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Abstract

We investigate the motion of charged particles in a turbulent electrostatic potential using guiding-

center theory. By increasing the Larmor radius, the dynamics exhibit close-to-ballistic transport

properties. The transition from diffusive to ballistic transport is analyzed using nonlinear dynamics.

It is found that twistless invariant tori in the guiding-center dynamics are responsible for this

transition, drastically affecting transport properties of charged particles.

Modeling and characterizing transport in magnetically confined plasmas, such as encoun-

tered in tokamaks, is a long-standing issue in plasma physics and a prerequisite to the control

of turbulence for better confinement properties of the plasma. Several levels of description

of charged particle transport are being actively pursued from the more computationally in-

tensive, such as kinetic or gyrokinetic modeling, to the more theoretically palatable theories

such as classical or neoclassical theories. The nature of the transport of particles is at the

core of these latter theories, and strongly depends on the type of charged particles. For in-

stance, it is expected that the nature of transport for alpha particles is much different than

the one for thermal ions due to a large Larmor radius, washing out the fine-scale structures

of the electrostatic potential [1].

The main objective of this article is to characterize the transport properties in a rather

simplified setting which captures some of the main features present in electrostatic turbu-

lence. We use this simplified setting to uncover the phase-space structures organizing the

dynamics and responsible for transport properties.

In this article, we consider a constant and uniform magnetic field to focus on the transport

properties caused by electrostatic drift waves. The motion of a charged particle of mass m

and charge q in a strong magnetic field B = Bẑ and a turbulent electrostatic potential

Φ(x, t) is given by

m
dv

dt
= q (−∇Φ(x, t) + v ×B) , (1)

where x = (x, y, z) and v = (vx, vy, vz) are the position and the velocity of the charged

particle. We decouple the dynamics along the magnetic field lines (i.e., along the z direction)
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and perpendicular to the magnetic field lines (i.e., in the (x, y) plane) by considering that the

electrostatic potential Φ does not depend on the longitudinal coordinate z. In the transverse

plane, the motion is composed of a fast gyration with Larmor frequency Ω = qB/m (its sign

indicating the rotational direction) and a slower drift motion across magnetic field lines.

The main question we address is to characterize the slow drift motion as a function of the

main parameters of the system, namely, the Larmor radius, the Larmor frequency and the

amplitude of the electrostatic potential. We assume that the characteristic time scale and

spatial scale of the turbulent potential are rescaled to 2π without loss of generality and for

simplicity (see Supplemental Material at [URL] for details on the nondimensionalization).

The main parameters of the system are

A = Φ0/B,

ρ =

√
2kBT/m

|Ω|
,

η =
1

2Ω
,

where T is the temperature in the direction perpendicular to magnetic field lines and Φ0

is the amplitude of the electrostatic potential Φ(x, y, t). Effectively, A is the amplitude of

a potential φ(x, y, t) = Φ(x, y, t)/B, which is the one governing the dynamics of charged

particles. In the plane perpendicular to the magnetic field lines, the rescaled equations

of motion become ẋ = ρv/(2|η|) and v̇ = −sgn(η)∇φ/ρ + v × ẑ/(2η). The resulting

Hamiltonian system has two and a half degrees of freedom (one degree of freedom in each

direction perpendicular to the magnetic field and half a degree of freedom for the explicit

time dependence of the electrostatic potential). In addition, the typical (fast) time scale

of the dynamics is π|η|. The phase space of the particle is of dimension 5, which does not

allow for a facilitated visualization of the phase space structures responsible for transport

properties.

