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Abstract
This study presents an automatic tool that allows to trace smile intensities
along a video record of conversational face-to-face interactions. The pro-
cessed output proposes a sequence of adjusted time intervals labeled follow-
ing the Smiling Intensity Scale (Gironzetti, Attardo, and Pickering, 2016), a
5 levels scale varying from neutral facial expression to laughing smile. The
underlying statistical model of this tool is trained on a manually annotated
corpus of conversations featuring spontaneous facial expressions. This model
will be detailed in this study. This tool can be used with benefits for anno-
tating smile in interactions. The results are twofold. First, the evaluation
reveals an observed agreement of 68% between manual and automatic anno-
tations. Second, manually correcting the labels and interval boundaries of
the automatic outputs reduces by a factor 10 the annotation time as com-
pared with the time spent for manually annotating smile intensities without
pretreatment. Our annotation engine makes use of the state-of-the-art tool-
box OpenFace for tracking the face and for measuring the intensities of the
facial Action Units of interest all along the video. The documentation and
the scripts of our tool, the SMAD software, are available to download at the
HMAD open source project url page https : //github.com/srauzy/HMAD.

Keywords: Smiling Intensity Scale, Automatic annotation, OpenFace soft-
ware, Machine Learning, Facial Action Coding System
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1 Introduction

Social interactions and specifically conversations involve inherently gestures and
speech as an “integrated whole" (McNeill, 1992). Many studies have demonstrated the link
between gestures (e.g. hand gestures, head gestures or facial gestures) and the discourse
organization (see among others (Alibali, Kita, & Young, 2000; Kendon, 2004; McNeill,
2012)). It has also been shown that the gaze direction and the head trajectory are involved
in the conversational process (see for example (Hanna & Brennan, 2007; Holler et al., 2014;
Kendon, 1967)). Among facial expressions, smiling is “very frequent” (Kerbrat-Orecchioni
& Cosnier, 1987) in conversational interaction and it has been shown that “the face is the
most often observed part of the body when we are talking"(Guy, 2013). If smile has mainly
been studied to reflect emotions such as joy (Bateson, Winkin, Bansard, Cardoen, & Bird-
whistell, 1981; Paul Ekman, 1984), it also can be considered as a “facial gesture" (Bavelas &
Gerwing, 2007) that conveys pragmatic and interactive functions (Argyle, 1975). Whether
smile is conversational or emotional, this facial expression is involved in the “collaborative
process" (Sacks, Schegloff, & Jefferson, 1978) required to communicate. In order to explore
the smile role in conversations, we first need to identify and quantify smiles. There is a
real need in a reliable and systematic annotation tool that take into account the speech
consequences on facial expressions such as the noisy environment due to the activation of
facial muscles. Not only presence or absence of smile need to be explored, neither low or
high smiles, but smile intensities. In this present study, we focus on smiling annotation
using a sign-based approach which describes facial changes based on physiological features.
In that aim, our approach relies on the Smiling Intensity Scale (SIS) (Gironzetti et al.,
2016), an annotation scale based on the Action Units from the FACS (P. Ekman, Friesen,
& Hager, 2002). The solicitation of different muscles and the differences observed between
a low or a high smile (El Haddad, Chakravarthula, & Kennedy, 2019) provides evidence
that it is important to take into account the different smile intensities. The smiling in-
tensity scale describes smiling into 5 intensities (from neutral face to laughing smile) and
provides a guideline for a manual annotation. However, the manual annotation of gesture
(hand or facial gesture) is a time-consuming task. In practice, it limits the size of manually
annotated corpus available. Moreover, a large amount of data is needed in order to deeply
analyze interactions. That is why in our multimodal approach, any alternative solution to
the manual annotation is welcome. As far as we know, there is no tool which allows to
automatically annotate smile intensities according to the SIS scale. This exploratory study
aims to provide such a tool.

Recent advances in the field of computer vision and machine learning have given
birth to a generation of softwares enable to detect and track a face along a video record and
eventually to measure its internal facial movements. Automatic analysis of facial expressions
implies in fact several steps of treatment (see for example (Martinez, Valstar, Jiang, &
Pantic, 2019) for a recent survey): a pre-processing of video images in order to detect
and track the face and its characteristic facial landmarks all along the video capture, the
extraction of features describing for example atomic facial muscle actions (i.e. the Action
Units (AUs) of the Facial Action Coding System (FACS) (P. Ekman et al., 2002; Paul Ekman
& Friesen, 1978)) and a final step allowing to automatically detect facial actions based on
the measured features. Various solutions based on different techniques and algorithms have
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already led to a bunch of distributed softwares (see table 1 of (Baltrušaitis, Zadeh, Lim, &
Morency, 2018) for an overview and a comparison of the respective characteristics of the
available tools). The today challenge concerns how facial behavior analysis softwares do
perform on in-the-wild1 videos recording spontaneous facial expressions2 (see for example
(Cohn & De la Torre, 2014; Dhall, Goecke, Gedeon, & Sebe, 2016; Martinez et al., 2019)).
In a prior study (Rauzy & Goujon, 2018) we investigated the detection of eyebrows raising
and eyebrows frowning (Goujon, Bertrand, & Tellier, 2015) on spontaneous and in-the-
wild video materials. The videos were first treated by the OpenFace toolbox (Baltrušaitis,
Mahmoud, & Robinson, 2015; Baltrušaitis, Robinson, & Morency, 2016; Baltrušaitis et
al., 2018) in order to track the face and to obtain the facial landmark trajectories before
applying our own processing. The results were encouraging but without bringing a clear-
cut answer regarding the benefits of using this tool as a help for annotation purpose. The
present study approach is similar but concerns the automatic annotation of smile intensities
along time on in-the-wild videos.

Automatic smile detection has been already addressed considering different issues
and exploring various dimensions (see for example (Whitehill, Littlewort, Fasel, Bartlett,
& Movellan, 2009)). The proposed solutions vary indeed whether one wants to detect the
presence or the absence of smile (An, Yang, & Bhanu, 2015; Chen, Ou, Chi, & Fu, 2017;
Guo, Polania, & Barner, 2018; Shan, 2012; Zhang, Huang, Wu, & Wang, 2015) or rather one
wants to estimate smile intensity (Bartlett, Littlewort, Braathen, Sejnowski, & Movellan,
2003; Bartlett et al., 2006; Girard, Cohn, & De la Torre, 2015; Jiang, Coskun, Badokhon,
Liu, & Huang, 2019; Shimada, Matsukawa, Noguchi, & Kurita, 2010; Vinola & Vimala
Devi, 2019). The methods applied also change if one is interested in classifying single face
image (An et al., 2015; Chen et al., 2017; Guo et al., 2018; Jiang et al., 2019; Shan, 2012;
Shimada et al., 2010; Zhang et al., 2015) rather than proposing a dynamical annotation of a
video recording (Freire-Obregón & Castrillón-Santana, 2015). The main difficulty plaguing
in practice the automatic smile intensity estimation task lies however on the lack of a large
dataset with manually annotated references (Girard et al., 2015; Guo et al., 2018; Walecki,
Rudovic, Pavlovic, & Pantic, 2019). Despite the variety of existing tools, none correspond
to the speech-noise conversational data we want to analyze. This is why this study presents
a new ad hoc tool that automatically detects smiles in conversation.

This paper is organized as follows. In section 2 we present the OpenFace software
which will be pipelined in order to feed the input of our analysis. Section 3 describes our
gold standard corpus, a collection of 4 videos in which smile intensities have been manually
annotated and coded by two judges following the SIS (Gironzetti et al., 2016). The building
up of the model is detailed section 4. We establish the correspondence between the manual
annotations and the intensities of the facial Action Units measured by OpenFace. The
dynamical probabilistic model is settled in a second step and we afterwards explain how
to estimate the parameters of the model from the gold standard data. The output of the

1The term ’in-the-wild’ is used by the computer vision community to describe any realistic settings where
the captured face may be far from the frontal head pose, may undergo abrupt head motions, may be masked
due to partial occlusions and may be subject to varying illumination conditions.

2The term ’spontaneous facial expressions’ stands for the natural facial expressions anybody experiments
during everyday-life social interaction, in contrast with facial expressions resulting from posed emotion
played by an actor for example.
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Figure 1 . Left panel: The position of the 68 facial landmarks used by the OpenFace
software. Right panel: A frame capture of a processed video showing the landmarks position
and head pose (the projected blue cube edges).

smile detection engine is finally described in a last step. The performance of the tool is
investigated section 5. A first evaluation is performed using the standard metrics (precision,
recall, f-measure and Cohen’s κ coefficient). A second evaluation compares the annotation
time required for manually correcting the labels and interval boundaries of the automatic
outputs versus the time spent for annotating smile intensities without pretreatment. Section
6 contains practical information on how to download the open source scripts of our SMAD
tool. The last section is devoted to discussion and concluding remarks.

