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We consider a model for reactive flows which describes the healing process induced by carbonation of a single crack in concrete structures. The aim of this paper is to study the complex interplay between advection-diffusion mechanisms in a crack-matrix system combined with different chemical reactions taking place (dissolution/precipitation). Carbonated water is first injected through a crack. Then, a diffusion process of calcium ions (C 2+ a ) takes place from the porous matrix to the crack due to the existing calcium ions concentration gradient. Finally, those calcium and carbonates ions (CO 2- 3 ) from the percolating solution react to form a calcite (C a CO 3 ) layer responsible for the healing of the crack. The developed model takes the form of transport-reaction partial differential equations for both crack and porous matrix. From numerical point of view these equations are discretized by means of the Embedded Finite Element Method (E-FEM). The E-FEM allows to use meshes not necessarily matching the physical interface, defined herein as the crack, while retaining the accuracy of the classical finite element approach. This is achieved by introducing a weak discontinuity in the calcium ions concentration field for finite elements where the crack is present. A numerical solving strategy is presented to efficiently resolve the FE problem both in terms of calcium and carbonate concentration field variables and weak discontinuity parameters. In addition, an analytical model for the computation of the calcite layer width, resulting in the healing process, is suggested. Finally, considering the dependence of the 1 diffusivity and permeability coefficients on the width of the calcite, a coupled model arises for the numerical modelling of the healing process induced by carbonation in a crack.

Introduction

The assessment of concrete structure lifetime is nowdays necessary for the design of durable structures. As a complementary means to experimental approaches, numerical modelling can be a relevant tool for this lifetime assessment. The development of thorough numerical models requires a comprehension not only of the degradation phenomena but also of the healing process. Indeed, healing process can improve the durability of structures (storage or containment structures for instance). The healing process can occur in both ways (see [START_REF] De Rooij | State-of-the-art report of RILEM technical committee 221-SHC: Self-healing phenomena in cement-based materials[END_REF], [START_REF] Van Tittelboom | Self-healing in cementitious materials-a review[END_REF] and [START_REF] Muhammad | Tests and methods of evaluating the self-healing efficiency of concrete: A review[END_REF]):

• naturally by calcium carbonate formation, expansion of hydrated cementitious matrix, blocking of cracks by impurities present in water (sealing) and further hydration of unreacted cement.

• artificially by the use of chemical admixtures, polymers and geo-materials and even microorganism which are able to produce calcium carbonates.

Among the natural healing processes mentionned above, the formation of calcium carbonate is investigated in this study, since it is considered as one of the most promising autogenous healing mechanisms (see [START_REF] Edvardsen | Water permeability and autogenous healing of cracks in concrete[END_REF], [START_REF] Neville | Autogenous healing-a concrete miracle ?[END_REF], [START_REF] Ranaivomanana | Sealing process induced by carbonation of localized cracks in cementitious materials[END_REF] or [START_REF] De Muynck | Microbial carbonate precipitation in construction materials: a review[END_REF] for a review and [START_REF] Wiktor | Quantification of crack-healing in novel bacteria-based self-healing concrete[END_REF] for experimental results concerning microbially-induced calcium carbonate precipitation). Most publications dedicated to the modeling of natural self-healing process mainly concern the process of further hydration of unreacted cement ( [START_REF] De Rooij | State-of-the-art report of RILEM technical committee 221-SHC: Self-healing phenomena in cement-based materials[END_REF], [START_REF] Hilloulin | Mechanical regains due to self-healing in cementitious materials: experimental measurements and micro-mechanical model[END_REF], [START_REF] Chitez | A coupled thermo-hygro-chemical model for characterising autogenous healing in ordinary cementitious materials[END_REF] and [START_REF] Robert | Micromechanical modelling of self-healing cementitious materials[END_REF]). However concerning the modeling of the natural self-healing process induced by carbonation, there is not so much information in the literature. The authors in [START_REF] Ranaivomanana | Sealing process induced by carbonation of localized cracks in cementitious materials[END_REF] have proposed a simplified model for the evolution of the leakage rate through a cracked material versus time, while carbonated water flows through the crack. However, their approach is limited by the fact that two calibration parameters, whose values vary from one material to another, are present in the model. In [START_REF] Remmers | Numerical modelling of self healing mechanisms[END_REF], the authors have developed a multiple phase self-healing-model, that simulates three distinct stages in the healing process: fracture process, transport of healing agents to the healing location and mechanical strength recovery. The authors introduced a hygro-chemical transportation model (momentum and mass balance equations), in which the active species are transported by advective, diffusive and dispersive fluxes through the pore fluid to damaging and healing sites. More recently, [START_REF] Aliko-Benítez | Chemical-diffusive modeling of the self-healing behavior in concrete[END_REF] have proposed a finite-element model describing self-healing mechanisms in engineered cementitious composites and based on C a CO 3 precipitation. The model takes into account the diffusive mechanisms of aqueous species in the material, and the most fundamental chemical equations that take place during the healing phenomenon.

The concentration of the three main species (calcium ions C 2+ a , carbonate ions CO 2- 3 and calcite C a CO 3 ) acting on the healing process are identified as the main model variables and the modeling results into a reaction-diffusive set of equations. However, the model requires further validations. Indeed simplified assumptions are assumed by the authors such as the fact that the diffusion coefficients are independent from damage and healing variables. In addition no water-flowing through the crack is considered.

