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Fuel-Efficient Switching Control for Platooning Systems With
Deep Reinforcement Learning

Tiago R. Gonçalves1, Rafael F. Cunha2, Vineeth S. Varma3, and Salah E. Elayoubi1

Abstract—The wide appeal of fuel-efficient transport solu-
tions is constantly increasing due to the major impact of the
transportation industry on the environment. Platooning systems
represent a relatively simple approach in terms of deployment
toward fuel-efficient solutions. This paper addresses the reduction
of the fuel consumption attainable by dynamically switching
between two control policies: Adaptive Cruise Control (ACC)
and Cooperative Adaptive Cruise Control (CACC), in platooning
systems. The switching rule is dictated by Deep Reinforcement
Learning (DRL) technique to overcome unpredictable platoon
disturbances and to learn appropriate transient shift times
while maximizing fuel efficiency. However, due to safety and
convergence issues of DRL, our algorithm establishes transition
times and minimum periods of operation of ACC and CACC
controllers instead of directly controlling vehicles. Numerical
experiments show that the DRL agent outperforms both static
ACC and CACC versions and the threshold logic control in terms
of fuel efficiency while also being robust to perturbations and
satisfying safety requirements.

Index Terms—Vehicle platoons, deep reinforcement learning,
cooperative adaptive cruise control (CACC).

I. INTRODUCTION

The efficient operation of platooning systems is meaningful
due to their substantial economic and environmental impact.
This paper’s focus is on the suitability of switching classical
controllers in order to improve fuel efficiency in platooning
systems. In this context, a switching control architecture can
be viewed as a dynamical control constituted by a family of
controllers and a rule that coordinates the switching among
them. In other words, a logical strategy that decides the
activation of a specific controller at each instant of time. In
this work, we adopt a Deep Reinforcement Learning (DRL)
algorithm to dictate the switching rule. We identify that based
on the disturbances caused by the vehicle that precedes the
platoon, namely the jammer, a specific controller might be
more appropriate than others, in terms of fuel efficiency. In
particular, we evaluate such disturbances in a platoon system
under two well-known controllers: Adaptive Cruise Control
(ACC) and Cooperative Adaptive Cruise Control (CACC). The
former is pertinent due to the relatively low complexity of the
controller, which does not rely on the communication system,
and, therefore, might boost the deployment of platooning
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systems in the near future. Moreover, it is generally adopted
as a backup strategy in case of losing the communication
system link [1], [2]. Whereas the second controller allows
shorter inter-vehicle distances, which translates to substantial
improvements in fuel performance due to the air-drag reduc-
tion. However, the control effort for each alternative plays
an important role in the fuel efficiency [3], [4], and must be
carefully evaluated. As an additional remark, we would like to
point out that the switch between both controllers is motivated
by possible problematic scenarios, for instance, when a long
burst of losses in the communication network is observed or
by the requirement of extra inter-vehicle distances imposed by
merging and splitting maneuvers, and when aggressive jammer
behavior due to poor road traffic conditions is detected for
some period. Note that object detection and behavior predic-
tion in the road environment are the input and precondition
for DRL control which recent works have covered [5], [6].
Recently, there has been an increase in the number of DRL
algorithms that surpass human performance across various
fields. For a comprehensive overview, please refer to François-
Lavet et al. [7].

The main contribution of this paper is to demonstrate the
feasibility of a DRL approach to dictate the switching control
rule in order to improve the fuel efficiency of platooning
systems. Firstly, we identify the burden caused by abrupt
switching controllers under deterministic disturbances, and
thus, we propose an enhanced controller to mitigate such
transition losses. Secondly, we model such disturbances as
a random process and reformulate the vehicle platoon fuel
efficiency problem in a DRL framework. To the best of
our knowledge, the present study is the first to propose a
DRL approach to command the switching process in order
to increase fuel efficiency in a platoon while accounting for
stochastic traffic conditions.

II. RELATED WORK

In the literature, many works have addressed external forces
such as aerodynamic drag, rolling resistance, and gravitation
forces, which indeed are imperative to investigate the fuel
efficiency problem of platooning systems [4], [8], [9]. Turri et
al. [4] exploits the road topography information to predict the
behavior of vehicles to improve fuel efficiency in the platoon.
Unlike this work, the authors in [4] assume that external
disturbances, such as traffic ahead, are handled manually by
the drivers. Alam et al. [8] conducted an experimental study on
the fuel reduction potential for platooning systems under CC
and ACC control with different time-gap parameters. Unlike
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this work, the authors in [8] adopt fixed control parameters
over the corresponding scenario, while we address the fuel
efficiency problem by constantly adapting the controllers based
on the platoon’s disturbance behavior. Liang et al. [9] proposed
a parameter, called the platooning incentive factor, which is
responsible for indicating whenever is beneficial to form a
platoon. However, their approach is only valid under no traffic
conditions, which has limited practical purposes.

Another meaningful contribution of our study is related to
the DRL approach, adopted to learn from trial and error the
most suitable action, in order to increase the fuel efficiency of
the platoon when under stochastic disturbances. In this context,
researchers try to find solutions using such machine learning
techniques [10]–[12]. In a platoon framework, Ng et al. [10]
proposed a gain schedule control to be learned by an RL
technique. The authors show that when under platooning, their
approach performs better than a simple linearization of the
longitudinal model. The first attempt to use RL for controlling
CACC was made by Desjardins and Chaib-draa [11]. Different
from this work, the authors in [11] adopt a policy-based algo-
rithm, which allows them to handle continuous-state variables
and directly attempt to achieve longitudinal control, as the
output of the neural network. However, they faced oscillatory
behavior of the RL approach, which is avoided in our work,
as we do not attempt to control the platoon directly. Ling
et al. [12] considered a platoon in which the future velocity
profile of the preceding vehicle is predicted by Artificial
Neural Networks (ANNs) techniques that use a topographic
map of the road as input. Such a velocity prediction system is
used together with a Model Predictive Control (MPC) that
controls the platoon. Similarly, [13] addresses the energy-
consumption problem via an eco-driving control architecture
based on an MPC strategy. The authors in [14] also adopt
an MPC approach for fuel-saving but focus on the signalized
intersection problem where platoons are capable to split and
merge. However, the aforementioned works assume perfect
communication between all vehicles in the platoon, while we
only consider communication between consecutive vehicles.

