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Abstract

This paper is devoted to a specific motion observed for glycerin droplets sliding on a horizontal

hydrophobic substrate under the influence of a shear flow. In this regime, the droplet elongates

in the flow direction, adopting a rivulet shape. Waves develop on the droplet sheared surface,

resulting in a wavy contracting and stretching motion mechanism, similar to the movement of a

caterpillar. If long enough, the droplet can break up into several droplets that can be submitted

to a pearling instability. Furthermore, these droplets can also coalesce.

Keywords: Rivulet, Deformed Interface, Caterpillar

1



I. INTRODUCTION

Droplets sliding along a substrate under partial wetting conditions is a common phe-

nomenon that can be observed on windshields and windows during rainy days. This sliding

motion, that results from the effects of gravity [1–8], the drag exerted by an air flow [9–15],

or by a combination of both effects [16–19], is of fundamental importance due to the remark-

able richness of phenomena that arise. For a droplet sliding along an incline (i.e., under the

effect of gravity), experimental studies [2, 3, 7] have reported three different droplet shapes:

oval, corner, and cusp, depending on the droplet volume and velocity. These shapes have

been retrieved with a theoretical model based on the long-wave approximation [4] with an

additional rivulet shape where the droplet becomes very elongated and is thus similar to

a rivulet. This rivulet shape has also been observed by Yang et al. [20] with a modified

pseudopotential lattice Boltzmann multiphase model. This rivulet shape is different from

the thin rivulet that forms at the receding contact line in the cusp regime [7], which can lead

to a pearling instability [4, 5]. In the case of a droplet sliding onto a horizontal substrate

in a shear flow, the droplet can adopt an oval, corner, or rivulet shape depending on its

volume and velocity and on the shear flow [10–15]. The rivulet shape has been observed

experimentally on aluminum [14] or glass substrates [15], and it has been observed that

these rivulets eventually break into smaller droplets when long enough.

The present paper describes one particular kind of rivulets which we have observed: an

extremely long droplet whose motion is induced by surface waves, inducing stretching and

shrinking of the droplet interface, akin to a caterpillar. Surface waves on very long rivulets

(corresponding to a Bond number Bo>4) have been previously observed by Yang et al. [20]

in their numerical study of a droplet sliding along an incline. Nevertheless, they do not

report any influence of these waves on the droplet motion. The only similar sliding regime

described in the literature was briefly reported in Yurishchev et al. [19] for a water droplet

motion climbing an incline under the shear of a turbulent flow. They have described the

stretching and shrinking motion of a very long rivulet, but, as their paper was devoted to

the mean droplet velocity, they did not provide any details on the physical mechanisms

underlying this motion.

It should be emphasized that oscillations can appear in all sliding regimes in the case of a

water droplet, as described by Chahine et al. [15], which makes it difficult to distinguish
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between these mere oscillations to those responsible for the caterpillar motion. For such

a reason, the present work was conducted with a glycerin droplet sliding on a horizontal

substrate under a laminar shear flow, for which no oscillations were observed [15]. This

much simpler configuration enables a better description of the caterpillar like motion, which

results from surface waves that travel faster than the droplet.

In the next section (Sec. II), we first report observations of a shear driven glycerin droplet

sliding on a glass substrate, exhibiting surface waves, and we identify flow and droplet condi-

tions at which this phenomenon emerges. Next, we explore the characteristics of the surface

waves (Sec. III), and then we investigate disorganizing events such as droplet breakup,

pearling, and coalescence (Sec. IV). A summary and conclusions are provided in the last

section (Sec. V).

II. CATERPILLAR LIKE MOTION OBSERVATION

This caterpillar like motion has been observed for glycerin droplets, of volume Vd ranging

from 40 to 100µL, sliding on a hydrophobic horizontal glass plate (with typical receding

and advancing contact angles θr = 83○ and θa = 86○) induced by a laminar shear flow with a

free-stream velocity U∞ = 20 and 22 m/s. Two cameras were used to simultaneously record

side and bottom views of the droplet during its motion. A more detailed description of the

experimental setup is available in Ref. [15]. Figure 1 presents typical observed snapshots of

a sliding glycerin droplet (Vd = 60 µL and U∞ = 22 m/s).

