.

Finally, the following result is the basis of the decidability properties we establish in the paper: Proposition 2.11. Given a monoid M and a regular set X ⊆ M , what follows holds:

(i) In any case it can be decided whether X = ∅.

(ii) If M = A * then it can be decided whether X is a code.

(iii) If M = A * then one can decide whether µ(X) = 1 holds.

Some equivalent formulation of the error correction condition.

Let A be an alphabet and d : A * × A * -→ R + be a quasi-metric over A * . Given a positive integer k, by definition we have

τ d,k ⊆ τ d,k+1 . In addition, if d is a metric then τ d,k is a symmetric relation that is, the equation τ -1 d,k = τ d,k
holds. We close Sect. 2 by proving the following result, which will be applied several times in the rest of the paper: Lemma 2.12. Given a quasi-metric d over A * and X ⊆ A * , the following conds. are equivalent:

(i) X satisfies Cond. (c2) wrt. τ d,k . (ii) For every x ∈ X we have τ -1 d,k (τ d,k (x)) ∩ X = {x}. (iii) X satisfies Cond. (c1) wrt. τ d,k • τ -1 d,k . Proof.
-Beforehand, we prove that any singleton satisfies each of Conds. (i)-(iii) of the lemma. Let X = {x}. By definition, trivially X satisfies Cond. (c2). In addition, since τ d,k is reflexive, we have

x ∈ τ -1 d,k (x), thus x ∈ τ d,k • τ -1 d,k (x). We obtain τ d,k • τ -1 d,k (X) ∩ X = {x}, whence X satisfies Cond. (ii). Finally, τ d,k •τ -1 d,k (x)∩X = {x} implies τ d,k • τ -1 d,k (X)∩X = ∅, thus X satisfies Cond.(c1) wrt. τ d,k • τ -1 d,k .
In the rest of the proof we assume |X| ≥ 2.

-In what follows we prove that Conds. (i) and (ii) are equivalent. Firstly, assuming that X satisfies Cond. (i), consider x ∈ X and y

∈ τ -1 d,k (τ d,k (x)) ∩ X. By construction τ d,k (x) ∩ τ d,k (y) = ∅ holds, therefore we have x = y, thus τ -1 d,k (τ d,k (x))∩X = {x}. Conversely, assuming that Cond. (ii) holds, let x, y ∈ X st. τ d,k (x) ∩ τ d,k (y) = ∅. Some z ∈ τ d,k (x) ∩ τ d,k (y) exists, moreover we have y ∈ τ -1 d,k (z) ⊆ τ -1 d,k (τ d,k (x)). It follows from y ∈ X and τ -1 d,k (τ d,k (x)) ∩ X = {x} that y = x.
-We prove that Cond. (i) implies Cond. (iii) in arguing by contrapositive. Assuming that X does not satisfy Cond. (iii), by definition we have

τ d,k • τ -1 d,k (X) ∩ X = ∅, whence x, y ∈ X exist st. y ∈ τ d,k • τ -1 d,k (x). By defi- nition, we have y ∈ τ d,k • τ -1 d,k (x), with y = x. In other words z ∈ A * exists st. we have z ∈ τ d,k (x) and y ∈ τ -1 d,k (z) that is, z ∈ τ d,k (x) ∩ τ d,k (y), thus τ d,k (x) ∩ τ d,k (y) = ∅. It follows from y = x that X cannot satisfy Cond. (c2) wrt. τ d,k .
-Once more arguing by contrapositive, we prove that Cond. (iii) implies Cond.

(ii). Assume that x ∈ X exists st. τ -1 d,k (τ d,k (x))∩X = {x}. There is some y = x st. y ∈ τ d,k • τ -1 d,k (X) ∩ X: by definition X cannot be τ d,k • τ -1 d,k -independent.
3 Error detection and the prefix metric ∈ P 1 that is, P 1 (X)∩X = ∅. -Regarding Cond. (c2), in view of Lemma 2.12, we compute

P 1 • P -1 1 (ba) ∩ X = P 2 1 (ba) ∩ X. It follows from P 1 (ba) = {b, ba, ba 2 , bab} that: P 2 1 (ba) = {ε, b, ba, b 2 , ba 2 , bab, ba 3 , ba 2 b, baba, bab 2 }, therefore: P 2 1 (ba) = {ε, b, b 2 , ba 2 , bab, ba 3 , ba 2 b, baba, bab 2 }. This implies P 2 1 (ba) ∩ X = {b 2 }, whence X cannot satisfy Cond. (c1) wrt. P 1 • P -1 1 . According to Lemma 2.12, X cannot satisfy Cond. (c2) wrt. P 1 . -We have µ(X) = 1/2 + 1/4 + 1/4 = 1 therefore, according to Theorem 2.8, X is a maximal code. Since it is P 1 -independent, X is maximal in the family of P 1 -independent codes that is, it satisfies Cond. (c3).
-Since we have X P 1 (X), and since X is a maximal code, the set P 1 (X) = P 1 (X) cannot be a code that is, X cannot satisfy Cond. (c4) (we verify that we have ε

∈ P 1 (X)). Example 3.2. Let n ≥ 2 and k ∈ [1, n -1]. Consider the uniform code X = A n .
-For any x ∈ X we have

P k (x) ⊆ A n-k ∪ • • • ∪ A n-1 ∪ A n+1 ∪ • • • ∪ A n+k : this implies P k (X) ∩ X = ∅, thus X satisfies Cond. (c1) wrt. P k .
-However, Cond. (c2) is not satisfied by X: indeed, given two different characters a, b, we have

a n-1 ∈ P k (a n ) ∩ P k (a n-1 b).
-As mentioned in the preliminaries X is complete. According to Theorem 2.8 X is a maximal (bifix) code, hence it is maximal in the family of P k -independent codes that is, X satisfies Cond. (c3) wrt. P k .

-We have X P k (X): since X is a maximal code, it cannot satisfy Cond. (c4). -It follows from

P 1 (X) = n≥0 {ab n , ab n a 2 , ab n ab, ba n , ba n ba, ba n b 2 }, that P 1 (X) ∩ X = ∅, whence X satisfies Cond. (c1).
-For n = 0 we have:

P 1 • P -1 1 (ab n a) = P 2 1 (ab n a) \ {ab n a}, thus: P 1 • P -1 1 (ab n a) = {ab n , ab n-1 , ab n+1 , ab n a 2 , ab n a 3 , ab n a 2 b, ab n ab, ab n aba, ab n ab 2 }. Similarly, for n = 0 we have P 1 • P -1 1 (ab n a) = P 1 2 (a 2 ) = P 1 {a, a 2 , a 3 , a 2 b} \ {a 2 } = {ε, a, ab, a 3 , a 2 b, a 4 , a 3 b, a 2 b, a 2 ba, a 2 b 2 }.
In any case we obtain

X ∩ P 1 • P -1 1 (ab n a) = ∅. Similarly, we have X ∩ P 1 • P -1 1 (ba n b) = ∅. Consequently, X is P 1 • P -1
1 -independent therefore, according to Lemma 2.12, X satisfies Cond. (c2) wrt. P 1 .

-Regarding Cond. (c3), we have µ(X) = 2 • 1/4 n≥0 (1/2) n = 1: according to Theorem 2.8, X is a maximal code, whence it is maximal in the family of P 1 -independent codes.

-Since we have X P 1 (X), X cannot satisfy Cond. (c4) (we verify that a, a 2 ∈ P 1 (X)).

A preliminary study of the relation P k

Given a pair of words w, w , let p = w ∧ w and let u, u be the unique pair of words st. w = pu and w = pu . By definition we have u ∧ u = ε and d P (w, w ) = |w| + |w | -2|p| = |u| + |u |, therefore the following property comes from the definition of P k (see Fig. 3): Claim 1. With the preceding notation, each of the following properties holds: In order to prove the further lemma 3.5, it is convenient to temporarily move into the more general framework of the factor metric:

(i) (w, w ) ∈ P k is equivalent to 0 ≤ |u| + |u | ≤ k. (ii) (w, w ) ∈ P k is equivalent to 1 ≤ |u| + |u | ≤ k.
Lemma 3.4. Given a positive integer pair k, k we have

F k • F k = F k+k .
Proof. We assume wlog. k ≤ k . Firstly, we consider a pair of words (w, w 

) ∈ F k • F k . By definition, some word w ∈ A * exists st. we have (w, w ) ∈ F k , (w , w ) ∈ F k that is, d F (w, w ) ≤ k and d F (w , w ) ≤ k . This implies d F (w, w ) ≤ d F (w, w ) + d F (w , w ) ≤ k + k , thus (w, w ) ∈ F k+k . Conversely let (w, w ) ∈ F k+k ,
F (w, uf v) = k, thus (w, uf v) ∈ F k . We observe that t 1 f t 2 ∈ F(uf v) ∩ F(w ) implies t 1 f t 2 ∈ F(w)∩F(w ). Since f is a maximum length word in F(w)∩F(w ) we obtain t 1 = t 2 = ε. In other words, f remains a maximum length word in F(uf v) ∩ F(w ). This implies d F (uf v, w ) = |uf v| + |w | -2|f | = (|w| -k) + |w | -2|f | = (|w| + |w | -2|f |) -k = d F (w, w ) -k. It follows from d F (w, w ) ≤ k + k that d F (uf v, w ) ≤ k , thus (uf v, w ) ∈ F k . Since we have (w, uf v) ∈ F k , this implies (w, w ) ∈ F k • F k . (b) The case where we have 0 ≤ |w| -|f | < k and 0 ≤ |w | -|f | < k. Since we assume k ≤ k , by definition we have d F (w, f ) < k, d F (f, w ) < k ≤ k that is, (w, f ) ∈ F k , (f, w ) ∈ F k , thus (w, w ) ∈ F k • F k .
Lemma 3.4 will be further applied in Sect. 4; regarding P k , it leads to the following statement: 