In this paper, a numerical approach is presented in the context of the natural healing process. In this sense, we suggest a numerical model for the healing process induced by carbonation of a single crack in concrete structures. Transport equations of C 2+ a and CO 2- 3 written in the crack and transport equation of C 2+ a written in the porous media are considered and discretized by means of the Embedded Finite Element Method (E-FEM, see [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] for instance). The E-FEM allows to use meshes not necessarily matching the physical interface, defined herein as the crack, while retaining the accuracy of the classical finite element approach. This is achieved by considering a weak discontinuity [START_REF] Benkemoun | Embedded finite element formulation for the modeling of chloride diffusion accounting for chloride binding in meso-scale concrete[END_REF] in the calcium ions concentration field for finite elements where the crack is present. This enhancement, introduced in the framework of the EAS method [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF], allows to have the calcium ions concentration field continuous itself and a jump in the normal direction of the calcium ions concentration gradient, when passing through the crack. This results in a discontinuous leakage flux that flows from the porous matrix toward the crack. This flux represents the mass coupling term between the porous media surrounding the crack and the crack itself. It is important to stress the fact that this coupling term arises naturally in the weak form of the problem, since the crack is directly embedded in the mesh through the E-FEM. This a serious advantage when the FE discretization is performed. Finally, having at hands the calcite and calcium concentration fields values for each time step, the width of the calcite layer in the crack is computed by means of an analytical model, resulting in the healing process in the crack. Finally, considering the fact that diffusivity and permeability coefficients values also depend on this calcite layer width, a coupled model arises for the numerical modelling of the healing process induced by carbonation in a crack.

The outline of this paper is as follows. In Section 2, the governing equations of the problem are introduced. They consist in the transport equation of C 2+ a in the porous media and in the crack, and the transport equation of CO 2- 3 in the crack. In Section 3, the weak form of the problem is suggested. It is obtained by means of the Galerkin approximation, leading to the FE to be solved. In Section 4, the method to compute the coupling term is shown. Also we present the analytical model to evaluate the width of the calcite layer, resulting in the healing process. In Section 5, the FE discretization of the concentration fields, based upon the E-FEM, and the solving strategy are presented.

Governing equations

In this section a model for reactive flows which describes the healing process induced by carbonation of a single crack in concrete structures is considered. In this sense, the strong form of the model governing equations is presented. We consider the transport equations of C 2+ Technically speaking, carbonated water is first injected through the crack. Then, a diffusion process of calcium ions (C 2+ a ) takes place from the porous matrix to the crack due to the existing calcium ions concentration gradient. Finally, those calcium and carbonates ions (CO 2- 3 ) from the percolating solution react to form a calcite (C a CO 3 ) layer responsible for the healing of the crack. Those mechanisms are illustrated in Fig. 1 and are described hereafter for each transport equation.
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Transport equation of C 2+ a in the crack

Transport by diffusion and permeation is considered through the fluxes J f Ca and Φ f C Ca v f w , respectively. Again transport by diffusion, resulting from the existing calcium ions concentration gradient between the crack and the porous matrix, is considered through the flux J m Ca . Transport by permeation takes place because of the pressure gradient in between the bottom and the top side of the crack (see Fig. 1: ∇p w = P 1 -P 0 ). We note v f w the fluid velocity and Φ f the crack porosity. Last but not least, considering the fact that the C 2+ a and CO 2- 3 ions react together all over the time to form calcite C a CO 3 into the crack, the evolution of calcite formation has to be also taken into account. This is achieved by means of the source term -∂ξ ∂t where ξ is the amount of calcite formed in the crack. This formation of calcite results in the healing process taking place into the crack.

This leads to the following transport equation (diffusion-permeation equation) of C 2+ a in the crack:

∂Φ f C Ca ∂t + ∇ • (J f Ca ) + ∇ • (Φ f C Ca v f w ) = - ∂ξ ∂t (2) 

Transport equation of CO 2- 3 in the crack

We note C CO 3 the carbonate ions concentration in the crack. Transport by permeation is considered through the flux Φ f C CO 3 v f w . It takes place also because of the pressure gradient in between the bottom and the top side of the crack.

The transport equation of CO 2- 3 in the crack is such as:

∂Φ f C CO 3 ∂t + ∇ • (Φ f C CO 3 v f w ) = - ∂ξ ∂t (3) 
The amount of C a CO 3 , labeled as ξ, created in the crack is evaluated by means of the following relation:

∂ξ ∂t = KC Ca C CO 3 (4) 
with K a constant value.

Last but not least, it is important to stress the fact that the diffusion model suggested in this paper based on Fick's Law oversimplifies some physical phenomena. For instance, the electrical coupling between the ions and its effect on their movements is overlooked. It is worth noting because it can influence the kinetic of calcite formation and consequently the healing process.

Having at hands the strong form of the transport equations, we now turn to Galerkin approximation of these equations.

Galerkin approximation: weak form of the transport equations

The domain Ω considered for the problem is shown in 2D in Fig. 2. We note ∂Ω the external boundary where essential and natural boundary conditions are prescribed. Also this domain contains a geometrical discontinuity labeled as Γ d . We note Γ + d and Γ - d the boundary of the discontinuity domain. The essential boundary conditions are imposed on ∂Ω such as

C Ca = CCa on ∂Ω Ca , ( 5 
)
where CCa is the imposed calcium ions concentration on ∂Ω Ca .

The natural boundary conditions are imposed on ∂Ω such as

J m Ca • n = Jm Ca on ∂Ω J m Ca . (6) 
We note Jm Ca the prescribed flux over ∂Ω J m Ca and n the unit outward normal vector to the external boundary ∂Ω, where the usual condition ∂Ω Ca ∪ ∂Ω J m Ca = ∂Ω has to be respected.