Prior to the airflow application, the droplet is almost hemispheric. When increasing

progressively the air flow, it first begins to tilt in the flow direction, exhibiting an oval

shape. When the drag force exerted by the air-flow overcomes the capillary force, the

droplet begins to slide (this onset of sliding has been investigated in our previous study [15])

and the shape passes through the corner and rivulet shapes. When the rivulet tail is long

enough, waves develop on the droplet sheared surface inducing caterpillar like motion and

eventually breakup (rivulet wave and rivulet breakup regimes). When reaching the ad-

vancing contact line, these surface waves induce a sudden acceleration which is responsible

for the stretching and shrinking of the droplet, similarly to what can be observed in the

movement of a caterpillar. It should be emphasized that in the following, several droplet
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length scales are used to describe its evolution. First, its geometric form evolution over the

time is described using the dimensionless length L = L/(2R0), width W = W /(2R0) and
height H = H/(2R0) where the characteristic length R0 = [3Vd/(2π)]1/3 is defined as the

radius of the hemisphere of the same volume. This gives an insight into the evolution of

the droplet in comparison with an idealized hemispherical shape, i.e., L = W = H = 1. We

also introduce the dimensionless length L/ℓc to compare the droplet length to the capillary

length ℓc = √σ/ρdg (where σ is the droplet surface tension and ρd is the droplet density).

We also consider in the following the critical droplet length Lapp/ℓc at which the surface

waves start to develop and the maximum length of the droplet, Lmax/ℓc, prior to breaking.
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FIG. 1: (a) Side and (b) bottom views of a glycerol droplet sliding along a hydrophobic

glass surface under the influence of a sheared airflow, Vd = 60 µL −U∞ = 22 m/s.

Figure 2 presents the time evolution of several geometric parameters extracted from the

video recordings for a glycerin droplet (Vd = 60 µL) in a laminar shear flow with U∞ = 20 m/s,

for which no rivulet breakup appears. Figure 2 (a) presents the advancing (downstream) Xa

and receding (upstream) Xr contact line positions and Fig. 2 (b) presents the normalized

width W = W /(2R0), length L = L/(2R0), and maximal height H = H/R0 of the droplet,

where the characteristic length R0 = [3Vd/(2π)]1/3 is defined as the radius of the hemisphere
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of the same volume.

(a)

0 5 10 15 20 25
0

20

40

60

(i) (ii) (iii)

t (s)

P
o
si
ti
o
n
s
X

(m
m
)

Xa

Xr

(b)

0 5 10 15 20 25
0

1

2

3

(i) (ii) (iii)

t (s)

D
im

en
si
o
n
s W

L

H

FIG. 2: Time evolution of (a) advancing (downstream) Xa and receding (upstream) Xr

contact line positions of the droplet and (b) dimensionless width W = W /(2R0), length
L = L/(2R0), and maximal height H = H/R0 of a glycerol droplet sliding on a hydrophobic

glass surface under the influence of a sheared airflow, Vd = 60 µL and U∞ = 20 m/s.

The droplet shape evolution appears to follow the same three stages observed by Yang

et al. [20] in their numerical study in which they report surface waves on very long rivulets

for a droplet sliding along an incline:

• (i) Relaxation: The droplet initially tilts and starts sliding in a small displacement

because of the aerodynamic forces. We can see the characteristic sizes (H, L, W ) of

the droplet remain almost constant [see Fig. 2 (b)].

• (ii) Stretch: The normalized length L increases while the normalized width W and

height H both decrease with time. Due to the shear-induced drag force, the droplet

stretches in the flow direction, resulting in different slopes for the advancing (Xa) and

receding (Xr) contact line positions. This stretching continues until the droplet length

L reaches a critical value much larger than the capillary length ℓc.

• (iii) Equilibrium: The droplet continues sliding at a constant speed while surface waves

propagate inducing droplet oscillations that can eventually lead to a breakup of the

droplet [see Fig. 2 (a)].