) ∈ P k , (f, w ) ∈ P k , thus (w, w ) ∈ P k • P k . Consequently the equations F k • F k = F k • F k and P k • P k = P k • P k hold.
In addition, the following property holds: Corollary 3.6. Given a pair of positive integer k, n we have P nk = P n k . Proof. We argue by induction on n ≥ 1. Trivially, the equation holds for n = 1. Assuming that P nk = P n k holds, according to Lemma 3.5 we obtain

P (n+1)k = P nk • P k = P n k • P k = P n+1 k .
As another consequence of Lemma 3.5, in the framework of the prefix metric, Lemma 2.12 leads to the following result: 

On the regularity of P k

In view of Claim 1 we introduce the three following sets: E stands for the set of all the pairs of non-empty words (u, u ), with different initial characters, and st. |u| + |u | ≤ k. In addition F (resp., G) stands for the set of all the pairs (u, ε) ---→ 0, for every a ∈ A;

(resp., (ε, u )), with 1 ≤ |u| ≤ k (resp., 1 ≤ |u | ≤ k).
0 (u,u ) ----→ 2 for every (u, u ) ∈ E; 0 (u,ε) ---→ 1 for every (u, ε) ∈ F ; 0 (ε,u ) ---→ 3 for every (ε, u ) ∈ G.
-Let (w, w ) ∈ |R P,k |, and let p = w ∧ w . By construction, there are t ∈ {1, 2, 3} and (u, u

) ∈ E ∪ F ∪ G, st. w = pu, w = pu , with 0 (p,p) ---→ 0 (u,u ) ----→ t being a successful path. Since (u, u ) ∈ E ∪ F ∪ G implies 1 ≤ |u| + |u | ≤ k, we are in the cond. (ii) of Claim 1, hence (w, w ) ∈ P k holds.
-Conversely, assume (w, w ) ∈ P k . According to Claim 1, words p, u, and u exist st. p = w ∧ w , w = pu, w = pu , u ∧ u = ε, and

1 ≤ |u| + |u | ≤ k.
The last cond. implies that at least one of the two words u, u is non-empty. The cond.

u = ε with u = ε implies (u, u ) ∈ E. Similarly, u = ε and u = ε (resp., u = ε and u = ε), implies (u, u ) ∈ F (resp., (u, u ) ∈ G). In any case we obtain (u, u ) ∈ E ∪ F ∪ G, therefore by construction some t ∈ {1, 2, 3} exists st. 0 (p,p) ---→ 0 (u,u ) ----→ t is a successful path in R P,k . In other words we have (w, w ) = (pu, pu ) ∈ |R P,k |.
-As a consequence, we have P k = |R P,k |: according to Theorem 2.3, the relation P k is regular. In addition, according to Prop. 2.6 the relation We note that in [START_REF] Ng | Prefix distance between regular languages[END_REF] the author introduces an interesting (A * × A * ) × Nautomaton (equivalently transducer with input in A * × A * and output in N) (see Fig. 5). This automaton allows to compute d P as follows: for every (w, w ) ∈ A * ×A * , the distance d P (w, w ) is the least d ∈ N for which ((w, w ), d) is the label of some successful path. Furthermore, an alternative proof of the regularity of P k can be obtained. Indeed, by construction, denoting by D ⊆ (A * ×A * )×N the behavior of such an automaton, we have

P k = P k ∪ id A * itself is regular. Example 3.9. Let k = 2. We have E = {(a, b) : a, b ∈ A, a = b}, F = {(a, ε) : a ∈ A} ∪ {(ab,
P k = D -1 ([1, k]).
Since [1, k] is a finite subset of the one-generator monoid N, it is regular. In addition, since regular relations are closed under inverse P k itself is regular. However, we note that such a construction cannot involve the relation P k itself that is, it does not affect Cond. (c1). Proof. Let X be a regular code. We consider one by one our conditions:

-Cond. (c1) According to Prop. 3.8, the relation P k is regular; according to Prop. 2.7, P k (X) is a regular subset of A * therefore, according to Prop. 2.6, the set P k (X) ∩ X itself is regular. Consequently, according to Prop. 2.11, one can decide whether P k (X) ∩ X = ∅.

-Cond. (c2): According to Lemma 3.7 the set X satisfies that cond. wrt. P k iff. it satisfies Cond. (c1) wrt. P 2k : in view of the above, this can be decided.

-Cond. (c4): Since X is regular, according to Props. 2.7, 3.8, the set P k (X) = P k (X) is regular. According to Prop. 2.11, one can decide whether this set is a code.

Maximal P k -independent codes

Regarding Cond. (c3), we start with the following result: Proposition 3.11. Every regular P k -independent code can be embedded into some complete one.

Proof. Let X be a regular P k -independent code. The result is trivial if X is complete: in the sequel we assume X being non-complete. By definition, a word z 0 exists in A * \ F(X * ). Without loss of generality, we assume |z 0 | ≥ k: otherwise, we substitute to z 0 some word z 0 u, with |u| = k -|z 0 | (it follows from z 0 ∈ F(z 0 u) that z 0 u / ∈ F(X * )). Let a be the initial character of z 0 , let b be a character different of a, and let z = z 0 ab |z0| . According to Lemma 2.1, z is overlapping-free. We introduce the three following sets: U = A * \(X * ∪A * zA * ), Y = z(U z) * , and Z = X ∪Y . According to Theorem 2.9, Z is a regular complete code. We will prove that Z is P k -independent that is,

P k (X ∪ Y ) ∩ (X ∪ Y ) = ∅, thus P k (X) ∩ X = P k (X) ∩ Y = P k (Y ) ∩ X = P k (Y ) ∩ Y = ∅.
Actually, since X is P k -independent, we already have P k (X) ∩ X = ∅.

(a) Firstly, we prove that P k (X) ∩ Y = ∅. By contradiction assume that a pair of words x ∈ X and y ∈ Y exist st. (x, y) ∈ P k . By construction we have (c1) At first, we assume p ∈ {y, y } that is, wlog. y = p, thus y = y u. More precisely, it follows from (y, y ) ∈ P k that y = y , hence y is a proper prefix of y. By construction we have y, y ∈ z(U z) * that is, two sequences of words in U , namely As a consequence, we obtain the following result:

|z 0 | ≥ k. According to Claim 1 we obtain 1 ≤ (x ∧ y) -1 x + (x ∧ y) -1 y ≤ k ≤ |z 0 |. This implies (x ∧ y) -1 y ≤ |z 0 | ,
u 1 , • • • u m and u 1 , • • • u n , exist st. y = zu 1 zu 2 • • • u m z and y = zu 1 z • • • u n z. It follows from y = y u that zu 1 zu 2 • • • u m z = zu 1 z • • • u n zu, thus u 1 zu 2 • • • u m z = u 1 z • • • u n zu. With
Proposition 3.12. Given a regular P k -independent code X ⊆ A * , the four following conds. are equivalent:

(i) X is maximal in the family of P k -independent codes.

(ii) X is a maximal code.

(iii) X is complete.

(iv) We have µ(X) = 1.

Proof. According to Theorem 2.8 for every regular code, Conds. (ii), (iii), and (iv) are equivalent. Trivially Cond. (ii) implies Cond. (i). We prove that Cond. (i) implies Cond. (iii) in arguing by contrapositive. Assuming X non-complete, according to Prop. 3.11, a regular P k -independent code strictly containing X exists, hence X is not maximal as a P k -independent code. Corollary 3.13. Every non-maximal regular P k -independent code can be embedded into some maximal one.

Proof. Let X be a regular non-maximal regular P k -independent code. According to Prop. 3.12, X is non-complete. According to Prop. 3.11, a complete regular P k -independent code Y exists st. X Y . Once more according to Prop. 3.12, Y is maximal as a regular P k -independent code. Finally, we obtain the following result: Proposition 3.14. One can decide whether a given regular code X ⊆ A * satisfies Cond. (c3) wrt. P k .

Proof. Once more according to Prop. 3.12, the code X satisfies Cond. (c3) iff. µ(X) = 1 holds. According to Prop. 2.11, one can decide whether X satisfies the last condition. -Since we have F 1 • F -1 1 (a) ∩ X = {a, ba}, X cannot satisfy the cond. (ii) in Lemma 2.12, therefore it cannot satisfy Cond. (c2).

-We have µ(X) = µ(a) + µ(b)µ(a) + µ(b) 2 = 1/2 + 1/4 + 1/4 = 1, therefore X is a maximal code. However, since it is not a F 1 -independent codes, X cannot satisfy Cond. (c3) wrt. F 1 .