In addition, considering the fact that there is a geometrical discontinuity Γ d embedded in the domain Ω, a mass transfer coupling between the porous bulk material surrounding the crack and the crack itself arises. In this paper, this mass transfer comes from the exchange by diffusion of the calcium ions flow between the porous matrix surrounding the crack and the crack itself. Consequently, on Γ d we have:

[|J m Ca |] • n Γ d = J Γ d on Γ d (7) 
We note J Γ d the leakage flux of calcium ions induced by diffusion from the porous matrix toward the crack. As stated in [START_REF] Mohammadnejad | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] and [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] in the context of the X-FEM and in [START_REF] Alfaiate | On the use of strong discontinuity formulations for the modeling of preferential moisture uptake in fractured porous media[END_REF] in the context of the E-FEM, the normal component of this leakage flux is discontinuous when passing across Γ d . The physical meaning of this discontinuity is that a part of the calcium ions flow induced by diffusion that enters in the crack through one of its faces flows away tangentially when inside the crack or can even be stored within the crack. Consequently the flux of calcium ions normal to the crack is discontinuous. We refer n Γ d as the the unit normal vector to the discontinuity Γ d pointing out to

Ω + and [| • |] = • + -• -as the jump
between the values at Γ + d and Γ - d sides. 
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Weak form of 1

The discrete form of eqn. 1 is obtained by employing the Galerkin approximation. This approximation leads to :

Ω δC Ca ∂Φ m C Ca ∂t dΩ + Ω δC Ca ∇ • (J m Ca )dΩ = Ω δC Ca Φ m ϕ Cas dΩ, (8) 
where δC Ca is the virtual ions calcium concentration in the space C such as C = {δC Ca :

Ω → R | δC Ca ∈ H 1 , δC Ca = 0 on ∂Ω Ca }.
Using the divergence theorem on the second term of eqn. 8 left hand side yields:

Ω δC Ca ∇ • (J m Ca )dΩ = - Ω ∇(δC Ca ) • J m Ca dΩ + ∂Ω J m Ca δC Ca Jm Ca d∂Ω + Γ + d δC + Ca (J m,+ Ca • n Γ + d )dΓ + Γ - d δC - Ca (J m,- Ca • n Γ - d )dΓ, (9) 
where eqn. 6 on ∂Ω J m Ca and δC Ca = 0 on ∂Ω Ca have been considered.

Assuming the fact that the calcium ions concentration has the same value at both faces of the crack ( [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] and [START_REF] Mohammadnejad | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF]):

C + Ca = C - Ca = C
Ca and considering a Bubnov-Galerkin approach, the virtual calcium ions concentration at both faces is such as

δC + Ca = δC - Ca = δC Ca . Finally invoking n Γ - d = -n Γ + d = n Γ d , we obtain Ω δC Ca ∇ • (J m Ca )dΩ = - Ω ∇(δC Ca ) • J m Ca dΩ + ∂Ω J m Ca δC Ca Jm Ca d∂Ω - Γ d δC Ca J Γ d dΓ, (10) 
where eqn. 7 has been considered on Γ d .

Note that considering the same value for the calcium ions concentrations at both faces of the crack and in a more general manner considering an "hydraulic" variable as continuous passing through a crack is not something agreed in the computational mechanics community. An enlightening classification can be found in [START_REF] De Borst | A classification of poromechanical interface elements[END_REF] where the author describes both continuous and discontinuous approaches for modelling the pressure field passing across a crack. The author shows that the discontinuity in the pressure field can be taken into account by considering (1) a jump in the pressure field or (2) a jump in the pressure field plus an independent pressure at the discontinuity. The choice between (1) and (2) being done regarding the physics of the problem. In [START_REF] Alfaiate | On the use of strong discontinuity formulations for the modeling of preferential moisture uptake in fractured porous media[END_REF], a discontinuous capillary pressure is also considered accross a crack. In this case it is to fit the recquired nodal conditions imposed by the G-FEM for the capillary pressure field discretization.

Finally combining eqn. 10 and 8, we obtain

Ω δC Ca ∂Φ m C Ca ∂t dΩ - Ω ∇(δC Ca ) • J m Ca dΩ + ∂Ω J m Ca δC Ca Jm Ca d∂Ω - Γ d δC Ca J Γ d dΓ = Ω δC Ca Φ m ϕ Cas dΩ, (11) 
The sign -before the coupling term Γ d δC Ca J Γ d dΓ indicates that J Γ d "leaves" the bulk material surrounding the crack and flows toward the crack. It is important to note that the coupling term, representing the exchange by diffusion of the calcium ions flow between the porous matrix surrounding the crack and the crack itself, arises naturally in the weak form of the transport equation (eqn. 1) since the discontinuity (crack) is embedded into the problem.

Weak form of 2

The discrete form of eqn. 9 is obtained by employing the Galerkin approximation. This approximation leads to :

Ω d δC Ca ∂Φ f C Ca ∂t dΩ + Ω d δC Ca ∇ • (J f Ca )dΩ + Ω d δC Ca ∇ • (Φ f C Ca v f w )dΩ = - Ω d δC Ca ∂ξ ∂t dΩ, (12) 
where δC Ca is the virtual ions calcium concentration in the space C d,Ca such as C d,Ca = {δC Ca :

Ω d → R | δC Ca ∈ H 1 , δC Ca = 0 on ∂Ω d,Ca }.
We note Ω d the domain of the discontinuity.

Using now the divergence theorem on the second term of eqn. 12 yields:

Ω d δC Ca ∇ • (J f Ca )dΩ = - Ω d ∇(δC Ca ) • (J f Ca )dΩ + Γ + d δC + Ca (J f,+ Ca • n Γ + d )dΓ + Γ - d δC - Ca (J f,- Ca • n Γ - d )dΓ (13) 
Considering the fact that the calcium ions flow between the porous matrix surrounding the crack and the crack itself is continuous at each of the faces Γ + d and Γ - d of the discontinuity domain (see [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] for the same argument) :

J f,+ Ca = J m,+ Ca and J f,- Ca = J m,- Ca , (14) 
the convention for the unit normal vectors within the discontinuity domain

Ω d : -n Γ - d = n Γ + d = n Γ d (
opposite to the convention for unit normal vectors within the domain Ω) and

δC + Ca = δC - Ca = δC Ca lead to Ω d δC Ca ∇ • (J f Ca )dΩ = - Ω d ∇(δC Ca ) • (J f Ca )dΩ + Γ d δC Ca J Γ d dΓ (15) 
where eqn. 7 has been considered on Γ d .