In order to reduce the dynamics (see Supplemental Material at [URL] for a brief descrip-

tion of the assumptions and ordering used in the reduction), we decouple the fast from the

slow temporal scales, by using the guiding-center theory in a Hamiltonian setting [2–5]. The

main ingredient is a change of positions from the particles (at position x) to the guiding

centers (at position X) defined by x = X+ ẑ×v/Ω at the lowest order. The fast oscillations

are generated by the term v̂×z in the equation for v̇ which can be seen by introducing a gy-

roangle θ which rotates with a frequency Ω. Using the guiding-center positions as variables
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and performing a suitable change of coordinates (using, e.g., Lie transforms) to eliminate

the θ-dependence in the Hamiltonian at the lowest orders, the dynamics is reduced to the

motion of effective particles (guiding centers) subjected to an E × B drift velocity in an

effective electrostatic potential ψ(X, Y, t) which depends parametrically on A, ρ and η, and

is given by [4, 5]

ψ = J0[φ]− η
(
J1[φ2]− 2J0[φ]J1[φ]

)
,

where J0 is the gyro-average operator defined by

J0[φ](X, Y, t; ρ) =
1

2π

∫ 2π

0

φ (X + ρ cos θ, Y − ρ sin θ, t) dθ,

and J1[φ] = ρ−1(∂/∂ρ)J0[φ]. The dynamics of the guiding centers is driven by the E × B

drift where an effective electric field is generated by the effective potential ψ(X, Y, t), i.e.,

Ẋ = −∇ψ×ẑ in the rescaled units. We notice that we have used the guiding-center reduction

at the second order in the amplitude of the electrostatic potential in order to have all three

parameters of the particle dynamics, namely A, ρ and η, present in the reduced equations

for the guiding-center dynamics. At first order where the effective potential ψ is given by

J0[φ], the equations of motion are independent of η, preventing the study of the influence of

this parameter in the dynamics.

The main advantage of using the guiding-center dynamics is that the fast dynamics of

the velocities of the particles are decoupled from the slow motion of the guiding centers,

and allows for the use of larger time steps which greatly facilitates numerical simulations.

In addition, this reduces the dimensionality of the Hamiltonian system to one and a half

degree of freedom, namely, the (X, Y ) degree of freedom in addition to the explicit time

dependence. The phase space of the guiding centers is of dimension 3 which allows for a

facilitated visualization of phase space structures using, e.g., Poincaré sections. Here we take

advantage of this reduction to identify the phase-space structures governing the transport

properties in the system.

In order to model the turbulent electrostatic potential, we choose the following electro-

static potential in the rescaled units [6]:

φ(x, y, t) = A
M∑

n,m=1
n2+m2≤M2

1

(n2 +m2)3/2
sin(nx+my + ϕnm − t),

where ϕnm are random phases (uniform distribution in [0, 2π[). Together with the decrease of

the amplitude associated with small scales of typical size 2π/k as k−3, this potential mimics

4



some of the features of a turbulent electrostatic potential, notably electrostatic drift-wave

turbulence.

In what follows, we fix M = 25 and A = 0.7 and vary the other two parameters ρ and

η. For each values of the parameters, we integrate numerically the equations of motion for

the guiding centers for a large ensemble of initial conditions in [0, 2π[2 (see Supplemental

Material at [URL] for a brief description of the numerical scheme [7]). As it has already been

described in the literature, for ρ = η = 0, the dynamics exhibit two main types of trajecto-

ries: the trapped ones which remain inside elliptic islands forever, and chaotic ones which

resembles stochastic diffusion. The latter ones contribute the most to transport properties,

of diffusive type. In Fig. 1, we represent the expected diffusive (chaotic) dynamics and the

trapped particles (upper left panel). The diffusive character is evidenced by computing the

time- and ensemble-averaged mean square displacement (MSD) 〈r2(t)〉 of a set of untrapped

trajectories (lower left panel) (see Supplemental Material at [URL] for its explicit expres-

sion). In order to better visualize the phase-space structures, we plot a Poincaré section

(stroboscopic plot), i.e., the positions (X(2nπ), Y (2nπ)) for n ∈ N, of the guiding centers

at each period of the field (right panel). The Poincaré section clearly evidences the chaotic

dynamics of diffusive particles and the regular motion associated with the trapped particles.