-Finally, it follows from ε ∈ F 1 (X) that F 1 (X) = X ∪ F 1 (X) is not a code, whence it cannot satisfy Cond. (c4). Example 4.2. Take A = {a, b} and consider the context-free bifix code X = {a n b n : n ≥ 1}.

-It follows from

F 1 (X) = n≥1 {a n-1 b n , a n+1 b n , ba n b n , a n b n-1 , a n b n a, a n b n+1 } that F 1 (X) ∩ X = ∅, thus X is 1-error-detecting wrt. F 1 (Cond. (c1)).
-Regarding error correction, we have

a n+1 b n+1 ∈ F 1 (a n b n+1 ) ⊆ F 2 1 (a n b n ), thus a n+1 b n+1 ∈ F 2 1 (a n b n ). This implies F 1 • F -1 1 (a n b n ) ∩ X = {a n b n }, whence X cannot satisfy the cond. (ii) in Lemma 2.12 that is, X cannot satisfy Cond. (c2) wrt. F 1 .
-We have µ(X) = n≥1

1 4
n = 1/3 < 1, whence X does not satisfy Cond.

(c3).

-Finally, since we have (a As attested by the following example, a maximum length word in F(w) ∩ F(w ) needs not to be unique. Because of this, the proof of Prop. 3.8 cannot be extended to the framework of F k . Proof. According to Prop. 3.8, P 1 and S 1 are regular relations. According to Prop. 2.6, the relations F 1 = P 1 ∪ S 1 and F k = F k 1 are regular: this establishes the property (i). Regarding the property (ii), we have

n b n-1 )(ba n b n ) = (a n b n )(a n b n ), the set F 1 (X) = F 1 (X) no more satisfies Cond. (c4).
F 1 = (P 1 ∪ S 1 ) ∩ id A * = P 1 ∩ id A * ∪ S 1 ∩ id A * = P 1 ∪ S 1 .
Once more according to Prop. 3.8, the relations P 1 and S 1 are regular, whence F 1 itself is regular.

Regarding Conds. (c1), (c2), the property (ii) in Corollary 4.6 may appear promising. Unfortunately, we do not know whether it could be extended to the relation F k , for any k ≥ 1. For instance, taking k = 2 we have

F 1 = (P 1 ∪ S 1 ) 2 ∩ id A * = P 2 1 ∪ P 1 S 1 ∪ S 1 P 1 ∪ S 2
1 thus, according to Corollary 3.6, F 1 = P 2 ∪ P 1 S 1 ∪ S 1 P 1 ∪ S 2 . Although the relations P 2 and S 2 are regular (see Prop. 3.8), we do not know whether the same holds for P 1 S 1 and S 1 P 1 . However, a clever examination of the structure of F k ⊆ A * × A * will allow to overcome this obstacle: to be more precise, afterwards we will prove that F k preserves the regularity of sets.

A set covering for F k

We start by the following property: regarding Claim 2, it actually allows to get away of the maximum length constraint over the words in F(w) ∩ F(w ). Lemma 4.9. Each of the following properties holds:

(i) For any ω ∈ Ω k , the relation S ω ⊆ A * × A * is regular. (ii) We have F k = ω∈Ω k S ω .
Proof. -For establishing the property (i), we observe that, given ω = (u, u , v, v ) ∈ Ω k , the relation S ω is the behavior of a finite automaton, namely A ω . The states are 0, 1, 2, the initial state being 0 and the terminal one being 2. The transitions are 0

(u,u ) ----→ 1, 1 (v,v )
---→ 2, and 1

(a,a)

---→ 1, for every a ∈ A (see Fig. 9). By construction the successful paths are 0 -Now we proceed to establish the property (ii). Firstly, we prove that F k ⊆ Lemma 4.9 attests that the family (S ω ) ω∈Ω k constitutes a set covering for F k ⊆ A * × A * . In that family, the sets need not to be pairwise disjoint, even pairwise different. For instance, let k ≥ 2, and let u, v ∈ A * such that |u| + |v| ≤ k/2. With this cond. both the tuples ω 0 = (ε, ε, ε, ε) and

(u,u ) ----→ 1 (a1,a1) ----→ 1 • • • 1 (an,an) -----→ 1 (v,v ) ---→ 2, with n ≥ 0 and a 1 , • • • , a n ∈ A. Since the corresponding labels are (ugv, u gv ), for all g = a 1 • • • a n ∈ A * , the behavior of A ω is S ω .
ω 1 = (u, u, v, v) belong to Ω k . From the fact that (ε • uv • ε, ε • uv • ε) = (u • ε • v, u • ε • v), we obtain (uv, uv) ∈ S ω0 ∩ S ω1 . As another example, taking ω 2 = (u, u , pt, pt ) ∈ Ω k and ω 3 = (u, u , t, t ) ∈ Ω k , we have S ω2 = S ω3 . Indeed, (w, w ) ∈ ω 2 holds iff. some g ∈ A * exists st. w = u • g • pt and w = u • g • pt that is, w = u • gp • t and w = u • gp • t .
Nevertheless, such redundancies have no incidence on the rest of our study. In particular they do not involve the properties of the set R ω , which is further constructed.

In the sequel, starting from (S ω ) ω∈Ω k , we construct a covering for F k . Beforehand, we note that the following property holds:

Claim 3. Let ω = (u, u , v, v ) ∈ Ω k . Then u = u with v = v implies S ω ⊆ id A * . Proof. u = u with v = v implies S ω = {(ugv, ugv) : g ∈ A * }. Furthermore (w, w ) ∈ S ω implies w = w.
In view of Claim 3, we introduce the set Ω k of all the tuple (u, u , v, v ) ∈ Ω k st. at least one of the conds. u = u or v = v holds. With this notation, the following property holds: Lemma 4.10. We have

F k = ω∈Ω k (S ω \ id A * ).
Proof. According to Lemma 4.9, we have F k = id A * ∩ ω∈Ω k S ω , whence we have:

F k = ω∈Ω k id A * ∩ S ω = ω∈Ω k (S ω \ id A * ) ∪ (u,u,v,v)∈Ω k S (u,u,v,v) \ id A * .

Moreover, in view of Claim 3 the identity

(u,u,v,v)∈Ω k S (u,u,v,v) \ id A * = ∅ holds.

On the combinatorial structure of S ω ∩ id A *

The following result brings a noticeable combinatorial characterization of those tuples (g, u, u , v, v ) satisfying the equation ugv = ugv : (u,u ,v,v ) ∈ Ω k implies u = u and v = v . Consequently, either u is a proper prefix of u (and v is a proper suffix of v ), or u is a proper prefix of u (and v is a proper suffix of v).

(a) In the case where u is a proper prefix of u, let t, t ∈ A + st. u = u t and v = t v. The equation ugv = u gv implies u tgv = u gt v, thus tg = gt . According to Prop. 2.2, t, t are conjugate words, furthermore α ∈ A * , β ∈ A + , and n ∈ N exist st. t = αβ, t = βα, and g ∈ (αβ) n α. moreover we have u = u t = u αβ, v = t v = βαv: we are in the cond. (i).

(b) In the case where u is a proper prefix of u and v is a proper suffix of v, we note that, by construction, the conds. ω = (u, u , v, v ) ∈ Ω k and ω = (u , u, v , v) ∈ Ω k are equivalent. By substituting (u , u, v , v) to (u, u , v, v ) in the arguments we applied in the preceding case (a), we obtain the cond. (ii) of our lemma.

Let ω = (u, u , v, v ) ∈ Ω k . Note that Lemma 4.11 does not guarantee the unicity of the pair of words (α, β). Accordingly, we introduce the following sets:

-

R (i) ω is the union of the sets R (i) ω,α,β = {u(αβ) n αv : n ≥ 0}, for all word pairs α ∈ A * , β ∈ A + st. u = u αβ and v = βαv. -R (ii)
ω is the union of the sets R

(ii) ω,α,β = {u (αβ) n αv : n ≥ 0}, for all word pairs α ∈ A * , β ∈ A + st. u = uαβ and v = βαv . -R ω = R (i) ω ∪ R (ii)
ω . As indicated above, either u is a proper prefix of u or u is a proper prefix of u . Accordingly at most one of the sets R

(i) ω , R (ii)
ω may be non-empty. 

= aba • (ba) n b • b 2 = a • (ba) n b • ab 3 = u gv hold. This corresponds to R ω = R (i) ω,a,b = {(ab) n+2 b 2 : n ≥ 0}.
As direct consequences of Lemma 4.11 the two following properties hold: 

(i) or (ii) of Lemma 4.11 is satisfied that is, w ∈ R (i) ω ∪ R (ii) ω = R ω . Corollary 4.14. Given ω ∈ Ω k and X ⊆ A * we have S ω (X) = S ω (X \ R ω ). Proof. We have y ∈ S ω (X) iff. x ∈ X exists st. (x, y) ∈ S ω with x = y. According to Corollary 4.13, x = y is equivalent to x / ∈ R ω , hence y ∈ S ω (X) is equivalent to y ∈ S ω (X \ R ω ).
We conclude Sect. 4 by proving that F k is a regularity-preserving relation:

Proposition 4.15. If X ⊆ A * is regular, then F k (X) is a regular subset of A * .
Proof. We proceed through the three following steps:

-Let ω = (u, v, u , v ) ∈ Ω k , and let α, β be words satisfying the cond. of Lemma 4.11. The set R (i) ω,α,β = {u(αβ) n αv : n ≥ 0} is regular: indeed, classically it is the behavior of the finite A * -automaton represented in Figure 10. 

