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, our limit theorem relies on the characteristics of agents in the atomless part and their endogenously price-taking behavior.

1 Introduction [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] proved the existence of a Cournot-Nash equilibrium for the Shapley window model in mixed exchange economies à la Shitovitz, where large traders are represented as atoms and small traders are represented by an atomless part (see [START_REF] Shitovitz | Oligopoly in markets with a continuum of traders[END_REF]). The Shapley window model belongs to a very fruitful line of research on noncooperative market games, initiated by Lloyd S. Shapley and Martin Shubik (for a survey of this literature, see Giraud ( 2003)). The model was informally introduced by Lloyd S. Shapley and subsequently formalized by [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF] in the case of exchange economies with a finite number of traders. For this case, the authors proved the existence of a Cournot-Nash equilibrium. The proof provided by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] for the mixed market case is based on the same assumptions used by [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF] for the finite case. In particular, it is required that there are at least two atoms with strictly positive endowments, continuously differentiable utility functions, and indifference curves contained in the strict interior of the commodity space. These restrictions are stated by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] in their Assumption 4. [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF] analyzed the asymptotic behavior of the Cournot-Nash equilibria of the mixed version of the Shapley window model. They introduced a concept of replication which they called à la Cournot, since it extends to a general equilibrium context the original Cournotian idea of replication: it consists in partially replicating the economy by increasing only the number of atoms, this way making them asymptotically negligible, without affecting the atomless part. Under the same assumptions of the existence theorem proved by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF], these authors proved a theorem establishing that any sequence of Cournot-Nash allocations of the strategic market games associated with the partial replications of the exchange economy has a limit point for each trader and that the assignment determined by these limit points is a Walrasian allocation of the original economy. [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF] proved a new existence theorem for the mixed version of the Shapley window model, differing from the one proposed by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] in that it is essentially based on restrictions on endowments and preferences of the atomless part of the economy rather than of atoms. In particular, [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF] removed Assumption 4 in [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] and used the fact -proved by [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF] -that traders belonging to the atomless part have an endogenous "Walrasian" behavior. In the work of 2018, this property was exploited to show that, under the assumptions that each commodity is held, in the aggregate, by the atomless part and that traders' utility functions are continuous, strongly monotone, quasi-concave, and measurable, any sequence of prices corresponding to a sequence of Cournot-Nash equilibria has a subsequence which converges to a strictly positive price vector. The authors used this price convergence result to prove their existence theorem, under the assumption that the set of commodities is strongly connected through traders' characteristics, which imposes a joint restriction on the endowments and preferences of the atomless part and is a variant of a hypothesis first proposed by [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF]. This assumption, combined with the continuity properties of the Walrasian correspondence generated by the atomless part's behavior, in turn guarantees that the aggregate matrix of the bids obtained as the limit of a sequence of perturbed Cournot-Nash equilibria is irreducible.

In this paper, we consider the mixed version of the Shapley window model in the formulation proposed by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF], with the aim of establishing the asymptotic properties of its equilibria. We use the same concept of replication à la Cournot introduced by Busetto et al. (2017) to show a new limit theorem which does not require the restrictions on atoms stated in their Assumption 4. The proof of the new limit result rests heavily on the price convergence theorem shown by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF]. As a consequence, that result turns out to be merely explained, like those authors' existence theorem, in terms of the characteristics of the atomless part of the economy and the fact that the traders belonging to it have an exogenous "Walrasian" behavior.

Following [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF] and [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], we provide two examples which show that the condition that an economy contains a countably infinite number of atoms is neither necessary nor sufficient to guarantee that any Cournot-Nash allocation is a Walras allocation.

The paper is organized as follows. In Section 2, we introduce the mathematical model. In Section 3, we restate the price convergence theorem. In Section 4, we introduce the replication à la Cournot. In Section 5, we prove the existence of an atom-type-symmetric Cournot-Nash equilibrium. In Section 6, we state and prove the limit theorem. In Section 7, we discuss the model. In Section 8, we draw some conclusions from our analysis.

Mathematical model

We consider an exchange economy, E, with large traders, represented as atoms, and small traders, represented by an atomless part. The space of traders is denoted by the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real valued, non-negative, countably additive measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T ) < +∞. This implies that the measure space (T, T , µ) contains at most countably many atoms. Let T 1 denote the set of atoms and T 0 = T \ T 1 the atomless part of T . A null set of traders is a set of measure 0. Null sets of traders are systematically ignored throughout the paper. Thus, a statement asserted for "each" trader in a certain set is to be understood to hold for all such traders except possibly for a null set of traders. The word "integrable" is to be understood in the sense of Lebesgue.

In the exchange economy, there are l different commodities. A commodity bundle is a point in R l

+ . An assignment (of commodity bundles to traders) is an integrable function x:

T → R l + .
There is a fixed initial assignment w, satisfying the following assumption.

Assumption 1. w(t) > 0, for each t ∈ T , T 0 w(t) dµ ≫ 0.
An allocation is an assignment x for which T x(t) dµ = T w(t) dµ. The preferences of each trader t ∈ T are described by a utility function u t : R l + → R, satisfying the following assumptions. Assumption 2. u t : R l + → R is continuous, strongly monotone, and quasiconcave, for each t ∈ T .

Let B denote the Borel σ-algebra of R l + . Moreover, let T B denote the σ-algebra generated by all the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × R l + → R, given by u(t, x) = u t (x), for each t ∈ T and for each x ∈ R l + , is T B-measurable.
In order to state our last assumption, we need some preliminary definitions. We denote by L the set of commodities {1, . . . , l}. We say that two commodities i, j ∈ L stand in relation C if there is a measurable set T i , with µ(T i ) > 0, such that

T i = {t ∈ T 0 : w i (t) > 0, w r (t) = 0, for each r ∈ L \ {i}}, u t (•) is differentiable, additively separable in commodity j, i.e., u t (x) = v j t (x j ) + v t (x 1 , .
. . , x j-1 , x j+1 , . . . , x l ), for each x ∈ R l + , and

dv j t (0) dx j =
+∞, for each t ∈ T i . 1 Then, the concept of a set of commodities strongly connected through traders' characteristics can be defined as follows.

Definition 1. The set of commodities L is said to be strongly connected through traders' characteristics if {(i, j) : iCj} ̸ = ∅ and the directed graph D L (L, C) is strongly connected, i.e., any ordered pair of distinct vertices, i and j, of D L (L, C) is connected by a path.

We can now state our last assumption. Assumption 4. The set of commodities L is strongly connected through traders' characteristics.