2 The OpenFace software

The OpenFace toolkit (Baltrušaitis et al., 2015; Baltrušaitis et al., 2016; Baltrušaitis
et al., 2018) is an open source project which proposes the full capabilities of facial behavior
analysis tool: head tracking, facial landmark detection, head pose estimation, facial action
unit recognition and eye-gaze estimation. OpenFace implements a Constrained Local Neural
Field algorithm (CLNF, (Baltrušaitis, Robinson, & Morency, 2013a, 2013b)) in order to
achieve facial features tracking. Illustration of the OpenFace processed video is shown
figure 1. The positions of 68 facial landmarks are provided along time for each video frame
as well as global parameters such as the 3-dimensional head pose and the yaw, pitch and
roll angles specifying the direction of the head. Reconstruction of the facial landmark
movements corrected from head rotation and global head translation is obtained by fitting
a head model to the OpenFace output data. A complete description of the OpenFace output
and the download instructions can be found at the Tadas Baltrušaitis github url address:

https : //github.com/TadasBaltrusaitis/OpenFace

2.1 Action Unit detection

The description of atomic facial muscle activities that combines to achieve different
facial expressions, i.e. the facial Action Units (AU), are encoded thanks to the Facial Action
Coding System (FACS) (P. Ekman et al., 2002; P. Ekman & Friesen, 1975; Paul Ekman &

https://github.com/TadasBaltrusaitis/OpenFace
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Table 1
The 7 facial Action Units proposed by the OpenFace output which are related to smile ac-
tivities (according to the SIS).
Name Description Facial muscle involved
AU06 Cheek Raiser Orbicularis oculi, pars orbitalis
AU07 Lid Tightener Orbicularis oculi, pars palpebralis
AU10 Upper Lip Raiser Levator labii superioris
AU12 Lip Corner Puller Zygomaticus major
AU14 Dimpler Buccinator

AU25 Lips part Depressor labii inferioris or relaxation of
Mentalis, or Orbicularis oris

AU26 Jaw Drop Masseter, relaxed Temporalis and internal
Pterygoid

Figure 2 . Examples of configuration with missing measurements. Two left panels: The face
pose is too far from the frontal pose. Two right panels: Partial face occlusion. Pictures
extracted from the “Aix-DVD" Corpus (Gorisch & Prévot, 2014).

Friesen, 1978). The approach used by OpenFace to perform facial Action Unit detection
and intensity estimation is described in (Baltrušaitis et al., 2015). When dealing with a
video record the algorithm performs dynamically a face normalization which improves the
performance of AUs prediction. The follow-up of 17 AUs is proposed by OpenFace and 7 of
them (AU06, AU07, AU10, AU12, AU14, AU25 and AU26, see the description given table
1) are directly involved during smile activities. Two formats are available in the OpenFace
output: The intensity of the AU for each frame on a scale varying continuously from 0 to
5 and a binary variable encoding the presence or the absence of the Action Unit.

2.2 In-the-wild videos

The main challenge for facial behavior analysis softwares is to cope in practice with
realistic settings and with spontaneous facial expressions. Some examples of these configu-
rations are presented figure 2. The two left panels show cases where the head pose is too far
from the frontal pose, implying the track loss of the head for OpenFace, and thus missing
measurements at the landmark positions level. The two right panels of figure 2 show cases
of partial occlusions (occlusion due to the second participant in the left panel, self-occlusion
for the right panel). Here again, the head track is temporarily lost by the software.

A second and maybe more problematic type of errors arises when the software affects
a wrong position to the head without indicating a low confidence in the landmarks detection
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Figure 3 . Examples of OpenFace output with problematic measurements. The confidence
level of landmarks detection associated with these frames is not given low by the OpenFace
software whereas the face tracker clearly fails at detecting the head position.

estimate. This is illustrated figure 3 for the OpenFace software. Some heuristics have to be
developed in order to detect and discard these kind of spurious measurements. An attempt
to deal with this weakness will be presented in section 4.5. After having presented the
relevant aspects of the OpenFace software, we will now present the constitutive elements of
the manual annotation of smiling.

3 Manual annotations of smiles

3.1 The Smiling Intensity Scale (SIS) of Gironzetti et al. (2006)

A recent study (Jensen, 2015) has explored smiles according to the different phys-
iological movements involved in this facial expression. It has been shown that we use at
least two muscles (on each side of the face) to produce a smile: the zygomatic and or-
bicular muscles of the eye. In the literature we can thus distinguish two types of smiles:
“authentic" smiles that would be produced with the intervention of these two muscles and
“social" smiles where only the zygomatic would be involved (Paul Ekman, Davidson, &
Friesen, 1990). The “authentic" smile is also called the “Duchenne smile" named after
the French anatomist G.B. Duchenne who worked on this gesture. This terminology has
been discussed and tested, particularly on the issue of “simulation” of this authentic smile
(Krumhuber, Likowski, & Weyers, 2014). Nevertheless the binary description of smiling in
term of “authentic/simulated” or “presence/absence” appears too narrow in order to study
the development of this complex facial expression. To overcome this principal limitation, a
five levels smiling scale based on the measurements of Action Units detailed by the FACS
(Paul Ekman & Friesen, 1978) was proposed in (Harker & Keltner, 2001; Seder & Oishi,
2012). This intensity scale has been improved by Gironzetti et al. (2016) in their Smil-
ing Intensity Scale (SIS) which combines the intensities of several Action Units. The SIS
measures the intensity of smiles gradually from 0 (neutral facial expression) to 4 (laughing
smile). The main characteristics of each level of smiling intensity is detailed table 2 in term
of associated facial Action Units. Note that the Duchenne’s dichotomy (spontaneous versus
genuine smile) is not addressed by the SIS scale.

The internal consistency of the SIS system was tested by 3 raters that obtained a good
inter-rater reliability (Cohen’s κ = 0.89, see (Gironzetti et al., 2016)). Thus at this stage,
this scale allows to factually categorize smile intensities and not to attribute functions to
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Table 2
Description of the Smiling Intensity Scale (SIS) of Gironzetti et al. (2016) for annotating
smile activity (see appendix A of (Gironzetti, Attardo, & Pickering, 2016)). The illustra-
tions of each level are pictures extracted from the CHEESE! corpus.

Neutral facial expression (S0):
No smile, no flexing of the zygomaticus (no AU12),
may show dimpling (AU14), but no raised side of the
mouth, the mouth may be closed or open (AU25 or
AU26).

AU concerned : 12,14,25,26

Closed mouth smile (S1):
Flexing of the zygomaticus (AU12), may show
dimpling (AU14), may show flexing of the orbicularis
oculi (caused by AU6 or AU7).

AU concerned : 12 (6,7,14)

Open mouth smile (S2):
Showing upper teeth (AU25), flexing of the zygo-
maticus (AU12), may show dimpling (AU14), may
show flexing of the orbicularis oculi (caused by AU6
or AU7).

AU concerned : 25,12 (14,6,7)

Wide open mouth smile (S3):
Showing lower and upper teeth (AU25) or a gap
between upper and lower teeth (AU25, AU26), flexing
of the zygomaticus (AU12), may show dimpling
(AU14) and flexing of the orbicularis oculi (AU6,
AU7).

AU concerned : 12,6,7,25,26 (14)

Laughing smile (S4):
Jaw dropped (AU25 and AU26 or AU27), showing
lower and upper teeth, flexing zygomaticus (AU12),
flexing of the orbicularis oculi (AU6 or AU7), dim-
pling (AU14).

AU concerned : 25,26,27,12,6,7,14
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smile. It is worthwhile to mention that smile is a gradual expression. However for practical
reasons, the manual annotation of this continuum requires to adopt a discrete scale with
several levels.

3.2 Adaptation of the scale

Several theoretical issues appeared when choosing and using the SIS (Gironzetti et al.,
2016). On the one hand, in the SIS, smile 3 is originally declined into 2 subsmiles: (3A)
showing upper and lower teeth and (3B) showing a space between upper and lower teeth.
We did not retain these two classes because criteria for this subcategorization did not seem
distinctive enough. On the other hand, this scale also originally dissociates the neutral face
(0) and the laughing smile (4). Indeed, in the SIS, the category 4 is a "laughing smile":
a smile that immediately precedes a laugh. However defining criteria for distinguishing
intensity 4 from a laugh is not straightforward. Therefore, we extended this category to
all laughter produced by the participants. In our adaptation of the SIS, we categorized all
perceived laughter (vocal or not) as S4. Several arguments motivated this choice. First, in
our data we found periods in which laughter was produced without vocalization. According
to the original SIS, these periods would not have been annotated as a smile 4. For a
laughter including a time laps where the speaker does not produce any sound, it does not
seem relevant to annotate the sequence as laughter - laughing smile - laughter. Several
studies on the status of laughter in interaction have highlighted that laughter can also
have different intensities, as described in the study by El Haddad et al. (2019) (i.e. low,
medium and high laughter). Moreover, a laugh can be realized by other gestures or postures
(e.g. shoulder movement, orbicular wrinkling, ...) than its canonical manifestations (AUs
generally associated with laughter, vocalization).