R (i) ω is a regular set. Similarly, R (ii) ω is regular, hence R ω = R (i) ω ∪ R (ii) itself is regular.
-Let X ⊆ A * ne a regular set. According to Corollary 4.14, for every ω ∈ Ω k we have S ω (X) = S ω X ∩ R ω . According to Prop. 2.6, since R ω is a regular subset of A * , the same holds for the set R ω . Since the relation S ω ⊆ A * × A * is regular (see Lemma 4.9), according to Prop. 2.7, the set S ω (X) = S ω X ∩ R ω itself is regular.

-According to Lemma 4.10 we have

F k (X) = ω∈Ω k S ω (X). As established above, for each ω ∈ Ω k the set S ω (X) is regular. Since Ω k is a finite set, F k (X) itself is regular.
5 Error detection conds. wrt. F k We now have enough properties to establish decidability results. First and foremost, according to Corollary 4.4, and since F k is a symmetric relation, Lemma 2.12 translates as follows:

Lemma 5.1. Given a set X ⊆ A * and k ≥ 1 the following conds. are equivalent:

(i) X satisfies Cond. (c2) wrt. F k . (ii) For every x ∈ X we have F 2k (x) ∩ X = {x}. (iii) X satisfies Cond. (c1) wrt. F 2k .
In view of Prop. 4.15, the following decidability result holds: Proposition 5.2. It can be decided whether a given regular set satisfies any of Conds. (c1), (c2), or (c4) wrt. F k .

Proof. Let X ⊆ A * be a regular set. We examine one by one our conditions:

-Cond. (c1): According to Prop. 4.15, F k (X) is a regular subset of A * , therefore F k (X) ∩ X itself is regular. According to Prop. 2.11, one can decide whether it is the empty set or not.

-Cond. (c2): Since F k is a symmetric relation, according to Lemma 5.1, X satisfies Cond. (c2) iff. it satisfies Cond. (c1) wrt. F 2k : as indicated above, this cond. can be decided.

-Cond. (c4): According to Corollary 4.6 F k is a regular relation. By Prop. 2.7, the set F k (X) = F k (X) is regular. According to Prop. 2.6 X ∪ F k (X) is a regular set furthermore, according to Prop. 2.11, one can decide whether it is a code or not.

Regarding Cond. (c3), we start by proving the following result: Proposition 5.3. Every regular F k -independent code can be embedded into some complete one.

Proof. Let X be a regular F k -independent code: wlog. we assume X noncomplete. At first, we will construct a special word z 1 ∈ A * \ F(X * ). Let z 0 / ∈ F(X * ), with |z 0 | ≥ k, let a be its initial character, and let b be a character different of a. Consider the word z = z 0 ab |z0| as constructed in the proof of Prop. 3.11 and set z 1 = a |z| bz = a 2|z0|+1 bz 0 ab |z0| . According to Prop. 2.1, z 1 is overlapping-free indeed, as indicated in the preliminaries, z R ba |z| , the reversal of z 1 , is overlapping-free. Now, we set

U 1 = A * \ (X * ∪ A * z 1 A * ), Y 1 = z 1 (U 1 z 1 ) * , and Z 1 = X ∪ Y 1 .
According to Theorem 2.9, the set Z 1 is a regular complete code. In what follows we prove that

Z 1 is F k -independent that is, F k (X ∪ Y 1 ) ∩ (X ∪ Y 1 ) = ∅. Since X itself is F k -independent,
this amounts to prove that each of the three equations According to Prop. 5.3, by merely substituting F k to P k in the proofs of the statements 3.12-3.14, we obtain the following result: Proposition 5.4. Given a regular code X, each of the following properties holds:

F k (X) ∩ Y 1 = ∅, F k (Y 1 ) ∩ X = ∅, and F k (Y 1 ) ∩ Y 1 = ∅ holds.
(i) The three following conds. are equivalent:

-X is maximal in the family of F k -independent codes.

-X is complete.

-µ(X) = 1. (ii) One can decide whether X satisfies Cond. (c3) wrt. -X satisfies Cond. (c1) wrt.

F k . (iii) If X is F k -independent, it
τ d θ ,1 = θ. Indeed, we have θ (X) = θ(X) = θ(X) = {b n a : n ≥ 0}, thus θ(X) ∩ X = ∅.
-We have θ : according to Prop. 2.12, X also satisfies Cond. (c2) wrt. θ.

-1 = (θ ∪ id A * ) -1 = θ -1 ∪ id -1 A * = θ ∪ id A * = θ. Furthermore we obtain θ • θ -1 = (θ ∪ id A * ) 2 = θ 2 ∪ θ ∪ id A * = θ ∪ id A * = θ.
-According to Theorem 2.8, it follows from µ(X) = 1 2 n≥0

1 2 n = 1 that
X is a maximal prefix code, therefore X is maximal in the family of θindependent codes (Cond. (c3)).

-Finally, it follows from ba ∈ θ(X) \ X that X θ(X). Consequently, since X is a maximal code, θ(X) cannot be a code that is, X cannot satisfy Cond. (c4) (we verify that a, b, ab ∈ θ(X)). Example 6.2. Over the alphabet A = {a, b}, take for θ the anti-automorphism defined by θ(a) = b, and θ(b) = a and, once more, consider the code X = {a n b : n ≥ 0}.

-It follows from θ(X) ∩ X = {ab}, that the equation x = θ (x) is equivalent to x = ab. This implies θ(X) = {ab n : n = 1}, thus θ(X) ∩ X = ∅, whence X satisfies Cond. (c1).

-As in Example 6.1, we have θ -1 = θ. Once more this implies θ • θ -Similarly, we have µ(X) = 1, whence X satisfies Cond. (c3).

-Lastly, it follows from ab 2 ∈ θ(X) \ X that X θ(X): since X is a maximal code, θ(X) cannot be a code that is, X cannot satisfy Cond. (c4). Example 6.3. Over the alphabet {A, C, G, T }, let θ denote the Watson-Crick anti-automorphism (see e.g. [START_REF] Kari | On the maximality of languages with combined types of code properties[END_REF][START_REF]An overview of sequence comparison: Time warps, string edits, and macromolecules[END_REF]), which is defined by θ

(A) = T , θ(T ) = A, θ(C) = G, and θ(G) = C. We have θ -1 = θ = θ = θ . Consider the prefix code X = {A, C, GA, G 2 , GT, GCA, GC 2 , GCG, GCT }. -It follows from θ(X) = {T, G, T C, C 2 , AC, T GC, G 2 C, CGC, AGC} that we have θ (X) ∩ X = ∅, whence satisfies Cond. (c1).
-As in the examples 6.1, 6.2, it follows from θ 

-1 = θ that θ • θ -1 = θ, therefore, X satisfies Cond. (c2) wrt. τ d θ ,1 = θ. -We have µ(X) = 2/4 + 3/4 2 + 4/4 3 = 3/4 < 1, hence X cannot satisfy Cond. (c3). -At last, it follows from G, G 2 ∈ θ(X) = θ(X) ∪ X that Cond. (c4) is not satisfied.

Questions involving regular sets

We start with the following result: Proposition 6.5. With the preceding notation, each of the following properties holds:

(i) If θ is an automorphism, then the relations τ d θ,1 = θ and τ d θ,1 = θ are regular.

(ii) If θ is an anti-automorphism, then θ is a non-regular relation.

(iii) In any case, θ is regularity-preserving.

Proof. -In the case where θ is an automorphism of A * , it is a regular relation: indeed, θ is the behavior of the one-state automaton with transitions q 0 (a,θ(a))

-----→ q 0 for all a ∈ A. Set B = {a ∈ A : θ(a) = a}. Starting with the preceding automaton, we obtain an automaton with behavior θ by merely adding the transitions (q 0 , (a, a) , q 0 ), for all a ∈ B (see Fig. 13): in other words, θ is a regular relation. -Let θ be an anti-automorphism of A * . Classically, an automorphism of A * , say h, exists st. θ = t • h, where t : w → w R , is the so-called transposition onto A * . In addition t cannot be a regular relation (see e.g. [32, Example IV.1.10]). By contradiction, assume θ being regular. Since we have t = θ • h -1 , and since h -1 itself is a monoid automorphism, according to Prop. 2.5 the transposition t should be a regular relation: a contradiction with the above.

-For proving the property (iii), we consider a regular set X ⊆ A * . In the case where θ is an automorphism, the relation θ = θ ∪ id A * is regular: according to Prop. 2.5, θ(X) is regular. In the case where θ is an anti-automorphism, with the preceding notation although the transposition t is not a regular relation, the set t(X) is classically known to be regular (see e.g. [32, Proposition I.1.1]). According to Prop. 2.5, the set θ(X) = h (t(X)) itself is regular.

Decidability results for Conds. (c1)-(c4)

Regarding Conds. (c1), (c2), (anti-)automorphisms satisfy the following noticeable property: Lemma 6.6. A regu X ⊆ A * satisfies Cond. (c1) wrt. θ, iff. it satisfies Cond. (c2).