Lately, Deep Neural Networks (DNNs) have been success-
fully applied to improve the learning ability of RL techniques,
which has led to the development of the DRL framework.
In this context, Chu and Kalabić [15] proposed a model-
based DRL approach that learns the best headway signals
for CACC in a platoon. They simply investigate a catch-up
maneuver to the leader vehicle, which does not justify the
DRL framework. Whereas in this work, our platooning system
is under uncertain and severe traffic conditions modeled by
stochastic disturbances that pose an enormous challenge to
maintain the platoon within the system’s constraints, which
clearly motivates the adopted framework. Chen et al. [16]
focuses on a path planning point of view that attempts to
determine the best path strategy for the platoon through
the employment of DRL techniques. The authors make a
restrictive assumption by selecting a mild road selected area
for the path alternatives that the vehicles are able to choose.

Therefore, in the literature, there is a lack of work that

investigates the feasibility of platooning under non-ideal traffic
conditions. Thus, the impact of time-varying traffic conditions
on the fuel efficiency of the platoon, and a DRL approach
that improves the performance by properly guiding switching
classical controls is our main contribution.

The notation used throughout is standard. For real vectors
or matrices, (′) refers to their transpose. The symbols R,
R+, Z+, N, K, Γ, denote the sets of real, real non-negative,
integer non-negative, natural numbers, K = {1, 2, · · · , N}
for a natural integer N , Γ = {0, 1, 2, · · · , r}, where r is a
fixed positive integer, respectively. Finally, we denote ⊗ the
Kronecker product. For the sake of compactness, whenever
possible, the time dependence of vector or matrix variables is
omitted.

III. SYSTEM MODEL AND PROBLEM STATEMENT

The objective of this section is to present the platoon model,
the fuel consumption model, the control schemes adopted, and
finally, the problem statement.

A. Platoon modeling with external forces

We aim to introduce external forces, particularly air-drag
resistance, which is one of the main parameters that alter
the fuel consumption of the platoon. We adopt the constant
spacing policy to exploit the gains of platoon formation, where
the inter-vehicle spacing of the ith vehicle in the discrete-time
is given by

ei(k) = pi(k)− pi−1(k) + li−1 (1)

and its difference as

ϵi(k) = vi(k)− vi−1(k) (2)

where k ∈ Z+, i denotes the vehicle index and i ∈
{0, 1, . . . , N − 1}, the leader vehicle being 0. li−1 is the
length of the vehicle i − 1, and pi(t) and vi(t) are the front
position and velocity of the vehicle i, respectively. Note that
we adopted a coordinate system where pi−1 > pi. We consider
a longitudinal vehicle model with additional external forces as
follows

ai(k) =
Fengi(k)

mi
−cDiψi(ei)Afiρair

2mi
vi(k)

2

− g(cri cos θ(k) + sin θ(k)) (3)

where the engine force is denoted Fengi , the second term is the
air-drag force, the third and last terms are the roll resistance
and gravitational force, respectively. Furthermore, concerning
the vehicle i, mi designates the vehicle mass, vi the vehicle
speed, cDi

is the air-drag coefficient and ψi(ei) ∈ [0, 1] is
air-drag ratio which depends on the inter-vehicle spacing ei
as in (1) when platooning, cri the roll resistance coefficient,
Afi is the front area of the vehicle, ρair is the air density,
θ(k) denotes the road slope, and g the gravitational constant.
Note that the function ψi(ei) is responsible for taking into
account the influence of the inter-vehicular distance on the
aerodynamic force that plays an essential role in platooning.
We have adopted the air-drag ratio model by [17]. Note that (3)
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as it is, presents very complex dynamics, so in order to cope
with the non-linearity and simplify its dynamics, we adopt the
following control law:

Fengi(k) = ui(k)mi +
cDi

ψi(ei)Afiρair
2

vi(k)
2

+ gmi(cri cos θ(k) + sin θ(k)) (4)

where ui(k) is the new input signal to be designed. Note that
we assume perfect knowledge about the system’s parameters,
but the interest in such a feedback linearization controller is
to linearize the vehicle dynamics and to eliminate nonlinear
terms. After linearization, we adopt a reasonable model for the
vehicle dynamics widely used in the literature in the discrete-
time form [18]–[21]: pi(k + 1)

vi(k + 1)
ai(k + 1)

 =

 1 Ts 0
0 1 Ts

0 0 1-Ts
τi


︸ ︷︷ ︸

Ã

 pi(k)
vi(k)
ai(k)

+
 0

0
Ts
τi


︸ ︷︷ ︸

B̃

ui(k)

(5)
where {pi, vi, ai} are the position, velocity and acceleration
of the vehicle i, respectively. The subscript i is the vehicle
platoon member index where i ∈ {0, i, · · · , N − 1} and 0
the platoon leader’s index. ui is the control input of vehicle i
after linearization, i.e., its desired acceleration. τi is the time
constant of the first-order low pass filter for each vehicle i,
and Ts is the sample time. The idea is to approximate the
dynamics of the throttle body and vehicle inertia in order
to avoid instantaneous response. Furthermore, control input
constraints are applied to avoid unpractical acceleration signals
as

umin ≤ ui(k) ≤ umax (6)

where umin and umax are the minimum, and maximum
acceleration signals admitted that compass the control signal.
In this paper, we assume an actuator lag of τi = 0.2 s ∀i ∈
{0, i, · · · , N − 1} as in [22], and we adopt a sample time of
Ts = 100 ms and a zero-order hold for the control input. So,
the general notation of the open-loop model of the system in
the discrete-time can be written as