A price vector is a nonnull vector p ∈ R l + . Henceforth, we say that a price vector p is normalized if p ∈ ∆, where ∆ = {p ∈ R l + : l i=1 p i = 1}. Moreover, we denote by ∂∆ the boundary of the unit simplex ∆.

Let X 0 : T 0 × ∆ \ ∂∆ → P(R l ) be a correspondence such that, for each t ∈ T 0 and for each p ∈ R l ++ , X 0 (t, p) = argmax{u(x) : x ∈ R l + and px ≤ pw(t)}. It is well-known that the previous assumptions guarantee that the correspondence X 0 (t, •) is upper hemicontinuous, for each t ∈ T 0 .

A Walras equilibrium of E is a pair (p * , x * ), consisting of a price vector p * ∈ ∆\∂∆ and an allocation x * , such that, for each t ∈ T , u t (x * (t)) ≥ u t (y), for all y ∈ {x ∈ R l + : p * x = p * w(t)}. A Walras allocation of E is an allocation x * for which there exists a price vector p * ∈ ∆ \ ∂∆ such that the pair (p * , x * ) is a Walras equilibrium of E.

We define now the strategic market game, Γ, associated with E. It is a slightly reformulated version of the Shapley window model for mixed economies proposed by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF].

A strategy correspondence is a correspondence B :

T → P(R l 2 + ) such that, for each t ∈ T , B(t) = {(b ij ) ∈ R l 2 + : l j=1 b ij ≤ w i (t), i = 1, . . . , l}.
With some abuse of notation, we denote by b(t) ∈ B(t) a strategy of trader t, where b ij (t), i, j = 1, . . . , l, represents the amount of commodity i that trader t offers in exchange for commodity j. A strategy selection is an integrable function b : T → R l 2 + , such that, for each t ∈ T , b(t) ∈ B(t). Given a strategy selection b, we define the aggregate matrix B to be the matrix such that bij = ( T b ij (t) dµ), i, j = 1, . . . , l. Moreover, we denote The following definitions are borrowed from [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF].

Definition 2. A nonnegative square matrix A is said to be irreducible if, for every pair (i, j), with i ̸ = j, there is a positive integer k such that a

(k) ij > 0, where a (k) ij denotes the ij-th entry of the k-th power A k of A.
Definition 3. Given a strategy selection b, a normalized price vector p is said to be market clearing if

p ∈ ∆ \ ∂∆, l i=1 p i bij = p j ( l i=1 bji ), j = 1, . . . , l. (1) 
By Lemma 1 in Sahi and Yao (1989), there is a unique normalized price vector p satisfying (1) if and only if B is irreducible. Then, we denote by p(b) a function which associates with each strategy selection b the unique normalized price vector p satisfying (1), if B is irreducible, and is equal to 0, otherwise.

Given a strategy selection b and a normalized price vector p, consider the assignment determined as follows:

x j (t, b(t), p) = w j (t) - l i=1 b ji (t) + l i=1 b ij (t) p i p j , if p ∈ ∆ \ ∂∆,
x j (t, b(t), p) = w j (t), otherwise, j = 1, . . . , l, for each t ∈ T . Given a strategy selection b and the function p(b), the traders' final holdings are determined according to this rule and consequently expressed by the assignment

x(t) = x(t, b(t), p(b)),
for each t ∈ T . 2 It is straightforward to show that this assignment is an allocation.

We are now able to introduce a notion of Cournot-Nash equilibrium for this reformulation of the Shapley window model (see [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF] and [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF]).

Definition 4. A strategy selection b such that B is irreducible is a Cournot- Nash equilibrium of Γ if u t (x(t, b(t), p( b))) ≥ u t (x(t, b(t), p( b \ b(t)))),
for each b(t) ∈ B(t) and for each t ∈ T . 3A Cournot-Nash allocation of Γ is an allocation x such that x(t) = x(t, b(t), p( b)), for each t ∈ T , where b is a Cournot-Nash equilibrium of Γ.

Price convergence theorem

By means of Lemma 9 in Sahi and Yao (1989), [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] showed that any convergent sequence of normalized prices corresponding to a sequence of Cournot-Nash equilibria has a convergent subsequence whose limit is a strictly positive normalized price vector. Lemma 9 in [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF] 2011) and focusing on restrictions concerning endowments and preferences of the atomless part of the economy rather than of atoms. More precisely, they exploited the property of small traders, proved by [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF], of being "Walrasian" at a Cournot-Nash equilibrium. Their price convergence theorem establishes that any sequence of normalized prices corresponding to a sequence of Cournot-Nash equilibria has a convergent subsequence whose limit is a strictly positive normalized price vector. They used it to show their main existence theorem. Here, we use it to prove our new limit theorem for mixed exchange economies where Assumption 4 in Busetto et al. ( 2011) is relaxed.

For the seek of convenience, we repropose the formal statement of the price convergence theorem shown by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF].

Theorem 1. Under Assumptions 1, 2, and 3, let {p n } be a sequence of normalized prices such that {p n } = p( bn ) where bn is a Cournot-Nash equilibrium of Γ, for each n = 1, 2, . . .. Then, there exists a subsequence {p kn } of the sequence {p n } which converges to a price vector p ∈ ∆ \ ∂∆. This replication à la Cournot of E can be formalized as follows. Let E n be an exchange economy characterized as in Section 2, where each atom is replicated n times. For each t ∈ T 1 , let tr denote the r-th element of the nfold replication of t. We assume that, for each t ∈ T 1 , w(tr) = w(ts) = w(t), u tr (•) = u ts (•) = u t (•), r, s = 1, . . . , n, and µ(tr) = µ(t) n , r = 1, . . . , n. Clearly, E 1 coincides with E.

Then, the strategic market game Γ n associated with E n can be characterized, mutatis mutandis, as in Section 2. Clearly, Γ 1 coincides with Γ. A strategy selection b of Γ n is said to be atom-type-symmetric if b n (tr) = b n (ts), r, s = 1, . . . , n, for each t ∈ T 1 .

We provide now the definition of an atom-type-symmetric Cournot-Nash equilibrium of Γ n .

Definition 5. A strategy selection b such that B is irreducible is an atom- type-symmetric Cournot-Nash equilibrium of Γ n if b is atom-type-symmetric and if u tr (x(tr, b(tr), p( b))) ≥ u tr (x(tr, b(tr), p( b \ b(tr)))),
for each b(tr) ∈ B(tr), r = 1, . . . , n, and for each t ∈ T 1 ;

u t (x(t, b(t), p( b))) ≥ u t (x(t, b(t), p( b \ b(t)))),
for each b(t) ∈ B(t) and for each t ∈ T 0 .