Proof. Firstly, assume that X is θ-independent, and let x, y ∈ X st. τ d θ ,1 (x) ∩ τ d θ ,1 (y) = θ (x) ∩ θ (y) = ∅: necessarily we have θ (x) ∩ θ (y) = ∅. Since θ is a one-to-one mapping, this implies x = y therefore, by definition X satisfies Cond. (c2). For proving the converse, we argue by contrapositive. Assuming that Cond. (c1) does not hold that is, X ∩ θ (X) = X ∩ θ(X) = ∅, a pair of words x, y ∈ X exist st. y = θ (x), with x = y. It follows from θ (x) = {x} ∪ {θ (x)} = {x, y} and θ (y) = {y} ∪ {θ (y)} that θ (x) ∩ θ (y) = ∅, whence Cond. (c2) cannot hold.

As a consequence of Propositions 6.5, 6.6, we obtain the following result: Proposition 6.7. Given X ⊆ A * , wrt. θ each of the following properties holds:

(i) In any case, X satisfies both Conds. (c1), (c2).

(ii) If X ⊆ A * is a regular code, it can be decided whether it satisfies Cond. (c4).

Proof. -For proving that X satisfies Cond. (c2), we prove that it satisfies the cond. (ii) of Lemma 2.12. Actually, it follows from θ ⊆ θ that θ

• θ -1 ⊆ θ • θ -1 .
Since θ is a one-to-one mapping, we have θ

• θ -1 = id A * : this implies θ • θ -1 = id A * . As a consequence, for every x ∈ X we have θ • θ -1 (x) ∩ X = {x} ∩ X = {x}, thus θ • θ -1 (x) = ∅.
According to Lemma 2.12 X satisfies Cond.

(c1) wrt. θ that is, according to Lemma 6.6, X also satisfies Cond. (c1).

-According to Prop. 6.5, in any case the set θ(X) is regular therefore, according to Prop. 2.11, one can decide whether θ(X) is a code that is, whether X satisfies Cond. (c4).

Before to study the behavior of Cond. (c3), we note that the following property holds:

Claim 4. If θ is an anti-automorphism, for all w, w ∈ A * , w ∈ F(w) implies θ(w ) ∈ F(w). Proof. Let u, v ∈ A * st. w = uw v. By definition, we have θ(w) = θ(v)θ(w )θ(u).
As usual in the paper, we start by examining completeness from the point of view of embedding: Proposition 6.8. Every regular θ-independent code can be embedded into some complete one.

Proof. The property trivially holds if X is complete. Assume X non-complete. According to Theorem 2.9, the result holds if θ is an automorphism: indeed the action of such a transformation merely consists in rewriting words by applying some permutation of A. In the sequel we assume that θ is an anti-automorphism. Classically, some positive integer n, the so-called order of the permutation θ, exists such θ n = id A * . As in the proofs of Prop. 3.11 and 5.3, in view of Theorem 2.9, we start by constructing a convenient word in A * \ F(X * ). Let z 0 / ∈ F(X * ), let a be its initial character, and let b be a character different of a. We assume wlog. |z 0 | ≥ 2 and z 0 / ∈ aa * , for every a ∈ A (otherwise, substitute z 0 b to z 0 ). Since θ is a free monoid anti-automorphism, it is length-preserving that is, for every i ≥ 0, the equation θ i (z 0 ) = |θ(z 0 )| holds. Consequently, we have z 0 θ(z 0 ) • • • θ n-1 (z 0 ) = n|z 0 | therefore, according to Lemma 2.1 z 2 = z 0 θ(z 0 ) • • • θ n-1 (z 0 )ab n|z0| is an overlapping-free word. In addition, it follows from z 0 ∈ A * \ F(X * ) that z 2 ∈ A * \ F(X * ). Set U 2 = A * \ (X * ∪ A * z 2 A * ), Y 2 = (z 2 U 2 ) * z 2 , and Z 2 = X ∪ Y 2 . According to Theorem 2.9, the set Z 2 = X ∪ Y 2 is a complete regular code. Since we assume X being θ-independent, we have θ(Z 2 ) ∩ Z 2 = (θ(X) ∩ Y 2 ) ∪ (X ∩ θ(Y 2 )) ∪ (θ(Y 2 ) ∩ Y 2 ). In order to prove that Z 2 is θ-independent, we argue by contradiction. Actually assuming that θ(Z 2 ) ∩ Z 2 = ∅, exactly one of the three following conds. holds: (a) Cond. θ(X) ∩ Y 2 = ∅. With this condition, x ∈ X exists st. θ(x) ∈ Y 2 . Since by construction z 2 is a prefix of any word in Y 2 , we have z 2 ∈ F (θ (x)). In addition, it follows from θ(z 0 ) ∈ F(z 2 ) that θ(z 0 ) ∈ F (θ (x)). According to Claim 4, we obtain θ n (z 0 ) ∈ F (θ n (x)), thus z 0 ∈ F(x), a contradiction with z 0 / ∈ F(X * ). (b) Cond. X ∩ θ(Y 2 ) = ∅. Some pair of words x ∈ X, y ∈ Y 2 exist st. x = θ(y). By construction we have θ n-1 (z 0 ) ∈ F(z 2 ) ⊆ F(y). According to Claim 4 this implies θ θ n-1 (z 0 ) ∈ F (θ (y)), thus z 0 ∈ F (x): once more this contradicts z 0 / ∈ F(X * ). In each case we obtain a contradiction, whence Z 2 is θ-independent: this completes the proof.

As a consequence, we obtain the following result-the proof is merely done by translating in term of (anti-)automorphism the one of Prop. 5.4 (recall that we have θ = θ): Proposition 6.9. Given a regular code X, each of the following properties holds:

(i) The three following conds. are equivalent: -X is maximal as a θ-independent code.

-X is complete.

-µ(X) = 1 holds. (ii) One can decide whether X satisfies Cond. (c3) wrt. θ. (iii) If X is θ-independent, then it can be embedded into a maximal θindependent code.

(i) Regular operations, boolean operations

The proof of Prop. 2.6 lays upon the fact that every regular (resp., boolean) operation among regular sets can be translated in term of corresponding ones among finite automata (see e.g. [START_REF] Hopcroft | Introduction to automata theory, languages and Computation[END_REF]Chapter 3]). Operations such as quotient, direct, or inverse image under monoid endomorphism are also involved.

(ii) Deciding whether a regular set is empty

In order to do so, starting with a finite automaton with behavior X, we will decide whether or not a successful path exists by applying some classical graph mining algorithm. More precisely, according to [START_REF] Hopcroft | Introduction to automata theory, languages and Computation[END_REF]Theorem 3.7], for a n-state automaton, we have X = ∅ iff. no path with length less than n can be successful.

(iii) Regular expressions and automata for regular subsets of A * A description of a regular set X ⊆ A * by using only the operations union, product and Kleene star is called a regular expression [START_REF] Hopcroft | Introduction to automata theory, languages and Computation[END_REF]Sect. 2.5]. Several classical methods can be applied in order to switch between the representation of X by an automaton or by a corresponding regular expression [START_REF] Gruber | Descriptional complexity of regular languages[END_REF][START_REF] Sakarovitch | Automata and rationnal expressions[END_REF]. Furthermore, every regular subset of A * can be described by a so-called unambiguous regular expression, which is exclusively built from unambiguous regular operations (see e.g. [START_REF] Eilenberg | Automata, Languages and Machines[END_REF]Corollary VII.8.3]). In order to compute such an unambiguous regular expression, starting with a finite automaton with behavior X, several methods can be applied, the best-known certainly being McNaughton and Yamada algorithm (see [START_REF] Mcnaughton | Regular expressions and state graphs for automata[END_REF] or [START_REF] Berstel | Codes and Automata[END_REF]Proposition 4.1.8]). Regarding Bernoulli measure, unambiguous regular expressions allow to compute µ(X) by recursively applying the three following formulas: µ(R 1 + R 2 ) = µ(R 1 ) + µ(R 2 ), µ(R 1 R 2 ) = µ(R 1 )µ(R 2 ), and µ(R * ) = (1 -µ(R)) -1 .

(iv) Image of a regular set under a regular word binary relation.

The proof of Prop. 2.7, lays upon a result from [START_REF] Nivat | Transductions des langages de Chomsky[END_REF], concerning a peculiar decomposition of regular relations. More precisely, given a regular relation τ ⊆ A * × A * , there are a finite alphabet Z, a regular set K ⊆ Z * , and two monoid homomorphisms φ, ψ : Z * → A * st. τ = φ -1 • ι K • ψ. In this equation, the relation ι K ⊆ Z * × Z * is defined by ι K (z) = {z} ∩ K, for every z ∈ Z * . In addition we have Z = A ∪ A , where A and A are disjoint copies of the alphabet A. From the point of view of implementation, some finite automata with behaviors φ, ψ, and ι K can be explicitly computed. In particular, starting with a finite A * × A * -automaton with behavior τ , say A, a finite automaton A with behavior ι k can be constructed by associating, with each transition

p (a1•••am,b1•••bn)
----------→ q (with m, n ≥ 0) in A, the transition p

a 1 •••a m b 1 •••b n ---------→ q in A .
The mapping φ (resp., ψ), for its part, is constructed on the basis of the free monoid projection π A : Z * → A * (resp., π A : Z * → A * ). By the way, a finite A * -automaton with behavior τ (X) can be effectively constructed. The reader could find more precise details in [START_REF] Sakarovitch | Elements of Automata Theory[END_REF]Sect. IV.1.3.1]).

