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ABSTRACT: 
Faced with increasing competition in the global automotive market, reducing costs and design time has become a major focus of development 
among manufacturers. Faced with these needs, the numerical simulation of shaping processes has become an essential tool. It saves 
considerable time in the upstream phase of a project by reducing the number of experimental campaigns on prototypes. The studied 
mechanical system consists mainly in a part crimping at one end of a multi-stranded wire rope, which is stressed in tension. In order to 
reduce calculation time, it is important to get the optimal meshing parameters which provide a high accuracy. In this paper, a numerical 
model of a single layered wire rope is studied. The objective is to determine the optimal size and shape of meshing elements to get both 
accurate and fast results. First of all, the wire strand is investigated in tension and compared with the analytical formulation by G.Costello. 
Then, the organized wire strand is investigated in crimping process for the first time. The process reveals the optimal solution is with 16 
elements in the diameter of the wire and 15 times longer than wider. This model is then used to simulate the behavior of a strand in a first-
ever combined crimping-tensile test in order to obtain a minimal crimping length. This work can be very important for designers to reduce 
considerably the calculation time of their numerical models while guarantying a great accuracy in the mechanical behavior of a wire rope. 

 
Keywords: Wire rope, Finite element simulation, meshing process, optimization, Mesh elements parameters optimization, Single-layered 
wire strand numerical model, Wire strand optimal mesh parameters, Wire rope crimping simulation, Tensile stressed wire strand 
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NOTATION: 
 

D mm Diameter of a wire 
E MPa Young’s modulus 
𝑒𝑒𝐷𝐷 - Number of elements along the diameter of the wire 
𝑒𝑒𝐿𝐿 - Number of elements along the length of the wire 
F N Axial force 
k - Ratio of the length over the width of an element 
L mm Length of the strand 
𝑟𝑟1 mm Radius of the central core 
𝑟𝑟2 mm Radius of the external wires 
𝑟𝑟𝑠𝑠  mm Wound radius of the external wires 
𝑁𝑁𝑠𝑠 - Number of external wires in the strand 

𝑥𝑥𝑠𝑠, 𝑦𝑦𝑠𝑠, 𝑧𝑧𝑠𝑠  mm Coordinates of the mean curve of a helical wire 
𝛼𝛼𝑠𝑠 ° Lay angle of the external wires 
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𝜉𝜉1 - Axial strain of the central core 
𝜉𝜉2 - Axial strain of the external wires 
𝜃𝜃𝑠𝑠 ° Coordinate of wounding of the mean curve of a helical wire 
𝜃𝜃𝑁𝑁𝑠𝑠 ° Angle of phase difference between external wires 
𝜈𝜈 - Poisson’s ratio 
𝜏𝜏𝑠𝑠 ° Torsion angle of the ends of the wires 
𝜅𝜅′𝑠𝑠 mm¹־ Curvature of the external wires 
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1 - INTRODUCTION 
 
Faced with increasing competition in the global automotive market, reducing costs and design time has become a 

major focus of development among manufacturers. The desire to reduce the weight of the vehicle has become not only an 
important competitive issue, but also an environmental constraint. Faced with these needs, the numerical simulation of shaping 
processes has become an essential tool. It saves considerable time in the upstream phase of a project to ensure the feasibility 
of parts or the development of a new innovative shaping process. Indeed, the objective of the simulation is to reduce the 
number of experimental campaigns on prototypes or test samples, considered too long and too expensive. Over the past ten 
years, finite element simulations have evolved considerably in the field of metal part forming. 

 
The studied mechanical system consists mainly in a part crimping an end of a wire rope, which is stressed in tension. 

The task is the modelling of the crimping process of the cable and then the mechanical analysis of the structure under several 
stresses. The studied wire rope is made from one straight and six simple helical wires in contact with each other. In order to 
reduce the calculation time, it is important to get the optimal meshing parameters which always guarantee a high accuracy. 

 
2 – LITTERATURE REVIEW 

 
Helical geometries like wire ropes are found in many applications such as mechanical engineering [1,2], civil 

engineering [1], electrical engineering [2] or biological engineering [3]. A helical shape can be created either by molding or by 
deformation of a straight material. 

Helical mechanical behavior began to be treated in 1892 by A.E.H. Love in his book 'A Treatise on the Mathematical 
Theory of Elasticity' [4]. However, the mechanical behaviors of cables are more investigated in the work of S. Timoshenko [5]. 
In this reference book published in 1930, a chapter is devoted to springs having a constant pitch, thus representing the exact 
geometry of an undeformed helix. Pioneer studies focused on the behavior of multi-stranded cables were published some 
years later by F. Hruska, A.E. Green and N. Laws, and E. Kroner [6,7,8].  