Laughter and smile do not have the same status, nor the same characteristics and
by extension do not have the same interactive functions. In term of frequency, we know
that a laughter occurs on average every 2 minutes (Vettin & Todt, 2004) whereas a smile (3
intensities combined) occurs every 40 seconds on average. In term of location, an interval
annotated "laughing smile" in the SIS Gironzetti et al. (2016) follows a specific constraint:
it has necessarily to precede a laugh which is not the case for the other scale levels (from
S0 to S3). The modification that we propose does not place laughter as the highest level of
the smiling scale, we distinguish this category as we distinguish the neutral face. We thus
obtain a slightly different scale from the SIS (Gironzetti et al., 2016) :

– Neutral face (S0)

– Smiles (S1, S2, S3)

– Laughter (S4)

3.3 The CHEESE! corpus

The CHEESE! corpus is composed of 11 dyadic face-to-face conversation featuring
22 native french students (Priego-Valverde, Bigi, Attardo, Pickering, & Gironzetti, 2018).
Each interaction is approximately 15 minutes long, then the corpus lasts on average 3 hours.
The aim of the CHEESE! project was to realize a comparative study between French and
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American speakers through their smiling reaction at humorous frame (Priego-Valverde et
al., 2018). Participants were selected with the criteria that they have a friendship beside
their university course. Participants were students from 20 to 30 years old and they did not
know the purpose of the initial study nor they did receive any compensation. Participants
were seated face-to-face in a soundproof room. Two cameras were positioned behind their
back and pointed at the other participant’s face. The scene configuration for two pairs
of participants is illustrated figure 4. Both participants were fitted with a micro headset,
optimally positioned so as not to hide the mouth while preserving the acoustic signal. Each
participant was asked to read a text (a canned joke). After the reading part, participants
had 15 minutes to discuss as freely as they wished. The CHEESE! corpus is available on
the ORTOLANG website (Open Resources and TOols for LANGuage) at the url https :
//www.ortolang.fr/market/corpora/cheese.

The CHEESE! corpus was manually annotated following the SIS methodology in a
previous study (Priego-Valverde et al., 2018). This manual annotation was performed using
Elan Software (Brugman, Russel, & Nijmegen, 2004), the manual annotation tool commonly
used in Gestures Studies. Each video record was manually sequenced in a series of adjusted
time intervals annotated with smile intensity values from 0 to 4. Each time boundary
was positioned in a perceptive way without pre-established location. This methodology
presents however two minor weaknesses. Smile is a complex facial gesture composed of
several physiological features. Defining the smile boundaries is then a difficult task. As a
result, the smile annotation produced by two different judges leads to different sets of smiling
time intervals. Thus, the standard inter-annotator agreement methods (e.g. Cohen’s κ) are
not straightforwardly applicable to this case.

In order to overcome these weaknesses, the time line was divided into a series of
400 milliseconds adjacent time intervals (Amoyal & Priego–Valverde, 2019) (i.e. with no
overlap). This ad-hoc time step has been chosen considering that 200 ms is the minimal
duration to perceive a complex facial expression such as smile (Heerey & Crossley, 2013;
Sanders, 2013). Our time step of 400 ms corresponds to 10 video frames for a video rate
of 25 frames per second. Based on this new annotation protocol, a double blind smile
annotation has been performed on 2 interactions from the CHEESE! corpus (MA-PC and
JS-CL, approximately 17 minutes each). One annotation was performed by an expert of the
SIS scale and the second by a naive judge. The mean inter-annotator agreement measured
by the Cohen’s κ score reaches 0.88 which confirms that the smile levels and the annotation
protocol are reliable. This methodology is therefore appropriate to study smiling during
conversation but remains time-consuming since it requires 1 hour to manually annotate 1
minute of video per participant. For example, a whole conversation (i.e. 2 participants
during 15 minutes) is manually annotated in 30 hours on average. Thus, the reduction of
this manual annotation cost is the main objective of the present study.

3.4 The gold standard

The gold standard is composed of the two conversations mentioned above (i.e. MA-PC
and JS-CL). We retain as the final values of the smile annotations the expert ones. Table 3
summarizes the characteristics for each video. The all combined 4 extracts represent about
1 hour of video capture. From now on, we will proceed to two modifications. First, the 5
levels of the SIS system will be labeled as S0, S1, S2, S3 and S4. Second, the adjacent

https://www.ortolang.fr/market/corpora/cheese
https://www.ortolang.fr/market/corpora/cheese
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Figure 4 . The scene configuration for the 4 corpus extracts of the gold standard.

Table 3
Characteristics for each video: duration of the record in seconds and number of manually
annotated smiles on the S0 to S4 scale (SIS convention). The last row and last column
shows respectively the altogether number of intervals in each class of smiles and in each
corpus.
Participant Duration #S0 #S1 #S2 #S3 #S4 ALL

JSCL_CL 990 67 113 126 74 64 444
JSCL_JS 990 72 139 99 70 69 449
MAPC_MA 1044 35 55 30 24 12 156
MAPC_PC 1044 47 60 61 37 14 219
ALL 4068 221 367 316 205 159 1268

time intervals of 400 ms will be merged if they are labeled with the same intensity (e.g. 3
consecutive 400 ms intervals labeled S2 will form a unique S2 interval of 1200 ms). This
operation will lead to a series of consecutive intervals with different labels and with variable
durations. Using this convention, the gold standard contains 1268 time intervals which are
labeled with smile intensities from S0 to S4. The distribution in duration for each class of
smile is given table 4 and is illustrated figure 5. During half of the time the participants
exhibit a non-smiling facial expression encoded as S0 and the remaining time is distributed
between 20% of closed mouth smiles (i.e. S1), 12% of open mouth smiles (i.e. S2), 7%
of wide open mouth smiles (i.e. S3) and 10% of laughter (i.e. S4 in the adapted scale).
This result shows that participants smile 39% of the time recorded which is consistent with
(Kerbrat-Orecchioni & Cosnier, 1987) who shows that smile is a very frequent facial expres-
sion in conversations. However these proportions (which indicates the mean distribution)
are affected by a large variability depending on the specificity of the interaction (e.g. topic
discussed, interactional frame) and of the personal profile characterizing each subject. Fig-
ure 6 shows for example that JS-CL interaction contains more than twice smiling active
intervals than MA-PC interaction. We also note that the proportion of the smile labels
does not follow a general trend but is rather specific of each subject. The proportion of S1
(closed mouth smile) and S2 (open mouth smile) is for example similar for participants CL
and PC whereas the S1 class is significantly more represented than the S2 class for speakers
JS and MA.

The histogram of the smile duration is illustrated figure 7 for each smiling class



AUTOMATIC TOOL TO ANNOTATE SMILE INTENSITIES 11

Table 4
Characteristics for each video: Total duration in seconds of the manually annotated smiles
intervals (SIS convention) per participant and per smiling class.
Participant S0 S1 S2 S3 S4 ALL

JSCL_CL 523.2 124.4 138.4 61.6 142.4 990
JSCL_JS 322.8 328.8 100.0 70.4 158.0 990
MAPC_MA 667.2 194.4 80.0 69.2 33.2 1044
MAPC_PC 578.4 144.0 165.6 92.8 63.2 1044
ALL 2091.6 801.6 484.0 294.0 396.8 4068

Figure 5 . The relative proportion (in duration or in number of video frames) for the 5
classes of smile on the manually annotated corpus.

Figure 6 . Distribution of the 5 smiling classes for the 4 participants of the manually
annotated gold standard.
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Figure 7 . Histogram of the smile durations in seconds for the 5 classes of smiles over the
gold standard (all participants combined). The vertical red line shows the mean duration
for each class.

(all participants combined). The value of the mean duration is outlined by a vertical red
line. The distributions in duration for the three intermediate classes S1, S2 and S3 (i.e.
respectively closed, open and wide open mouth smiles) present a gamma like distribution
function: a maximum of smile occurrences for short duration which decreases exponentially
as the smile duration increases. The mean duration for the three intermediate classes
S1, S2 and S3 belong to the range 1 to 2 seconds. The S0 class shows a nearly uniform
distribution with an average duration around 10 seconds. As a matter of fact, this difference
is not surprising since S0 encodes time interval of neutral facial expression. Similarly the
observed duration distribution of laughter suggests that S4 is different by nature compared
to the three other smiling classes S1, S2 and S3 (flat distribution and mean duration of 2.5
seconds).
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Figure 8 . An example of the temporal correlation of the AU intensity (here the AU12
intensity measured by the OpenFace software, the red curve) with the manually annotated
smiles on the SIS system (S0 for no smile and S1 to S4 for a gradual scale intensity, blue
curve).

4 Automatic detection of smile activity

4.1 Link between the OpenFace AUs intensities and the SIS manual annota-
tions

The OpenFace software proposes the follow-up of a subset of 17 facial AUs reported
for each frame as an intensity measurement on a continuous scale spanning the range 0
(absence of the AU) to 5 (presence of the AU at a maximum intensity). Among this subset
7 facial action units (see table 1) are directly involved during smile activities. Some AUs
present in the SIS guideline are not measured by OpenFace (e.g. AU27) and conversely
some OpenFace AU measurements are not directly mentioned in the SIS guideline (e.g.
AU10). A full match between the two systems is however not crucial since the AU intensity
measurements are found to be highly dependent on each other.