6



It is noticeable that the equilibrium stage (iii) appears when the droplet length reaches

a critical value Lapp which is approximately five times the capillary length ℓc for all droplet

volumes as illustrated in Fig. 3.
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FIG. 3: Evolution of the ratio between caterpillar length at the beginning of the equilibrium

stage (iii) (Lapp) and capillary length (ℓc) for different volumes of the droplet. Open symbols

indicate U∞ = 20 m/s while solid symbols represent U∞ = 22 m/s.

Furthermore, contrary to the observation of Yang et al. [20], the droplet velocity is not

constant during its sliding, a consequence of the development of surface waves that play

an important role on the droplet motion. This is illustrated in Fig. 4 (a) that presents

the time evolution of the droplet’s centroid Xc (computed from the side view). As one

can see, in the equilibrium stage (that begins approximately 7 s after the application of the

airflow) the centroid position begins to oscillate, which is clearly visible in Fig. 4 (a) for

a time larger than 15 s. A cycle of this oscillatory motion is highlighted in the inset of

Fig. 4 (a) and the corresponding side views of the droplet are given in Fig. 4 (b). During

this cycle, the receding (downstream) contact line appears to move continuously during the

wave propagation (from t0 to t3) but remains pinned while the wave reach the droplet’s

head (at t3). On the contrary, the advancing (upstream) contact line stays pinned during

almost all the cycle and moves only when the waves reaches the droplet’s head (at t3). Thus

the droplet’s length first contracts during the cycle and at t3 stretches to recover its initial

size as illustrated in Fig. 4 (b). This wavy contracting and stretching motion mechanism is

closely similar to the movement of a caterpillar.
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FIG. 4: (a) Time evolution of the centroid position Xc for a droplet of Vd = 60 µL and wind

velocity of U∞ = 20 m/s, and (b) one cycle of wave movement during the caterpillar droplet

locomotion.

The time evolution of the advancing (upstream) and receding (downstream) contact an-

gles are reported in Fig. 5 (a) during the caterpillar like motion. The raw data are presented

in shaded color while the bold lines represent filtered data owing to a moving average filter.

In the relaxation stage (i), the advancing contact angle remains almost constant while the re-

ceding contact angle decreases. In the stretching stage (ii), both the advancing and receding

contact angles evolve: The receding contact angle continues to decrease while the advancing

contact angle begins to oscillate. In the equilibrium stage (iii), the receding contact angle

first reaches a minimum around 18○ and then increases to reach a value about 28○ while the
advancing contact angle continues to oscillate. The contours presented in Fig. 5 (b) have

been extracted from the side views of Fig. 4 (b) where the last one (at time t3) has been

shifted to have the same advancing contact line position to help the comparison. As one

can see, the strong oscillations observed in the advancing contact angles are induced when

the surface waves reach the droplet head, thus generating the caterpillar like motion.

8



(a)

0 5 10 15 20 25
0

20

40

60

80

100

(i) (ii) (iii)

t (s)

A
n
g
le
s
(d
eg
)

θa
θr

(b)

43.532.521.50.50

1.5

1

0.5

0

L

H

t1
t2
t3

3.93.73.53.33.1

1

0.8

0.6

0.4

0.2

0

θa(t)

FIG. 5: (a) Time evolution of advancing and receding angles of a glycerol droplet sliding

on a hydrophobic glass surface under the influence of a sheared airflow, Vd = 60 µL and

U∞ = 20 m/s and (b) dimensionless side view contours at the instants t1, t2, t3 of Fig. 4 (b),

where the symbol × marks the location of the droplet’s centroid (Xc, Yc).

III. WAVE PROPERTIES

It appears that the caterpillar like motion of the droplet is intimately linked to the

propagation of waves on the droplet surface that is schematized in Fig. 6.
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FIG. 6: The schematic of a two-dimensional (2D) caterpillar droplet on a glass surface,

subject to the uniform air shear flow parallel to the substrate.