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Dw(k)
(7)

where x(k) := [p0 v0 a0 e1 ϵ1 a1 · · · eN−1 ϵN−1 aN−1]
′,

indicates the state space vector of the system, u(k) :=
[u0 · · · uN−1]

′, is the vector of all control inputs. The
output vector available for feedback is defined as y(k) :=
[e0 ϵ0 v0 0 e1 ϵ1 v1 a1 · · · eN−1 ϵN−1 vN−1 aN−1]

′, and
w(k) := [pj vj ]

′ is the exogenous input, i.e. the jammer’s rear
position and velocity. Define R = (rnm) ∈ R3N×3N , where
rnm = -Ts for n = 3i+5 and m = 3i+3, i = {0, · · · , N−1}
and 0, otherwise. Thus, A = IN ⊗Ã+R, B = IN ⊗B̃, where
Ã and B̃ are defined in (5). Finally, note that

D =

[
−I2×2

03N−2×2

]
whereas C can be easily identified since the state space x(k)
and the output y(k) are defined. Next, we aim to introduce

the fuel consumption model, which will be used to estimate
the efficiency of the proposed techniques against classical
approaches.

B. Fuel consumption model

In this section, we derive a simple model that captures
the intrinsic relation between consumed fuel and generated
longitudinal force. In other words, we are mainly interested in
understanding how the system dynamics and external forces
affect the fuel consumption of each vehicle when platooning
under different inter-vehicle distances. In order to find such
influence, we start by modeling the energy loss (W ) of the
system model in discrete-time over time Tf as Oguchi et al.
[23]:

W (k) =

Tf∑
k=0

ζ(k) · Fengi(k) · vi(k) · Ts (8)

with

ζ(k) =

{
1 if Fengi(k) > 0

0 otherwise
(9)

where Fengi(k) > 0 indicates that propellant is used to
power the vehicle i as in (4), thus, resulting in losses to be
computed. In order to represent such energy losses in terms of
fuel consumed, we adopted the following converting method
defined by the following cost

J(u) =
1

ρprop · ηeng
W (10)

where ρprop and ηeng are the energy density of the propellant
in [J/L] and the constant efficiency of the engine, respectively.
Note that we consider those parameters as ρpro = 34.9MJ/L
and ηeng = 30% which correspond to average gasoline density
energy and efficiency [24]. From (10), we can see that fuel
consumption depends mainly on the relative distance between
vehicles in the platoon, the speed of the vehicle, and the
control effort. However, there is a consensus about the speed
adjustment that even though the air-drag can be significantly
reduced when the velocity v is decreased, this is generally not
economically viable due to tight delivery schedules. Therefore,
when seeking fuel consumption efficiency, we must optimize
the inter-vehicle distance in the platoon to improve the air-
drag ratio function (ψi(ei)) and the control effort ui(k). An
illustration of the achievable air-drag reduction in terms of
the inter-vehicle distance between vehicles when platooning
is given in Fig. 1.

C. Classical control schemes for platooning

1) Adaptive Cruise Control: We make use of the ACC
controller due to its relevance for the deployment application
of platooning systems in a decentralized design that does
not require any type of communication. Additionally, such
a controller is string stable with a constant time-gap, which
translates to robustness and safety under perturbations. There-
fore, consider the following output feedback control law

u(k) = −K0y(k) (11)
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Fig. 1: Air-drag reduction for trucks in a platoon at 80km/h
empirically obtained. The figure is adapted from [17].

where K0 ∈ RN×4N is the controller ACC gain defined by

K0 =


χi 0 · · · 0

0 χi+1

...
...

. . . 0
0 · · · 0 χN−1

 (12)

where

χi =
[

λi

hi

1
hi

λi 0
]
, i = {0, 1, · · · , N − 1} (13)

are the ACC controller gains with a constant time-gap spacing
policy proposed by [25], and h and λ are the time-gap and
design gain parameters, respectively. Note that this generic
notation allows us to consider a centralized (λi = λ ∧ hi =
h, ∀i) or a decentralized (λi ̸= λ ∧ hi ̸= h, ∀i) ACC
controller.

2) Cooperative Adaptive Cruise Control: Besides the ACC
controller, we adopt the CACC controller to exploit the
communication features of forwarding the acceleration signal.
Therefore, this controller allows a constant spacing policy that
aims to keep a certain desired distance (ddes) between suc-
cessive vehicles. However, in this paper, we adopt the weight
of the leader parameter as zero, c = 0, which corresponds to
the semi-autonomous control. The motivation behind this is
to eliminate the impact of leader packet delay in the platoon.
Thus, the communication analysis is substantially simplified
since we only assume perfect communication for vehicle-to-
neighbor links. This is reasonable as a result of the very low
probability of packet error for consecutive links thanks to line-
of-sight propagation [26].

Therefore, consider the following output feedback control

u(k) = −K1y(k) (14)

where K1 ∈ RN×4N is the controller gain defined by

K1 =


χ0 0 · · · 0

0 φi

...
...

. . . 0
0 · · · 0 φnu

 (15)

where the first term is the ACC controller previously imple-
mented in the leader vehicle to be in conformity with spacing
policies imposed by public entities. The next term is then,

φi =
[
kp kd kc 1− ci

]
, i = {1, · · · , nu − 1} (16)

which are the CACC controller gains defined by

kc =(ξ +
√
ξ2 − 1)ωnci (17)

kd =(2ξ − ci(ξ +
√
ξ2 − 1))ωn (18)

kp =ω2
n (19)

which are the different control gains that depend on the
following parameters ci, ξ, and ωn, which correspond to the
weight of the leader information, the controller damping ratio,
and bandwidth, respectively.