We now increase ρ to investigate its role in the dynamics. For potentials with few spatial

Fourier modes, it was shown [1, 8–10] that the main effect is to reduce diffusion. In particular,

it was shown in Ref. [10] that the effect of increasing the Larmor radius was to regularize

the dynamics by decreasing the effective amplitude of the electrostatic potential (i.e., A

was replaced by AJ0(ρ
√

2) with the Bessel function of the first kind J0). Here we show

that the role of ρ is more subtle when a spatial structure of the electrostatic potential is

introduced. In Fig. 2, we represent the dynamics of guiding centers in R2 (upper left panel)

and the Poincaré section in (R/(2πZ))2 (right panel) for A = 0.7, ρ = 0.3 and η = 0.14. We

notice the same two types of trajectories as in Fig. 1, namely the trapped and the chaotic

trajectories. The main difference with Fig. 1 is that a new type of trajectories emerges, very

elongated in one direction. The MSD 〈r2(t)〉 shown in the lower left panel of Fig. 2 displays

a close-to-quadratic behavior in time, indicating a super-diffusive/ballistic behavior.

By looking at the Poincaré section in the right panel of Fig. 2 we notice that the tra-

jectories leading to this super-diffusive behavior are all organized in rather thin layers. A

zoom of one of these layers is displayed in Fig. 3. We clearly see that this region is orga-
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FIG. 1. Upper left panel: Poincaré section in R2 of guiding-center trajectories. Lower left panel:

Values of MSD of guiding centers as a function of time. Right panel: Poincaré section in (R/(2πZ))2

of guiding-center trajectories. The blue (black) dots correspond to trapped particles. The light

orange (light gray) dots correspond to chaotic trajectories. The parameters are A = 0.7, η = 0 and

ρ = 0. All units are dimensionless.

FIG. 2. Upper left panel: Poincaré section in R2 of guiding centers trajectories. Lower left panel:

Values of MSD of guiding centers as a function of time. Right panel: Poincaré section in (R/(2πZ))2

of guiding-center trajectories. The continuous black line on the right panel and on the upper left

panel corresponds to Poincaré sections of the twistless invariant torus organizing the lower layer of

super-diffusive transport. The blue (black) dots correspond to trapped particles. The light orange

(light gray) dots correspond to chaotic trajectories. The dark orange (dark gray) dots correspond

to ballistic trajectories. The parameters are A = 0.7, η = 0.14 and ρ = 0.3.
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FIG. 3. Left panel: Weighted-Birkhoff averages of rotation numbers computed for regular struc-

tures as a function of the initial condition Y0 while X0 = π, the reference values are Y ∗0 = 0.58 and

r(Y ∗0 ) ≈ 0.087647. The continuous black line on the left panel is an inset of the twistless invariant

torus depicted in Fig. 2. Right panel: Inset of Poincaré section shown in Fig. 2. The parameters

are A = 0.7, η = 0.14 and ρ = 0.3.

nized in invariant tori and resonant islands of rather large periods, evidencing some regular

structures as responsible for the super-diffusive behavior. In order to get more insights into

this region, we compute the rotation numbers of these regular structures. In the left panel

of Fig. 3, we display the weighted-Birkhoff averages for these rotation numbers [11] as a

function of the initial condition Y0 (see Supplemental Material at [URL] for their explicit

expression). These rotation numbers are on a bell-shaped curve, clearly evidencing the pres-

ence of a twistless invariant torus [12–14] at the center of the region where super-diffusive

behavior occurs. It should be noticed that these invariant structures constitute barriers of

transport in the Y -direction while drastically enhancing transport in the X-direction. More

precisely, Fig. 2 displays two regions of super-diffusive transport, one containing a twistless

invariant torus, while another containing the remnants of a broken one. The first leads to

a super-diffusion in the positive X direction, the second one in the negative X direction, as

it can be seen in the upper left panel in Fig. 2. It has also been verified that for ρ & 0.5,

there are two invariant twistless tori, one with a positive rotation number and one with a

negative one (see Supplemental Material at [URL] for a Poincaré section), meaning that the

broken twistless invariant tori has been restored by increasing ρ. Moreover, given the shape
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FIG. 4. Upper left panel: Poincaré section in R2 of guiding centers trajectories computed from

full-orbit trajectories. Lower left panel: Values of MSD of guiding centers as a function of time.