Using the divergence theorem on the third term of eqn. 12 yields:

Ω d δC Ca ∇ • (Φ f C Ca v f w )dΩ = - Ω d ∇(δC Ca ) • (Φ f C Ca v f w )dΩ + Γ + d δC + Ca (Φ f C + Ca v f,+ w ) • n Γ + d dΓ + Γ - d δC - Ca (Φ f C - Ca v f,- w ) • n Γ - d dΓ (16) 
Invoking the arguments :

C + Ca = C - Ca = C Ca , δC + Ca = δC - Ca = δC Ca , -n Γ - d = n Γ + d = n Γ d and v f,- w = v f,+ w = v f w in the domain Ω d leads to Ω d δC Ca ∇ • (Φ f C Ca v f w )dΩ = - Ω d ∇(δC Ca ) • (Φ f C Ca v f w )dΩ (17) 
Finally combining eqn. 15, eqn. 17 and 12 gives:

Ω d δC Ca ∂Φ f C Ca ∂t dΩ - Ω d ∇(δC Ca ) • (Φ f C Ca v f w )dΩ - Ω d ∇(δC Ca ) • (J f Ca )dΩ + Γ d δC Ca J Γ d dΓ = - Ω d δC Ca ∂ξ ∂t dΩ (18) 
The sign + before the term Γ d δC Ca J Γ d dΓ indicates that J Γ d flows towards the crack and "leaves" the bulk material surrounding the crack. Again the coupling term appears naturally in the weak form (eqn. 18).

Weak form of 3

The discrete form of eqn. 10 is obtained by employing the Galerkin approximation. This approximation leads to :

Ω d δC CO 3 ∂Φ f C CO 3 ∂t dΩ + Ω d δC CO 3 ∇ • (Φ f C CO 3 v f w )dΩ = - Ω d δC CO 3 ∂ξ ∂t dΩ (19) 
where δC CO 3 is the virtual ions carbonate concentration in the space C d,CO 3 such as C d,CO 3

= {δC CO 3 : Ω d → R | δC CO 3 ∈ H 1 , δC CO 3 = 0 on ∂Ω d,CO 3 }.
Using now the divergence theorem on the second term of eqn. 19 yields:

Ω d δC CO 3 ∇ • (Φ f C CO 3 v f w )dΩ = - Ω d ∇(δC CO 3 ) • (Φ f C CO 3 v f w )dΩ + Γ + d δC + CO 3 (Φ f C + CO 3 v f,+ w ) • n Γ + d dΓ + Γ - d δC - CO 3 (Φ f C - CO 3 v f,- w ) • n Γ - d dΓ (20) 
Invoking the arguments:

C + CO 3 = C - CO 3 = C CO 3 , δC + CO 3 = δC - CO 3 = δC CO 3 (Bubnov-
Galerkin approach also considered for δC

CO 3 ), -n Γ - d = n Γ + d = n Γ d and v f,- w = v f,+ w = v f w in the domain Ω d leads to Ω d δC CO 3 ∇ • (Φ f C CO 3 v f w )dΩ = - Ω d ∇(δC CO 3 ) • (Φ f C CO 3 v f w )dΩ (21) 
Finally combining eqn. 21 and eqn. [START_REF] Alfaiate | On the use of strong discontinuity formulations for the modeling of preferential moisture uptake in fractured porous media[END_REF] gives

Ω d δC CO 3 ∂Φ f C CO 3 ∂t dΩ - Ω d ∇(δC CO 3 ) • (Φ f C CO 3 v f w )dΩ = - Ω d δC CO 3 ∂ξ ∂t dΩ (22) 
4. Evaluation of the coupling term Γ d δC Ca J Γ d dΓ

Numerical hypothesis within the crack

In order to evaluate the coupling term Γ d δC Ca J Γ d dΓ present in eqn. 11, we use eqn. 18

to express it as a function of the integrals on Ω d :

Γ d δC Ca J Γ d dΓ = - Ω d δC Ca ∂Φ f C Ca ∂t dΩ + Ω d ∇(δC Ca ) • (Φ f C Ca v f w )dΩ + Ω d ∇(δC Ca ) • (J f Ca )dΩ - Ω d δC Ca ∂ξ ∂t dΩ (23) 
This approach is also retained in [START_REF] Mohammadnejad | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] for an hydraulic crack problem. Nervertheless terms related to the mechanical problem are furthemore present in this case. In [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF], the author proposes two ways to handle the coupling. The first way is very close to the one presented in this paper and in [START_REF] Mohammadnejad | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF]. The second way considers the crack totally filled by the fluid (no deformable solid in the crack). Starting from the fluid mass conservation equation in the crack, the author obtains the expression of the mass coupling term that ressembles to Reynolds lubrification equation (see [START_REF] De Borst | A classification of poromechanical interface elements[END_REF]). This approach is also present in [START_REF] Carrier | Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model[END_REF].