D. Enhanced proposed controller

We propose to design a switching controller that alternates
between CACC and ACC based on the jammer behavior. Un-
fortunately, an abrupt switching produces undesired transient
responses in the control signal, which translates to misuse
of fuel. In order to cope with that, we propose an enhanced
controller responsible for mitigating such misuse. So, having
presented the classical control schemes, we introduce the
proposed enhanced switching control scheme, and we perform
a case comparison over previous control strategies in terms of
fuel efficiency. The particular reason is that in such a transient
stage, the new controller is taking place, which is significantly
different from the previous one (ACC to CACC and vice-
versa). In other words, the initial conditions are far away from
the steady-state conditions, which causes very sharp transient
responses leading to non-optimal switching logic in terms of
fuel efficiency. In order to smooth such unsuitable transient
responses, and to improve fuel efficiency, we propose the
following enhanced control

u(k) = −(β(k)K1 + (1− β(k))K0)y(k) (20)

where β(k) ∈ {0, 1/δ, 2/δ, · · · , 1} is a dynamic coefficient,
which will be detailed in the following, and δ is a control
design parameter that corresponds to the minimum subinterval
considered for a control action, in the order of seconds. Note
that β(k) is responsible to weight the influence of each state-
feedback gain for the ACC and CACC controller, given by
K0 and K1, respectively. In other words, it corresponds to
the parameter used to smooth the switching transition control.
Another important parameter is the set of transitions times
defined by

K = {k1, k2, · · · , kW } (21)
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where the following holds

ki − ki+1 ≥ δ ∀i ∈ {1, · · · ,W − 1} (22)
0 < k1 < k2 < · · · < kW < T (23)

where T is the maximum simulation time adopted. Further-
more, the dynamics of the smooth switch parameter follows:

β(k + 1) = β(k) + ϱ(k) · (−1)β(ki) · 1
δ

(24)

where ki ∈ K such that ki ≤ k < ki + δ, and

ϱ(k) =

{
1 if k ∈ [ki, ki + δ]

0 otherwise
(25)

∀ki ∈ K, where we initialize with β(0) = 0, which corre-
sponds to ACC controller. We expect substantial improvements
with the enhanced proposed controller. The intuition behind
such gains is related to the incorporation of the control pa-
rameter β(k) in the final control law, which leads to smoother
switching of the combined control actions with respect to time.
Whereas without such a parameter, the non-enhanced control
abruptly changes the control law in just one time step, which
causes a much larger transient response that translates to a
waste of fuel.

E. Objective

Once the system dynamics, the fuel consumption model,
and the controllers are defined, we are able to state the main
objectives of this paper. Considering the system (7), we want
to minimize the fuel consumption cost (10) for an established
set of control as in (20) and its transition times (21) chosen
by the policy learned by the learning algorithm subject to

pi−1 − pi − li−1 ≥ dmin

pi−1 − pi − li−1 ≤ dmax

vmin ≤ vi ≤ vmax

umin ≤ ui ≤ umax.

(26)

Therefore, the objective function can be written as

min
K as (21)−(23)

{J(K) : constrained by (7), (20), (24), (26)}
(27)

Additionally, note that J(K) is given by (10) where u(k)
is of the type given in (20), that depends of k and β. The
latter is related to K via its ki dependence, as in (24), which
fully describes the controller under consideration in this work.
While under no jammer disturbance, CACC is better than
ACC in terms of fuel efficiency as it accounts for the air-
drag reduction, 0 ≤ ψi(ei) < 1, the same is not true
for random/stochastic jammers or disturbances. Indeed, we
have noticed that ACC expends less fuel due to its moderate
behavior when compared to CACC stringent constant distance
gap policy. These two features motivate the use of DRL
techniques to find fuel-efficient control policies to cope with
the uncertainty of the jammer profile.

IV. OPTIMAL POLICY FOR CONSTANT JAMMERS

In this section, we introduce an optimal switching control
policy, in terms of fuel efficiency, for a platoon environment
with constant jammers. We aim to isolate the contribution to
fuel consumption by two main factors: air-drag and control
effort. The air-drag force Fair is modeled as in (3), and its
reduction amount fluctuates based on the inter-vehicle spacing
between vehicles, as presented Fig. 1. The aim is to investigate
the specifics of both ACC and CACC control in terms of fuel
efficiency. It is clear that both controllers are very distinct and
require different information in order to adjust their parameters
accordingly. Therefore, in the light of the idea of Liang et
al. [9] that focuses on a method where a platoon member
drives faster and catches up with the lead vehicle, we present
a theorem that confirms the burden caused by the switching
control policies under constant jammer profile.

Theorem 1. Consider the fuel consumption given by (10), the
engine force as in (4), and the controllers ACC and CACC by
(11) and (14), respectively. Assume that both controllers are
tracking the same speed. Define the transition times between
controllers as the set K = {k1, k2, · · · , kW } subject to (22)-
(23). Let Jswitch be the fuel consumed for at least one
transition time from one controller to the other, i.e. K ̸= ∅,
and Jhold the fuel consumed when the platoon keeps the CACC
control the whole time, i.e. no possible transition K = ∅. Then,
the following holds true for a constant jammer profile when
considering the same travel distance.

Jswitch > Jhold (28)

Proof. In order to evaluate the impact of switching control
in terms of fuel burden, we must keep all the other factors
constant. Thus, all vehicle parameters are set equal, and a
constant jammer profile is considered, i.e. no disturbance. Note
that the following holds

v̄β > vacc = vcacc (29)
1 ≥ ψ(eacc) > ψ(eβ) > ψ(ecacc) > 0 (30)

vaccTacc +

tacc+tβ∑
tacc

vβTs + vcaccTcacc = vcaccTf (31)

vacc, vcacc, ψ(eacc), ψ(ecacc) constants (32)

where the first inequality means that the mean of the transient
velocity is greater than ACC and CACC velocity, this is a con-
sequence of the fact that both controllers track the same speed.
The second inequality ensures that the possible reduction air-
drag is monotonic due to inter-vehicle spacing fluctuation.
The third equation guarantees that the travel distance is the
same. The fourth represents that, in the steady state, both
controllers keep a constant speed and distance. To simplify
the notation, consider vacc = va, vcacc = vc, ψ(eacc) = ψea ,
ψ(ecacc) = ψec , ψ(eβ) = ψeβ , and the subscripts acc = a, and
cacc = c.
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Describe the total fuel burden components due to switching
logic control components as the following phases:

Jswitch = JACC + Jtrans + JCACC (33)

where the three terms stand for the total fuel spent by the
ACC, transient and CACC control, respectively. Consider that
switch performs a single transition K = {k1}, here namely
k1 = tacc, which is the time spent over the first controller
that corresponds to ACC controller as previously defined with
β(0) = 0. Thus, inserting (10) in (33) and considering ϕ(·)
a transformation function that accomplishes for the remaining
terms in (10), leads to:

ϕ(JACC + Jtrans + JCACC) =

=

ta∑
k=0

v3aψeaTs +

ta+tβ∑
k=ta

v3βψeβTs +

ta+tβ+tc∑
k=ta+tβ

v3cψecTs

> v3aψecTa + ψec

ta+tβ∑
k=ta

v3βTs + v3cψecTc (34)

> v2cvaψecTa + ψecv
2
c

ta+tβ∑
k=ta

vβTs + v3cψecTc (35)

= v2cψec

(
vaTa +

ta+tβ∑
k=ta

vβTs + vcTc
)

(36)

= v2cψec(vcTf ) (37)
= ϕ(Jhold) (38)

Where inequality (34) holds by (30), and we also used the fact
that vacc, vcacc, ψ(eacc), ψ(ecacc) are constants, according
to (32). Inequality (35) holds by (29). Equality (37) holds
by (31), that is, we are comparing fuel consumption over the
same distances, and (38) is obtained by noting that (37) is the
definition of ϕ(Jhold). As a consequence, the result provides
the exact inequality as (28), which thus concludes the proof.

Therefore, under a constant jammer disturbance, no switch-
ing logic is required as it will add a costly transient term
that will never be beneficial due to steady conditions after
switching. Moreover, the optimal choice is to keep the CACC
control which benefits from the air-drag reduction (see Remark
1).

Remark 1. The superiority of CACC over ACC in terms of
fuel efficiency is straightforward under constant speed, i.e. no
jammer. In order to verify it, the following must hold:

JCACC < JACC (39)

Then, by inserting (10) in (39) and considering (30) due
to larger distances of the constant time-gap spacing pol-
icy of ACC controller when compared to CACC, negligible
(des)acceleration phases, and a flat road (θ = 0), it yields to

ψ(ecacc)v
3
caccTcacc < ψ(eacc)v

3
accTacc (40)

which holds when (30)-(32) are true under no switching
assumptions, i.e. Jtransient = 0.

V. STOCHASTIC DISTURBANCES

So far, we have considered deterministic jammer profiles,
which allow us to conveniently address the fuel efficiency
platooning problem. However, in practical terms, such an
analysis is very limited since the jammer vehicle presents
stochastic characteristics due to its unpredictable behavior. In
this work, we model only one external vehicle on the highway,
which is the jammer vehicle, and the platoon is assumed to
travel behind it. Therefore, first of all, we aim to present
how we model the uncertainty of the jammer’s dynamics.
In the sequel, we introduce DRL techniques and a threshold
switching rule as solutions for the problem.

A. Jammer profile modeled with Markov chains

In particular, we have adopted a discrete-time Markov
process to model the jammer velocity profile. In order to be
conservative, we have adopted essentially two different modes.
The first one is a constant profile which indicates that the
jammer is driving mainly at a constant speed. The second is
an aggressive velocity profile commonly used in the literature
to evaluate the robustness of platoon systems as in [26], [27].
In particular, we have adjusted the jammer acceleration bounds
to −2 ≤ aj(k) ≤ +2 in order to produce a zero average. More
formally, we have the jammer’s dynamics given by:

wσ(k)(k + 1) =

[
1 Ts
0 1

] [
pj(k)
vj(k)

]
+

[
0
Ts

]
a
σ(k)
j (k)

(41)
where vj is the velocity of the jammer for a certain discretiza-
tion time Ts, and a

σ(k)
j is the acceleration of the jammer

profile dictated by σ(k) that is a random variable governed
by a discrete-time Markov process. Therefore, we are able to
model the jammer dynamics by adjusting its acceleration with
the σ(k) parameter as introduced next.

Assumption 1 (Markov switching signal for the jammer).
We adopt a discrete-time Markov chain to model the possible
modes of the jammer profile. The random switching process
{σk} is said to be a finite and homogeneous Markov chain if
for ∀k ∈ Γ,

P (σk+1 = j|σk = i, σk−1 = ik−1, · · · , σ0 = io)

= P (σk+1 = j|σk = i) = pij . (42)

where pij is the transition probability that does not depend on
time k. Note that the rows of any state transition matrix must
sum up to one, more formally

r∑
k=1

pik =

r∑
k=1

P (σk+1 = k|σk = i) = 1. (43)

Based on the Champman Kolmogorov equations, one might
define the k-step transition probabilities for a homogeneous
Markov chain based on the initial probability distribution
π0 = [π1, π2, . . . , πr] that yields to

πk = π0P
k. (44)
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If the chain is irreducible and aperiodic, then the set of equa-
tions (43)-(44) has a unique solution known as the limiting
distribution of the Markov chain, i.e.,

πj = lim
k→∞

P (σk = j|σ0 = i) (45)

for all i, j ∈ Γ. See [28].