For all experiments, the number of wave cycles observed on the droplet sheared surface

varies between 16 and 48, which allows the determination of their frequency fw and velocity

Uw presented in Figs. 7 and 8. Figure 7 (a) illustrates the temporal progression of the wind
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tunnel velocity, wherein the initial oscillations are due to the controller of the wind tunnel

speed. These oscillations have a typical frequency of 0.3 Hz, which is almost one order of

magnitude lower than the droplet surface waves, as seen in Fig. 7 (b), and are thus considered

to have a negligible influence on the droplet motion. The temporal evolution of the wave

frequencies of droplets having the same volume is reported in Fig. 7 (b) for the two studied

shear flows, U∞ = 20 and 22 m/s. The dashed line represents a fitted curve made on all the

data. We observe that the frequencies initially exhibit higher values and gradually decrease

until they stabilize around a particular value. Once the wind tunnel velocity is stabilized,

which occurs about 10 s as seen in Fig. 7 (a), the droplet wave frequency becomes constant,

implying the establishment of a stable regime of the caterpillar motion.
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FIG. 7: Time evolution of (a) the airflow variation speed of the wind tunnel for U∞ =
20 and 22 m/s and (b) the frequencies of the wave of glycerol droplet Vd = 60 µL. The

dashed line is a fit curve realized on all the data.
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FIG. 8: The experimental frequencies and velocities of the interface wave on the droplet. (a)

U∞ = 20 m/s, (b) U∞ = 22 m/s and (c) The mean values of the frequencies and velocities

measured in each droplet: The continuous line reports the gravity-capillary wavelength

λc = 2πℓc. Open symbols: U∞ = 20 m/s; solid symbol: U∞ = 22 m/s.
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TABLE I: Mean wave frequency, velocity, and wavelength of glycerol droplets for different

volumes, initial conditions, and wind velocities. The variables marked with an overbar are

the mean values, and Std is the standard deviation.

U∞ (m/s) Vd (µL) fw (Hz) Std(fw) Uw (m/s) Std(Uw) λw/λc

20

50 2.08 0.376 0.026 0.0043 0.932

60 1.46 0.307 0.018 0.0060 0.917

70 1.61 0.393 0.020 0.0055 0.924

80 1.47 0.244 0.018 0.0055 0.910

90 1.63 0.586 0.019 0.0060 0.865

100 1.73 0.460 0.023 0.0095 0.992

22

40 2.49 0.435 0.025 0.0048 0.746

50 1.95 0.346 0.021 0.0054 0.805

60 1.88 0.480 0.020 0.0074 0.790

70 1.93 0.421 0.022 0.0104 0.850

80 1.87 0.472 0.022 0.0083 0.880

90 1.95 0.486 0.024 0.0110 0.917

100 1.59 0.270 0.024 0.0051 1.126

To analyze further this regime, the mean wave frequency and mean velocity of the droplet

of all experiments are reported in a phase diagram given in Fig. 8, and summarized in Table

I with the corresponding wavelength normalized by the gravity-capillary wavelength [21]:

λc = 2πℓc = 2π ( σ
ρg
) 1

2

. (1)

The caterpillar wavelength appears to be close to the gravity-capillary wavelength, but

its wave velocity, Uw ≈ 18 mm/s, is found to be one order of magnitude smaller than the

capillary-gravity wave velocity:

Uc =√2(gσ
ρ
) 1

4 ≈ 200 mm/s. (2)

It is noticeable that the caterpillar waves show similarities with solitary waves observed

in falling films [22, 23]. According to Chang [23], the velocity of solitary waves is about
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three times the mean velocity of the liquid film and follows the amplitude-speed correlation

of the form

c − 3 = 3 (h − 1) , (3)

where c is the ratio of the wave velocity to the mean film velocity and h is the ratio of

the wave amplitude to the mean film height. By making the analogy between free-surface

solitary waves and the observed caterpillar motion, Usw, directly from the mean droplet

velocity Ud,

Usw = 3hUd. (4)

In order to test this relationship, we can evaluate the right-hand side of Eq. (4), by

estimating the droplet velocity at its centroid, leading to Ud ≈ 5 mm/s, and by taking h as

the ratio of the maximum droplet’s height prior to the wave appearance Hmax [i.e., at the

transition between phases (ii) and (iii)] to the amplitude of the wave Hd, which leads to

h = Hmax

Hd

≈ 1.25. (5)