In order to show the existence of an atom type-symmetric Cournot-Nash equilibrium of Γ n , we need to define the notion of a perturbation of this strategic market game, denoted by Γ n (ϵ) (it was already used by [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF] Given ϵ > 0 and a strategy selection b, we define the aggregate matrix Bϵ to be the matrix such that bϵij = ( bij + ϵ), i, j = 1, . . . , l. Clearly, the matrix Bϵ is irreducible. The interpretation is that an outside agency places fixed bids of ϵ for each pair of commodities (i, j).

Given ϵ > 0, we denote by p ϵ (b) the function which associates, with each strategy selection b, the unique normalized price vector which satisfies

l i=1 p i ( bij + ϵ) = p j ( l i=1 bji + ϵ)), j = 1, . . . , l.
Then, let us introduce the following notion of equilibrium for Γ n (ϵ). Definition 6. Given ϵ > 0, a strategy selection bϵ is an atom-type-symmetric ϵ-Cournot-Nash equilibrium of Γ n (ϵ) if bϵ is atom-type-symmetric and

u tr (x(tr, bϵ (tr), p ϵ ( bϵ ))) ≥ u tr (tr, b(tr), p ϵ ( bϵ \ b(tr)))),
for each b(tr) ∈ B(tr), r = 1, . . . , n, and for each t ∈ T 1 ;

u t (x(t, bϵ (t), p ϵ ( bϵ ))) ≥ u t (t, b(t), p ϵ ( bϵ \ b(t)))),
for each b(t) ∈ B(t) and for each t ∈ T 0 .

Existence of an atom-type-symmetric Cournot-Nash equilibrium of Γ n

The theorem presented in this section establishes the existence of an atomtype-symmetric Cournot-Nash equilibrium of Γ n . The proof of the theorem differs from that provided by [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF] in that it replaces their Assumption 4 on endowments and preferences of atoms (the same as Assumption 4 in Busetto et al. ( 2011)) with the assumption that the set of commodities is strongly connected through traders' characteristics, which imposes restrictions on endowments and preferences of the atomless part. Our existence theorem is based on that proved by Busetto et al. ( 2018), which rests crucially on the price convergence theorem presented in Section 3.

Theorem 2. Under Assumptions 1, 2, 3, and 4, there exists an atom-typesymmetric Cournot-Nash equilibrium b of Γ n .

Proof. We first need to prove the existence of an atom-type-symmetric ϵ-Cournot-Nash equilibrium of Γ n (ϵ). To do so, we apply, as in Busetto et al. ( 2011), the Kakutani-Fan-Glicksberg theorem. We neglect, as usual, the distinction between integrable functions and equivalence classes of such functions and denote by L 1 (µ, R l 2 ) the set of integrable functions taking values in R l 2 , by L 1 (µ, B(•)) the set of strategy selections, and by L 1 (µ, B * (•)) the set of atom-type-symmetric strategy selections. Note that the locally convex Hausdorff space we shall be working in is L 1 (µ, R l 2 ), endowed with its weak topology.

The proof of existence of an atom-type-symmetric ϵ-Cournot-Nash equilibrium of Γ n (ϵ) is articulated in three lemmas.

The first lemma establishes the properties of L 1 (µ, B * (•)) required to apply the Kakutani-Fan-Glicksberg theorem. 

(t) ∈ α ϵ t (b), for each t ∈ T 0 }, for each b ∈ L 1 (µ, B * (•)). Fi- nally, let α ϵ * : L 1 (µ, B * (•)) → L 1 (µ, B * (•)) be a correspondence such that α ϵ * (b) = α ϵ (b) ∩ L 1 (µ, B * (•)), for each b ∈ L 1 (µ, B * (•)).
The second lemma provides us with the properties of the correspondence α ϵ * . Lemma 2. Under Assumptions 1, 2, 3, and 4, given ϵ > 0, the correspondence α ϵ * is nonempty, convex-valued, and it has a weakly closed graph.

Proof. Let ϵ > 0 be given. We have that α 

ϕ : L 1 (µ, B * (•)) → L 1 (µ, B * (•)) be a correspondence such that ϕ(b) = L 1 (µ, B * (•)), for each b ∈ L 1 (µ, B * (•)).
It is straightforward to verify that ϕ has a weakly closed graph. Then, α ϵ * has a weakly closed graph as it is the intersection of the weakly closed correspondences α ϵ and ϕ, by Theorem 17.25 in [START_REF] Aliprantis | Infinite dimensional analysis[END_REF].

Finally, the third lemma proves the existence of an atom-type-symmetric ϵ-Cournot-Nash equilibrium of Γ n (ϵ). Lemma 3. Under Assumptions 1, 2, 3, and 4, given ϵ > 0, there exists an atom-type-symmetric ϵ-Cournot-Nash equilibrium bϵ of Γ n (ϵ).

Proof. Let ϵ > 0 be given. The set L 1 (µ, B * (•)) is nonempty, convex and weakly compact, by Lemma 1. Moreover, the correspondence α ϵ * is nonempty, convex-valued, and it has a weakly closed graph, by Lemma 2. Then, there exists a fixed point bϵ of the correspondence α ϵ * by the Kakutani-Fan-Glicksberg Theorem (see Theorem 17.55 in [START_REF] Aliprantis | Infinite dimensional analysis[END_REF]). Hence, bϵ is an atom-type-symmetric ϵ-Cournot-Nash equilibrium of Γ n (ϵ).

To complete the proof of Theorem 2, we have to show that there exists the limit of a sequence of atom-type-symmetric ϵ-Cournot-Nash equilibria of Γ n (ϵ) and that this limit is an atom-type-symmetric Cournot-Nash equilibrium of Γ n . Following [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF], in this part of the proof we essentially refer to a generalization of the Fatou's lemma in several dimensions provided by [START_REF] Artstein | A note on Fatou's lemma in several dimensions[END_REF]. Let ϵ m = 1 m , m = 1, 2, . . .. By Lemma 3, for each m = 1, 2, . . ., there is an atom-type-symmetric ϵ-Cournot-Nash equilibrium bϵm of Γ n (ϵ). The facts that the sequence

{ Bϵm } belongs to the compact set {(b ij ) ∈ R l 2 + : b ij ≤ n T 1 w i (t) dµ + T 0 w i (t) dµ i, j = 1, .
. . , l}, the sequence { bϵm (tr)} belongs to the compact set B(tr), r = 1, . . . , n, for each t ∈ T 1 , and the sequence {p ϵm }, where pϵm = p ϵm ( bϵm ), for each m = 1, 2, . . ., belongs to the unit simplex ∆, imply that there is a subsequence { Bϵ km } of the sequence { Bϵm } which converges to an element of the

set {(b ij ) ∈ R l 2 + : b ij ≤ n T 1 w i (t) dµ + T 0 w i (t)
dµ, i, j = 1, . . . , l}, a subsequence { bϵ km (tr)} of the sequence { bϵm (tr)} which converges to an element of the set B(tr), r = 1, . . . , n, for each t ∈ T 1 , and a subsequence {p ϵ km } of the sequence {p ϵm } which converges to a price vector p ∈ ∆ \ ∂∆, by Theorem 1. Since the sequence { bϵ km } satisfies the assumptions of Theorem A in [START_REF] Artstein | A note on Fatou's lemma in several dimensions[END_REF], there is a function b such that b(tr) is the limit of the sequence { bϵ km (tr)}, r = 1, . . . , n, for each t ∈ T 1 , b(t) is a limit point of the sequence { bϵ km (t)}, for each t ∈ T 0 , and such that the sequence 

Limit theorem

In this section, we state and prove our limit theorem. It establishes that, given a sequence of atom-type-symmetric Cournot-Nash allocations of Γ n , for n = 1, 2, . . ., there exists a Walras allocation of E with the following property: for each trader t ∈ T , the value of this Walras allocation at t is a limit point of the sequence of final holdings of t associated with the sequence of atom-type-symmetric Cournot-Nash equilibria of Γ n , for n = 1, 2, . . .. Theorem 3. Under Assumptions 1, 2, 3, and 4, let { bn } be a sequence of strategy selections of Γ and let {p n } be a sequence of prices such that bn (t) = bΓ n (tr), r = 1, . . . , n, for each t ∈ T 1 , bn (t) = bΓ n (t), for each t ∈ T 0 , and pn = p( bΓ n ), where bΓ n is an atom-type-symmetric Cournot-Nash equilibrium of Γ n , for n = 1, 2, . . .. Then, (i) there exists a subsequence { bkn } of the sequence { bn }, a subsequence {p kn } of the sequence {p n }, a strategy selection b of Γ, and a price vector p ∈ ∆ \ ∂∆, such that b(t) is the limit of the sequence { bkn (t)}, for each t ∈ T 1 , b(t) is a limit point of the sequence { bkn (t)}, for each t ∈ T 0 , the sequence { Bkn } converges to B, and the sequence {p kn } converges to p; (ii) x(t) is the limit of the sequence {x kn (t)}, for each t ∈ T 1 , and x(t) is a limit point of the sequence {x kn (t)}, for each t ∈ T 0 , where x(t) = x(t, b(t), p) for each t ∈ T , and xkn (t) = x(t, bkn (t), pkn ), for each t ∈ T , and for n = 1, 2, . . .;

(iii) the pair (p, x) is a Walras equilibrium of E.

Proof. (i) Let { bn } be a sequence of strategy selections of Γ and let {p n } be a sequence of prices such that bn (t) = bΓ n (tr), r = 1, . . . , n, for each t ∈ T 1 , bn (t) = bΓ n (t), for each t ∈ T 0 , and pn = p( bΓ n ), where bΓ n is an atom-type-symmetric Cournot-Nash equilibrium of Γ n , for n = 1, 2, . . .. The facts that the sequence { Bn } belongs to the compact set {(b ij ) ∈ R l 2 + : b ij ≤ T w i (t) dµ, i, j = 1, . . . , l}, the sequence { bn (t)} belongs to the compact set B(t), for each t ∈ T 1 , and the sequence {p n }, belongs to the unit simplex ∆, imply that there is a subsequence { Bkn } of the sequence { Bn } which converges to an element of the set {(b ij ) ∈ R l 2 + : b ij ≤ T w i (t) dµ, i, j = 1, . . . , l}, a subsequence { bkn (t)} of the sequence { bn (t)} which converges to an element of the set B(t), for each t ∈ T 1 , and a subsequence {p kn } of the sequence {p n } which converges to a price vector p ∈ ∆ \ ∂∆, by Theorem 1. Since the sequence { bkn } satisfies the assumptions of Theorem A in [START_REF] Artstein | A note on Fatou's lemma in several dimensions[END_REF], there is a function b such that b(t) is the limit of the sequence { bkn (t)}, for each t ∈ T 1 , b(t) is a limit point of the sequence { bkn (t)}, for each t ∈ T 0 , and such that the sequence { Bkn } converges to B. (ii) Let x(t) = x(t, b(t), p) for each t ∈ T , and xkn (t) = x(t, bkn (t), pkn ), for each t ∈ T , and for n = 1, 2, . . .. Then, x(t) is the limit of the sequence {x kn (t)}, for each t ∈ T 1 , as b(t) is the limit of the sequence { bkn (t)}, for each t ∈ T 1 , and the sequence {p kn } converges to p, x(t) is a limit point of the sequence {x kn (t)}, for each t ∈ T 0 , as b(t) is a limit point of the sequence { bkn (t)}, for each t ∈ T 0 , and the sequence {p kn } converges to p.

(iii) BΓ n = Bn as bΓ n ij = t∈T 1 n r=1 bΓ n ij (tr)µ(tr) + t∈T 0 bΓ n ij (t) dµ = t∈T 1 n bn ij (t) µ(t) n + t∈T 0 bn ij (t) dµ = t∈T 1 bn ij (t)µ(t)+ t∈T 0 bn ij (t) dµ =
bn ij , i, j = 1, . . . , l, for n = 1, 2, . . .. Then, pn = p( bn ) as pn and bn satisfy (1), for n = 1, 2, . . .. But then, by continuity, p and b must satisfy [START_REF] Aliprantis | Infinite dimensional analysis[END_REF]. We now show that, if two commodities i, j ∈ L stand in the relation C, then bij > 0. Suppose that bij = 0. Then, T i bij (t) dµ = 0 as µ(T i ) > 0.

Consider a trader τ ∈ T i . We can suppose that bij (τ ) = 0 as we ignore null sets. Since b(τ ) is a limit point of the sequence { bkn (τ )}, there is a subsequence { bh kn (τ )} of this sequence which converges to b(τ ). Then, the subsequence {x h kn (τ )} of the sequence {x kn (τ )} converges to x(τ ) as the sequence { bh kn (τ )} converges to b(τ ) and the sequence {p h kn } converges to p. But then, we have that xj (τ ) = 0 as bij (τ ) = 0 and x(τ ) ∈ X 0 (τ, p) as xh kn (τ ) ∈ X 0 (τ, ph kn ), for each n = 1, 2, . . ., by the same argument used by [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF] to prove their Theorem 2, and the correspondence X 0 (τ, •) is upper hemicontinuous. Therefore, we have that ∂uτ (x(τ )) ∂x j = +∞ as i, j ∈ L stand in the relation C and ∂uτ (x(τ ))

∂x j
≤ ν pj , by the necessary conditions of the Kuhn-Tucker Theorem. Moreover, there must be a commodity h such that xh (τ ) > 0 as u τ (•) is strongly monotone, by Assumption 2, and pw(τ ) > 0. Then, ∂uτ (x(τ )) ∂x h = ν ph , by the necessary conditions of the Kuhn-Tucker Theorem. But then, ∂uτ (x(τ )) ∂x h = +∞ as ν = +∞, contradicting the assumption that u τ (•) is continuously differentiable. Therefore, if two commodities i, j ∈ L stand in the relation C, then bij > 0. This implies that the matrix B is irreducible by our Assumption 4 and by the argument used by [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF] in the proof of their Theorem 2. Consider the pair (p, x). It is straightforward to show that the assignment x is an allocation as p and b satisfy (1) and that x(t) ∈ {x ∈ R l + : px = pw(t)}, for each t ∈ T . Suppose that (p, x) is not a Walras equilibrium of E. Then, there exists a trader τ ∈ T and a commodity bundle x ∈ {x ∈ R l + : px = pw(τ )} such that u τ (x) > u τ (x(τ )). By Lemma 5 in [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF], there exist real numbers λj ≥ 0, with 

ij (τ ρ) -1 kn bij (τ ρ)|= 1 kn | bΓ kn ij (τ ρ) -bij (τ ρ)| ≤ 1 kn w, i, j = 1, . . . , l, n = 1, 2, . . .. The sequence { BΓ kn \ b(τ converges to B as, by the triangle inequality, ∥ BΓ kn \ b(τ ρ)} -B∥ ≤ ∥ BΓ kn - BΓ kn \ b(τ ρ)∥ + ∥ BΓ kn -B∥ = ∥ BΓ kn - BΓ kn \ b(τ ρ)∥ + ∥ Bkn -B∥, for n =
1, 2, . . ., and the sequences {∥ BΓ kn -BΓ kn \ b(τ ρ)∥} and {∥ Bkn -B∥} converge to 0. Then, the sequence {q Γ kn τ ρ } converges to q. We have that

u τ ρ (x(τ ρ, bΓ kn (τ ρ), p( bΓ kn ))) ≥ u τ ρ (x(τ ρ, b(τ ρ), p( bΓ kn \ b(τ ρ)))) as bΓ kn is an atom-type-symmetric Cournot-Nash equilibrium of Γ kn , for n = 1, 2, . . .. Then, we have that u τ (x(τ, bkn (τ ), p kn )) ≥ u τ (x(τ, b(τ ρ), q Γ kn τ ρ )) as u τ ρ (•) = u τ (•), bΓ kn (τ ρ) = bkn (τ ), p(b Γ kn ) = pkn , p( bΓ kn \ b(τ ρ)) = β kn q Γ kn
τ ρ , with β kn > 0, by Lemma 2 in Sahi and Yao, for n = 1, 2, . . .. But then, it must be that

u τ (x(τ )) = u τ x(τ, b(τ ), p) ≥ u τ (x(τ, b(τ ρ), q) = u τ (x),
as the sequence { bkn (τ )} converges to b(τ ), the sequence {p kn } converges to p, the sequence {q Γ kn τ ρ } converges to q, b(τ ρ) = b, p = θq, with θ > 0, by Lemma 2 in Sahi and Yao, and u τ (•) is continuous, by Assumption 2, a contradiction. Case 2. τ ∈ T 0 . Let { bh kn (τ )} be a subsequence of the sequence { bkn (τ )} which converges to b(τ ). Moreover, let bΓ h kn \ b(τ ) be a strategy selection obtained by replacing bh kn (τ ) in bΓ h kn with b, for n = 1, 2, . . .. We have that u τ (x(τ, bΓ h kn (τ ), p( bΓ h kn ))) ≥ u τ (x(τ, b(τ ), p( bΓ h kn \ b(τ )))) as bΓ h kn is an atom-type-symmetric Cournot-Nash equilibrium of Γ h kn , for n = 1, 2, . . .. Then, we have that u τ (x(τ, bh kn (τ ), ph kn )) ≥ u τ (x(τ, b(τ ), ph kn )) as bΓ h kn (τ ) = bh kn (τ ), p( bΓ h kn ) = ph kn , and p( bΓ h kn \ b(τ )) = p( bΓ h kn ) = ph kn , by Lemma 1 in [START_REF] Codognato | Cournot-Nash equilibria in limit exchange economies with complete markets and consistent prices[END_REF]. But then, it must be that

u τ (x(τ )) = u τ x(τ, b(τ ), p) ≥ u τ (x(τ, b(τ ), p) = u τ (x),
as the sequence { bh kn (τ )} converges to b(τ ), the sequence {p h kn } converges to p, b(τ ) = b, and u τ (•) is continuous, by Assumption 2, a contradiction. Hence, the pair (p, x) is a Walras equilibrium of E.

7 Discussion of the model

In this section, we go deeper into the relationships of the analysis developed in this paper with the previous literature in the same line.

Let us consider first the contribution by [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF]. The fundamental assumptions underlying the results of these authors are Assumptions 2, 3, and the following two further assumptions.

Assumption 1 ′ . w(t) > 0, for each t ∈ T .
Assumption 1 ′ is clearly less restrictive than our Assumption 1 Assumption 4 ′ . There are at least two traders in T 1 for whom w(t) ≫ 0,

u t is continuously differentiable in R l ++ , and {x ∈ R l + : u t (x) = u t (w(t))} ⊂ R l ++ .
Assumption 4 ′ was originally introduced by Sahi and Yao (1989) and reformulated for the mixed version of the Shapley window model by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF].

To prove their results Busetto et al. (2017) also needed to use the following notion of a δ-positive strategy selection, which was first used by [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF]: let T1 ⊂ T 1 be a set consisting of two traders in T 1 for whom Assumption 4 ′ holds; moreover, let δ = min t∈ T1 { 1 l min{w 1 (t), . . . , w l (t)}}. We say that the correspondence B δ :

T → P(R l 2 + ) is a δ-positive strategy correspondence if B δ (t) = B(t) ∩ {(b ij ) ∈ R l 2 + : i̸ ∈J j∈J (b ij + b ji ) ≥ δ,
for each J ⊆ {1, . . . , l}}, for each t ∈ T1 and if B δ (t) = B(t), for the remaining traders t ∈ T . Moreover, we say that a strategy selection b is δ-positive if b(t) ∈ B δ (t), for each t ∈ T . This notion can be straightforwardly extended to Γ n noticing that B δ (tr) = B δ (ts), r, s = 1, . . . , n, for each t ∈ T 1 . Then, we say that an atom-type-symmetric Cournot-Nash equilibrium b of Γ n is δ-positive if b is a δ-positive strategy selection.

Under Assumptions 1 ′ , 2, 3, and 4 ′ , Busetto et al. ( 2017) proved the existence of a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γ n , in their Theorem 2, and its convergence to a Walras equilibrium through a replication à la Cournot, in their Theorem 3. The proofs of these theorems, as already said, crucially rest on their price convergence result, establishing that any convergent sequence of normalized prices corresponding to a sequence of Cournot-Nash equilibria has a convergent subsequence whose limit is a strictly positive normalized price vector. This result in turn exploits Lemma 9 in [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF], which is itself essentially based on hypotheses like those stated in Assumption 4 ′ .

Let us consider now the contribution by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF]. Their price convergence theorem, presented in Section 3 and used in this paper to show our Theorems 2 and 3, was employed by those authors to prove, in their Theorem 3, a kind of hybrid existence result based on Assumptions 1, 2, 3, and the following variant of Assumption 4 ′ . Assumption 4 ′′ . There are at least two traders in T 1 for whom w(t) ≫ 0.

This assumption is less restrictive than Assumption 4 ′ , as it removes the restriction that the two atoms with strictly positive endowments also have continuously differentiable utility functions, and indifference curves contained in the strict interior of the commodity space. We present now two theorems which extend Theorem 3 in [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF]. Under Assumptions 1, 2, 3, and 4 ′′ , and using the price convergence result expressed by Theorem 1, they establish the existence of a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γ n and its convergence to a Walras equilibrium through a replication à la Cournot. Theorem 5. Under Assumptions 1, 2, 3, and 4 ′′ , let { bn } be a sequence of strategy selections of Γ and let {p n } be a sequence of prices such that bn (t) = bΓ n (tr), r = 1, . . . , n, for each t ∈ T 1 , bn (t) = bΓ n (t), for each t ∈ T 0 , and pn = p( bΓ n ), where bΓ n is a δ-positive atom-type-symmetric Cournot-Nash equilibrium of Γ n , for n = 1, 2, . . .. Then, (i) there exists a subsequence { bkn } of the sequence { bn }, a subsequence {p kn } of the sequence {p n }, a strategy selection b of Γ, and a price vector p ∈ ∆ \ ∂∆, such that b(t) is the limit of the sequence { bkn (t)}, for each t ∈ T 1 , b(t) is a limit point of the sequence { bkn (t)}, for each t ∈ T 0 , the sequence { Bkn } converges to B, and the sequence {p kn } converges to p;

(ii) x(t) is the limit of the sequence {x kn (t)}, for each t ∈ T 1 , and x(t) is a limit point of the sequence {x kn (t)}, for each t ∈ T 0 , where x(t) = x(t, b(t), p) for each t ∈ T , and xkn (t) = x(t, bkn (t), pkn ), for each t ∈ T , and for n = 1, 2, . . .;

(iii) the pair (p, x) is a Walras equilibrium of E. Codognato and Ghosal (2000) reformulated the Shapley window model, first proposed by [START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF] for the case of an exchange economy with a finite set of traders, in the context of an exchange economy with an atomless continuum of traders. In this framework, they showed an equivalence result à la [START_REF] Aumann | Markets with a continuum of traders[END_REF] between the set of the Cournot-Nash allocations of the Shapley window model and the set of the Walras allocations of the underlying exchange economy. Since the mixed measure space we are using in this paper may contain countably infinite atoms, the question can be raised whether an equivalence result can be obtained also in this case. We repropose here an example provided by [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF], which gives a negative answer to the question.

Example 1. Consider an exchange economy E, satisfying Assumptions 1, 2, 3, and 4, where l = 2, T 1 contains countably infinite atoms, there is an atom τ ∈ T 1 such that w While Example 1 proves that the condition that E contains a countably infinite number of atoms is not sufficient to guarantee that any Cournot-Nash allocation is a Walras allocation, the following example, borrowed from [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], can be used to show that this condition is not even necessary. 

1 (τ ) = 0, w 2 (τ ) > 0, u τ (x) = 2 i=1 v i τ (x i ), for each x ∈ R 2 + , v i τ (x i ) is differentiable,
= 2, T 1 = {2}, µ(2) = 1, w(2) = (0, 4), u 2 (x) = √ x 1 + 1 30 x 2 , T 0 = [0, 1] is taken with Lebesgue measure, w(t) = (4, 0), u t (x) = √ x 1 + √ x 2 , for each t ∈ [0, 1 2 ], w(t) = (0, 4), u t (x) = √ x 1 + 1 30 x 2 , for each t ∈ [ 1 2 , 1].
Then, there is a unique Walras allocation of E which coincides with the unique Cournot-Nash allocation of Γ.

Proof. The unique Walras equilibrium is the pair (p * , x * ), where (p * 1 , p * 2 ) = (

√ 21+3 2 , 1), (x * 1 (2), x * 2 (2)) = ( 8 √ 21+3 , 0), (x * 1 (t), x * 2 (t)) = ( 8 √ 21+5 , 12), for each t ∈ [0, 1 2 ], (x * 1 (t), x * 2 (t)) = ( 8 √ 21+3 , 0), for each t ∈ [ 1 2 , 1]. The strat- egy selection b * , where b * 21 (2) = 4, b * 12 (t) = 4 √ 21+12 √ 21+5 , for each t ∈ [0, 1 2 ], b * 21 (t) = 4, for each t ∈ [ 1 2 , 1]
, is the unique Cournot-Nash equilibrium and x * (t) = x(t, b * (t), p(b * )), for each t ∈ T . Then, the unique Walras allocation is also the unique Cournot-Nash allocation.

In the framework of mixed exchange economies, [START_REF] Gabszewicz | An equivalence theorem for the core of an economy whose atoms are not "too" big[END_REF] showed that, if atoms are not "too" big, the core coincides with the set of Walras allocations whereas [START_REF] Shitovitz | Oligopoly in markets with a continuum of traders[END_REF], in his Theorem B, proved that this result also holds if the atoms are of the same type, i.e., they have the same endowments and preferences. [START_REF] Okuno | Oligopoly and competition in large markets[END_REF] considered a mixed exchange economy with two commodities which are both held by all traders and they showed that, if there are two atoms of the same type who, at a Cournot-Nash equilibrium, demand a positive amount of the two commodities, then the corresponding Cournot-Nash allocation is not a Walras allocation. They contrasted this result with the equivalence between the core and the set of Walras allocations which would hold in this case according to Theorem B in [START_REF] Shitovitz | Oligopoly in markets with a continuum of traders[END_REF]. [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], within the bilateral oligopoly version of the two-commodity mixed exchange economy analysed by [START_REF] Okuno | Oligopoly and competition in large markets[END_REF], showed a theorem establishing that, under the assumptions that all traders' utility functions are continuous, strongly monotone, quasi-concave, and measurable, and atoms' utility functions are also differentiable, a necessary and sufficient condition for a Cournot-Nash allocation to be a Walras allocation is that all atoms demand a null amount of one of the two commodities.

Example 2 above satisfies the assumptions used in the main theorem in [START_REF] Gabszewicz | An equivalence theorem for the core of an economy whose atoms are not "too" big[END_REF], in the main theorem in [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF], and in our limit theorem. This raises the question of the relation between atoms' Walrasian Cournot-Nash strategies and their Walrasian limit.

In the following example, we use the same economy considered in Example 2 to provide a first insight into this issue. Proof. b1 is the unique Cournot-Nash allocation of Γ and the allocation x such that x(t) = x(t, b1 (t), p( b1 )), for each t ∈ T , is the unique Walras allocation of E, by Example 2. We also have that x(t) = x(t, b(t), p( b)), for each t ∈ T , by Theorem 3. Hence, it must be that b1 = b.

This example shows that traders may achieve a Walras allocation at the same Cournot-Nash equilibrium in a finite and an asymptotic economy, i.e., by keeping their strategic power even when atoms become asymptotically negligible.

Finally, we propose a proposition which provides sufficient conditions under which the result obtained by [START_REF] Okuno | Oligopoly and competition in large markets[END_REF] Proof. Let b be a δ-positive Cournot-Nash equilibrium and let p = p( b) and x(t) = x(t, b(t), p( b)), for each t ∈ T . Suppose that the pair (p, x) is a Walras equilibrium. Consider a trader τ ∈ T1 . It must be that x(τ ) ≫ 0 as u τ (x(τ )) ≥ u τ (w(τ )) and τ ∈ T1 , by Assumption 4 ′ . Moreover, we have that bij (τ ) > 0 for some i, j with i ̸ = j as b is a δ-positive Cournot-Nash equilibrium. Suppose, without loss of generality, that b12 (τ ) > 0. At a Cournot-Nash equilibrium, for the atom τ , the marginal rate of substitution must be equal to the marginal rate at which he can trade off commodity 1 for commodity 2 (see [START_REF] Okuno | Oligopoly and competition in large markets[END_REF]). Moreover, at a Walras equilibrium, the marginal rate of substitution must be equal to the relative price of commodity 1 in terms of commodity 2. Combining these two conditions, we obtain dx 2 dx 1 = -p1 p2 b12 -b12 (τ )µ(τ ) b12 = -p1 p2 .

Then, it must be that b12 (τ ) = 0, a contradiction. Hence, the pair (p, x) is not a Walras equilibrium.

Conclusion

The main theorem of this paper -Theorem 3 -is a limit result for the mixed version of the Shapley window model proposed by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders and a strongly connected set of commodities[END_REF]. It is innovative with respect to previous results in the same line in that it is crucially based on the Walrasian properties of atomless part's behavior, and can be applied to economic structures left uncovered by the limit theorem proved by [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF]. In our theorem, all traders may indeed have corner endowments, and indifference curves which touch the boundary of the consumption set. In particular, it covers the case of bilateral oligopoly with a competitive fringe for each commodity. We leave for further research the problem of proving a limit theorem for a bilateral oligopoly configuration without a competitive fringe, a case which violates Assumption 1 of our Theorem 3.

In the bilateral mixed exchange framework proposed in the seminal paper by [START_REF] Okuno | Oligopoly and competition in large markets[END_REF], [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] provided an example where the unique Cournot-Nash allocation and the unique Walras allocation of a finite exchange economy satisfying the assumptions of Theorem 3 coincide. In this paper, we have used the same economy as in the example by [START_REF] Codognato | Atomic Cournotian traders may be Walrasian[END_REF] to show that traders keep their strategic power even when atoms become asymptotically negligible, this way confirming the equivalence result also in this case. Moreover, we have proved, through a proposition, that under the assumptions made by [START_REF] Busetto | Noncooperative oligopoly in markets with a continuum of traders[END_REF] and [START_REF] Busetto | Asymptotic equivalence between Cournot-Nash and Walras equilibria in exchange economies with atoms and an atomless part[END_REF] the Cournot-Nash allocations whose existence they proved are never Walras allocations. We leave for further research an investigation whether the previous results hold beyond the bilateral exchange framework.

  by b \ b(t) the strategy selection obtained from b by replacing b(t) with b(t) ∈ B(t), and by B \ b(t) the corresponding aggregate matrix.

  , and consequently the convergence result in Busetto et al. (2011), are essentially based on the assumption that there are at least two atoms with strictly positive endowments, continuously differentiable utility functions, and indifference curves contained in the strict interior of the commodity space. This restriction is stated by Busetto et al. (2011) in their Assumption 4. Busetto et al. (2017) also used Lemma 9 in Sahi and Yao (1989) to prove their limit theorem under the same assumption. Busetto et al. (2018) provided a different price convergence theorem, obtained by removing Assumption 4 in Busetto et al. (

Proof.

  See the proof of Theorem 1 in Busetto et al. (2018). 4 Replication à la Cournot of E In this section, we focus on the concept of replication introduced by Busetto et al. (2017), in the original spirit of Cournot (1838). We will use this concept to obtain our limit theorem for the Cournot-Nash equilibria of the mixed version of the Shapley window model. By analogy with the replication proposed by Cournot in a partial equilibrium framework, the concept proposed by Busetto et al. (2017) is obtained by replicating only the atoms of E, while making them asymptotically negligible, and without affecting the atomless part.

  , Busetto et al. (2011), and Busetto et al. (2018)).

Lemma 1 .

 1 Under Assumptions 1, 2, 3, and 4, the set L 1 (µ, B * (•)) is nonempty, convex and weakly compact. Proof. See the proof of Lemma 1 in Busetto et al. (2017). Given ϵ > 0, let α ϵ tr : L 1 (µ, B * (•)) → B(tr) be a correspondence such that α ϵ tr (b) = argmax{u tr (x(t, b(tr), p ϵ (b \ b(tr)))) : b(tr) ∈ B(tr)}, r = 1, . . . , n, for each t ∈ T 1 and for each b ∈ L 1 (µ, B * (•)), and let α ϵ t : L 1 (µ, B(•)) → B(t) be a correspondence such that α ϵ t (b) = argmax{u t (x(t, b(t), p ϵ (b\b(t)))) : b(t) ∈ B(t)}, for each t ∈ T 0 and for each b ∈ L 1 (µ, B * (•)). Moreover, let α ϵ : L 1 (µ, B * (•)) → L 1 (µ, B(•)) be a correspondence such that α ϵ (b) = {b ∈ L 1 (µ, B(•)) : b(tr) ∈ α ϵ tr (b), r = 1, . . . , n, for each t ∈ T 1 , and b

  ϵ tr (b) is nonempty, r = 1, . . . , n, for each t ∈ T 1 and for each b ∈ L 1 (µ, B * (•)), by the argument used in the proof of Lemma 2 in Busetto et al. (2011). Moreover, we have that α ϵ tr (b) = α ϵ ts (b) as u tr (•) = u ts (•) and B(tr) = B(ts), r, s = 1, . . . , n, for each t ∈ T 1 and for each b ∈ L 1 (µ, B * (•)). Then, there exists a strategy b(t) ∈ B(t) such that b(t) ∈ α ϵ tr (b), r = 1, . . . , n, for each t ∈ T 1 and for each b ∈ L 1 (µ, B * (•)). But then, α ϵ * (b) is nonempty, for each b ∈ L 1 (µ, B * (•)), by the same argument used in the proof of Lemma 2 in Busetto et al. (2011). α ϵ * (b) is convex as α ϵ (b) is convex, by Lemma 2 in Busetto et al. (2011), and L 1 (µ, B * (•)) is convex, by Lemma 1, for each b ∈ L 1 (µ, B * (•)). α ϵ has a weakly closed graph, by Lemma 2 in Busetto et al. (2011). Let

{

  Bϵ km } converges to B. Then, b(tr) = b(ts) as { bϵ km (tr)} = { bϵ km (ts)}, r, s = 1, . . . , n, for each t ∈ T 1 , and b(tr) is the limit of the sequence { bϵ km (tr)}, r = 1, . . . , n, for each t ∈ T 1 . Hence, it can be proved, by the same argument used by Busetto et al. (2018) to show their existence theorem, that b is an atom-type-symmetric Cournot-Nash equilibrium of Γ n .

  w i (τ ) pj , j = 1, . . . , l.Let bij = w i (τ ) λj , i, j = 1, . . . , l. Then, it is straightforward to verify that xj = w j (τ )each j = 1, . . . , l. Consider the following cases. Case 1. τ ∈ T 1 . Let ρ denote the k 1 -th element of the k n -fold replication of E and let BΓ kn \ b(τ ρ) be the aggregate matrix corresponding to the strategy selection bΓ kn \ b(τ ρ), where b(τ ρ) = b, for n = 1, 2, . . .. Let ∆ BΓ kn \ b(τ ρ) and ∆ Bkn denote the diagonal matrices of row sums of, respectively, BΓ kn \ b(τ ρ) and Bkn , for n = 1, 2, . . .. Moreover, let q Γ kn τ ρ , and q kn denote the vectors of the cofactors of the first column of, respectively, ∆ BΓ kn \ b(τ ρ) -BΓ kn \ b(τ ρ) and ∆ Bkn -Bkn , for n = 1, 2, . . .. Clearly, q Γ kn = q kn as BΓ kn = Bkn , for n = 1, 2, . . .. Let ∆ B be the diagonal matrix of row sums of B and q be the cofactors of the first column of ∆ B -B. The sequence {q kn } converges to q as the sequence Bkn converges to B. Let w = max{w 1 (τ ), . . . , w l (τ )}. Consider the matrix BΓ kn -BΓ kn \ b(τ ρ), for n = 1, 2, . . .. Then, we have that bΓ kn ij -bΓ kn ij \ bij (τ ρ) = ( 1 kn bΓ kn ij (τ ρ) -1 kn bij (τ ρ)), i, j = 1, . . . , l, for n = 1, 2, . . .. But then, the sequence of Euclidean distances {∥ BΓ kn -BΓ kn \ b(τ ρ)∥} converges to 0 as | 1 kn bΓ kn

Theorem 4 .

 4 Under Assumptions 1, 2, 3, and 4 ′′ , there exists a δ-positive atom-type-symmetric Cournot-Nash equilibrium b of Γ n . Proof. It can be proved by adapting the arguments provided by Theorems 1 and 2, Theorem 2 in Busetto et al. (2017), and Theorem 3 in Busetto et al. (2018).

Proof.

  It can be proved by adapting the arguments provided by Theorems 1 and 3, and Theorem 3 in Busetto et al. (2017).

  and dv i τ (0) dx i = +∞, i = 1, 2. If b is a Cournot-Nash equilibrium of Γ, then the Cournot-Nash allocation x such that x(t) = x(t, b(t), p( b)), for each t ∈ T , is not a Walras allocation of E. Proof. See the proof of the Example in Busetto et al. (2017).

Example 2 .

 2 Consider an exchange economy E satisfying Assumptions 1, 2, 3, and 4, where l

Example 2 ′

 2 . Consider the exchange economy specified in Example 2. Let b1 and b be strategy selections as in the statement of Theorem 3. Then, b1 = b.

  we have mentioned above also holds in the bilateral oligopoly version of their model: under the assumptions made both by Busetto et al. (2011) and Busetto et al. (2017), a δ-positive Cournot-Nash allocation is never a Walras allocation. Proposition. Consider an exchange economy E, satisfying Assumptions 1 ′ , 2, 3, and 4 ′ , where l = 2. Let b be a δ-positive Cournot-Nash equilibrium and let p = p( b) and x(t) = x(t, b(t), p( b)), for each t ∈ T . Then, the pair (p, x) is not a Walras equilibrium.

  

  

In this definition, differentiability is to be understood as continuous differentiability and it includes the case of infinite partial derivatives along the boundary of the consumption set (for a discussion of this case, see, for instance, Kreps (2012), p. 58). Moreover, it can be proved that the separable utility function used in the definition is the representation of separable preferences (see, for instance, Kreps (2012), p. 42).

In order to save in notation, with some abuse we denote by x both the function x(t) and the function x(t, b(t), p(b)).

Let us notice that, as this definition of a Cournot-Nash equilibrium explicitly refers to irreducible matrices, it applies only to active equilibria (on this point, see[START_REF] Sahi | The noncooperative equilibria of a trading economy with complete markets and consistent prices[END_REF]).