The theory of A.E.H. Love [4] was taken up by A. Costello [9] in order to apply it to curved bars and multi-strand 
cables. Its equilibrium equations are used to understand the mechanical behavior of various cables (straight and simple helical 
strands, Independent Wire Rope Core - IWRC - and Seale formations).  As an example, he formulated the equation of the axial 
load F (1). This load depends on the elongation (central core axial strain 𝜉𝜉1, strand’s wires axial strain 𝜉𝜉2 and curvature 𝜅𝜅′𝑠𝑠)  
but also on the angle of torsion of the ends (𝜏𝜏𝑠𝑠). The radii 𝑟𝑟1, 𝑟𝑟2 and 𝑟𝑟𝑠𝑠  are respectively the radius of the central core, the 
radius of the helical wires and the wound radius of the helical wires. 
 

𝐹𝐹 = 𝜋𝜋𝜉𝜉1𝐸𝐸𝑟𝑟12 + 𝑁𝑁𝑠𝑠𝐸𝐸𝑟𝑟22 �𝜋𝜋𝜉𝜉2 sin(𝛼𝛼𝑠𝑠) +
�𝜋𝜋𝑟𝑟2∆𝜅𝜅′𝑠𝑠4 sin(𝛼𝛼𝑠𝑠)+𝜋𝜋𝑟𝑟2∆𝜏𝜏𝑠𝑠4(1+𝜈𝜈)cos(𝛼𝛼𝑠𝑠)�𝑟𝑟2

𝑟𝑟𝑠𝑠
cos2(𝛼𝛼𝑠𝑠)�  (1) 

 
This equation makes it possible to quickly obtain the elastic behavior of a cable or strand. However, no studies have 

been conducted on the analytical or numerical analysis of the pressure forces that a strand or cable would undergo by radial 
compression, as it could undergo during a crimping. 

In the early 70s, finite element methods were applied to cable analysis. W. Zhou and H.Q. Tian [10] propose a design 
of a strand by polar coordinates within a Cartesian coordinate system. Thus, the design of the geometry of their finite element 
model is very complex. They decide to load their model in flexion and then tension. The results obtained correlate well with 
Costello's theory. 

More recently, Wang et al [11] have investigated the coupling effect of tension and reverse torque during axial tension 
of a wire strand. Other studies, dealing with a simple strand [12-13] have recreated a finite element model that considers the 
advantage of helical symmetry. Based on Costello's theory, they find more precise results in the calculation of the response of 
the strand to the axial forces of tension and torsion. This type of model also highlights the non-linear effects related to contact 
stresses, residual stresses [14], friction and plastic deformation which are very difficult phenomena to reveal analytically but 
which play an important role in the rupture of cables.  

I. Gerdemeli [15] and Y.J. Chiang [16] conducted a fatigue life study of a single strand. The helical wires are created 
by sweeping with a non-orthogonal section. They therefore obtain a very simple profile guide curve (a straight line) but get a 
much more complex formulation of the geometry of the section. Moreover, this can induce a problem for a lower helix angle as 
the hypothesis is then no longer valid [17]. 

The study conducted by C. Erdönmez [18] is unique in the creation of an average line of the non-straight cable. 
Indeed, the tests are carried out by modelling a single strand wound around a pulley. Unfortunately, it does not give any 
mathematical model justifying it so that it can be reproduced. 
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But most studies [1, 19-21] build their single-helix wires by sweeping a circular cross-section normal to the guide 
curve. This is the simplest method to implement on most finite element software. Indeed, in a minimum of parameters, we 
obtain the volumes of the different wires.  

Mesh allows the geometry of parts to be discretized into smaller pieces called elements. The choice of the type of 
elements is crucial to try to predict the behavior of the material as accurately as possible [22, 23] while minimizing the 
calculation time. 3D finite element software commonly exploits four different forms of three-dimensional elements: bricks, 
prismatic, pyramidal and tetrahedral. Triangular shapes cause the unwanted increase of the elements’ stiffness and therefore 
of the solid. Here, only the brick avoids this problem by proposing an element with six square faces. Most of the time, designers 
use cubic shapes to design their elements (each edge is equally sized) as in [24]. But in order to reduce the calculation time, 
it is possible to make the element longer than wider without losing in accuracy. It depends on the direction of the solicitations 
and the element type. J.Cho [25] mixed solid and truss elements to obtain more accurate results for a cord with combined 
stresses. 