The temporal correlation between OpenFace AU intensities and the manual annota-
tions obtained by following the SIS guidelines is illustrated figure 8. The action unit AU12
is associated with the contraction of the zygomaticus major muscle (lip corner puller) and
is emblematic of smile activity. Figure 8 demonstrates that the measured AU12 intensi-
ties trace remarkably well the manually annotated data and delimit accurately the areas
of smile activity. There is thus no doubt that the automatic detection of smile activity
from the OpenFace output is feasible. However, two issues need to be addressed. The first
one concerns the way to combine the different AUs together in order to optimize the smile
detection. The second one deals with the best strategy to adopt in order to model and
predict the smile intervals.

The first issue can be solved by investigating the different contributions of the AUs
of interest to each level of the smile scale. Figure 9 details for each AU the time variation
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Figure 9 . An example of the temporal correlation between the intensity of the 7 facial AU
potentially activated during smiles. The SIS manually annotated smiles (5 levels from S0
to S4) is also drawn as the black curve.

of their intensities on a 5 seconds time interval. The SIS manually annotated smiles are
also drawn. It appears that the intensities of each AU show different trends (for example
for the time location of their maxima) and that the link between the AU intensities and the
SIS annotations is more subtle than a single correlation. Indeed, the description of the SIS
system (see table 2) suggests that some AU components will only be present at some level
of the scale and will be absent otherwise. When combining the AUs intensities together,
the model has to consider this information in order to predict the appropriate SIS level
corresponding to the recorded smile activity.

Figure 10 shows the boxplot distributions for each AU and each class of smile. The
median of the intensities distribution is drawn as an inside band mark and the lower and
upper hinges of the boxplot stand for the first and third quartile of the distribution. The
task of distinguishing between two classes will become much easier if the two medians
show significant difference (i.e. the two boxplots do not overlap). Figure 10 shows for
example that the AU12 intensity is a good candidate for discriminating between the S0
class representing no smile areas (the red boxplot) and the remaining classes (S1, S2, S3
and S4) for which the median intensities are much higher. By contrast, the intensity of
the AU26 measurement does not present any significant difference between the 5 classes of
smile. The AU26 variable will therefore not be included in the model.

4.2 Specification of the model

There are obviously various ways to model the process and the solution we propose
herein is one among others allowing to tackle efficiently the problem. We would like to
outline that up to now there is no tool allowing to automatically annotate a video record
following the SIS scale. Our goal is thus herein to propose one method allowing to achieve
this task, the question of whether any other machine learning algorithms (Support Vector
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Figure 10 . The boxplot distributions of the intensity of each AU for each class of smiles
(S0 corresponds to no smile and the smiles scale runs for S1 to S4). The inside band mark
shows the median of the intensities distribution. Lower and upper hinges of the boxplot
correspond respectively to the first and third quartile of the distribution (i.e. the 25th and
75th percentiles).

Machine, Random Forest, Neural Network, ...) would perform better is out of the scope of
the present study. The method we propose is driven by the two following remarks. Firstly
we know that the SIS scale combines differently the Action Unit intensities at each of the 5
levels of the smiling scale. The model will then be built up step by step in order to mimic
such a mechanism. Secondly, our manually annotated corpus, if regarded as training data,
is modest in size. The corpus contains indeed around 1250 labeled time intervals from S0 to
S4 that need to be explained by the measurements of the AU intensities at each video frame.
In practice, the number of parameters entering the model has to be drastically controlled
in order to avoid potential overfitting problems.

Herein, we make the choice to decompose the overall task in 4 iterative steps that are
illustrated table 5. The first step consists in splitting dichotomously the time line between
no smile areas S0 and smiling areas labeled S1 S2 S3 S4 (i.e. the compound class grouping
the S1, S2, S3 and S4 labels together). Intervals which are predicted S1 S2 S3 S4 will be
sliced during step 2 in time intervals labeled whether S1 or whether the compound class
S2 S3 S4. Step 3 creates S2 and S3 S4 intervals from the parent S2 S3 S4 intervals and step
4 terminates the job by separating S3 from S4 time intervals.

At each step of the process the task is similar. An interval of time (herein a sequence
of video frames) has to be splitted in smaller time intervals receiving respectively whether
label 1 or label 2 accounting for the specific AU measurements along the time line. The
dynamic of such a process can be described by a 2 states automaton (see figure 11) which
evolves frame after frame driven by the AU intensity measurements and in function of the
history of the system (i.e. the sequence of states previously occupied by the automaton).
The evolution of the system is considered as a stochastic process and is characterized by
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Table 5
The schematic structure of the 4 steps entering the smiles automatic annotation engine.

S0 S1 S2 S3 S4

Step 1 S0 S1 S2 S3 S4

Step 2 S0 S1 S2 S3 S4

Step 3 S0 S1 S2 S3 S4

Step 4 S0 S1 S2 S3 S4

S0 S1 S2 S3 S4

S0 S1 S2 S3 S4

S1 S2 S3 S4

S2 S3 S4

S3 S4

q1 q2p11

p12

p22

p21
Figure 11 . The 2 states automaton describing the smiles machine for each step.

the transition’s probabilities from state qk at time t− 1 towards state ql at time t, i.e.

pkl = pkl(t) ≡ p(qt−1 = qk → qt = ql) (1)

with the indexes k and l being equal to 1 or 2. The random process is therefore fully specified
by 4 probabilities of transition: the probabilities p11 and p22 to remain respectively in state
q1 and state q2 and the probability of transition p12 to evolve from state q1 toward state q2
(and reciprocally p21 the probability of transition from q2 toward q1). These probabilities
will be approximated hereafter by a right hand side two terms equation3, i.e.

p(qt|ft, qt−1) ≈ αp(qt|qt−1) + (1− α) p(qt|ft) (2)

where the first term accounts for the dynamic of the system whereas the second term
describes the instantaneous relation between the current state and the measurements of the
AU intensities. The α coefficient will allow to tune the balance between the two effects.

The expression p(qt|qt−1) stipulates that the probability of transition toward the cur-
rent state qt depends only upon the previous state qt−1 and not upon higher order term in
the state history such as qt−2 for example. We do not pretend herein that the real under-
lying process verify this assumption (i.e. the Markov property). It is rather a convenient
mathematical hypothesis which allows to make use of standard algorithms for computing
the sequence of maximal probability. In particular, the Viterbi algorithm (Forney, 1973;
Viterbi, 1967) will be used for recovering the best solution which is proposed as the output
of our automatic annotation tool. The expression of the probability mentioned equation 2
differs however from the one describing the general class of Hidden Markov Model (HMM,

3The variables and parameters entering the equation are defined step by step as the text progresses.
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see for example (Rabiner, 1989)). Some methods such like the EM algorithm for parameters
estimation (Dempster, Laird, & Rubin, 1977) will therefore not be applicable to the present
case.

The second term of the right hand side of equation 2, p(qt|ft) ≡ p(q|f), models the
instantaneous relation between the states of the model and the values of the AU intensity
measurements represented herein by the function f ≡ f(IAU ). For a given frame of the video
and its associated AU intensity measurements, the term p(q|f) specifies the probability of
the system to be whether in state q1 or in state q2. For each of the 4 steps indexed by j,
the 4 composite functions fj(t) will be chosen in practice as a linear combination of the AU
intensity Ii(t), i indexing the AU type:

fj(t) =
∑

i

βijIi(t) (3)

For each step of the overall process, the coefficients are normalized (i.e. ∑
i βij = 1) and

allow to account for the relative contribution of the specific AU type to the considered step.
The composite function fj(t) are therefore expressed on a continuous scale varying from 0
to 5 as the individual AU intensities Ii(t) provided by the OpenFace software.

4.3 The training stage

The training stage consists in extracting the parameters of the model from the man-
ually annotated corpus (presented section 3.3). The training is performed for each of the 4
steps of the analysis. Starting from step 1, a q1 or q2 state is allocated to each frame of the
video according to the value of the SIS manual annotation (i.e. q1 for S0 intervals, q2 for
the remaining group of intervals annotated S1, S2, S3 and S4). Step 2 will consider only
time intervals belonging to this group, letting aside the S0 annotations. The new states q1
and q2 for step 2 are allocated (i.e. q1 to S1 annotations and q2 for S2, S3 and S4 group)
and the procedure is iterated until step 4. Table 6 summarized the number of video frames
at each step of the analysis and the number of frames respectively in state q1 or q2.