(v) Deciding whether a regular set is a code Given a regular set X, the question can be classically solved by applying Sardinas and Patterson algorithm [START_REF] Sardinas | A necessary and sufficient condition for the unique decomposition of coded messages[END_REF]. Starting with the set X -1 X \ {ε}, an ul-timately periodic sequence, say (U n ) n≥0 , is computed by applying the following induction formula: U n+1 = U -1 n X ∪ X -1 U n . In view of Prop. 2.7, each term of (U n ) n≥0 is a regular set. The algorithm necessarily stops: this corresponds to either ε ∈ U n , or U n = U p , for some pair of different integers p < n: X is a code iff. the second cond. holds.

Example 7.1. Over A = {a, b}, the set X = {a, ab, baa} is not a code. Indeed, we have

U 0 = {b}, U 1 = U -1 0 X ∪ X -1 U 0 = {aa}, U 2 = U -1 1 X ∪ X -1 U 1 = {a}, and U 3 = U -1
2 X ∪ X -1 U 2 = {ε, b}. We verify that the equation ab • a • a = a • baa holds among the words of X.

  g. [1, Proposition 1.3.6]): Proposition 2.1. Given z 0 ∈ A + , let a be the initial letter of z 0 and let b ∈ A\{a}. Then the word z 0 ab |z0| is overlapping-free. Two words w, w ∈ A + are conjugate iff. a pair of words α, β exist st. w = αβ and w = βα, with β = ε. The following result brings additional information: Proposition 2.2. [22, Proposition 1.3.4] Given a pair of non-empty words w, w , the two following conds. are equivalent: (i) w and w are conjugate. (ii) t ∈ A * exists st. wt = tw . More precisely α ∈ A * , β ∈ A + , and n ∈ N exist st. w = αβ, w = βα, and t ∈ (αβ) n α.

Example 2 . 4 .

 24 Let M = {a} * × {b} * , and X = {(a n+1 , b 2n ) : n ≥ 0}. We have X = Y Z, with Y = {(a, b 2 )} * and Z = {(a, ε)}, whence X is regular. Actually, X is the behavior of the finite M -automaton represented in Figure 1.

Figure 1 :

 1 Figure 1: A M -automaton with behavior X: by convention, the initial state is identified with an input arrow and the terminal one with a double circle; transitions with label 1M are left out.

Figure 2 :

 2 Figure 2: An automaton with behavior idA * in the case where A = {a, b} (arrows are multi-labeled).

  w is the result of the concatenation of the words x 1 , x 2 , • • • , x n , in this order. In view of specifying the factorization of w over X, we use the notation w = (x 1 )(x 2 ) • • • (x n ), or equivalently: w = x 1 • x 2 • • • x n . For instance, over the set X = {a, ab, ba}, the word bab ∈ X * can be factorized as (ba)(b) or (b)(ab) (equivalently denoted by ba • b or b • ab).

We start with a few examples: Example 3 . 1 .

 31 Over A = {a, b}, consider the finite prefix code X = {a, ba, b 2 }. -X satisfies Cond. (c1) wrt. P 1 (that is, X is 1-error-detecting). Indeed, it follows from a ∧ ba = a ∧ b 2 = ε and ba ∧ b 2 = b that d P (a, ba) = |a| + |ba| = 3, d P (a, b 2 ) = |a|+|b 2 | = 3, and d P (ba, b 2 ) = |ba|+|b 2 |-2|b| = 2. Consequently, for each pair of different words x, y ∈ X, we have (x, y) /

Example 3 . 3 .

 33 Over the alphabet A = {a, b}, consider the regular bifix code X = {ab n a : n ≥ 0} ∪ {ba n b : n ≥ 0} and the relation P 1 .

Figure 3 :

 3 Figure 3: We have (w, w ) ∈ P k iff. |u| + |u | ≤ k.

  and let f be a word with maximum length in F(w) ∩ F(w ). Regarding |w| -|f | and |w | -|f |, exactly one of the two following cases occurs: (a) The case where at least one of the integers |w| -|f |, |w | -|f | belongs to [k, k + k ]. Since F k+k is a symmetric relation, wlog. we assume k ≤ |w| -|f | ≤ k + k'. With this condition a pair of words u, v exist st. w ∈ A h uf vA h , with h + h = k. By construction we have |uf v| = |w| -k and d

Lemma 3 . 5 .

 35 Given a positive integer pair k, k we have P k • P k = P k+k . Proof. Firstly, in the proof of Lemma 3.4, by merely substitute d P to d F , the condition (w, w ) ∈ P k • P k implies (w, w ) ∈ P k+k . Conversely, take for f a maximum length word in P(w) ∩ P(w ). Once more by substituting d P to d F exactly one of the two following conds. can occur: (a) In the case where |w| -|f | ∈ [k, k + k ] holds, we have w ∈ A h uf vA h , with h = 0, h = k, and u = ε. We obtain (w, f v) ∈ P k and (f v, w ) ∈ P k , thus (w, w ) ∈ P k • P k . (b) In the case where both the conditions 0 ≤ |w|-|f | < k and 0 ≤ |w |-|f | < k hold, we directly obtain (w, f

Lemma 3 . 7 .

 37 Given a set X ⊆ A * and k ≥ 1 the three following conds. are equivalent:(i) X satisfies Cond. (c2) wrt. P k .(ii) For every x ∈ X we haveP 2k (x) ∩ X = {x}.(iii) X satisfies Cond. (c1) wrt. P 2k . Proof. Since the relation P k is symmetric we have P k • P -1 k = P 2 k . By taking n = 2 in the statement of Corollary 3.6, we obtain P k • P -1 k = P 2k . The rest of the proof merely consists in substituting P k to τ d,k in the proof of Lemma 2.12.

  By construction, E, F , and G are finite sets. Regarding Conds. (c1), (c2), the following property will have noticeable involvement: Proposition 3.8. For every k ≥ 1, both the relations P k and P k are regular. Proof. -In what follows we indicate the construction of a finite A * × A *automaton with behavior P k , namely R P,k . The states are 0, 1, 2, 3, the unique initial one being 0, and the terminal being 1, 2, 3. The transitions are listed hereunder (see Fig 4): 0 (a,a)

  ε) : a, b ∈ A}, and G = {(ε, a) : a ∈ A} ∪ {(ε, ab) : a, b ∈ A} (see Fig. 4).

Figure 4 :

 4 Figure 4: The case where we have k = 2: in the automaton R P,k , the edges are multi-labeled (a, b stand for every pair of characters in A).

Figure 5 :

 5 Figure 5: The automaton from [29] in the case where we have A = {a, b}

  thus |x ∧ y| ≥ |y| -|z 0 |. By construction, |y| ≥ |z| holds: we obtain |x ∧ y| ≥ |z 0 ab |z0| | -|z 0 | = |ab |z0| |, thus |x ∧ y| ≥ |z 0 | + 1. Since both the words x ∧ y and z 0 are prefixes of y, this implies z 0 ∈ P(x ∧ y), thus z 0 ∈ P(x): a contradiction with z 0 / ∈ F(X * ).(b) Now, by contradiction we assume P k (Y )∩X = ∅. Let y ∈ Y and x ∈ X st. (y, x) ∈ P k . Since P k and id A * are symmetrical relations, P k = P k ∩ id A * itself is symmetrical. We obtain (x, y) ∈ P k , thus P k (X) ∩ Y = ∅: this contradicts the conclusion of the preceding case (a).

  (c) It remains to prove that P k (Y ) ∩ Y = ∅. Once more arguing by contradiction, we assume that y, y ∈ Y exist st. (y, y ) ∈ P k . Let p = y ∧ y , u = p -1 y, and u = p -1 y . We compare the words p, y, and y :

  this condition, at least one of the two words u 1 z and u 1 z is a prefix of the other one. Since z is overlapping free, according to Lemma 2.10 this implies u 1 z = u 1 z, thus u 1 = u 1 . By induction each of the equations u 2 = u 2 , . . . , and u n = u n also holds. From the fact that y is a proper prefix of y, we obtain m ≥ n+1 and u= u n+1 z • • • u m z.This implies |u| ≥ |z| ≥ |z 0 | + 1, thus |u| ≥ k + 1: a contradiction with |u| = d P (y, y ) ≤ k. (c2) Consequently we have p / ∈ {y, y }, thus u = ε and u = ε. By construction, b |z0| is a suffix of z, which itself if a suffix of both the words y, y ∈ Y . Consequently, at least one of the words u and b |z0| is a suffix of the other one; similarly at least one of the two words u and b |z0| is a suffix of the other one. It follows from 1 ≤ |u| ≤ k ≤ |z 0 | and 1 ≤ |u | ≤ k ≤ |z 0 | that u, u are non-empty suffixes of b |z0|that is, u, u ∈ bb * . But this cond. implies that the word pb remains a prefix of both the words y and y : a contradiction with p = y ∧ y (see Fig.6).