Right panel: Poincaré section in (R/(2πZ))2 of guiding-center trajectories computed from full-orbit

trajectories. The blue (black) dots correspond to trapped particles. The light orange (light gray)

dots correspond to chaotic trajectories. The dark orange (dark gray) dots correspond to ballistic

trajectories. The black lines in the upper left panel and in the right panel indicate the twistless

invariant torus found in the guiding-center approximation (same as in Fig. 2). The parameters are

A = 0.7, η = 0.14 and ρ = 0.3.

of the upper super-diffusive layer, the region of diffusive transport is pinched, and therefore

the diffusive behavior is almost completely suppressed, only a few particles diffuse through

the holes of the broken invariant structure, so extremely slowly. Transport properties are

dominated by this super-diffusive behavior.

In Fig. 4, we display a Poincaré section of the guiding centers reconstructed from the

full orbits obtained with Eq. (1) (see Supplemental Material at [URL] for the reconstruction

method). We notice that some of the structures present in the guiding-center dynamics can

still be observed and in particular, the regions where super-diffusive behavior occurs. This

observation validates the conclusions drawn using the guiding-center approximation.

The importance of twistless invariant tori resides in their robustness with respect to

perturbation, much more robust than regular invariant tori, as present, e.g., in trapped

islands (blue regions). As a consequence of their robustness, we expect their presence in a

rather large region in parameter space.
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FIG. 5. Values of b extracted from a power law interpolation (at)b of the values of MSDs of guiding

centers (obtained from guiding-center dynamics) as functions of time t for different values of the

parameters ρ and η. The white region is where no significant super-diffusive behavior was observed.

A = 0.7 is fixed for all the cases.

For each values of the parameters (ρ, η), we compute the values of MSD of guiding centers

as a function of time and interpolate these values with a power law, i.e., MSD(t) ≈ (at)b.

In Fig. 5, we represent the map of the values of b in parameter space (ρ, η). We notice that

a large region of super-diffusive behavior is present for ρ & 0.2 and |η| . 0.2. Poincaré

sections confirm that this large region of super-diffusive behavior is due to the presence of

two twistless invariant tori or remnants of broken twistless invariant tori. The transition

toward a super-diffusive/ballistic behavior occurs at around ρ ≈ 0.2–0.25 which corresponds

to 3 to 4% of the typical length scale of the electrostatic potential.

As an example, Refs. [15–17] provide typical values of e×Φ/T = 1%, Ωτ = 9.3×103 and

λ/ρ = 20 in the Tore Supra tokamak. These values correspond to dimensionless parameters

ρ = 0.3, η ' 7 × 10−5, A = 0.7. As shown in Fig. 5, these values are well inside the red

region where a super-diffusive behavior is expected (see Supplemental Material at [URL] for

a Poincaré section).
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The presence of twistless invariant tori in tokamak plasma physics has been previously

advocated for magnetic configurations presenting locally a reversed shear in their safety

factor profile [18]. Here the source of creation of such twistless invariant tori is completely

different since there is no shear in the magnetic configuration. The origin of the resulting

transport barrier is solely a consequence of the electrostatic turbulence, and more precisely

of the spatial structure of the electrostatic potential.

Anomalous transport was observed in electrostatic drift-wave turbulence (see, e.g.,

Refs. [18–20]) by tweaking the electromagnetic configuration or the equilibrium density

of the particles. Here the main result is that, with the same electric and magnetic field, the

nature of transport of charged particles can be completely different for different particles.

We identified a transition from diffusive to super-diffusive behavior in the plane perpendic-

ular to the magnetic field as the Larmor radius is increased. This super-diffusive behavior is

due to the presence of twistless invariant tori which constitute robust barriers of transport in

one spatial direction and is associated with ballistic transport in the other spatial direction.
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