Table 6
For each step of the model specification, the number of frames of the subsamples and the
respective proportions of annotated data associated with the q1 and q2 states.

q1 q2 #q1 #q2 #frame
Step 1 S0 S1 S2 S3 S4 351 505 322 777 674 282
Step 2 S1 S2 S3 S4 134 715 188 062 322 777
Step 3 S2 S3 S4 80 885 107 177 188 062
Step 4 S3 S4 47 250 59 927 107 177

4.3.1 Definition of the AUs composite function fj. At each step of the anal-
ysis the composite function fj will be defined as a linear combination of the AU intensities
(see equation 3). The coefficients βij are obtained by a multiple linear regression analysis
where the dependent variable is the state of the system (the binary variable qt = q1 or
qt = q2) and the explanatory variables are the OpenFace AUs intensity measurements Ii(t)
varying continuously on a scale from 0 to 5.
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Figure 12 . The boxplot distributions of the intensity of each AU for the 4 steps of the
analysis.

For each of the 4 steps, figure 12 shows the difference between the boxplot distributions
of each AUs intensity for the two states. The median of the intensities distribution is drawn
as an inside band mark and the dispersion of the distribution is proportional to the size
of the boxplot. For a given AU, the discriminant power between two states is higher
when the two boxplots do not overlap. The AU12, which reflects the contraction of the
zygomaticus major muscle (lip corner puller), is for example the most discriminant action
unit for separating during step 1 no-smiling areas (S0 label) from smiling areas labeled from
S1 to S4. During step 2, the AU25, which is activated when showing upper teeth, reveals
discriminant boxplot differences for distinguishing between S1 label (closed mouth smiles,
see table 2) from the group S2, S3 and S4 encoding open mouth smiles, wide open mouth
smiles and laughter.

Table 7 summarizes the final values of the coefficients βij entering the definition of
the fj composite functions for the 4 steps. They have been computed by performing a
multiple linear regression analysis for each step. The AU contributions less than 5% of the
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Table 7
For each step of the automatic annotation procedure, the coefficients defining the 4 composite
linear functions of the AU intensity.
Name Step 1 Step 2 Step 3 Step 4
AU06 - 0.45 0.67 0.62
AU07 0.26 - 0.15 0.21
AU10 - - - -
AU12 0.64 0.22 - 0.17
AU14 - - - -
AU25 0.10 0.33 0.18 -
AU26 - - - -

total have been turned off (i.e. βij = 0) and the remaining coefficients are normalized in
such a way that they sum to 1. During the step 1 for example, the main contribution is
brought by AU12 (0.64) which confirm the results suggested above by the boxplots analysis.
Some action units do not take part in the definition of the f functions because they are not
discriminant for the smile detection task (this is the case for AU26 for example) or because
an action unit strongly correlated with them already contributes to the f definition (this is
the case for AU10 and AU14 which exhibit a high correlation with AU12). By construction
low values of fj are associated with the q1 state whereas high values populate preferentially
the q2 state.

The introduction of the composite function fj for each step of the analysis allows
to reduce the dependency between the binary space of states (q1 and q2 values) and the
multidimensional space of the AU intensities to a one dimensional relationship. This reduc-
tion is illustrated figure 13 where the boxplot distribution of the composite functions fj are
contrasted in function of the state (i.e. q1 versus q2) for each of the 4 steps. The coefficients
defining the composite functions fj have been chosen for maximizing the discriminant power
between the two states.

4.3.2 Estimation of the conditional probability p(qt|ft). Once the variables
fj have been defined, it is straightforward to estimate the conditional probabilities that the
system belongs to state q1 or q2, given the values of the AU intensities. One introduces
for the f functions a discrete scale by defining 12 bins starting from 0 with a bin width of
0.2. The first bin span the interval [0, 0.2[, the second the interval [0.2, 0.4[ and the last bin
contains values greater than 2.2 (i.e. the interval [2.2, 5]4). For each step, the associated
subsample mentioned in table 6 is selected, sliced by bins according to the values of the
fj function and the proportion of frames with state q1 and respectively q2 is computed for
each bin.

The panels of figure 14 show these proportions for the 4 steps. By construction, the
probability of state q2 follows an S-shaped curve, the probability is smaller for low values
of fj and increases as fj grows. For step 1 for example, the probability to be in the smiling
state q2 (i.e. labels S1, S2, S3 or S4) is around 10% for a measured f1 in the bin [0, 0.2[ and

4By definition the maximal value for the f variables is 5 (see section 4.2). However in practice high value
of f are rare and the last bin boundaries have been chosen in order to contain a sufficient number of values.
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Figure 13 . The boxplot distributions of the 4 composite AU functions proper to the 4 steps
of the automatic annotation.

Table 8
The matrix of transition probabilities for step 1 (q1 = S0 and q2 = S1 S2 S3 S4). The first
row of the matrix is the probability distribution of the current state given that the previous
state is q1, i.e. p(q|q1).

q1 q2

q1 0.9958 0.0042
q2 0.0046 0.9954

increases to 99% for f1 in the interval [1.6, 1.8[. This difference becomes less marked as one
advances through the steps (for the bin [1.6, 1.8[, the probability p(q2) equals 97% for step
2, 92% for step 3 and falls to 73% for step 4).

4.3.3 Estimation of the transition probability p(qt|qt−1). The 2 × 2 matrix
representing the transition probability p(qt|qt−1) can be obtained for each subsample as-
sociated to each of the 4 steps by considering the pairs of adjacent states (qt−1, qt) and
by partitioning them in 4 subsets following their values (i.e. (q1, q1), (q1, q2), (q2, q1) and
(q2, q2)). The two probability distributions p(q|q1) and p(q|q2) can afterwards be extracted.
Table 8 gives these probabilities for step 1. The probability that the system remains in state
q1 is equals to 0.9958 and that conversely it transits toward state q2 is 0.0042. Note that
the values of these probabilities of transition depend closely on the frame rate of the video.
The results presented table 8 have been obtained with a video frame rate of 25 frames per
second.

4.3.4 Estimation of the α parameter. For each step of the analysis, the α
parameter balances the contribution of the two terms of the model described in equation
2. For α equals 0, the model will behave as if the frames of the video were independent.
It will therefore decide based solely on the current frame value of the composite function
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Figure 14 . The states probability in function of the 4 composite AU functions proper to
the 4 steps of the automatic annotation.

Table 9
The α parameters which maximize the f-measure for each step of the automatic annotation
procedure

αmax f-measure recall precision
Step 1 0.68 0.809 0.748 0.882
Step 2 0.65 0.790 0.727 0.866
Step 3 0.65 0.800 0.792 0.809
Step 4 0.68 0.727 0.760 0.696

f (i.e. the combination of the AU intensities) if the frame belongs to state q1 or q2. On
the other hand, as α increases, the model will refrain the system to change of state due to
fluctuations of the f value since the probability of transition to change of state is far smaller
than the probability to remain in the same state (see the example of the state transition
matrix given table 8). The first term p(qt|qt−1) of equation 2 acts therefore as an inertial
force which prevents the system to change of state too quickly.

The α parameter for each step has been chosen in such a way that it minimizes the
discrepancy between the model prediction and the manual annotations of the gold standard.
The results of the minimization are summarized table 9. The α values are similar for the 4
steps.

Figure 15 illustrates the impact of the inertia parameter α on the predicted output of
the model. The figure is drawn for step 1, which consists in slicing the time line in intervals
with no-smile (labeled S0, q1 state) versus intervals where smile occurs (S1, S2, S3 or S4
labels, q2 state). The top left panel shows the histogram of the duration in seconds for the
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Figure 15 . The distribution of the duration (in seconds) of the S0 intervals for the manual
annotations (top left panel) and for the automatic annotations provided by the model for
3 values of the α parameter during step 1.

S0 intervals manually annotated on the training corpus. The three other panels show the
same histogram for the model predictions for 3 values of the α parameter.

The bottom left panel is for α = 0.65, the value which maximizes the f-measure
between the annotations and the predictions. The distribution of S0 intervals looks similar
to the one manually annotated in term of numbers and duration. The top right panel shows
the predicted distribution for α = 0. The predicted intervals are much more numerous and
too short in duration when compared with the annotated ones. On one hand, it appears
that the model with an inertial parameter turned off predicts far too much S0 intervals of
only one frame long (40 milliseconds in duration). In that case, the model is too sensitive to
the short time fluctuations of the composite function f due to other phenomenon than smile
action (for example the contraction of zygomaticus muscles during speech production). On
the other hand, a large α parameter (e.g. α = 0.9, bottom right panel) does not predict
enough S0 intervals of mild duration (i.e. around 1 second) and rather proposes too large
intervals without accounting for the variation of the composite function f .

4.3.5 The states probability of transition. The model is now complete. For
each of the 4 steps of the analysis, the 4 ingredients have been obtained:

• The optimal coefficients entering the definition of the composite functions fj (see
subsection 4.3.1)

• The conditional probabilities of the q1 and q2 states by bins of fj (see subsection 4.3.2)
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• The probabilities to transit from the previous state to the current state (see subsection
4.3.3)

• The inertia parameter α (see subsection 4.3.4)

This allows to compute the quantity p(qt|ft, qt−1) of equation 2 which is the probability of
transition from the previous state qt−1 to the current state qt accounting for the current
value of the composite AU intensities function ft. Figure 15 presents these probabilities of
transition for each of the 4 steps of the analysis. For each step, the top panel shows the
probability of transition from state q1 towards states q1 or q2 depending on the values of
the composite function f and the bottom panel the probability of transition from state q2
towards states q1 or q2. These 4×2×12 bin probabilities fully specify the stochastic process
underlying the model.