Figure 6 :

 6 Figure 6: Proof of Prop. 3.11: the case where we have y, y ∈ Y and (y, y ) ∈ P k , with p / ∈ {y, y }.

3. 4

 4 The suffix metric and the relation S k Given a pair of words w, w , their suffix distance is d S = |w| + |w | -2|s|, where s denotes the longest word in S(w) ∩ S(w ): set S k = τ d S ,k . For every pair w, w ∈ A * , we have d S (w, w ) = d P (w R , w R ), hence (w, w ) ∈ S k is equivalent to (w R , w R ) ∈ P k . In particular, starting from the preceding automaton R P,k (see proof of Prop. 3.8), an automaton with behavior S k can be constructed, whence S k is a regular relation (see Fig. 7).

Figure 7 :

 7 Figure 7: An automaton with behavior S2.

4. 1 AClaim 2 .

 12 few generalities about F k Given w, w ∈ A * , let f be a maximum length word in F(w) ∩ F(w ) and let (u, v, u , v ) be a tuple of words st.w = uf v = u f v : we have d F (w, w ) = |w| + |w | -2|f | = |u| + |v| + |u | + |v |.The following statement, which comes from the definition, provides an extension of Claim 1 in the framework of the factor metric (see Fig.8): With the preceding notation, each of the following properties holds:(i) (w, w ) ∈ F k is equivalent to 0 ≤ |u| + |v| + |u | + |v | ≤ k. (ii) (w, w ) ∈ F k is equivalent to 1 ≤ |u| + |v| + |u | + |v | ≤ k.

Figure 8 :

 8 Figure 8: We have (w, w ) ∈ F k iff. |u| + |v| + |u | + |v | ≤ k.
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 4344451546 w = cccbabababbab, w = bbabbaababaaccca. There are two words of maximum length in F(w) ∩ F(w ), namely f 1 = ababa and f 2 = babba.Since d F is a metric, the relation F k is reflexive and symmetric. In addition, according to Lemma 3.4, Corollary 3.6, directly translates into the following statement: Given a pair of positive integer k, n we have F nk = F n k . As a consequence of Corollary 4.4, we obtain the following result: Given a positive integer k we haveF k = F k 1 = (P 1 ∪ S 1 ) k . Proof.-With the condition of Corollary 4.4, by taking n = 1: we obtainF k F k .-Trivially, we haveP 1 ∪ S 1 ⊆ F 1 .For the converse, let (w, w ) ∈ F 1 , let f be a maximum length word in F(w) ∩ F(w ), and let (u, v, u , v ) st. w = uf v, w = u f v . According to Claim 2, we have 0 ≤ |u| + |v| + |u | + |v | ≤ 1, thus |u| + |v| + |u | + |v | ∈ {0, 1}. More precisely, at most one of the integers |u|, |v|, |u | and |v | is non-zero: this implies (w, w ) ∈ P 1 ∪ S 1 . As a consequence we have F 1 = P 1 ∪ S 1 , thus F k 1 = (P 1 ∪ S 1 ) k . Regarding regular relations, the following result is a consequence of Lemma 4.Corollary Each of the following properties holds:(i) For every integer k ≥ 1, the relation F k is regular.(ii) The relation F 1 is regular.

Lemma 4 . 7 .

 47 Given a pair of words (w, w ) ∈ A * × A * , we have (w, w ) ∈ F k iff. a tuple of words (g, u, u , v, v ) exists st. each of the following conds. holds:(i) 0 ≤ |u| + |u | + |v| + |v | ≤ k holds.(ii) We have w = ugv and w = u gv .Proof. Let (w, w ) ∈ F k , let f be a maximum length word in F(w) ∩ F(w ), and let (u, u , v, v ) st. w = uf v, w = u f v . Taking g = f , trivially we obtain the cond. (ii) of Lemma 4.7. In addition, according to Claim 2, we obtain the cond. (i). Conversely, assume that there is a tuple of words (g, u, u , v, v ) satisfying both the conds. (i) and (ii). With the cond. (ii), the word g belongs to F(w) ∩ F(w ): by the maximality of |f | we have |g| ≤ |f |. This implies d F (w, w ) = |w|+|w |-2|f | ≤ |w|+|w |-2|g|, thus d F (w, w ) ≤ |u|+|u |+|v|+|v |. In view of the cond. (i) we obtain d F (w, w ) ≤ k, thus (w, w ) ∈ F k . Notice that, in the statement of Lemma 4.7, the word g needs not to be a factor of any maximum length word in F(w) ∩ F(w ), as attested by what follows: Example 4.8. (Example 4.3 continued) Let w = cccbabababbab, w = bbabbaababaaccca, and k = 23. Recall that there are two words of maximum length in F(w) ∩ F(w ), namely f 1 = ababa and f 2 = babba: we have d F (w, w ) = |w| + |w | -2|f 1 | = 13 + 16 -10 = 19, thus (w, w ) ∈ F k . Taking g = ccc, we have w = ugv, w = u gv', with u = ε, v = babababbab, u = bbabbaababaa, and v = a. Although we have neither g ∈ F(f 1 ) nor g ∈ F(f 2 ), it follows from |u| + |u | + |v| + |v | = 23 ≤ k that (g, u, u , v, v ) satisfies both Conds. (i), (ii) of Lemma 4.7. In view of Lemma 4.7, in what follows, we indicate the construction of a finite family of subsets of A * × A * , namely (S ω ) ω∈Ω k . Firstly, we denote by Ω k the set of the tuple (u, u , v, v ) satisfying the cond. (i) in Lemma 4.7. By construction, Ω k is finite. Secondly, for each ω = (u, u , v, v ) ∈ Ω k we denote by S ω the set of the pairs (ugv, u gv ), for all g ∈ A * . The following result emphasizes a connection between the family (S ω ) ω∈Ω k and the relation F k :

Figure 9 :

 9 Figure 9: Automaton Aω, with ω = (a, b, ε, b).

  ω∈Ω k S ω . Assuming that (w, w ) ∈ F k , according to Lemma 4.7, a tuple of words (g, u, u , v, v ) exists st. 0 ≤ |u| + |u | + |v| + |v | ≤ k, w = ugv, and w = u gv : set ω = (u, u , v, v ). By construction the cond. 0 ≤ |u| + |u | + |v| + |v | ≤ k implies ω ∈ Ω k ; in addition w = ugv, w = u gv implies (w, w ) ∈ S ω . For proving that ω∈Ω k S ω ⊆ F k , we consider ω = (u, u , v, v ) ∈ Ω k , and (w, w ) ∈ S ω . By definition, g ∈ A * exists st. w = ugv and w = u gv . On the one hand, by construction ω ∈ Ω k implies |u| + |u | + |v| + |v | ≤ k: we obtain the cond. (i) of Lemma 4.7. On the other hand, from the fact that the equations w = ugv and w = u gv hold, we are further in the cond. (ii) of the same lemma: this implies (w, w ) ∈ F k .

Lemma 4 . 11 .

 411 Let ω = (u, u , v, v ) ∈ Ω k and g ∈ A * st. (ugv, u gv ) ∈ S ω . We have ugv = u gv iff. α ∈ A * , β ∈ A + , and n ∈ N exist st. exactly one of the following conds. holds:(i) u = u αβ, v = βαv,and g ∈ (αβ) n α. (ii) u = uαβ, v = βαv , and g ∈ (αβ) n α. Proof. -With the cond. (i) we have ugv = (u αβ)(αβ) n αv = u (αβ) n α(βαv) = u (αβ) n αv = u gv . Similarly, the cond. (ii) implies u gv = (uαβ)(αβ) n αv = u(αβ) n α(βαv ) = ugv. -Conversely, assume that the equation ugv = u gv holds. It follows from |u|+ |v| = |u | + |v | that the conds. u = u and v = v are equivalent. Furthermore,

Example 4 . 12 .

 412 Let A = {a, b}, k = 10. -Firstly, consider the tuple ω = (aba, a, b, b 3 ) ∈ Ω k . Since u is a proper prefix of u, only the cond. (i) of Lemma 4.11 may hold, whence we have R (ii) ω = ∅. With the preceding notation, u = u αβ implies αβ = ba; similarly v = βαv implies βα = b 2 . It is straightforward to verify that no pair of words (α, β) may satisfy such constraints, hence we have R (i) ω = ∅ and R ω = ∅. -Now, consider the tuple ω = (aba, a, b 2 , ab 3 ) ∈ Ω k . Once more u is a proper prefix of u, thus R (ii) ω = ∅ holds. Regarding the set R (i) ω we have αβ = ba, βα = ab. The set of the pairs (α, β) st. αβ = ab is {(ε, ab), (a, b)} (recall that we set β = ε). Similarly, the equation βα = ba is satisfied by the pairs (α, β) ∈ {(ε, ba), (a, b)}. Consequently only the pair (a, b) may satisfy both the preceding constraints. We verify that the equations ugv

Corollary 4 . 13 .

 413 Given ω ∈ Ω k and (w, w ) ∈ S ω , the conds. w = w and w ∈ R ω are equivalent.Proof. By construction g ∈ A * exists st. w = ugv, w = u gv . We have ugv = u gv iff. exactly one of the conds.