Therefore, we consider the case where σ(k) ∈ Γ = {0, 1},
which here denote steady and aggressive modes, respectively.
Both are characterized by the following

a
σ(k)
j (k) =

{
ϑ ∗ U [−ς, ς] if σ(k) = 0

h(k) if σ(k) = 1
(46)

where U [−ς, ς] follows an uniform distribution from −ς to
+ς where ς ∈ R+, and ϑ is a scalar variable responsible to
adjust the acceleration’s amplitude of the steady mode, and
h(k) corresponds the following function

h(k) =

{
−ς if k ≤ δ/2

+ς otherwise
(47)

where δ is the subinterval considered between transitions
times defined in (22). Note that a triangular shape function
is obtained as the jammer’s speed. Finally, we can rewrite
the output of the system (7) as a function of the stochastic
disturbance

y(k) = Cx(k) +Dwσ(k)(k) (48)

where σ(k) = {0, 1} is the random variable governed by a
discrete-time Markov process.

B. Troublesome conditions

We have successfully treated the jammer behavior as a
random process by adopting a discrete-time Markov chain.
However, despite that, we are interested in modeling unlikely
scenarios such as the case when suddenly the jammer behavior
changes to the opposite mode only for some short fixed
interval. In this framework, we have considered for each
subinterval time δ a probability of 5% and 10% for such a
condition to happen, namely troublesome condition. Therefore,
based on the actual state space Γ = {0, 1} selected, the jammer
profile shifts to the opposite state with the aforementioned
probability. The idea behind this additional obstacle is to stress
even more the system in order to achieve robust outcomes.
More precisely, our goal is to avoid a very clear distinction
between profiles, for which a simpler threshold switching
logic solution would be enough, and to model the real-life
behavior of drivers who are not always rational/predictable.
Furthermore, we want to evaluate the burden of changing
controllers to address such troublesome conditions.

VI. PROPOSED SWITCH CONTROLLERS

In this section, we aim to propose two switching controller
approaches to handle the stochastic disturbances previously
introduced.

A. Threshold logic for switching platoon controller

First, we adopt a simpler approach that requires little
computational burden. We aim to mitigate large oscillation
amplitudes that might occur during switching controllers. Our
goal is to provide a threshold logic that triggers a particular
control strategy. Therefore, we can design a threshold rule
based on the parameters of the state space of the system
xi(k) responsible for specifying the controller set (u) that
is a combination of ACC and CACC as (20). In order
words, such a controller generates a set of transition times
K = {k1, k2, · · · , kW } based on the jammer behavior. In order
to smooth out short-term fluctuations and highlight longer-
term tendencies, we apply a moving average where the mean
is calculated over a sliding window of length sw across
neighboring elements of the state space parameter xi(k). More
formally, the set of transitions time K uses a threshold logic
and is defined as

K =
{
k ∈ Z+|(β(k) = 0 and ā0 > εth) or

(β(k) = 1 and ā0 ≤ εth)
}

(49)

where ā0 =
√

1
sw

∑k
k−sw a0(k)

2 is the moving average of
the acceleration of the leader over a sliding window of length
sw. The variable εth is the threshold value, which will be
determined in the next section.

B. Deep reinforcement learning for switching platoon con-
troller

Although simple to implement, the previous controller has
its limitation since the threshold parameter εth is adjusted
empirically based on observations. Thus, when the traffic con-
ditions are time-varying and unpredictable (as is often the case
in practice), tuning this parameter offline becomes infeasible.
Another option is to adopt an online model-free learning
approach since we are dealing with stochastic disturbances.
In this work, we adopt a DRL framework to determine the
most appropriate action in terms of fuel efficiency and safety.
However, due to safety and convergence issues of DRL, our
algorithm establishes transition times and periods of operation
of both ACC and CACC controllers instead of directly con-
trolling the vehicles. In other words, the learning dictates the
switching rule by defining the set of transitions times K where
the switching of controllers takes place. The appropriate choice
is unknown due to the unpredictable behavior of the jammer
vehicle. Such a challenge motivates the use of DRL algorithms
that are able to learn the preceding vehicle dynamics from
iterative experiences with the environment.

The problem of longitudinal vehicle platoon control is
formulated as a Markovian Decision Process (MDP, [29]). An
MDP is defined as a tuple M ≡ (S,A, p, r, γ). The set S is
the DRL state space which in our case is continuous. A is a
finite action space. For each s ∈ S and ã1∈ A, the transition
function p(·|s, ã) gives the next-state distribution upon taking

1In the literature, the action is usually denoted by a. However, in order to
differentiate from the acceleration of the vehicles, we adopted ã to symbolize
the action from the agent.
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action ã in state s. Observe that p is related to (7, 20, 48), and
it is stochastic due to the presence of σ(k). r : S×A×S → R
is a reward function more detailed in the sequel. Let St, Ãt

and Rt = r(St, Ãt, St+1) be random variables corresponding
to the state, action, and reward, respectively, at time step t.
γ ∈ [0, 1) is a discount factor that gives smaller weights
to future rewards. The goal of the agent is to find a policy
π̃ : S → A that maximizes the expected discounted sum of
reward (return) Gt =

∑∞
i=0 γ

iRt+i.
Therefore, since the state set S is continuous and the

action set A is discrete and taking into consideration its ease
of implementation and performance properties [7], we have
adopted the value-based Double Deep Q-Networks (DDQN)
algorithm proposed by van Hasselt et al. [30]. In order to
learn the best actions to be chosen, this network approximates
the Q-function while addressing the overestimation problem
and improving the stabilization of the training. The experience
replay buffer is used to store past experiences, and randomly
use subsets of them to update the Q-network improving
the sample efficiency of the training. The DDQN algorithm
adopts the epsilon-greedy method as its exploration strategy
as defined by

g(t) = 0.05 + 0.85e−
t
7 (50)

which means that if a random number generated by the model
at a certain step t is lower than (50), the model selects a
random action (exploration), but if it is higher than (50) the
model chooses an action based on what it has learned so far
(exploitation). The main components of our formulated MDP
are explained next.

1) State space (S): Characterized by the relative position,
velocity, absolute acceleration of each vehicle of the platoon,
and the platoon’s accumulated fuel consumption as defined in
(10). In summary, the DRL’s state space is defined as S =
[e1 ϵ1 a1 · · · eN−1 ϵN−1 aN−1 J1 · · · JN−1]

′ where N is the
platoon size. Note that the DRL state space is different from
the dynamical system’s state space, as defined in (7).