4.4 The best solution

The automatic annotation task proceeds step by step. During step 1, the f1 function
combination of the AU intensities is computed at each frame of the video. Accounting
for these f1 values, the probabilistic model allows to compute the probability associated
with any sequence of q1 and q2 states, each video frame receiving whether the q1 or the q2
state values. Among all the possible sequences, we will select the best solution, i.e. the
sequence of states which has the maximal probability. This is done by applying the Viterbi
algorithm ((Forney, 1973; Viterbi, 1967)), a dynamical programming algorithm which allows
to retrieve the maximal probability solution without exploring the entire space of possible
sequences.

The sequence corresponding to the best solution is afterwards splitted into q1 intervals
which receive the S0 label and q2 intervals corresponding to the compound group of S1, S2,
S3 and S4 labels. The S0 intervals will thereafter constitute the S0 outputs of the automatic
annotation tool. Step 2 will apply on each of the remaining compound S1 S2 S3 S4 intervals
taken individually. For each of them, the f2 values are computed and the maximal sequence
of states q1 ≡ S1 and q2 ≡ S2S3S4 is selected. The process is iterated and ends up with
step 4 which proposes the best solution for slicing the compound S3 S4 intervals in time
areas annotated S3 or S4. The 4 steps of the iterative process and the resulting final output
are illustrated figure 17.

4.5 The reliability of the automatic annotation

We have seen previously (section 2.2) that the OpenFace output is sometimes missing
or erroneous due to face occlusions, head positions too far from the frontal pose, rapid move-
ments and so on. We combined the information given by OpenFace about the confidence
level of detection and our own rejection criteria to propose a measure of reliability. We
introduce a filter function F (t) associating to each frame a boolean value which becomes
true if at least one of the following criteria is met:

• The confidence level given by the OpenFace output is less than 0.8

• The head angle in pitch, yaw or roll angle is too large (greater than 45 degrees)
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Figure 16 . For each of the 4 steps (top left and right and bottom left and right panels),
the state probabilities of transition in function of the bin values of the composite functions
f. Each panel is subdivided in a top panel which presents the probability of transition
from state q1 (e.g. S0 for step 1) towards q1 or q2 and a bottom panel which presents the
probability of transition from state q2 (e.g. the compound group S1 S2 S3 S4 for step 1)
towards q1 or q2.
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Figure 17 . Illustration of the step by step processing applied to the data. During the first
step, the time line is sliced in intervals belonging whether to group 1 (S0 annotations) or
group 2 formed by the remaining annotations (S1, S2, S3 and S4 all-in-one). During the
second step, the intervals of this group are sliced in intervals S1 and group S2, S3 and S4.
The process is repeated until step 4 which consists in slicing the remaining intervals in area
annotated S3 or S4. At the end of the process, the time line is sliced in contiguous intervals
labeled with intensity from 0 to 4 (bottom panel).
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• The effective size of the head (i.e. the scaling parameter) is too high or to small
compared to the mean value (greater than 3σ)

The filter function signals the frames which are likely to be problematic to some extent. By
smoothing the F (t) function with a smoothing window of size 0.4 seconds and by applying a
given threshold, we obtain finally a set of time intervals with a questionable reliability. These
areas receive a special mark (i.e. X intervals) indicating that the automatic annotation is
not available.

5 Evaluation of the tool

We propose two ways for evaluating the performance of the automatic smile annota-
tion tool SMAD5. The first will consist in comparing the outputs of the automatic annotation
engine with the manually annotated gold standard. The classical measures of precision, re-
call, f-measure and Cohen’s κ coefficient will give an idea of the performance of the tool.
A second and more concrete evaluation will concern the time spent for annotating a video,
starting from the labeled time intervals furnished by the output of the tool. In that case
the task will consist in manually correcting the labels and the frontiers of the time intervals
given by the automatic tool. The gain in annotation time will then be compared with the
time required for manually annotating a video without any pretreatment.

Hereafter, we will not compare the performance of our system with other smiling
annotation tools. The reasons are twofold. Firstly, as the evaluation procedure relies on
a specific smiling scale, the performance measures will therefore strongly depend on this
smiling scale. Indeed, the different numbers measuring the observed agreement will dramat-
ically differ depending on whether a binary scale such as the presence or absence of smile
is considered (An et al., 2015; Chen et al., 2017; Guo et al., 2018; Shan, 2012; Zhang et al.,
2015) or whether a multi-level smiling scale such as the SIS scale is adopted. Among the
studies proposing a multi-level smiling intensities scale (Bartlett et al., 2003; Bartlett et al.,
2006; Girard et al., 2015; Jiang et al., 2019; Shimada et al., 2010; Vinola & Vimala Devi,
2019), the number of levels characterizing each scale is also a crucial parameter severely
impacting the result of the evaluation. Secondly, another source of problem hindering a di-
rect comparison lies in the heterogeneous experimental conditions proper to each study. For
example our tool aims at proposing a dynamical SIS scale automatic annotation for subjects
involved in a face-to-face conversation. A large part of the video record is composed in that
case of scenes inherently containing facial movements caused by speech production. These
“noisy" facial movements will make to some extent the smile detection more tricky. A com-
parison with results obtained on smile annotated corpus not affected by speech production
such as for example the GENKI-4K database6 would therefore prove to be irrelevant.

5SMAD stands for Smile Motion Automatic Detection.
6The MPLab GENKI-4K Database (http://mplab.ucsd.edu/) is a 4000 face images database with a

wide range of subjects of different ages and races and with variable pose, illumination and imaging conditions.
Among the GENKI-4K database 2162 images are labeled as smile and 1838 as non-smile. The GENKI-4K
database is often used as a benchmark to evaluate automatic smile detection tools (e.g. (An et al., 2015;
Chen et al., 2017; Guo et al., 2018; Shan, 2012; Zhang et al., 2015)).

http://mplab.ucsd.edu/
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5.1 Precision, recall, f-measure and κ coefficient

We first evaluated the performance of our automatic smile annotation tool by com-
puting the classical measures of precision, recall, f-measure and Cohen’s κ coefficient. For
the sake of clarity the detailed examination of the evaluation has been moved to appendix
A and we report herein the main results of the evaluation step. The performances are sat-
isfying for class S0 (neutral facial expression) and class S4 (laughter): 90.6% of the frames
manually annotated S0 have been successfully predicted and 79.9% of the frames which
were predicted S0 are also manually annotated S0. These ratios are respectively equal to
77% and 57.1% for the laughter class S4. The confusion matrix reveals nevertheless that
intermediate classes S1, S2 and S3 are more difficult to disentangle, even if those predictions
remain useful.

5.2 The gain in annotation time

A second evaluation of the tool performance has been conducted in term of time
saving and annotation quality. In order to perform the evaluation of time saving, the first
stage was to manually correct the labels (from S0 to S4) and the interval boundaries of
the automatic outputs. The second stage is to compare the time required to correct these
outputs with the time spent for the manual annotation without pretreatment.

In practice, the evaluation was performed on 4 participants of the CHEESE! corpus
(AG-ER and AC-MZ, approximately 15 minutes each). Those 2 interactions are different
from the 2 gold standard interactions. The automatic annotations were manually corrected
by an expert judge of the SIS. Correcting the 4 automatic outputs required only 6 hours.
It means that the judge spent 1 hour on average to correct 10 minutes of video record. By
contrast, an expert annotator spends on average 1 hour to manually annotate 1 minute of
video featuring one participant (60 hours for the overall 1 hour videos of the gold standard,
see section 3.3). The adopted procedure reduces therefore the annotation time by a factor
10. This powerful result allows to consider the annotation task on a larger scale since it
provide the opportunity to investigate broader corpus.

The evaluation task deserves a closer investigation. The correction of the automatic
outputs consists in modifying the smiling intensity labels and adjusting the time boundaries
of the predicted intervals. Concerning the labels, the results show that 76% of the video
frames automatically annotated are properly predicted. This global accuracy could appear
surprising at first glance since this value is greater than the micro-averaged F-Measure of
68% (see A). One possible explanation could be that the exposure to the predicted labels
provided by the automatic tool influences the expert’s judgement.

A detailed inspection reveals that 89% of the video frames automatically labeled S0
have been let unchanged (so 11% have received a correction) and that this correction rate
grows respectively to 32% for S1, 43% for S2, 45% for S3 and finally decreases to 33% for
laughter class S4. These results are consistent with those obtained in section A: the frequent
classes S0 and S4 require less correction than the intermediate classes.