Thus, Eq. (4) leads to an estimate of the wave velocity Usw ≈ 18.8 mm/s, which is very

close to our experimental measured value Uw ≈ 18 mm/s. This analogy with a liquid film

wave is reinforced by plotting in Fig. 9 the evolution of the ratio between the measured

wave velocity Uw and hUd for all our experiments. The plot confirms that the wave velocity

at the interface of the caterpillar droplet is proportional to three times the velocity of the

droplet, regardless of both the droplet volume or airflow considered. Solitary waves have

been observed in falling liquid films at a relatively large Reynolds numbers (Re > 50), due

to the destabilizing and dispersive effects of liquid inertia [23]. The effect of an additional

shear stress on the long waves propagating on a falling film has been studied by Samanta

[24]. He has shown that when an imposed shear stress is exerted downstream, the long waves

appear at a smaller Reynolds number and grow faster. In our study, the Reynolds number

of the droplets is very low (Re < 10−2) but the Reynolds number of the air flow at the droplet

surface (based on the droplet height Hd and the flow velocity at the same height estimated

from the Blasius boundary layer profile) is rather high, Re = ρaUHHd

µa
≈ 3×103 and the airflow

provides the necessary inertia to the droplet interface to trigger the surface waves.
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FIG. 9: Evolution of the ratio between mean wave velocity Uw and droplet mean velocity

Ud times the dimensionless height h for different droplet volumes and airflow rates.

IV. BREAKUP, PEARLING, AND COALESCENCE

During the equilibrium stage, when the droplet is long enough, the droplet exhibits a

caterpillar like motion during several tens of surface wave cycles before breaking into several

smaller droplets (that can further coalesce). Sometimes, a pearling instability occurs at the

receding contact line similar to the case of a droplet sliding on an incline. This behavior

is illustrated in Fig. 10, which presents for the two shear flows the time evolution of the

droplet length (L) over the capillary length (ℓc) on the left-hand side, and three characteristic

snapshots of the caterpillar behavior on the right-hand side.
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FIG. 10: (a) Time evolution of the dimensionalized length over the capillary length of a

glycerol droplet sliding on a hydrophobic glass surface under the influence of a sheared

airflow, Vd = 60 µL. Different images of the glycerol droplet at three different instants, (b)

U∞ = 20 m/s and (c) U∞ = 22 m/s, where in this case (1) and (3) show a droplet breakup,

whereas (2) depicts a droplet coalescence.

For a free-stream velocity of U∞ = 20 m/s we can observe in the equilibrium stage (beyond

10 s) for a droplet’s volume Vd = 60 µL a typical caterpillar wave motion with a droplet

length oscillating between six to eight times the capillary length [see Fig. 10 (a)] and waves

propagating at the droplet’s surface [see Fig. 10 (b)]. By increasing the free-stream velocity

just by 10%, up to U∞ = 22 m/s for the same droplet’s volume Vd = 60 µL, there is a stark

contrast in the caterpillar behavior with a succession of breakup and coalescence stages

[noted (1) (3) in Fig. 10]. When the length of the droplet is approximately five times larger

than the capillary length (L/ℓc ≈ 5), we observe the evident emergence of the free wave, as

depicted in Fig. 10 (a).

Furthermore, if the droplets created after the breakup exhibit a rivulet shape, pearling in-

stability may appear. The length of the caterpillar and the number Nd of daughter droplets

created after breakup, as well as the occurrence or not of coalescence and pearling phe-

nomena, are reported in Table II and in the phase diagram Lmax/ℓc - Nd shown in Fig. 11,

with Lmax the maximum length that the droplet achieved before it breaks. As one can see,
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breakups occur only for sufficiently long caterpillars. There is no breakup, i.e., Nd = 1,

for droplets shorter than 12 times the capillary length ℓc. It is noticeable that breakup

occurs only from droplets larger than two mean wavelength λc, which appears natural as

the breakup appears to be linked to a wave interaction on the droplet sheared surface. The

number of daughter droplets Nd is clearly increasing with the droplet’s length, which also

appears natural as a longer droplet can then exhibit more waves on its free surface. It

should be noted that Lmax appears to be set by the initial volume of the droplet and the

wind speed, as seen in Table II. Also, the same initial conditions (droplet volume and wind

speed) do not always necessarily produce the same results, with variability in Lmax and Nd,

which suggests that other underpinning processes should be considered.