In [26], the authors make comparisons of the mechanical performance of a metal vascular stent (tubular) and 
bioresorbable polymers during a crimping phase. In particular, they study the effects of residual crimping stresses on stent 
expansion. For this, they choose brick elements with incompatible mode [27] to avoid shear locking which helps stiffening the 
underloaded structure in bending. 
 Other studies [28-31], brick elements with reduced integration. The reduced integration process is only applicable to 
quadrilateral and hexahedral elements (bricks) [27]. With this process, linear elements with 8 integration nodes have only one, 
positioned at the centroid of the element. Quadratic elements go from 20 to 8 integration points. Thus, the calculation time is 
greatly reduced. Linear elements with reduced integration are very tolerant to distortion. Therefore, using a fine mesh of these 
elements in any simulation where distortion levels can be very high is necessary. Linear elements with reduced integration 
therefore tend to be too flexible because they suffer from their own digital problem 'Hourglass' [32]. In Abaqus software, a small 
amount of artificial 'Hourglass' stiffness is introduced into the first-order reduced integration elements to limit the spread of 
hourglass modes.  

Crimping is a process with great deformation involving a significant bending of the initial elements. It also requires 
the use of relatively small mesh sizes in order to correctly reproduce the high deformation. One solution is to use a very thin 
mesh from the beginning and uniform throughout the part, at the cost of high calculation time. The interest of mesh refinement 
is to refine the highly constrained or contact areas to the detriment of other less solicited regions and to save precious time for 
a comparable or even better results accuracy. The mesh refinement procedure can be performed during the design phase [33] 
or can be adaptive [32, 34, 35]. 

The size of the different elements is also an important step when creating the model. This is, along with the number 
and duration of iterations, the most decisive factor on the calculation time. It is therefore essential to optimize your decision-
making and make a compromise between [32]: 
- Decrease the size of the elements in the crimping phase to increase the accuracy of the calculations 
- Reduce their size to avoid stiffening the structure  
- Increase their size to reduce the number of nodes, therefore the number of unknowns and reduce the calculation time. 
 

The first goal of this study is to define the meshing parameters in a case of a 7 wires strand, independently tested in 
crimping and tension. The targets are the accuracy of the model and the calculation time. Then, the second goal is to simulate 
the strand in combined tension and crimping to minimize the crimping length without modifying the strength of the assembly.  
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3 – NUMERICAL STUDY 
3.1 – INVESTIGATED STRAND 
 

The tested wire rope is a single layer strand, right lay, composed of one central straight core and 6 wires wound 
around it. Its geometric properties are detailed in Table 1. 

 
Diameter of the central wire core 
Diameter of the external wires  
Youngs’ modulus  
Poison’s ratio  
Lay angle  

d₁ 
d₂ 
E 
ν 
α 

0.59 mm 
0.53 mm 
175,000MPa 
0.29 
80° 

Table 1. Wire strand geometric property 
 

Thus, using the studies mentioned above, we define the following single helix wire’s mean curve equations by 
creating a spline linking a predefined number of increment points, corresponding to the centroidal line of the external wires: 

𝑥𝑥𝑠𝑠 = 𝑟𝑟𝑠𝑠 cos(𝜃𝜃𝑠𝑠 + 𝜃𝜃𝑁𝑁𝑠𝑠)         (2) 
𝑦𝑦𝑠𝑠 = 𝑟𝑟𝑠𝑠 sin(𝜃𝜃𝑠𝑠 + 𝜃𝜃𝑁𝑁𝑠𝑠)         (3) 
𝑧𝑧𝑠𝑠 = 𝑟𝑟𝑠𝑠 tan (𝛼𝛼𝑠𝑠)𝜃𝜃𝑠𝑠         (4) 

With: 
𝜃𝜃𝑁𝑁𝑠𝑠 = 2𝜋𝜋

𝑁𝑁𝑠𝑠
          (5) 

𝜃𝜃𝑠𝑠 = 𝐿𝐿
𝑟𝑟𝑠𝑠tan (𝛼𝛼𝑠𝑠)

          (6) 
 The first helical wire is generated by sweeping a circular cross section along the helix defined above. The five other 
helical wires are created by circular repetition. To ensure that the wires do not penetrate each other at the initial state, a small 
geometrical gap is introduced. 

Both models only consider the elastic behavior of the material. Every contact between each part are managed 
individually. The tensile test is frictionless to fit with Costello’s analytical formulation. The crimping test uses a friction coefficient 
of 0.35. 