Concerning the annotations of the 4 videos evaluated, 842 intervals have been auto-
matically detected. Among those, 12% corresponds to questionable X intervals (see section
4.5). Analyzing the manual correction reveals that the automatic tool produces more inter-
vals than needed. Indeed, at the end of the correction step 25% of the interval boundaries



AUTOMATIC TOOL TO ANNOTATE SMILE INTENSITIES 28

have been removed. Among the boundaries which were left, 64% correspond to the initial
location given by the automatic tool which means that 36% have been modified whit a time
shift.

6 The HMAD and SMAD softwares

The scripts and source codes of our automatic smile annotation machine can be
downloaded at the following github url address:

https : //github.com/srauzy/HMAD

The main objective of the HMAD project (the acronym stands for Head Movement Automatic
Detection) is to provide scripts allowing to detect automatically head and facial movements
from a video record. The project makes use of existing solution such the state-of-the-art
OpenFace toolkit (Baltrušaitis et al., 2015; Baltrušaitis et al., 2016; Baltrušaitis et al., 2018)
in order to analyze the video signal, track the face, provide head pose estimation, perform
facial landmark detection, facial action unit recognition, and eye-gaze estimation. The
HMAD scripts are therefore an additional layer which propose automatic tools for specific
head or facial movements detection task. The EBMAD subproject (EyeBrows Movement
Automatic Detection) is specialized in the detection of eyebrows raising and frowning actions
(see (Rauzy & Goujon, 2018) for details) whereas the SMAD subproject (Smile Movement
Automatic Detection) is devoted to smiles automatic annotation.

The HMAD and SMAD programs are scripts written in R (R Core Team, 2016) but
no specific knowledge about the R language is required for running the HMAD and SMAD
commands. The wiki pages of the project detail how to proceed to third-party installations
(i.e. the OpenFace toolkit (Baltrušaitis et al., 2018) and the R or RStudio softwares (R
Core Team, 2016; RStudio Team, 2015)).

The HMAD commands enable to create a project associated to each video to be
treated, to launch OpenFace on that video and to transform the processed OpenFace output
in a suitable format compatible with HMAD inputs. A postprocessing treatment is also
performed at this stage which allows for example to identify sequences of frames where the
measurements are likely to be problematic as mentioned section 4.5. A complete description
of the data files created and their associated formats can be found in the wiki pages of the
HMAD project.

The SMAD commands launch the automatic smile detection engine on the HMAD
outputs and generate the automatic annotation of smile intervals following the SIS system.
The SMAD output consists therefore in a sequence of adjacent time intervals which are
labeled with a smile intensity varying from S0 to S4 or which have received the special
mark X indicating that the scene corresponding to this time interval has to be checked
manually.

The automatic outputs may be edited through a multimodal annotation tool, for
example the ELAN software (Sloetjes & Wittenburg, 2008). In that aim, SMAD includes
a command which creates an output compatible with the ELAN Annotation Format (i.e.
the eaf file extension). An example of SMAD output edited through the ELAN interface is
illustrated figure 18.

HMAD is an open source and collaborative project, so please feel free to contribute in
bringing fresh thinking, pieces of code, new challenges, etc.

https://github.com/srauzy/HMAD
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Figure 18 . Example of SMAD output formated for the ELAN software.

7 Conclusions and perspectives

We presented herein the building up of an automatic tool for sequencing a video
record in a series of adjusted time intervals labeled following the 5 levels Smiling Intensity
Scale of Gironzetti et al. (2016). The dynamic of the smile activity was modeled by an
ad-hoc stochastic process driven by the measured intensities of the facial Action Units asso-
ciated with smile actions. The statistical model was trained on a manually annotated gold
standard corpus consisting of 2 pairs subjects in face-to-face conversations of approximately
15 minutes.

The performance of our automatic smile annotation tool was first evaluated by com-
puting the classical measures of precision, recall, f-measure and Cohen’s κ coefficient on
the gold standard itself. The results are satisfying for class S0 (neutral facial expression)
and class S4 (laughter): 90.6% of the frames manually annotated S0 have been successfully
predicted and 79.9% of the frames which were predicted S0 are also manually annotated S0.
These ratios are respectively equal to 77% and 57.1% for the laughter class S4. The confu-
sion matrix reveals nevertheless that intermediate classes S1, S2 and S3 are more difficult
to disentangle, even if those predictions remain useful.
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A second and maybe more concrete evaluation reveals that the tool can be used
with benefits for annotation purpose. An experiment conducted on video records from
the CHEESE! corpus (different from the gold standard) reveals that manually correcting
the labels and interval boundaries of the automatic outputs reduces by a factor 10 the
annotation time. Indeed, 6 hours were necessary to correct 1 hour of video whereas 60
hours were necessary to manually annotate 1 hour of video without pretreatment. This
major result answers to our main concern which was to solve the time consuming issue
related to the manual annotation task. SMAD is thus an important contribution and is
expected to bring a clear-cut answer in the landscape of multimodal annotation and facial
recognition.

Our annotation engine is pipelined with the output of the state-of-the-art toolbox
OpenFace which allows to track the face and to measure the intensities of the facial
Action Units of interest all along the video. The source code of the SMAD software
and the documentation are available to download at the HMAD open source project url
https://github.com/srauzy/HMAD.

Thanks to SMAD, two face-to-face conversational audio-video corpora7 composed of
26 dyadic interactions (8h of conversations which represents 16h of individual video track)
will be automatically annotated and manually corrected. We estimate the time cost for this
manual correction at around 96 hours (16 × 6 hours), whereas this operation would have
taken 960 hours (16 × 60 hours), with our manual procedure without pretreatment. This
massive amount of corrected data will contain a larger diversity of face configurations and
smiling phenomena. This new reliable sample will feed the training corpus which will lead
to improve the robustness of our smile model.

As said earlier, the presence of speech creates noise in the automatic detection of
smiling. One perspective of this study is to take into account the speech activity in smile
annotation. This speech activity can be detected independently by automatically analyzing
the audio track. It will give the opportunity to split the gold standard in intervals of speech
and silence (Inter Pausal Unit : speech units separated by at least 200ms silence). It will
be then possible to create two smile detectors, one specialized in silence areas and the other
in speech intervals, which can be merged afterwards in a single system. Such a system will
improve the performance of the automatic smile detection tool.

It is also worth to mention that the methodology underlying our automatic smile
detector can be transposed to other types of gesture. Thanks to the recent advances in the
field of Machine Learning and Pattern Analysis, new tools have been developed offering
the opportunity to automatically capture arms, hands and body motions (see for example
the software OpenPose (Cao, Hidalgo Martinez, Simon, Wei, & Sheikh, 2019)). As SMAD
generates smile annotations from OpenFace outputs, one can imagine to apply the same
approach to automatically annotate arms, hands and body gestures from OpenPose outputs.
Several works exploring this track have been already proposed (e.g. Seger, Wanderley,
and Koerich, 2014, Schneider, Memmesheimer, Kramer, and Paulus, 2019, Kowdiki and
Khaparde, 2021, ...).

At last, the SMAD tool and its potential improvements will enable to automatically
annotate smile intensities of several multimodal corpus. This large amount of data will lead

7This data set composed by CHEESE! and PACO, will be used to analyse the role of smiling in the
organization of the conversation

https://github.com/srauzy/HMAD
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to a deeper understanding of the role of the smile in conversational interactions.
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Appendix

Evaluation by means of confusion, recall and precision matrices

One way to evaluate the performance of the SMAD tool is to make use of the classical
measures of precision, recall and f-measure introduced in the field of information retrieval
(Kent, Berry, Luehrs Jr., & Perry, 1955). It requires during a first step to compute the con-
fusion matrix between the observed values (herein the manually annotated smile intensities)
and the values predicted by the automatic tool. Table A1 presents the confusion matrix for
our gold standard corpus. The rows of the matrix stand for the predicted labels (the 5 levels
in the SIS system plus the X mark signaling problematic frames) and the columns stand for
the observed, actual, manually annotated values. For each video frame, the pair (predicted
value, observed value) is formed and one increments the count of the corresponding cell in
the confusion matrix. The global count over all the cells is equals to the total number of
frames of the corpus.

Table A1
The confusion matrix for the gold standard corpus. Rows stand for predicted (i.e. herein
automatic output) values and columns for observed/actual (i.e. herein manually annotated)
values. The counts are in number of video frames.

S0 S1 S2 S3 S4
S0 46446 7645 3187 638 193
S1 4368 8678 2464 681 318
S2 224 1847 2911 1024 523
S3 112 732 1476 1757 1136
S4 108 545 1846 2924 7270
X 1032 545 217 319 480

The intervals of time marked X have to be checked manually. For our gold standard,
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Table A2
The confusion matrix of table A1 with the X areas removed and figuring the marginal counts
ni. and n.j.

S0 S1 S2 S3 S4 Total
S0 46446 7645 3187 638 193 58109
S1 4368 8678 2464 681 318 16509
S2 224 1847 2911 1024 523 6539
S3 112 732 1476 1757 1136 5213
S4 108 545 1846 2924 7270 12741
Total 51258 19495 11884 7034 9440 99111

Table A3
The recall matrix for our gold standard. Within a given observed class (each column), the
proportions of predicted classes sums to 1 by definition.