Hereafter the coupling term is evaluated in the local cartesian coordinate system (x d , y d ).

x d and y d are in the directions of the normal and tangent unit vectors to the discontinuity, n Γ d and t Γ d . We assume that:

• the width of the crack 2h is negligible compared to its length (see [START_REF] Mohammadnejad | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] and [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] for the same argument). Consequently the variation of the calcium ions concentration in the n Γ d direction is not considered. C Ca and δC Ca have therefore a uniform value in the cross section of the discontinuity. They only depend on x d ;

• the width of the crack 2h evolves in function of the amount of C a CO 3 , ξ, created in the crack, i.e 2h(ξ). The physical meaning being that the amount of C a CO 3 created decreases the crack width value;

• the fluid velocity follows Darcy's Law such as v f w = -k d (h)∇p w where k d (h) is the crack permeability depending on the crack width h through the cubic law [START_REF] Jourdain | Upscaling permeability for fractured concrete: mesomacro numerical approach coupled to strong discontinuities[END_REF] and ∇p w is the pressure gradient imposed during the computation;

• the transport by diffusion is induced by Fick's Law such as

J f Ca = -Φ f D f (h)∇C Ca
where D f (h) is the diffusion coefficient in the crack depending on the crack width h.

Analytical model relating the width of the crack 2h and the amount of C a CO 3

In order to relate the width of the crack 2h to the amount of C a CO 3 , ξ, an analytical model is suggested hereafter.

As suggested in [START_REF] Ranaivomanana | Sealing process induced by carbonation of localized cracks in cementitious materials[END_REF], we assume that the updated crack width 2h taking into account the layer of calcite e formed during the sealing process is

2h = 2h 0 -2e, ( 24 
)
where 2h 0 is the initial width of the crack.

According to [START_REF] Ranaivomanana | Sealing process induced by carbonation of localized cracks in cementitious materials[END_REF], the layer calcite e can be written as follows:

e = λV ξ CCa CCO 3 , (25) 
where λ is a fitting parameter depending on the crack characteristics and V ξ the molar volume of calcite (37 cm 3 .mol -1 ). CCa and CCO 3 are the mean values of C Ca and C CO 3 in the crack.

Computational aspects for the coupling term

The first and last integrals in eqn. 23 are such as:

Ω d δC Ca ∂Φ f C Ca ∂t dΩ = Γ d h(ξ) -h(ξ) δC Ca ∂Φ f C Ca ∂t dy d dΓ = Γ d δC Ca 2h(ξ) ∂Φ f C Ca ∂t dΓ (26) 
Ω d δC Ca ∂ξ ∂t dΩ = Γ d h(ξ) -h(ξ) δC Ca ∂ξ ∂t dy d dΓ = Γ d δC Ca 2h(ξ) ∂ξ ∂t dΓ (27) 
For the second term in eqn. 23, we have

Ω d ∇(δC Ca ) • (Φ f C Ca v f w )dΩ = - Γ d h(ξ) -h(ξ) ∇(δC Ca ) • (Φ f C Ca k d (h)∇p w )dy d dΓ = - Γ d h(ξ) -h(ξ) (Φ f C Ca k d (h)) ∂δC Ca ∂x d ∂p w ∂x d + ∂δC Ca ∂y d ∂p w ∂y d dy d dΓ (28) 
Because the (virtual) calcium ions concentration is supposed to be dependent only in x d , its derivative in relation with y d vanishes. Consequently, eqn. 28 becomes:

Ω d ∇(δC Ca ) • (Φ f C Ca v f w )dΩ = - Γ d Φ f C Ca k d (h)2h(ξ) ∂δC Ca ∂x d ∂p w ∂x d dΓ (29) 
For the third term in eqn. 23, we have

Ω d ∇(δC Ca ) • (J f Ca )dΩ = - Γ d h(ξ) -h(ξ) ∇(δC Ca ) • (Φ f D f (h)∇C Ca )dy d dΓ = - Γ d h(ξ) -h(ξ) Φ f D f (h) ∂δC Ca ∂x d ∂C Ca ∂x d + ∂δC Ca ∂y d ∂C Ca ∂y d dy d dΓ (30) 
As mentioned, the (virtual) calcium ions concentration derivative in relation with y d vanishes. Consequently, eqn. 30 becomes:

Ω d ∇(δC Ca ) • (J f Ca )dΩ = - Γ d Φ f D f (h)2h(ξ) ∂δC Ca ∂x d ∂C Ca ∂x d dΓ (31) 
Injecting eqn. 26, 27, 29 and 31 in eqn. 23 yields to the expression of the coupling term:

Γ d δC Ca J Γ d dΓ = - Γ d δC Ca 2h(ξ) ∂Φ f C Ca ∂t dΓ - Γ d Φ f C Ca k d (h)2h(ξ) ∂δC Ca ∂x d ∂p w ∂x d dΓ - Γ d Φ f D f (h)2h(ξ) ∂δC Ca ∂x d ∂C Ca ∂x d dΓ - Γ d δC Ca 2h(ξ) ∂ξ ∂t dΓ (32) 
Finally, combining eqn. 32 and eqn. 11 leads to:

Ω δC Ca ∂Φ m C Ca ∂t dΩ - Ω ∇(δC Ca ) • J m Ca dΩ + ∂Ω J m Ca δC Ca Jm Ca d∂Ω + Γ d δC Ca 2h(ξ) ∂Φ f C Ca ∂t dΓ + Γ d Φ f C Ca k d (h)2h(ξ) ∂δC Ca ∂x d ∂p w ∂x d dΓ + Γ d Φ f D f (h)2h(ξ) ∂δC Ca ∂x d ∂C Ca ∂x d dΓ + Γ d δC Ca 2h(ξ) ∂ξ ∂t dΓ = Ω δC Ca Φ m ϕ Cas dΩ. ( 33 
)
Eqn. 33 and 22 represent the equations of the problem to be solved in terms of C Ca and

C CO 3 .
Having in hand, the weak form of the problem equations, we now turn to the discretization of the concentration fields C Ca and C CO 3 .