For the tensile testing, the model, visible in Fig. 1.a, is 40mm long. Both ends are coupled (i.e. all the seven wires 
end can’t move in relation to each other). One extremity is fixed and the other is constrained with an axial constant velocity 
(every other degrees of freedom are fixed). 

For the crimping testing, the model, visible in Fig. 1.b, is 20mm long. Six rigid semi-cylindrical tiles of length 15mm 
are placed around the strand to simulate the crimping process and to avoid non-symmetrical behavior. The crimping depth is 
set to 0.07mm. One extremity is coupled with a reference point that is fixed, 5mm away of the tiles to observe the edges effects. 
The other end is free. For the first time, an organized wire strand is studied in a radially stressed 3D simulation. 

 
 

Fig. 1. Models of tensile test (a) and crimping test (b) 
3.2 – MESH PROPERTIES 
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In In addition to the complex geometry of a strand, it is also difficult to properly mesh such parts. Indeed, a profile 
with a circular section leads to two mesh difficulties. The first is the verification of the homogeneity of the shape of the elements 
near the central point [36] (Figure 2). The second is the verification of the good fluidity of the elements along the curvatures of 
the average line. To ensure a good mesh shape quality [37], we split the cross section in four parts and affect seeds along the 
edges. 

Fig. 2. Circular cross-section meshing quality: low (left), high (right) 
 
 According to the previous studies, we choose bricks elements with reduced integration with an Implicit Dynamic 
solving. In that way, we avoid triangular elements in 2D or 3D which can stiffen the whole part. 
   

With D the diameter of the wire, L its length, 𝑒𝑒𝐷𝐷 the number of elements in the diameter and 𝑒𝑒𝐿𝐿 the number of 
elements over the length. Let k, the ratio of the length over the width of the element, be: 

𝑘𝑘 = 𝐿𝐿 𝑒𝑒𝐷𝐷
𝐷𝐷 𝑒𝑒𝐿𝐿

           (7) 
 

Then, the two non-dimensional parameters we can use as variables are the number of the element by diameter 𝑒𝑒𝐷𝐷 
and the ratio 𝑘𝑘. This is important to carry a general solution of the mesh designing parameters. The cross-section mesh 
resolution covers number of elements in the diameter from 4 (low resolution) to 20 (high resolution) as seen in Fig. 3. The axial 
mesh resolution covers length over width ratio from 2 (high resolution) to 20 (low resolution) as seen in Fig. 4. 

Fig. 3. Cross section meshing with 𝑒𝑒𝐷𝐷 =20 (left) and  𝑒𝑒𝐷𝐷 =4 (right) 
 

Fig. 4. Axial meshing with 𝑘𝑘 =2 (left),  𝑘𝑘 =6 (middle) and 𝑘𝑘 =15 (right) 
4 – RESULTS AND DISCUSSION 
4.1 – TENSILE TEST 
 

The two target outputs are the calculation time and the stiffness error. This error evaluation is made in comparison 
to the analytical one, from Equation (1) made by G.A. Costello. For fixed ends, we obtain a global stiffness of 2690N/mm. The 
sampling process is made to represent the most accurately the range of designing parameters with a numerical campaign time 
reasonably short. 
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Error (%) 
𝑒𝑒𝐷𝐷 

20 18 16 14 12 10 8 6 4 

k 

2   -2.61  -3.55  -7.16 -11.04  
3 -2.67   -3.21  -4.60  -11.10  
4  -2.30   -3.54  -5.80  -34.10 
5   -2.93   -5.07  -9.40  
6    -3.14 -3.54  -6.40 -12.20  
8      -5.08    

10 -2.36    -3.83  -6.26 -12.59  
12  -2.52    -4.53    
15   -3.08  -3.76  -6.67   
20 -2.53   -2.83  -3.97    

Table 2. Stiffness error results for tensile test  
 

Time (min) 
𝑒𝑒𝐷𝐷 

20 18 16 14 12 10 8 6 4 

k 

2   572.9  166  39.5 26.5  
3 1952   249.6  82.0  20.5  
4  439.9   121  31.2  7.0 
5   214.7   54.6  9.6  
6    110.3 56.7  12.8 13.9  
8      32.1    

10 214.5    30.0  9.2 13.6  
12  122.9    20.4    
15   99.3  29.7  13.6   
20 318.1   80.62  23.5    

Table 3. Time results for tensile test 
 

As a first result, it seems that the ratio k does not affect the final stiffness of the strand. The wires are very fine and 
linear parts and the load is axial. It is important to keep in mind that a tall element damages the global geometry. 

 
In order to compare simultaneously both of the stiffness and the calculation time, we place all the data in a graph to 

make appear the Pareto Front of the solution (see Figure 5). It shows the optimal values of the problem. Then, we rank the 
data points before reintroducing them in the design plane (see Figure 6). It creates a map of the optimal solution with in dark 
green the best solution (great accuracy and low calculation time) and in red the worst ones (either low accuracy or high 
calculation time). 

The optimal values are grouped into 10 or 12 elements in diameter with high length ratio. 
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 Fig. 5. Tension test Pareto Front 
 

Fig. 6. Tension optimal mesh parameters according to the Pareto Front 
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4.2 – CRIMPING TEST 
 
 In order to clearly highlight the variation of the error with mesh parameters, we exploit a high radial stress value (due 
to the choice of the crimping depth) with only elastic behavior for the material. For the first time an organized wire strand is 
modelled for a crimping test. 

Fig. 7. Stress over the cross section for the crimping test 
  

Figure 7 shows the maximal stress over the cross section is located at the external points of contact of the wires. We 
can also see the multiple lines of contact within the strand: the three linear lines going through the center and the hexagonal 
line going through every external wire. 

 
For the crimping test, we use the same sampling process than for tensile test. The reference value is set to be the 

average maximal stress under the tiles with the higher meshing resolution: “20.3”. The label of each curve is written “𝑒𝑒𝐷𝐷 . 𝑘𝑘”.  
In Fig. 8, we can see the most accurate results for each configuration by number of elements in diameter. First of all, we see 
a clear peak close to the edge of the tile, at the side where the strand is fixed. This edge effect is due to the brutal stop of the 
tile and the start of compaction of the strand. It is marked by the choice of the geometry of the tiles (2D and rigid bodies). Then, 
the undulation of the curves come from the imperfect circular crimping process. When the wires are at the center of a tile, the 
crimping depth is actual and there is the maximal stress. When the wires are between two tiles, the crimping depth is 
underestimated and this is the bottom of the waves. This can be avoided by adding more tiles or by choosing another crimping 
method. Above and equal 16 elements in diameter, the results converge around a single value. The length of the elements 
does not affect the average of this maximal stress value until this length is greater than the diameter of the wire. It applies only 
the simultaneous great ratio and low number of elements in diameter. 
 
 We apply the same strategy as for tensile test in placing the samples into a calculation time/error graph and draw 
the associated Pareto front. Then we rank each data (Fig. 9) and replace them in the design plane with our mesh parameters. 
Thus, we can draw the map of the optimal values for the crimping process (Fig. 10). We obtain the optimal values for high 
number of elements in diameter (for a greater accuracy) and high ratio k (for a lower calculation time). 

mailto:dyna@revistadyna.com


 
 Publicaciones DYNA SL -- c) Mazarredo nº 69 - 2º -- 48009-BILBAO (SPAIN) 

Tel +34 944 237 566 – www.revistadyna.com - email: dyna@revistadyna.com 
Pag. 10 / 17 

 
 
 

 
Fig. 8. Maximal stress value for each configuration under the tiles 

 
 

Time (min) 
𝑒𝑒𝐷𝐷 

20 18 16 14 12 10 8 6 4 

k 

2   769.8  179.0  99.31 Aborted  
3 1611   280.6  106.4  Aborted  
4  924.9   104.6  40.4  Aborted 
5   323.5   46.0  Aborted  
6    105.4 62.4  Aborted Aborted  
8      34.7    

10 198.2    36.1  15.5 Aborted  
12  153.0    21.4    
15   64.9  29.3  11.9   
20 98.1   31.8  13.7    

Table 4. Time results for crimping test 
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Fig. 9. Crimping test Pareto Front 
 

 
 
Fig. 10. Crimping optimal mesh parameters according to the Pareto Front 
 
 
4.3 – COMBINED CIMPING-TENSILE TEST TO MINIMIZE CRIMPING LENGTH  
 

Back to our main issue where the structure is both stressed radially and axially, to plot an optimal solution of combined 
stressed strand, we superimpose the maps and add up the ranks of each sample. This way, we obtain a new mapping of the 
stressed wire strand (see Figure 11). The best solution becomes 𝑒𝑒𝐷𝐷=16 and k=15 as presented in Figure 12. This mesh 
guarantees both great accuracy with low calculation time. 
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Fig. 11. Combined mapping solution, obtained by superimposing the crimping mapping and the tensile mapping 
 

Fig. 12. Optimal mesh solution for combined stress: 𝑒𝑒𝐷𝐷 = 16 and 𝑘𝑘 = 15 
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Considering the previous presented work, we are able to construct for the first time a model where the wire rope is 
stressed radially (crimping test) and axially (tensile test). The model is as follows: a 30mm long single-layered wire strand with 
the same properties as before, and a cylindrical pipe of internal diameter 1.5mm, thickness 0.05mm and length 20mm (see 
Figure 13), and the same material as for the wires. 

 
The simulation is done in 4 steps as follows: 

1. The internal surface of the pipe is stressed with a uniform pressure to expand the part.  
2. Then, the pipe is slid axially until the end of the pipe is 5mm away the end of the rope 
3. Pressure is released and the pipe crimps the strand.  
4. The external boundary of the pipe is fixed and the tensile load is then set at the free extremity of the rope.  

 
The results shown in Figures 14 and 15 are very promising: the model run in 114 minutes and gives us an acceptable 

behavior of the strand. The wires do not slip inside the tubular crimp, the axial strain is linear along the free strand, the crimping 
stress is uniform and reveals a small peak at both its ends. The mesh elements do not over or underestimate the stiffness of 
the strand in both axial and radial directions. 

 Fig. 13. Initial position of the model with combined stress using optimal meshing parameters 

 Fig. 14. Axial strain of the final model’s wire rope 

Fig. 15. Stress repartition of the final model with cut view 
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The final objective is then to optimize the crimping length of the process. To do so, the first simulation used a large 
crimping length to guarantee the appearance of the two peaks at each side, thus it is possible to identify the non-working area 
for the axial load transmission and finally remove this area to obtain the optimal crimping length. 

 
We evaluate the axial load transferred from the cable to the pipe and test a potential improvement. In our case, axial 

load and axial stresses are strongly correlated. Thus, in order to analyze the working crimping zone for tensile test, we evaluate 
the mean axial stress in the pipe along its crimping length (Figure 16).  

 
For the first time, the analysis of the transmitted axial load between the strand and the crimping part is studied. The 

variation of axial stress is correlated to the amount of axial load transmitted from the cable to the pipe. Thus, a constant mean 
axial stress induces that no tensile load is transferred from the cable to the pipe. In this way, the central zone of the crimp is 
useless. As a consequence, in order to improve the initial design, we decide to ‘cut’ the pipe from millimeter 4 to 9 in its original 
crimping length graduation to see if the strength evolves. As a result, with a crimp 5mm shorter, we obtain the same axial 
stress level as the original crimping (Figure 16). It confirms that the axial load is greatly transmitted at the ends of the crimp 
and increasing the crimping length more than 10mm (in this case) does not affect the axial strength of the assembly. 

 
 

 
Fig. 16. Mean stress in the pipe cross section along the crimp with in points line the original crimping length stress and in 
ticks line the optimized crimping length stress 

 
These results can help designers to optimize the crimping length of their process and save lot of production costs. 

Reducing the crimping length induces both the reduction of the crimp material and the reduction of the necessary crimping 
load, just like the needed process energy. 
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5 - CONCLUSIONS 
 

Multi-stranded wire ropes are widely used in engineering applications. In order to reduce cost in ‘try and error’ time 
consuming campaigns, numerical simulations became an essential tool for designers. Over the past ten years, finite element 
simulations have evolved considerably in the field of metal part forming. 

In this paper, a numerical model of a single layered wire rope is studied. The objective is to determine the optimal 
size and shape of meshing elements to get both accurate and fast results. Firstly, the wire strand is investigated in tension. 
The axial stiffness of the strand is computed and compared with the analytical one formulated by G.A. Costello.  

Secondly, the organized wire strand is investigated for the first time in crimping process. The average maximal stress 
of the strand along the tiles is computed and compared with the numerical test with the highest number of mesh elements.  

It has been revealed that the stiffness of a strand does not depend on the mesh length. But this parameter affects 
the maximal stress during a crimping process. Most of the studies mentioned in the state of the art have in average 6 elements 
in the diameter and find very divergent results. 
 

The optimal solutions for the studied case 16 elements in the diameter and a length/width ratio=15 for combined 
stress and very fine mesh length at the crimping border to make visible the edges effect. 

This meshing strategy has been efficiently applied to simulate the first ever combined crimping-tensile test and obtain 
the minimal crimping length successfully. This work was made for a classic lay angle of 80 degrees. For a smaller lay angle, 
the length of the element must be smaller in order to guarantee a good helical shape. A future study can be led with similar 
goals under torsion and bending loads. 
 

In conclusion, this work can be very important for designers to reduce considerably the calculation time of their 
numerical models while guarantying a great accuracy in the behavior and the stiffness of a wire rope. The mesh element size 
has a significant effect on the global behavior of the strands and must not be neglected. Those preliminary results could be 
exploited to accurately model more complex wire ropes that can include up to one hundred individual wires. 

 
 
  

mailto:dyna@revistadyna.com


 
 Publicaciones DYNA SL -- c) Mazarredo nº 69 - 2º -- 48009-BILBAO (SPAIN) 

Tel +34 944 237 566 – www.revistadyna.com - email: dyna@revistadyna.com 
Pag. 16 / 17 

 
 
 

REFERENCES 
 

[1] P.Zhang, M.Duan, J.Ma, Y.Zhang, A precise mathematical model for geometric modeling of wire rope strands structure, Applied 
Mathematical Modelling 76, 151-171 (2019). https://www.doi.org/10.1016/j.apm.2019.06.005 
[2] G.A.Costello, Mechanics of wire rope, Wire Association International (2003) 
[3] C.Erdönmez, N-tuple complex helical geometry modeling using parametric equations, Engineering with Computers, Vol.30, 715- 726 
(2014). https://www.doi.org/10.1007/s00366-013-0319-9 
[4] A.E.H.Love, A treatise on the mathematical theory of elasticity, Vol.1, 1st edition (1892) 
[5] S.Timoshenko, Strength of Materials, Parts I and II, 1st edition (1930) 
[6] F.H.Hruska, Calculation of stresses in wire ropes, Wire Prod Vol.26 (9), 766–767 (1955) 
[7] A.E.Green, N.Laws, A general theory of rods, Springer, 1st edition (1966) 
[8] E.Kroner, Mechanics of generalized continua, Springer, 1st edition (1967) 
[9] G.A.Costello, Theory of wire rope, 2nd edition Springer, 14-28 (1997) 
[10] W. Zhou, H.Q.Tian, A novel finite element model for single-layered wire strand, Journal of Central South University Springer, 20, 1767-
1771 (2013). https://www.doi.org/10.1007/s11771-013-1670-0 
[11] S. Wang, Z. Wang, J. Gong, Y. Wang and Q. Huang. Coupling effect analysis of tension and reverse torque during axial tensile test of 
anchor cable. Dyna. May 95. (2020):288-293. https://dx.doi.org/10.6036/9603 
[12] F.M.Filotto, F.Runkel, G.Kress, Cross section shape optimization of wirestrands subjected to purely tensile loads using a reduced helical 
model, Advanced modeling and simulation in Engineering science, 7 :23 (2020). https://www.doi.org/10.1186/s40323-020-00159-0 
[13] W.G.Jiang, J.L.Henshall, J.M.Walton, A concise finite element model for three-layered straight wire rope strand, International Journal of 
Mechanical Sciences, 42, 63-86 (2000) https://doi.org/10.1016/S0020-7403(98)00111-8 
[14] J.M.Atienza, J.Ruiz-Hervias, L.Caballero, M.Elices, Role of temperature and stretching force on the effictiveness of the stabilizing 
treatment of prestressing steel wires, Conference Proceedings for the 81st annual convention of the Wire Association International (2011) 
[15] I.Gerdemeli, S.Kurt, A.S.Anil, Analysis with finite element method of wire rope, Machines, Technologies, Materials, Vol.2, 107-110 (2012) 
[16] Wolfram Demonstration project, Dimensions of a Stranded Wire, https://demonstrations.wolfram.com/DimensionsOfAStrandedWire/ 
[accessed 03 May 2022] 
[17] C.Erdonmez, C.E.Imrak, Modeling And Numerical Analysis Of The Wire Strand, Journal of Naval science and Engineering, Vol.5, 30-38 
(2009) 
[18] R.C.Wang, A.J.Miscoe, W.M.McKewan, Model for the structure of round-strand wire ropes, Report of investigation 9644, NIOSH (1998) 
[19] C.Erdönmez, A general scheme to create complex triple helical wire rope model using parametric equations, Journal of Science and 
Engineering, 20 (2018). https://www.doi.org/10.21205/deufmd.2018206071  
[20] C.E.Imrak, C.Erdönmez, On the problem of wire rope model generation with axial loading, Mathematical and Computing Applications, 
Vol.5, No.2, 259-268 (2010). https://www.doi.org/10.3390/mca15020259 
[21] R.K.Kumar, A.S.Babu, Evaluation of mechanical crimping process using finite element analysis, First International Conference on 
Structural Integrity (2014) 
[22] R.K.Kumar, A.S.Babu, Finite element analysis and experimental study on metal joining by mechanical crimping, International Journal of 
Service and Computing Oriented Manufacturing, Vol.1, No.4 (2014). https://www.doi.org/10.1504/IJSCOM.2014.066489 
[23] W.Yang, S.Wang, Y.Zhao, S.Wang, C.Ma, X.Li, Z.Liu, Deformation-based accurate geometric model of stranded wire helical spring, 
International Journal of Mechanics and Materials in Design, Vol(16), 589-617 (2020). https://www.doi.org/10.1007/s10999-020-09490-1 
[24] A.Schiavone, T.Y.Qiu, L.G.Zhao, Crimping and deployment of metallic and polymeric stents -- finite element modelling, Vessel Plus, 12-
21 (2017). https://www.doi.org/10.20517/2574-1209.2016.03 
[25] Abaqus Documentation V6.6: Element Librairy Overview, https://classes.engineering.wustl.edu/ 
2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt06ch23s06alm15.html [accessed 03 May 2022] 
 [26] D.V.Zhmurkin, N.E.Corman, C.D.Copper, R.D.Hilty, 3-Dimensional Numerical Simulation of open-barrel crimping process, Institute of 
Electrics and Electronics Engineers (2008). https://www.doi.org/10.1109/HOLM.2008.ECP.41 
[27] S.M.Gu, H.S.Choi, Y.S.Kim, Effects of Design Variables on compression rate of wire in connector crimping process of wire harness 
using FEM, Transactions of Materials Processing, Vol.19, No.5 (2010). https://www.doi.org/10.5228/KSPP.2010.19.5.305 
[28] X.Cao, W.Wu, The establishment of a mechanics model of multi-strand wire rope subjected to bending load with finite element simulation 
and experimental verification, International Journal of Mechanical Sciences, 289-303 (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.051 
[29] C.Erdonmez, Analysis and design of compacted IWRC meshed model under axial strain, International Journal of Mechanics and 
Materials in Design, Vol(16), 647-661 (2020). https://doi.org/10.1007/s10999-019-09481-x 
[30] C.Lange, Etude physique et modélisation numérique du procédé de sertissage de pièces de carrosserie, PhD thesis, Ecole nationale 
supérieure des mines de Paris (2006) 
[31] W.G.Jiang, A concise finite element model for pure bending analysis of simple wire strand, International Journal of Mechanical Sciences, 
54, 69-73 (2012). https://doi.org/10.1016/j.ijmecsci.2011.09.008 
[32] H.Li, T.Yamada, P.Jolivet,K.Furuta, T.Kondoh, K.Izui, S.Nishiwaki, Full-scale 3D structural topology optimization using adaptive mesh 
refinement based on the level-set method, Finite Elements in Analysis and Design, Vol(194) (2021). 
https://doi.org/10.1016/j.finel.2021.103561 
[33] A.Lamecki, A.Dziekonski, Lukasz Balewski, G.Fotyga, M.Mrozowski, GPU-Accelerated 3D mesh deformation for optimization based on 
the finite element method, Radioengineering, Vol(26), 924-929 (2017). https://doi.org/10.13164/re.2017.0924 
[34] S.R.Ghoreishi, T.Messager, P.Cartraud, P.Davies, Validity and limitations of linear analytical models for steel wire strands under axial 
loading, using a 3D FE model, International Journal of Mechanical Sciences, 49, 1251-1261 (2007). 
https://doi.org/10.1016/j.ijmecsci.2007.03.014 
 

mailto:dyna@revistadyna.com
https://demonstrations.wolfram.com/DimensionsOfAStrandedWire/
https://www.doi.org/10.1007/s10999-020-09490-1
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt06ch23s06alm15.html
https://classes.engineering.wustl.edu/2009/spring/mase5513/abaqus/docs/v6.6/books/usb/default.htm?startat=pt06ch23s06alm15.html


 
 Publicaciones DYNA SL -- c) Mazarredo nº 69 - 2º -- 48009-BILBAO (SPAIN) 

Tel +34 944 237 566 – www.revistadyna.com - email: dyna@revistadyna.com 
Pag. 17 / 17 

 
 
 

 

mailto:dyna@revistadyna.com

	Dyna ; Volume 98 Issue 3 Page 274-281               DOI 10.6036/10677