Figure 10 :

 10 Figure 10: Proof of Prop. 4.15. A finite A * -automaton with behavior {u(αβ) n αv : n ≥ 0}.

  (a) For proving that F k (X) ∩ Y 1 = ∅ holds, we argue by contradiction: let x ∈ X, y ∈ Y 1 st. (x, y) ∈ F k . Let f be a word with maximum length in F(x) ∩ F(y) and let u, v ∈ A * st. y = uf v. According to Claim 2, we have |u| + |v| ≤ d F (x, y) ≤ k. By construction the word a |z0| (resp., b |z0| ) is a prefix (resp., suffix) of y ∈ Y 1 , therefore at least one of the words u and a |z0| (resp., v and b |z0| ) is a prefix (resp., suffix) of the other one. More precisely, it follows from |u| ≤ k ≤ |z 0 | and |v| ≤ k ≤ |z 0 | that we have u ∈ P(a |z0| ) and v ∈ S(b |z0|). On the other hand, by construction, y ∈ Y 1 implies either y = z 1 , or y = z 1 wz 1 for some w ∈ A + . With the first condition, the equationf = u -1 z 1 v -1 = a 2|z0|+1-|u| bz 0 b |z0|-|v| holds. With the second cond. we have f = u -1 wv -1 = a 2|z0|+1-|u| wbz 0 b |z0|-|v| . In each case z 0 is a factor of f ∈ F(x): a contradiction with z 0 / ∈ F(X * ). Consequently we have F k (X) ∩ Y 1 = ∅. (b) By contradiction we assume F k (Y 1 ) ∩ X = ∅. Let y ∈ Y 1 and x ∈ X st. (y, x) ∈ F k . Since the relations F k and id A * are symmetrical, F k = F k ∩ id A * itself is symmetrical, therefore, we have (x, y) ∈ F k , thus F k (X) ∩ Y 1 = ∅:this contradicts the conclusion of Case (a).(c) It remains to prove thatF k (Y 1 ) ∩ Y 1 = ∅.By contradiction, we assume that a pair of different words y, y ∈ Y 1 exist st. (y, y ) ∈ F k . Let f be a word with maximum length in F(y) ∩ F(y ). Once more according to Claim 2, words u, u , v, v exist st.y = uf v, y = u f v , with |u| + |u | + |v| + |v | = d F (w, w ) ≤ k.(c1) At first, we compare the words v, v with ε. Firstly, by contradiction assume that both the conds.v = ε, v = ε hold. Necessarily we have 2 ≤ |v| + |v | ≤ k ≤ |z 0 |. By construction v, v ∈ S(Y 1 ) holds: this implies v, v ∈ S(b |z0| ), whence i, j ∈ [1, |z 0 |] exist st. v = b i , v = b j (see Fig.11). We obtain f b ∈ F(y) ∩ F(y ), a contradiction with |f | being maximum. Consequently at least one of the conds. v = ε or v = ε holds: wlog. we assume v = ε, thus f ∈ S(y ). On the one hand, according to the maximality of |f |, it follows fromz 1 ∈ F(y)∩F(y ) that |f | ≥ |z 1 |. Since we have f, z 1 ∈ S(y ) we obtain f ∈ A * z 1 , that is, f v ∈ A * z 1 v: in particular we have |f v| ≥ |z 1 v| ≥ |z 1 |. Onthe other hand, by construction both the words z 1 and f v are suffixes of y: it follows from |f v| ≥ |z 1 | that f v ∈ A * z 1 . Accordingly both the words z 1 v and z 1 are suffixes of f : we obtain z 1 v ∈ A * z 1 . Since z 1 is an overlapping-free word, by definition the cond. |v| = |v| + |v | ≤ |z 0 | ≤ |z 1 | -1 implies v = ε = v .

Figure 11 :

 11 Figure 11: Proof of Prop. 5.3. Case (c1): we have (y, y ) ∈ F k , with v = ε and y = v = ε.

Figure 12 :

 12 Figure 12: Proof of Prop. 5.3: Case (c2) (y, y ) ∈ F k , with v = v = ε, and u = ε.

  can be embedded into a maximal F k -independent code.6 Error detection wrt. topologies associated with (anti-)automorphismsLet θ be (anti-)automorphism of A * . As justified in the introduction, we focus on the relationτ d θ ,1 = θ = θ ∪ id A * . Recall that we have θ = θ \ id A * = θ.Example 6.1. Let A = {a, b} and θ be the automorphism defined by θ(a) = b, θ(b) = a. It follows from θ -1 (a) = b = θ(a) that θ -1 = θ = θ. Consider the regular prefix code X = {a n b : n ≥ 0}.

  As indicated above, X satisfies Cond. (c1) wrt. θ = θ • θ -1

- 1 =

 1 θ, thus X satisfies Cond. (c2) wrt. θ.

Example 6 . 4 .

 64 In each of the preceding examples, since the mapping θ satisfies θ -1 = θ, the quasi-metric d θ is actually a metric. Of course, d θ could be only a quasi-metric. For instance over A = {a, b, c}, taking for θ the automorphism generated by the cycle (a, b, c), we obtain d θ (a, b) = 1 and d θ (b, a) = 2 (we have b = θ(a) and a = θ(b)).

Figure 13 :

 13 Figure 13: An automaton with behavior τ d θ,1 = θ in the case where θ is an automorphism.

Figure 14 :

 14 Figure 14: An automaton with behavior θ, in the case where θ is an automorphism.

( c )

 c Cond. θ(Y 2 )∩Y 2 = ∅. With this cond. there are different words y, y ∈ Y 2 st. y = θ (y). On the one hand, since θ is an anti-automorphism, b n|z0| ∈ S(y ) implies θ b n|z0| ∈ P(y ). On the other hand, it follows from Y 2 ⊆ z 0 A * and y ∈ Y 2 that z 0 ∈ P(y ). More precisely, |z 0 | ≤ |b n|z0| | implies z 0 ∈ P(b n|z0| ), thus z 0 = (θ (b)) |z0| . From the fact that we have |z 0 | ≥ 2 and θ(b) ∈ A, this is incompatible with the construction of z 0 .

  Let M, N be two monoids. A binary relation from M into N consists in any subset τ of M ×N . Since M ×N itself is a monoid, those relations are directly involved by the preceding concept of regularity. The composition in this order of τ by τ is defined by τ • τ (x) = τ (τ (x)) (the notation τ k refers to that operation). The inverse of τ is the relation τ -1 ⊆ N × M defined by (w, w ) ∈ τ -1 whenever (w , w) ∈ τ ; in addition its complement is τ = M ×N \τ .

	Composition and inverse preserve regularity among relations; however in the
	most general case a regular relation is not preserved under complementation.
	In the paper the following result (see [8, Sect. IX.3] or [32, Sect. IV.1.3]) will
	be frequently applied:
	Proposition 2.7. Given a regular relation τ ⊆ A

* ×A * , and a regular set X ⊆ A * , the set τ (X) is regular.

We close the study with the following statement: it synthesizes the decidability results obtained in the whole paper: Theorem 6.10. With the preceding notation, each of the following properties holds:

(i) For every positive integer k, it can be decided whether X satisfies any of Conds. (c1)-(c4) wrt. P k , S k , or F k .

(ii) For every (anti-)automorphism θ of A * , wrt. τ d θ ,1 = θ, the code X satisfies Conds. (c1) and (c2). In addition one can decide whether it satisfies any of Conds. (c3), (c4).

Concluding remark

From the point of view of decidability, we have now fully studied the behaviors of Conds. (c1)-(c4) wrt. P k , F k , and θ. We also note that, in [START_REF] Konstantinidis | Embedding rationally independent languages into maximal ones[END_REF] the authors were interested in the question of embedding a non maximal τ -independent set L ⊆ A * into some maximal one. From this point of view, the results of Corollary 3.13 and Props. 5.4, 6.9 attest that, in the frameworks of P k , P k , and θ, in any case such an embedding can be labeledy done for variable-length codes.

Regarding further research, several ways may be involved:

-At first, for k ≥ 2 the question whether the relation F k is regular or not remains open.

-The so-called subsequence metric associates, with each pair of words (w, w ), the integer δ(w, w ) = |w| + |w | -2|lcs(w, w )|, where lcs(w, w ) stands for some maximum length subsequence common to w and w . With such a definition that metric appears as a direct extension of the factor one. Equivalently, δ(w, w ) is the minimum number of one character insertions and deletions that have to be applied for computing w by starting from w. From this point of view, the frameworks of the Hamming and Levenshtein metrics are also involved.

We observe that, wrt. τ δ,k , results very similar to Prop. 5.2, 5.4 have been established in [START_REF] Néraud | Variable-length codes independent or closed with respect to edit relations[END_REF], however, the question whether or not Conds. (c1), (c2) are decidable remains open.

-More generally, it appears natural to study, from the point of view of decidability, the behavior of each of the conds. (c1)-(c4) in the framework of other topologies in the free monoid. Without being exhaustive, we mention the so-called additivity preserving quasi-metrics [START_REF] Calude | Additive distances and quasi-distances between words[END_REF], or metrics based on absent words [START_REF] Castiglione | Some investigations on similarity measures based on absent words[END_REF].

-From another point of view, a quasi-metric being fixed over A * , presenting families of codes satisfying all the best Conds. (c1)-(c4) would be desirable.

Appendix

In view of Theorem 6.10, in what follows we provide some outline of basic results in order to implement corresponding algorithms: