
HAL Id: hal-04194830
https://hal.science/hal-04194830

Submitted on 4 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TRAJECTORY MONITORING FOR A DRONE
USING INTERVAL ANALYSIS

Sylvain Largent, Julien Alexandre Dit Sandretto

To cite this version:
Sylvain Largent, Julien Alexandre Dit Sandretto. TRAJECTORY MONITORING FOR A DRONE
USING INTERVAL ANALYSIS. Workshop on Planning, Perception and Navigation for Intelligent
Vehicles (PPNIV’22), Philippe Martinet, Oct 2023, Kyoto, Japan. �hal-04194830�

https://hal.science/hal-04194830
https://hal.archives-ouvertes.fr


TRAJECTORY MONITORING FOR A DRONE USING INTERVAL
ANALYSIS

Sylvain LARGENT and Julien ALEXANDRE DIT SANDRETTO

Abstract— When modelizing a robot, uncertainties are bound
to be taken into account. Uncertainties may appear because of
approximations linked to the model. Sometimes uncertainties
are unavoidable as they are linked to the sensors’ accuracies,
or inherent to the control of the robot. For instance, interval
observers could be used for parameter estimation and state
estimation. This paper proposes a method to consider all these
uncertainties and to monitor the reliance of trajectories using
interval analysis. The case study of this article is to monitor the
trajectory of a holonomic drone controlled by its velocity, but
the monitoring could be extended to more complex dynamic
systems.

I. INTRODUCTION

The reliance on the motion of robots and the robustness
of the control is an important field of study in robotics, there
have been several approaches on the problem [5], [6], [8],
[14], such as stochastic approaches [15], [16]. This paper is
an introductary work to the trajectory verification of a drone,
using interval analysis and interval integration [1], [2]. In this
case, the studied system is a drone which is governed by an
ordinary differential equation of the following form:

ẏ = f (y) with y(0) ∈ [y0] and t ∈ [0, thorizon] (1)

The function f : Rn → Rn is the flow, y ∈ Rn is the vector
of state variables, and ẏ is the derivative of y with respect to
time t [3]. The model of the drone developped in the article
is a rather simplistic model, which induces a large number
of uncertainties. In our case study, sensors and intervals are
directly used to measure the position of the drone. But the
monitoring could be coupled with an interval observer for the
state estimation which could add significant uncertainties [6],
[11]. The purpose of this paper is to evaluate the reliability
of a trajectory while considering all those uncertainties [8],
using a guaranteed integration method [4], [3]. There are
several libraries developping efficient mathematical tools
based on the mathematical area of interval integration. The
one used in this paper is DynIbex [3].
This paper is organized as follows. Some preliminaries are
given in Section II. Section III gives details about the path
planner (using RRT algorithms [9], [10]) and the PI control
of the drone. Section IV emphasizes the usage of interval
analysis in the study of the drone. And finally Section V is
devoted to the monitoring of the trajectory, and the results
obtained.
The applications of this paper could be further extended
with a little more time and implementation, the path plan-
ning could be extended to nonholonomic systems [10], the
monitoring of the trajectory could be done in real-time with
a sliding horizon of time [17], and the detection of more

complex and moving obstacles could be implemented as
well.

II. PRESENTATION OF THE DRONE AND ITS
ENVIRONMENT

A. Concise presentation of the drone

The drone used throughout the paper is a Tello EDU
drone by Ryze. Its weigh is 87g and its dimensions are
98x92.5x41 mm. The drone was programmed in ROS, the
user has control over the speed of the drone (the linear speed
and the angular speed). In our case study, the control was
limited to translational movements and low speeds to avoid
any damage to the drone, but could later be expanded to its
rotational movements as well. A saturation in speed, at 1.92
m/s, was thus implemented. This value remains in a range
where aerodynamic drag should not have an impact on the
course of the drone [7]. Considering all those aspects, the
drone’s inertia can almost be neglected. It is also possible to
assume commanded inputs to be achieved immediatly [7].
All of those approximations will add more uncertainties to
the model, but all of them will later be handled thanks
to interval analysis. The interval based model will then be
correct by inclusion. In the end, our model will be rather
simplistic and so far would appear like this: ẋ = ux

ẏ = uy
ż = uz

or ẇ = u (2)

where ẇ corresponds to a velocity, and u to a command.

Fig. 1. The flight environment and the drone



B. The flight environment

The area in which the drone flies can contain several
obstacles. Because of the way it was implemented the
obstacles must be rectangular and parallel to the orthogonal
directions of the spatial system. In the code, the environment
has a set of boundaries and a list of rectangular obstacles,
which can be inflated at will. A necessary inflation is to
inflate the obstacles with a length equal to the longest
diagonal of the drone (121.68 mm), so only a point is needed
as a representation of the drone. The variety of obstacles
can obviously be extended, as long as a function verifying
potential collisions between a trajectory and the new type
of obstacle exists. The area also contains several infrared
sensors which can detect the drone with an accuracy down
to around 2 mm, and with a detecting rate up to a 100Hz. The
control frequency of the drone is thus chosen accordingly, at
around 100 Hz as well. As the drone is placed in a closed
environment, the installation of infrared sensors was natural.
However, the monitoring of a system could be extended
to outdoor complex systems, for instance with an interval
observer using the available sensors [6], [11].

III. PATH PLANNING AND COMMAND OF THE
DRONE

In this section, the path planning of the drone will be dis-
cussed. It is important to differentiate the global path planner,
used to find a list of way points from the starting position of
the drone to the destination, and the local command which
generates the right commands so the drone can succesively
attain all the way points.

A. Path planning

The path is determined by using an algorithm, which was
strongly inspired by the Rapidly-exploring Random Trees
RRT and its upgraded version RRT* [9], [10] . The main
difference between the implemented versions and the original
ones lies in the fact that the dynamic model is not taken
into account for the local planning motion. In the case of
the drone, this approximation can be justified as the drone
can locally move in all the directions in space without
much constraints, unlike a car which requires a lot more
manoeuvres to park for instance. The drone is a holonomic
system.

Algorithm 1 RRT [9]
1: V ←{xinit}; E← /0;
2: for i← 1,n do
3: xrand ← SampleFreei;
4: xnearest ← Nearest(G = (V,E),xrand);
5: xnew← Steer(xnearest ,xrand);
6: if ObstacleFree(xnearest ,xnew) then
7: V ←V ∪{xnew};E← E ∪{(xnearest ,xnew)};
8: end if
9: end for

10: return G = (V,E);

The principle of the RRT (Algorithm 1 [9]) is to generate
an expanding tree of way points from a root (the starting

Fig. 2. Expanding tree using RRT algorithm between a starting point
and a destination, with 3 obstacles in the scene

position) with random nodes. The tree keeps expanding
until it reaches the destination. At each step, a random
position is drawn xrand , then the nearest node belonging
to the tree is determined. The new node introduced to
the tree xnew, corresponds to the node at a step distance
from xnearest in the direction of xrand and free of collision.
The RRT was first implemented because it was easier to.
However it is proven and can easily be observed even with
a relatively high number of iterations that this algorithm is
not asymptotically optimal [9].

Let’s discuss a few notations from the RRT* algorithm
(Algorithm 2 [9]) to understand it. In this case, the Line
refers to the straight line path between its two arguments.
The Parent : V → V function returns the parent node of its
argument, the parent node of the root being the root itself
(or a null pointer to identify it). The Cost : V →R+ function
returns the cost of the unique path between the argument
and the root [9] (It measures a distance in our case). The
c function returns the distance along a line. γRRT∗ refers to
the search radius of neighbouring nodes, and η refers to
the step length between a new node and its parent node.
The Algorithm 1 and the Algorithm 2 begin the same
way. However, before inserting a new node xnew to the tree,
the RRT* algorithm finds all the neighbouring nodes in a
search radius and determines xnew’s parent optimizing the
cost function (The First For loop of the algorithm). And
then, the RRT* algorithm considers xnew as a potential new
parent for its neighbouring nodes, and rewires the tree to
optimize the cost function as well (The Second For loop
of the algorithm). RRT* was proven to be asymptotically
optimal, and was thus implemented in the final version.

One of the advantage of the RRT algorithms is their time
complexity which is following an O(nlogn) complexity in



Algorithm 2 RRT* [9]
1: V ←{xinit}; E← /0;
2: for i← 1,n do
3: xrand ← SampleFreei;
4: xnearest ← Nearest(G = (V,E),xrand);
5: xnew← Steer(xnearest ,xrand);
6: if ObstacleFree(xnearest ,xnew) then
7: Xnear← Near(G = (V,E),xnew,
8: min{γRRT∗(log(card(V ))/card(V ))1/d ,η});
9: V ←V ∩{xnew};

10: xmin← xinit ; cmin← ∞;
11: for xnear ∈ Xnear do //First For loop
12: if CollisionFree(xnear,xnew) & Cost(xnear) +

c(Line(xnear,xnew))< cmin then
13: xmin← xnear;
14: cmin←Cost(xnear)+ c(Line(xnear,xnew));
15: end if
16: end for
17: E← E ∪{(xmin,xnew)};
18: for xnear ∈ Xnear do //Second For loop
19: if CollisionFree(xnear,xnew) & Cost(xnew) +

c(Line(xnear,xnew))<Cost(xnear) then
20: xparent ← Parent(xnear);
21: E← (E \{(xparent ,xnear)∪{(xnew,xnear)};
22: end if
23: end for
24: end if
25: end for
26: return G = (V,E);

terms of processing, and an O(n) complexity in terms of
queries [9]. There are other variants of the RRT algorithms,
for the one implemented in the drone, there is a little bias
which chooses directly the destination node, as the ‘new
random‘ node, at a specified rate. This variant is referred
as Artificial Potential Fields (APF) [10].

B. Control of the drone

Thanks to the previous subsection, it is possible to obtain
a set of several way points between a starting point and a
destination. Since a clear path is planned, with the use of
the infrared sensors in the area of flight, it was possible
to have a closed loop system. Once again, the monitoring
of trajectories could be further extended in cases where an
interval observer is required [6]. In the case of an interval
observer, the uncertainties linked to the observer would be
greater and would need to be considered in our model based
on interval analysis.

A PI (Proportional Integral) controller was implemented
for the drone. This controller came naturally, since the
coefficients could have been tuned thanks to interval analysis
as well [13]. Besides, it is worth mentionning that the RRT*
algorithm can produce relatively long straight lines, as it
rewires and find shortcuts between nodes. In the case of a
Proportional controller, the drone could accumulate a lot
of inertia even with a saturation. That’s why in the case
of a long distance between two way points, intermediate
points were introduced. Any path folowing algorithms can
be used to perform this task, even with wind[18] or for a

Fig. 3. Expanding tree using RRT* algorithm

vision-based control [19].

Obviously, each geometrical position of the way points
cannot be reached perfectly by a drone. A margin was
implemented so that a way point can be considered reached
more easily. This margin was reduced to a minimum during
the landing phase with the purpose of having the most
accurate landing possible. Those margins add uncertainties
to our model as well.

Considering the PI controller, it is possible to define more
precisely the commanded inputs:



ux = KP ∗ (xwaypoint − xposition(tn))
+ KI ∗∑

n
i=nprev

(xwaypoint − xposition(ti))
uy = KP ∗ (ywaypoint − yposition(tn))

+ KI ∗∑
n
i=nprev

(ywaypoint − yposition(ti))
uz = KP ∗ (zwaypoint − zposition(tn))

+ KI ∗∑
n
i=nprev

(zwaypoint − zposition(ti))

(3)

where n corresponds to the current index of time, and nprev
the previous index of time upon reaching the previous way
point.

It is necessary to note that the coefficients KP and KI
have a unit in s−1. Even with the accuracy of the sensors
(around 2mm) and the PI controller, the drone will never
perfectly follow the path defined globally, there will always
be uncertainties.

IV. APPLIED INTERVAL ANALYSIS AND OUR
MODEL

A. A small introduction to interval analysis

The main underlying tool, used in our design
methodology, is interval analysis [1]. There is a need
to clarify some notations that will be reccurently used.



The following notation [x] ∈ IR represents an interval
[x] = [x,x] = {x ∈ R | x 6 x 6 x}. And IR is the set of
intervals with real bounds. By abuse of notation, [x] will
also denote a vector of intervals, i.e., a Cartesian product of
intervals, a.k.a. a box. In our case, the boxes will obviously
be three dimensionnals.

In this article, interval analysis is meant to take into
account all the uncertainties. So the uncertainties will be
considered as uniform distributions. Indeed, a uniform distri-
bution allows to encompass even the worst possible cases [5].
This is the main advantage of interval techniques compared
to stochastic approaches for the proposed monitor: the en-
closure of all possible trajectories. It allows us to provide
guarantees on safety while stochastic methods cannot. With-
out going in depth, the notions of contractors and solvers
will also implicitely be used in the next section [2].

B. Establishing our model based on the control

Thanks to the path planning section, and more particularly
the local command in speed, a rather simplistic model of the
drone behaviour was established: ẋ = ux

ẏ = uy
ż = uz

or ẇ = u (4)

The command u was detailled in the previous section as well.
The infrared sensors allow the user to have the position
of the drone at a given time. Thus, it is an interval initial
value problem, with an ordinary differential equation in the
following form.

ẏ = f (y) with y(0) ∈ [y0] and t ∈ [0, thorizon] (5)

It is assumed that the function f : R3 → R3 is globally
Lipschitz in y, and here corresponds to the flow. y would
be the position of the drone, and [y0] corresponds to the
uncertainty due to the sensors’ accuracy. thorizon will be
more detailed in a latter section, but it reprensents the time
during which each simulation is made [3].

An arsenal of validated Runge-Kutta methods exists to
compute the sets of boxes, solution to these types of ordinary
differential equation [3]. A little reminder of what a validated
numerical integration does at each step [3]:

Phase 1 One computes an a priori enclosure [ỹ j] of the
solution such that
• y(t; [y j]) is guaranteed to exist for all t ∈ [t j, t j+1], i.e

along the current step, and for all y j ∈ [y j]

• y(t; [y j])⊆ [ỹ j] for all t ∈ [t j, t j+1]

• the step-size h j = t j+1− t j > 0 is as large as possible in
terms of accuracy and existence proof

Phase 2 One computes a tighter enclosure of [y j+1] at time
t j+1, such that y(t j+1, [y j])⊆ [y j+1].

In this article, we have mentionned the presence of sev-
eral uncertainties which can impact the commanded inputs.
That’s why, an affine form for the commanded inputs was
introduced in the model. An affine form provides a simple
model which helps to have faster computation times for the
monitoring, and encompasses largely the uncertainties. ẋ = [αx]∗ux +[βx]

ẏ = [αy]∗uy +[βy]
ż = [αz]∗uz +[βz]

or ẇ = [α]∗u+[β ] (6)

A model established with this form is a way to consider
a large panel of uncertainties.
The presence of [α]:
• corrects the assumption of immediate commanded in-

puts and includes the drone’s speed profile

• takes into account all uncertainties linked to forces
which have dependecies with the velocity

• takes into consideration uncertainties linked to the tun-
ing of the coefficients KP and KI [13]

The presence of [β ]:
• corrects all uncertainties linked to punctual pertubations

• considers ambient noises in the command and induced
by the drone itself

Let’s introduce scores of how well the model was built
when the various uncertainties were considered. It is possible
to introduce a coefficient c∪ measuring the number of times
the computed boxes were intersecting with the trajectory,
and another coefficient c⊂ measuring the number of times
the trajectory was actually included in the computed boxes.
In this case, the trajectory are boxes with the length of the
sensors’ uncertainty.{

c∩ = Number of intersections
Total number of comparisons

c⊂ = Number of inclusions
Total number of comparisons

(7)

The interval coefficients [α] and [β ] were determined for a
collision free trajectory, and based on optimizing these two
scores (with a trial and error technique at a first tentative):[α]∗u+[β ] =

 [0,1]
[−0.4,0.4]
[−0.4,0.4]

∗u+

[−0.1,0.1]
[−0.1,0.1]
[−0.1,0.1]

 (8)

V. MONITORING OUR TRAJECTORY WITH
DYNIBEX

A. Principle of the monitoring

Now that a model has been established, it will be
possible to compute a set of boxes representing the drone’s
behaviour. The trajectory of the drone should be inside
those boxes. Those boxes will be computed thanks to the
library DynIbex. Indeed, DynIbex will be used to resolve
the equations representing our model. DynIbex uses the
theory of applied interval analysis, and affine arithmetic to
solve various types of differential equations. In this case, the



differential equation is rather simple, but DynIbex allows a
relatively fast and validated integration. The Runge-Kutta
method used in this article is Heun’s method. With the
help of the computed boxes, it will be possible to monitor
the trajectory of the drone. Indeed since our obstacles are
rectangular and in the same directions as the spatial system,
they can easily be converted to boxes. DynIbex has a feature
that allows us to check if boxes intersect or are subsets of
each other. If we were to later introduce more complex
obstacles, an interesting solution would be to decompose
the complex obstacles into several rectangular obstacles.

The principle of the monitoring is then easier to
implement. As the drone determines its trajectory, DynIbex
will compute whether or not the drone will be within a
set of boxes, guaranteed to reach the way points, and not
collide with any of the obstacles. A similar work has been
done, but the idea was not to monitor the trajectory with
DyniBEX, but directly compute the trajectory of a system
as a set of boxes, using an RRT algorithm [12]. The issue
with this method in our case, is that the computed boxes
would rapidly diverge unless the model was more accurate.
Besides, it is likely that building an RRT tree, with boxes
as nodes in a 3D space, might take a long time.

In terms of implementation, if the trajectory determined by
the global planner were monitored by our solver and deemed
incorrect because of a potential collision, the idea would be
to inflate even more the obstacles with the purpose of adding
a margin of security against collisions. So far, the monitoring
is done, a posteriori, over the course of the whole trajectory.
But with a little bit more time and implementation, it would
be possible to imagine a real-time monitoring, the trajectory
would be monitored continuously over a sliding horizon of
time [17]. The monitoring would be focused on detecting
potential collisions, induced by moving obstacles or by an
innacurate trajectory, and would launch the planning of a new
trajectory. The global architecture could be the following:

1) Plan a trajectory avoiding obstacles (enclosed in boxes)
from current position to goal (with RRT*);

2) Check on a short horizon if there is a collision (with
interval based monitor);

3) If no collision, let the UAV continues its trajectory;
Otherwise, add or inflate previous detected obstacles
to take into account uncertainties and GOTO 1;

4) At the end of the horizon, measure current position
and GOTO 2.

B. Observations and Results

In the previous section, a thorizon was mentionned, this
thorizon represents the time during which each computation
of the boxes should be made, before another measure of
position is detected. Depending on this thorizon, our model
will have to be more refined with its uncertainties ([α] and
[β ]). Let’s dicuss it with examples:

As it is visually observable in Figure 4 and Figure 5,
when the uncertainties considered for thorizon = 1 s were

Fig. 4. In yellow the computed boxes for thorizon = 1s with the adjusted
[α] and [β ] (Collision free), in red the actual trajectory followed by the
drone measured by infrared sensors.

Fig. 5. In yellow the computed boxes for thorizon = 3 s with the adjusted
uncertainties for thorizon = 1s (Collision), in red the actual trajectory
followed by the drone measured by infrared sensors.

kept for a computation with thorizon = 3 s, the computed
boxes started to diverge. Indeed, the uncertainties considered
were too rough, and since the computation time is greater,
the computed boxes have the time to accumulate the
uncertainties until this horizon of time. If we were to
monitor this trajectory beforehand, we would definitively
not let the drone fly as the computed boxes would detect a
collision with the obstacles.

However, since the model was built too simplistically, it is
difficult to refine the uncertainties so that it could perfectly
coincide with the reality and have a thorizon tending toward



infinity.

Fig. 6. In yellow the computed boxes for thorizon = 15 s with the adjusted
uncertainties for thorizon = 1 s, in red the actual trajectory followed by
the drone measured by infrared sensors.

As it can be seen in the Figure 6, although the computed
boxes follow correctly the trajectory in the beginning, when
the horizon of time is too far ahead, the simulation still starts
to diverge and does not encapsulate the trajectory properly.
Actually, the simulated trajectory is closed to how the drone
would fly if it were in an open-loop control. Near the end
of the trajectory, there are several tubes of computed boxes.
As the flight lasted longer than 15s, the several simulations
happened to be visible. The effect is not in the Figures 4
and 5, because the various tubes overlap as their horizons of
time are short.

There is a strong link between the creation of the model
and the efficiency of the method. The scores using the
adjusted interval coefficients [α] and [β ] for thorizon = 1 s,
with the following thorizon, is a reflect of this link.

Scores and collision
thorizon 1 s 3 s 12s 15 s
c∩ 1 1 1 0.786
c⊂ 0.687 0.676 0.899 0.59
collision ? No Yes Yes Yes

Naturally as thorizon increases, the uncertainties have more
time to diverge (get bigger), and the scores c∩ and c⊂ in-
crease as they encompass a large part of the arena. However,
the scores could also decrease for specific thorizon, as the
simulation would completely go off course in time. In the
end, it is essential to tune the interval coefficients ([α] and
[β ]) and the security margins while ensuring a collision
free trajectory, using the scores c∩ and c⊂, but also while
considering the right horizon of time depending on the
system.

VI. CONCLUSIONS
The paper introduced a method to monitor trajectories

using interval analysis. The method is based on balancing
several aspects of the model. Indeed, for the method to work
efficiently, there is a need to have a balance between the
accuracy of the model, the uncertainties linked to the sensors
and the observer, the inherent uncertainties induced by the
system and the horizon of computation time. After finding
the balance between all those criteria, the method will allow
to determine the reliability of trajectories. As mentionned in
the introduction, there is room for improvements on several
aspects, and a case study with a more complex model and
greater uncertainties could better demonstrate the efficiency
of the method.

ACKNOWLEDGMENT
This project is partially funded by the Agence Innovation

Defense (AID) through the Interdisciplinary Centre for De-
fence and Security (CIEDS) of the Institut Polytechnique de
Paris (IP Paris).

REFERENCES

[1] Moore, Ramon (1966). Interval Analysis. Prentice Hall, 1966.
[2] Jaulin, et al. Applied interval analysis, 2001. ed: Springer, London.
[3] Alexandre dit Sandretto, J., & Chapoutot, A. (2016). Validated explicit

and implicit Runge-Kutta methods. Reliable Computing, 22.
[4] Rohou, S., et al. (2017). Guaranteed computation of robot trajectories.

Robotics and Autonomous Systems, 93, 76-84.
[5] Merlet, J. P. (2006). Interval analysis and reliability in robotics.
[6] Abadi, A., et al. (2020). Guaranteed trajectory tracking control based

on interval observer for quadrotors. International Journal of Control,
93(11), 2743-2759.

[7] Kousik, S., et al. (2019). Technical Report: Safe, Aggressive Quadro-
tor Flight via Reachability-based Trajectory Design. arXiv preprint
arXiv:1904.05728.

[8] Pepy, R., et al. (2009). Reliable robust path planning. International
Journal of Applied Mathematics and Computer Science, 19(3), 413-
424.

[9] Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for op-
timal motion planning. The international journal of robotics research,
30(7), 846-894.

[10] Pharpatara, P., et al. (2016). 3-D trajectory planning of aerial vehicles
using RRT. IEEE Transactions on Control Systems Technology, 25(3),
1116-1123.

[11] Thabet, R. E. H., et al. (2014). An effective method to interval observer
design for time-varying systems. Automatica, 50(10), 2677-2684.

[12] Panchea, A. M., et al. Extended reliable robust motion planners. In
2017 IEEE 56th Annual Conference on Decision and Control (CDC)
(pp. 1112-1117).

[13] Alexandre dit Sandretto, J., et al. (2015). Tuning PI controller in non-
linear uncertain closed-loop systems with interval analysis. In 2nd
International Workshop on Synthesis of Complex Parameters (Vol. 44,
pp. 91-102).

[14] Frazzoli, E. (2001). Robust hybrid control for autonomous vehicle
motion planning (Doctoral dissertation, Massachusetts Institute of
Technology).

[15] Burlet, J., et al. Robust motion planning using markov decision pro-
cesses and quadtree decomposition. In IEEE International Conference
on Robotics and Automation, 2004 (Vol. 3, pp. 2820-2825).

[16] Lindemann, L., et al. (2021). Reactive and risk-aware control for signal
temporal logic. IEEE Transactions on Automatic Control.

[17] Alexandre dit Sandretto, J., et al. (2018). An Interval-based Sliding
Horizon Motion Planning Method. IFAC-PapersOnLine, 51(16), 296-
301

[18] Mcgee, T. G. et al. Path planning and control for multiple point
surveillance by an unmanned aircraft in wind. In : 2006 American
Control Conference. p. 6 pp.

[19] Courbon, J., et al. (2010). Vision-based navigation of unmanned aerial
vehicles. Control Engineering Practice, 18(7), 789-799.