FE discretization of the governing equations

Continuous form of the concentration fields

Calcium ions concentration field

As mentioned the fluid flow of calcium ions normal to the discontinuity has to be discontinuous. Because the fluid flow is related to the calcium concentration gradient through Darcy's Law, the gradient of the calcium ions concentration normal to the discontinuity has to be discontinuous. Consequently, the enrichment function of the interpolation of the calcium ions concentration field must be such as the calcium ions concentration itself is continuous but has a discontinuous gradient in the normal direction. To fullfil this requirement, a weak discontinuity is introduced in the calcium ions concentration field through the EAS method [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF]. In this sense, we consider both the calcium ions concentration and the virtual calcium ions concentration fields decomposed into a regular and an enhanced part. This assumption gives for the calcium ions concentration field

C Ca = CCa regular + CCa enhanced , (34) 
and for the virtual calcium ions concentration field

δC Ca = δ CCa regular + δ CCa enhanced . ( 35 
)
As in [START_REF] Simo | A class of mixed assumed strain methods and the method of incompatible modes[END_REF], we refer to CCa and δ CCa as the enhanced parts of the calcium ions concentration fields. The notation (•) refers to the weak discontinuity.

The enrichment function CCa satisifying the condition -continuous concentration field and discontinuous gradient in normal direction -is based upon a weak discontinuity such as:

CCa = Θ n Γ d • (x -ξ) (36) 
where ξ represents the position of Γ d and Θ an unidentified shape function. The product

n Γ d • (x -ξ) is called the signed distance function, Σ Γ d (x)
. This function is plotted in Fig. 3 in the context of 1D problem. Note that when x is equal to ξ (in other words when we are on the discontinuity Γ d ), CCa is equal to zero thus the calcium ions concentration is continuous through the discontinuity. A signed distance function is also considered in [START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for embedded finite element method[END_REF] and [START_REF] Benkemoun | Poroelastic two-phase material modeling: theoretical formulation and embedded finite element method implementation[END_REF] for the meso-scale modelling of a two-phase quasi-brittle material and a two-phase poro-elastic material, respectively. Both authors suggest a model written in the E-FEM framework. In the context of the X-FEM, the absolute value of the signed distance function is regarded in [START_REF] Mohammadnejad | An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model[END_REF] and [START_REF] Réthoré | A two-scale approach for fluid flow in fractured porous media[END_REF] for the modelling of hydraulic crack and in [START_REF] Moës | A computational approach to handle complex microstructure geometries[END_REF] to represent complex microstructure geometries.

Considering the gradient of Σ Γ d (x)yield (see [START_REF] Benkemoun | Poroelastic two-phase material modeling: theoretical formulation and embedded finite element method implementation[END_REF]):

∇(Σ Γ d (x)) =   n 1 n 2   = n Γ d . (37) 
x

Σ Γ d (x) Γ d n Γ d O (ξ, 0) (0, 0) n Γ d • (x 1 -ξ) n Γ d • (x 2 -ξ) Σ Γ d (x 1 ) < 0 Σ Γ d (x 2 ) > 0 Figure 3: 1D plot of the signed distance function Σ Γ d (x)
Finally, eqn. 37 gives for the gradient of CCa the following form:

∇ CCa = Θ   n 1 n 2   = Θn Γ d . (38) 
As it will be explained after, eqn. 38 satisfies the discontinuous requirement in the gradient normal direction.

Carbonate ions concentration field

For the carbonate ions concentration field, there is no need for an enhanced function.

Only the regular part is recquired such as:

C CO 3 = CCO 3 regular . ( 39 
)

Discrete form of the concentration fields

After presenting the continuous forms of the concentration fields and more particularly the form of the enhanced calcium concentration field, we now turn to their discrete expressions.

Calcium ions concentration field

Starting from eqn. 34 and 35, the discrete forms of C Ca and δC Ca labeled as C h Ca and

δC h Ca are C h Ca = N Ca Ch Ca + M Ca Ch Ca , (40) 
and

δC h Ca = N Ca δ Ch Ca + M Ca δ Ch Ca , (41) 
where N Ca is a row vector containing the standard shape functions, Ch Ca is a column vector containing the regular calcium ions concentration unknowns. M Ca is a scalar value corresponding to the discrete form of the enhanced function (eqn. 36) and Ch Ca is a scalar value corresponding to the enhanced parameter. This parameter is computed during the resolution process only for the elements containing a crack.

Following the idea presented in [START_REF] Benkemoun | Poroelastic two-phase material modeling: theoretical formulation and embedded finite element method implementation[END_REF] and eqn. 36, the form of M Ca is such as:

M Ca =    M ⊕ Ca = Θ ⊕ n • (x ⊕ -ξ) = V ⊖ V n • (x ⊕ -ξ) in Ω ⊕ e M ⊖ Ca = Θ ⊖ n • (x ⊖ -ξ) = -V ⊕ V n • (x ⊖ -ξ) in Ω ⊖ e , (42) 
where V ⊕ and V ⊖ are the volume of Ω ⊕ e and Ω ⊖ e , respectively.

Fig. 4 plots the enhanced function M Ca in the 1D case. We have arbitrarily chosen V ⊖ equals to 0.3, V ⊕ to 0.7 and ξ to 0.3. The section and the length of the 1D domain are equal to 1.

x 

M Ca (x) Γ d n Γ d (1, 0) (0.3, 0) (0, 0) 0.21 (1, 0) 0.21

Consequently the gradients of C h

Ca and δC h Ca are

∇C h Ca = B Ca Ch Ca + G Ca Ch Ca , (43) 
and

∇δC h Ca = B Ca δ Ch Ca + G Ca δ Ch Ca , (44) 
where B Ca is a matrix containing the derivatives of the shape functions N Ca and G Ca is a vector containing the derivative of M Ca . G Ca corresponds to the discrete form of eqn. 38.