2) Action space (A): The discrete set A ≡ {0, 1} is the
action space. It corresponds to two discrete actions (0 or 1) in
which the ACC or CACC controller is selected, respectively,
as previously defined in Section III.

3) Reward function (r): A proper design of the reward
function is crucial for the convergence of the DRL algorithm.
In this study, the interest is to improve fuel efficiency while
maintaining safety, so we considered the following reward
function evaluated at each subinterval δ:

r = rstep + rcollision (51)

where rstep represents the time-step cost, which can be mea-
sured by the number of running cycles, and it is defined as:

rstep =

{
1 if k · Ts ≤ V · δ
κ/δ otherwise

(52)

where k · Ts is the discrete-time of the system with a sample
time of Ts, κ is the total number of time-steps in which the
limit of fuel supply is attained, δ is the MDP sampling time,

and V is the maximum positive integer multiple of δ defined
by V =

Tf−κ
δ , such that V δ < Tf . Note that 0 ≤ κ/δ ≤ 1

is a fraction of a unitary reward which is proportional to the
remaining time. Finally, kp = pδ where p = 0, · · · , V − 1.
As a result, the agent receives a positive reward for each
subinterval proportional to the sampling time, and in the case
of reaching out of fuel condition sooner than the sampling
time, only its fraction is considered. Note that one of the
termination conditions of the simulation is when the platoon
fuel is completely used up. The rstep term of the reward will
make the return increase when the simulation runs for more
steps, meaning that the platoon used its fuel more efficiently
since it lasted for a longer time. Finally, in order to raise
safety performance, collisions were treated as penalties with
the following reward policy:

rcollision =

{
−kcol if e(k) < dmin

0 otherwise
(53)

where kcol is a positive constant that can be adjusted, and e(t)
is the inter-vehicle spacing defined in (1) which, in this case,
is lower bounded by the minimum distance dmin in meters.
The other termination condition of the simulation is when
a collision happens. Prematurely terminating the simulation
and giving a negative reward at the final step due to collision
will minimize the return, making the learning algorithm avoid
triggering collision events.

Experimental settings: We adopt two hidden layers of
rectified non-linearity with 64 units each. The final layer of
the DDQN is linear with a scalar output of the Q-value for the
possible actions that could be taken. Default hyper-parameters
are used for training DNN weights as follows: learning rate
α = 10−3, discount factor γ = 0.99, and batch size of 64. The
reward constants are set to be kcol = 1, and minimum and
maximum distance bounds for reward penalty as dmin = 1
and dmax = 70, respectively. The MDP problem is set with
a time-step of Ts = 20 s while the system dynamics time-
step is Ts = 0.1 s. State normalization was demonstrated to
be of utmost importance for algorithm convergence. Because
in DNN training, the scale of the input signal is maintained
when it is passed through the DNN.

VII. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
the system according to different control approaches.

A. Numerical stochastic profiles of the jammer

Before introducing the simulation environment, we highlight
the particular class of stochastic disturbances modeled by a
two-state Markov chain. The first mode represents the constant
profile, and the second is the aggressive one. Furthermore, a
Markov process is completely determined by the well-known
transition matrix P , which for the adopted scenario is defined
by

P =

[
0.9975 0.0025
0.0165 0.9835

]
. (54)
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Fig. 2: Overview of the DRL framework for our platoon
system.

This leads to a higher recurrence of the constant mode when
compared to the aggressive mode. We aim to simulate a
highway scenario where traffic jams occur less often. Con-
sequently, we adopt a uniform distribution of the acceleration
of the jammer as ς = 2, so U [−2, 2] weighted by ϑ = 0.01
constant in order to produce such nearly steady behavior.

B. Simulation environment

The entire simulation was built with Python to al-
low straightforward analysis since the DDQN algorithm is
smoothly attainable on it due to the support of external li-
braries. Likewise, we built our own system environment, which
includes the longitudinal platoon, the fuel consumption model,
and the stochastic behavior of the jammer. In the learning
framework, we adopt a considerably different sampling time
when compared to the discretization interval Ts = 100 ms of
the system dynamics, as shown in Figure 2. In fact, we exploit
an MDP system with subintervals of δ = 20 s, which translates
to updating the learning algorithm less frequently. Note that as
the environment is under a sampling time of Ts = 100 ms, the
fuel consumption, the traveled distance, and possible collisions
are still evaluated in a refined manner. Such difference is
fundamental to mitigate the computation complexity for the
DRL approach. This approach implies that the chosen control
does not change, for at least δ = 20 s, which is pertinent
to real traffic situations, but the proper value is beyond the
scope of this work and is left for future evaluation. Finally,
all the simulation parameters adopted for both the control and
DRL framework (hyperparameters) are depicted in Table I.
The values of the parameters for the energy consumption and
the vehicle model were borrowed from Table 3 in Kulava et
al. [31].