S0 S1 S2 S3 S4
S0 0.906 0.392 0.268 0.090 0.021
S1 0.085 0.445 0.207 0.097 0.034
S2 0.005 0.095 0.245 0.147 0.055
S3 0.002 0.038 0.124 0.250 0.120
S4 0.002 0.030 0.156 0.416 0.770
Total 1.000 1.000 1.000 1.000 1.000

they represent a small amount of data (i.e. about 2.55% of the 4 videos duration). The X
areas are discarded from the confusion matrix and we are left with a 5× 5 predicted versus
observed square matrix. Let nij be the count of frames corresponding to the cell at row
index i and column index j, we define hereafter the marginal count ni. = ∑

j nij as the total
count of frames with a predicted label corresponding to row index i and the marginal count
n.j = ∑

i nij as the total count of frames with an observed label corresponding to column
index j. These marginal counts are illustrated table A2 for our gold standard data.

The coefficients of the recall matrix R are defined as Rij = nij/n.j and trace within
each observed class indexed by j the distribution of the predicted classes indexed by i. The
recall matrix for the gold standard is given table A3. The results are satisfying. 90.6%
of the frames manually annotated S0 have been successfully predicted as S0 (see table A3,
column 1 first row). The remaining have been erroneously predicted as S1 at 8.5%, as S2
at 0.5% and 0.2% fall in smile classes S3 and S4. The class of laughter S4 has also a good
recall score (i.e. 77%, see column 4) whereas the intermediate classes S1, S2 and S3 are
more difficult to predict (i.e. a recall of 44.5%, 24.5% and 25% respectively).

The precision matrix furnishes an orthogonal view of this description. The precision
matrix P is defined as Pij = nij/ni. and gives the distribution of the observed classes indexed
by j within each predicted class indexed by i. The results applied on the gold standard
are presented table A4. They read as follows: among the frames which were predicted S0,
79.9% of them belong really to the non-smiling class S0, 13.2% are indeed of the S1 class,
5.5% of the S2 class, 1.1% of the S3 class and 0.3% belong to the remaining class S4. The



AUTOMATIC TOOL TO ANNOTATE SMILE INTENSITIES 38

Table A4
The precision matrix for our gold standard. Within a given predicted class (each row), the
proportions of observed classes sums to 1 by definition.

S0 S1 S2 S3 S4 Total
S0 0.799 0.132 0.055 0.011 0.003 1.000
S1 0.265 0.526 0.149 0.041 0.019 1.000
S2 0.034 0.283 0.445 0.158 0.080 1.000
S3 0.022 0.140 0.283 0.337 0.218 1.000
S4 0.009 0.046 0.145 0.229 0.571 1.000

table A4 diagonal indicates that 53% of predicted S1 are real S1, 44% of predicted S2 are
real S2, 34% of predicted S3 are real S3 and 57% of predicted S4 are real S4.

Precision, recall, f-measure and κ coefficient

The knowledge of the confusion matrix or alternatively of the couple formed by the
recall and precision matrices fully specify the results obtained during the evaluation pro-
cess. However it is sometimes convenient to summarize the whole exercise by a single
measurement. To this extent some averaged quantities are proposed in the literature.

For example the precision and recall for each classes (i.e. the diagonal coefficients Pkk

and Rkk populating the precision and recall matrices) can be averaged in order to define
the macro average precision Pmacro and recall Rmacro:

Pmacro = 1
K

∑
k

Pkk ; Rmacro = 1
K

∑
k

Rkk (4)

where K is the total number of classes. The score of f-measure is classically defined as the
harmonic mean of the precision and recall measurements, i.e.

Fmacro = 2 PmacroRmacro

Pmacro +Rmacro
(5)

The macro coefficients attribute an equal weight to each class whatever their effective fre-
quencies. If one wants to take into account this frequency effect (i.e. frequent classes will
contribute more to the average than rare classes), the micro-averaged quantity can be used:

Fmicro = Pmicro = Rmicro = 1
n

∑
k

nkk (6)

where nkk are the diagonal counts of the confusion matrix and n = ∑
i ni. = ∑

j n.j is the
total size of the evaluation sample. This quantity is also known as the measure of accuracy
or observed agreement and is simply the number of correctly predicted observations over
the total number of observations.

These quantities illustrate averaged proportions but do not inform about the per-
formance (i.e. the predictive power) of the classifier tool. Cohen proposed the κ statistic
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Table A5
The various agreement coefficients computed from the predictions and the manual anno-
tations for individual participant and for the whole gold standard corpus (last line of the
table).
Participant Cohen’s κ Fmicro Pmacro Rmacro Fmacro

MAPC_MA 0.450 0.722 0.494 0.519 0.506
MAPC_PC 0.343 0.643 0.492 0.416 0.451
JSCL_JS 0.513 0.640 0.546 0.544 0.545
JSCL_CL 0.525 0.703 0.548 0.513 0.530
ALL 0.495 0.676 0.536 0.523 0.529

(Artstein & Poesio, 2008; Carletta, 1996; Cohen, 1960; Fleiss, 1971) which compares the
agreement value mentioned above with the one which is expected by chance:

κ = no − ne

n− ne
; no =

∑
k

nkk ; ne =
∑

k

n.k × nk.

n
(7)

where no is the count of correctly predicted observations and ne the count of expected
agreements computed assuming that the distributions of the predicted and observed values
are independent. The Cohen’s κ statistic has a zero mean value if the prediction is made
at random and approaches unity if the agreement is maximal. Discussions concerning the
limitations of the method and the biases it suffers can be found in (Krippendorff, 2008;
Powers, 2011, 2012; Sim & Wright, 2005) for example. Note that herein the ordinal aspect
of the smile scale (i.e. S0 class is closer to S1 class than to S4 class) is not taken into
account. The five levels of the smiling scale are therefore considered as nominal data.

The results of the evaluation on the gold standard are presented table A5 participant
by participant and for the whole corpus as well. The overall accuracy Fmicro indicates that
67.6% of the labels are correctly predicted with some variability between participants (a
minimum of 64% for participant JS and a maximum of 72.2% for participant MA). The
macro averaged scores Pmacro, Rmacro and Fmacro which attribute an equal weight among
classes are lower (i.e. around 53%). It reveals that the predictive power of the tool is not
homogeneous from class to class. That feature was mentioned in the previous subsection,
non-smiling S0 and laughter S4 classes which contribute more heavily to Fmicro because
they are frequent show higher scores than the S1, S2 and S3 intermediate classes.

The global Cohen’s κ coefficient is equal to 0.495 which corresponds to a moderate
agreement according to the Landis&Koch agreement scale (Landis & Koch, 1977). However
as pointed out in Artstein and Poesio (2008), the interpretation of agreement coefficient
values is “still little more than a black art” and depends on various factors such the number
of classes considered, their internal relationship and at the end the specific purposes to
achieve. For this reason a more concrete evaluation criteria based on the gain in annotation
time is herein preferred and is proposed next subsection.

The scores mentioned above have been computed by comparing the predicted auto-
matic output with the manual annotations of the gold standard. This procedure is not
recommended in general because of the risk of overfitting. Overfitting happens when spe-
cific properties of the training data (but not representative of the whole dataset) are learnt
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by the model. In that case, the evaluation process applied on the training data themselves
leads to overestimate the performance of the system. In order to cope with this potential
problem, we performed a cross validation procedure. The gold standard was splitted in
two subsamples: a training dataset containing 90% of the gold standard used to compute
the fitting parameters of the model and a test dataset containing the remaining 10% of the
corpus which was let aside for the evaluation task. We generated 100 random partitions
of the gold standard. For each partition, the test dataset consists in 4 time intervals (one
per gold standard participant) of 10% duration and with a random starting time boundary.
The 8 remaining intervals (2 intervals per participant, preceding and following the test seg-
ment) form the training dataset. For each partition, the model parameters are estimated
on the training data and a confusion matrix is computed for the test sample. The confusion
matrices of the 100 random partitions are merged at the end.

Table A6
The agreement coefficients obtained by applying the cross validation procedure (the training
dataset represents 90% of the gold standard and the test dataset the remaining 10%). Results
previously presented on the whole gold standard are echoed on the second line.

TRAINING TEST Cohen’s κ Fmicro Pmacro Rmacro Fmacro

90% GOLD 10% GOLD 0.483 0.679 0.517 0.500 0.508
100% GOLD 100% GOLD 0.495 0.676 0.536 0.523 0.529

The results are summarized by the agreement coefficients presented table A6. There
is no significant difference when comparing these numbers with the results presented above
for the whole gold standard. It means that all along the training stage described section 4.3,
we have controlled the risk of overfitting in particular by limiting the number of parameters
entering the statistical model.

One can not exclude however the case of some special smiling configurations absent
from the gold standard and therefore not captured by the engine. The cross validation
procedure will be unfortunately of no help at detecting that case. For example our gold
standard is rich of only 4 participants which may fail to represent the diversity of smiling
behaviours. This last point will be discussed later on in our conclusive section 7.
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