The form of G Ca is such as

G Ca =    G ⊕ Ca = Θ ⊕ H = V ⊖ V H in Ω ⊕ e G ⊖ Ca = Θ ⊖ H = -V ⊕ V H in Ω ⊖ e (45) 
with

H =   n 1 n 2   . (46) 
Fig. 5 plots the enhanced function G Ca in the 1D case and illustrates the discontinuous recquirement in the normal direction when passing through Γ d .

x G Ca (x) 

Γ d n Γ d (1, 0) (0.3, 0) (0, 0) -0.7 (1, 0) 0.3

Carbonate ions concentration field

The discrete form of the carbonate ions concentration field is such as:

C h CO 3 = N CO 3 Ch CO 3 (47) 
and

δC h CO 3 = N CO 3 δ Ch CO 3 , (48) 
where N CO 3 is a row vector containing the standard shape functions and Ch CO 3 a column vector containing the regular carbonate ions concentration unknowns.

Consequently the gradients of C h CO 3 and δC h CO 3 are:

∇C h CO 3 = B CO 3 Ch CO 3 (49) 
and

∇δC h CO 3 = B CO 3 δ Ch CO 3 , (50) 
where B CO 3 is a matrix containing the derivatives of the shape functions N CO 3 .

Discrete form of the governing equations

Combining eqn. 

F int, CCO 3 = 0 (52)
The definition of the matrix and vector coefficients are given in Appendix A.

Linearization of the governing equations

In a first time, we note for the k th iteration at the n + 1 time step :

R (k) n+1 = 1 ∆t M Ca Ca | (k) n+1 ∆ Ch Ca | (k) n+1 + 1 ∆t M Ca Ca | (k) n+1 ∆ Ch Ca | (k) n+1 + H Ca Ca | (k) n+1 Ch Ca | (k) n+1 + H Ca Ca | (k) n+1 Ch Ca | (k) n+1 -F int, Ca | (k) n+1 -F ext, Ca | n+1 , (53) 
h (k) n+1 = 1 ∆t M T Ca Ca | (k) n+1 ∆ Ch Ca | (k) n+1 + 1 ∆t M Ca Ca | (k) n+1 ∆ Ch Ca | (k) n+1 + H T Ca Ca | (k) n+1 Ch Ca | (k) n+1 + H Ca Ca | (k) n+1 Ch Ca | (k) n+1 -F int, Ca | (k) n+1 -F ext, Ca | n+1 , (54) 
where the Newmark integration scheme for time dependent terms has been considered, and Consequently, the linearization of eqn. 53, 54 and 55 leads to:

F int, CCO 3 | (k) n+1 = 0. ( 55 
)
-R

(k) n+1 = [ 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca ]| (k) n+1 ∆ Ch Ca | (k+1) n+1 + [ 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca ]| (k) n+1 ∆ Ch Ca | (k+1) n+1 - ∂F int, Ca ∂ Ch CO 3 | (k) n+1 ∆ Ch CO 3 | (k+1) n+1 , (56) 
-h

(k) n+1 = [ 1 ∆t M T Ca Ca + H T Ca Ca - ∂F int, Ca ∂ Ch Ca ]| (k) n+1 ∆ Ch Ca | (k+1) n+1 + [ 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca ]| (k) n+1 ∆ Ch Ca | (k+1) n+1 - ∂F int, Ca ∂ Ch CO 3 | (k) n+1 ∆ Ch CO 3 | (k+1) n+1 , (57) 
and

-F int, CCO 3 | (k) n+1 = ∂F int, CCO 3 ∂ Ch Ca | (k) n+1 ∆ Ch Ca | (k+1) n+1 + ∂F int, CCO 3 ∂ Ch Ca | (k) n+1 ∆ Ch Ca | (k+1) n+1 + ∂F int, CCO 3 ∂ Ch CO 3 | (k) n+1 ∆ Ch CO 3 | (k+1) n+1 . (58) 
The form of the partial derivatives are given hereafter.
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For eqn. 56, we have and

∂F int, Ca ∂ Ch CO 3 | (k) n+1 = - Γ d M T Ca 2h(ξ)K(N Ca Ch Ca + M Ca Ch Ca )N CO 3 dΓ. (64) 
For eqn. 58, we have

283 ∂F int, CCO 3 ∂ Ch Ca | (k) n+1 = Γ d N T CO 3 2h(ξ)KN Ca (N CO 3 Ch CO 3 )dΓ, ( 65 
) ∂F int, CCO 3 ∂ Ch Ca | (k) n+1 = Γ d N T CO 3 2h(ξ)KM Ca (N CO 3 Ch CO 3 )dΓ, (66) 
and 

∂F int, CCO 3 ∂ Ch CO 3 | (k) n+1 = 1 ∆t Γ d N T CO 3 2h(ξ)Φ f N CO 3 dΓ + Γ d (B T CO 3 • t Γ d )2h(ξ)Φ f k d (h)(t T Γ d • ∇p w )N CO 3 dΓ + Γ d N T CO 3 2h(ξ)K(N Ca Ch Ca + M Ca Ch Ca )N CO 3 dΓ. ( 67 
n+1 such as:

∆ Ch CO 3 | (k+1) n+1 = ∂F int, CCO 3 ∂ Ch CO 3 | (k) n+1 -1 -F int, CCO 3 | (k) n+1 - ∂F int, CCO 3 ∂ Ch Ca | (k) n+1 ∆ Ch Ca | (k+1) n+1 - ∂F int, CCO 3 ∂ Ch Ca | (k) n+1 ∆ Ch Ca | (k+1) n+1 . ( 68 
)
Combining eqn. 68 and eqn. 57 gives the expression of ∆ Ch