TABLE II: Maximum length (Lmax) over the capillary length (ℓc) of a glycerol droplet for

different airflow velocities and droplet volumes before it starts to divide into Nd daugther

droplets.

U∞ (m/s) Vd (µL) Lmax/ℓc Nd Observed Phenomena

20

90 13.21 2 Coalescence/Pearling

100 15.60 2 Coalescence/Pearling

100 25.41 4 Coalescence/Pearling

100 25.50 4 Coalescence/Pearling

22

60 12.75 2 Coalescence

70 13.62 2 Coalescence

70 15.62 3 Coalescence/Pearling

80 15.71 3 Coalescence/Pearling

80 16.71 3 Coalescence/Pearling

90 19.05 3 Coalescence/Pearling

90 24.03 3 Coalescence/Pearling

100 22.04 4 Coalescence/Pearling

100 22.29 4 Coalescence/Pearling
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FIG. 11: Phase diagram Lmax/ℓc - Nd reporting the different observed behaviors. Nd = 1
indicates that the droplet is not experiencing any breakup.

Side view snapshots of the longest droplet observed before breakup, for Vd = 100µL and

U∞ = 20 m/s, are reported in Fig. 12. Just before the breakup, at 13.75 s, this droplet has

reached a maximal length of seven times its initial length, more than 25 times the capillary

length. Then, the droplet breaks into four daughter droplets, where it is seen that the first

three droplets in the line are much smaller than the last one. Evidence of pearling instability

is also observed in the three primary daughter droplets.

There is an interesting interaction that can be observed between the mother droplet and

the first downstream daughter droplet. The latter, marked with a red arrow in Fig. 12,

appears to move in the opposite direction of the air flow towards the mother droplet, and

eventually coalesces with it. This specific motion can be related to a back flow region

developing downstream of the rivulet droplet presenting a caterpillar like motion. Such a

back flow region is linked to a vortex shedding that has been previously reported in the case

of small droplets using particle image velocimetry (PIV) measurements [12] and is similar

to the hairpin vortex generated by a hemisphere in a laminar boundary layer [25]. A similar

phenomenon was also reported for droplets in the wake of a hemisphere by Hooshanginejad

et al. [26]. We measured the ratio of the mother droplet height h to the distance d between

the mother droplet head and the daughter droplet tail, h/d = 0.29, which is found to be

similar to the 0.33 value found by Zhang et al. [27] for a 3D droplet (the Reynolds number

based on the droplet height being ReH = 2070 in their study and ReH = 1538 in our case).
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These results appear consistent and validate the role of the back flow in such coalescence

events.

𝑡 = 0	𝑠 10 mm

𝑡 = 13.75	𝑠

𝑡 = 16.59	𝑠

𝑡 = 17.38	𝑠

𝑡 = 17.91	𝑠

𝑡 = 17.95	𝑠

𝑡 = 18.30	𝑠

𝑡 = 17.67	𝑠

FIG. 12: Side views of a line of daughter glycerol droplets sliding from left to right along

a hydrophobic glass surface under the influence of a laminar shear airflow. The red arrow

indicates the small droplet that is absorbed by the last droplet on the left after coalescence.

Vd = 100 µL −U∞ = 20 m/s.

V. CONCLUSION

In this study, caterpillar like motion of glycerin droplets in a laminar boundary layer is

reported. It appears that the droplet is stretched by the airflow and eventually exhibits a long

rivulet shape. Shear driven waves develop at the droplet interface and induce a caterpillar

like motion that can eventually breakup into smaller droplets. These droplets can be subject

to pearling instability and coalesce. The shear driven waves responsible for this caterpillar

18



like motion are well described by the Nusselt theory of waves developing on a flowing liquid

film. When long enough (approximately two wavelengths), several waves develop on the

droplet sheared surface and lead to droplet breakup and the number of daughter droplets

increases with the droplet length. Finally, droplets moving in the opposite direction of the

shear flow are also reported and appear to be linked to the backflow region that develops

downstream the droplet.
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