In the considered scenario, we adopted a homogeneous
platoon with N = 3 vehicles and with actuator lag of
τi = 0.2 s ∀i. More precisely, the environment is initialized
with the leader and two platoon members and with a random
jammer profile that follows a Markov chain, as previously
stated. In each step of an episode, the agent examines the most
updated state and the reward feedback before deciding which
actions to take. Therefore, based on the environment, i.e., the
disturbances caused by the jammer, the agent gets a reward and
calculates the most appropriate action (ACC or CACC control)
that leads to the most efficient fuel consumption policy. Note

TABLE I: Neural network, control and traffic simulation
parameters

Control and Traffic Neural Network
Parameter Value Parameter Value

Simulation duration 1000 s Learning rate (α) 10−3

Jammer profile Stochastic Discount factor (γ) 0.99
Platoon size (N) 3 Batch size 64
ACC Reward {kcol} {1}
Time-gap (h) 1.4 Bounds {dmin, dmax} {1, 70}
Gain (λ) 0.5 Hidden layers 2
Standstill dist. (dss) 7 m Buffer size 10000
CACC MDP sampling time (δ) 20 s
Leader factor (C) 0 Steps update target NN 500
Desired dist. (ddes) 7 m Epsilon-greedy Eq. (50)
Damping ratio (ξ) 2
Bandwidth (ωn) 0.5 Hz

Fig. 3: Performance results for the training phase of the DDQN
agent. We can see an empirical convergence of the average
reward function over the respective epochs.

that due to the modification of the sampling time, the agent
is only allowed to make decisions at each δ = 20 s. Figure
3 shows the normalized average reward during the training of
the DDQN agent, and illustrates that empirical convergence
is achieved. Note that after a certain number of episodes, the
average reward in the normalized graph increases from 0.0 to
approximately 0.7± 0.1.

C. Performance over baseline

In order to evaluate the performance of the proposed
controllers, we considered the static ACC controller as the
baseline approach. It performs the safest outcomes due to
requiring larger inter-vehicle distance and does not rely on
any type of V2X communication. Moreover, such a controller
is generally established as a backup system in case of losing
the wireless link for an extended period of time [1], [2].
Therefore, to validate the performance of both threshold and
DRL approaches over static control strategies, we compare
them under the same environment settings per episode, we
generate several episodes to obtain a reliable amount of
samples. To validate our model performance against all ap-
proaches, we generated a test data set consisting of a thousand
unseen jammer profiles modeled with Markov chains. Table II
encompasses the average performance comparison of different
approaches against baseline (ACC) for the test data set. It
includes naive and optimized threshold policies and the DRL
approach, as explained next. We can conclude that the DRL
approach achieves the most suitable behavior among all the
evaluated alternatives with an average +6.83% of superiority
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TABLE II: Average fuel-efficient performance comparison
against baseline (ACC) for 1k episodes for transition matrix
P as in (54).

Threshold Threshold DRLnaive optimized
5% troublesome 4.68 % 6.13 % 6.83 %
10% troublesome 3.16 % 5.03 % 5.74 %

in terms of fuel consumption efficiency for 5% of troublesome
conditions. It should also be noted that fuel reduction is
obtained without reducing the average velocity.

Both threshold policies are defined by the same sliding
window of length sw = 50 s as in (49), but different threshold
parameter values εth are adopted. For instance, the optimized
threshold version, namely εtho = 1.23, is obtained after care-
ful heuristic optimization by observing several simulations.
Whereas the naive threshold, given by εthn

= 0.1, represents
a simpler method acting for small acceleration changes. The
optimized threshold value is set up experimentally based on
the effect of the jammer disturbance and the suitable control
signal to react to it.

We next describe the performance in terms of fuel efficiency
for a particular jammer profile as shown in Figure 4a. This
particular sample displays a robust profile with reasonable
troublesome conditions, in addition to aggressive and steady
behaviors. Furthermore, notice that the steady mode prevails
as we attempt to model the stochastic behavior of vehicles
on the highway where traffic jams occur sporadically. Figure
4b exhibits the performance over the baseline for a particular
disturbance sample, i.e., it is the percentage error of the
evaluated controllers compared against the baseline under the
disturbance shown in Figure 4a. As can be seen, the DRL
approach, in solid blue, detains the highest fuel efficiency
among all cases compared to the baseline. Note that in Figure
4b, we used the trained DDQN agent and not its performance
under exploration. Next, Figure 4c illustrates the relative
distance for the platoon members for different approaches for
the same experiment. Unlike the speed profile, we can see a
substantial difference between the approaches. In particular,
due to fewer switching control modes, the DRL approach
can keep short distances (7 m) for around 400 s to 1000 s
despite the disturbances. Due to many switching controls, the
threshold displays considerable fluctuations between 30 to 7
m, producing uncomfortable behavior for the passengers and
undesired fuel.

Finally, Figure 4d displays the smooth control design pa-
rameter β(k) proposed to mitigate the losses caused by the
switching control. We can observe the DRL approach properly
adopts the ACC control (β(k) = 0) during the aggressive
mode of the jammer (as seen in the time-scale between 200 to
400 s) and refuses to switch during troublesome conditions that
do not remain for long. Moreover, in dotted green, the naive
threshold logic approach performs almost three times more
switching behavior than the DRL approach, which translates to
unnecessary actions and undesired losses. On the other hand,
the optimized threshold logic performs better than the naive

approach, with slightly more switching behavior than the DRL,
highlighting the importance of properly tuning the threshold
parameter.

VIII. CONCLUSIONS

In this paper, we have precisely addressed the fuel efficiency
in a longitudinal platoon by means of switching classical
control policies such as ACC and CACC through a DRL
approach. We contemplate stochastic disturbances, which are
modeled by Markov chains. To cope with such a stochas-
tic framework, we proposed two different switching control
strategies: a threshold switching rule and a DRL approach.
Our simulation results show that the DRL approach is the
most fuel-efficient when compared to all evaluated controllers.
Despite the relatively small advantage obtained, we expect
a substantial improvement when the hyper-parameters of the
neural network are properly configured. Also, note that we
assumed a simple model for the fuel consumption of the
vehicles that is a function of velocity and engine force. In
actual vehicles, due to gear shifts, the actual fuel consumption
may be even higher, which we expect to boost the platoon
gains. For future work, we aim to adopt selected datasets
with realistic velocities profiles of vehicles to improve the
jammer model and to extend the theorem analysis for the case
of not constant jammer disturbances. Furthermore, we aim to
consider a decentralized setting, treating each platoon’s vehicle
as an individual DRL agent. Finally, we can focus on our own
reinforcement learning algorithm and compare its performance
over traditional approaches.
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at CentraleSupélec, France. His research interests include radio resource
management, modeling, and performance evaluation of mobile networks.

12