Ca | (k+1) n+1 in function of ∆ Ch Ca | (k+1) n+1 such as: ∆ Ch Ca | (k+1) n+1 = A| (k) n+1 -1 -h (k) n+1 -B| (k) n+1 -X| (k) n+1 ∆ Ch Ca | (k+1) n+1 (69) 
where, for sake of clarity, we note

X| (k) n+1 = 1 ∆t M T Ca Ca + H T Ca Ca - ∂F int, Ca ∂ Ch Ca + ∂F int, Ca ∂ Ch CO 3 ∂F int, CCO 3 ∂ Ch CO 3 -1 ∂F int, CCO 3 ∂ Ch Ca (k) n+1 , (70) 
A| (k) n+1 = 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca + ∂F int, Ca ∂ Ch CO 3 ∂F int, CCO 3 ∂ Ch CO 3 -1 ∂F int, CCO 3 ∂ Ch Ca (k) n+1 , (71) 
and

B| (k) n+1 = ∂F int, Ca ∂ Ch CO 3 | (k) n+1 ∂F int, CCO 3 ∂ Ch CO 3 | (k) n+1 -1 F int, CCO 3 | (k) n+1 . (72) 
We eventually obtain the problem to be solved in terms of ∆ Ch Ca |

n+1 by combining eqn. 68 and 69 into eqn. 56 such as:

K(k) n+1 ∆ Ch Ca | (k+1) n+1 = F (k) n+1 , (73) 
where

K(k) n+1 = 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca - 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca A -1 X + ∂F int, Ca ∂ Ch CO 3 ∂F int, CCO 3 ∂ Ch CO 3 -1 ∂F int, CCO 3 ∂ Ch Ca - ∂F int, Ca ∂ Ch CO 3 ∂F int, CCO 3 ∂ Ch CO 3 -1 ∂F int, CCO 3 ∂ Ch Ca A -1 X (k) n+1 (74) 
and

F (k) n+1 = -R (k) n+1 - ∂F int, Ca ∂ Ch CO 3 | (k) n+1 ∂F int, CCO 3 ∂ Ch CO 3 | (k) n+1 -1 F int, CCO 3 | (k) n+1 + 1 ∆t M Ca Ca + H Ca Ca - ∂F int, Ca ∂ Ch Ca + ∂F int, Ca ∂ Ch CO 3 ∂F int, CCO 3 ∂ Ch CO 3 -1 ∂F int, CCO 3 ∂ Ch Ca (k) n+1 A| (k) n+1 -1 h (k) n+1 + B| (k) n+1 . ( 75 
) Once ∆ Ch Ca | (k+1) n+1 is known, ∆ Ch Ca | (k+1) n+1 and ∆ Ch CO 3 | (k+1)
n+1 can be computed through eqn.

69 and 68, respectively.

Conclusion

In this paper, we have suggested a numerical model for the healing process induced by carbonation of a single crack in concrete structures. We have shown that careful considerations concerning the transport equations are needed to have a realistic model. Chemical reactions such as the calcite precipitation (resulting in the healing process), transport by diffusion and permeation equations written in the porous matrix and in the crack and dependence of the permeability and diffusivity coefficients on the calcite width are for instance worth noting. In addition, considering the fact that there is a geometrical discontinuity Γ d embedded in the domain Ω, a mass transfer coupling between the porous bulk material surrounding the crack and the crack itself arises. This mass transfer comes from the exchange by diffusion of the calcium ions flow between the porous matrix surrounding the crack and the crack itself. It is important to stress the fact that this coupling term arises naturally in the weak form of the problem, since the crack is directly embedded in the mesh through the E-FEM. This a serious advantage when the FE discretization is performed. Consequently, concerning this term, an accurate FE approximation capable of accomodating the jump in the normal direction of the calcium ions gradient has to be introduced. In this sense, a weak discontinuity in the calcium ions concentration field for finite elements where the crack is present is added in the framework of the EAS method. In addition, the solution procedure for this class of problems retained in this paper is attractive since the framework of a classical FE code is preserved. The enhanced parameters are just post-calculated. Finally, the experimental validation of the model and its sensitivity analysis will be the object of a forthcoming work. In addition, healing process implies consideration of strength recovery in the mechanical process. However the numerical model suggested in this paper only deals with reactive transport equations. In this sense, no mechanical considerations are regarded for the moment. One lead for introducing the healing process into a mechanical problem could be to consider a (weak) coupled approach as done in [START_REF] Benkemoun | A meso-macro numerical approach for crack-induced diffusivity evolution in concrete[END_REF]. The key point is to express the mechanical properties (Young modulus for example) as a function of the crack opening value, which depends itself on the calcite concentration. This idea is inspired by the work of [START_REF] Djerbi | Influence of traversing crack on chloride diffusion into concrete[END_REF] where the authors obtain the diffusion coefficient as a function of the crack opening in the context of chloride ingress problem.

Appendix A

The matrix and vector coefficients involved in system 51 and eqn. 52 are given herefater. 

M Ca Ca = Ω N T Ca Φ m N Ca dΩ M Ca Ca = Ω N T Ca Φ m M Ca dΩ M Ca Ca = Ω M T Ca Φ m M Ca dΩ H Ca Ca = Ω B T Ca Φ m D m B Ca dΩ H Ca Ca = Ω B T Ca Φ m D m G Ca dΩ H Ca Ca = Ω G T Ca Φ m D m G Ca dΩ F int, Ca = Γ d N T Ca J Γ d dΓ = - Γ d N T Ca 2h(ξ)Φ f N Ca dΓ Ċh Ca - Γ d N T Ca 2h(ξ)Φ f M Ca dΓ Ċh Ca - Γ d (B T Ca • t Γ d )2h(ξ)Φ f D f (h)(t T Γ d • B Ca )dΓ Ch Ca - Γ d (B T Ca • t Γ d )2h(ξ)Φ f D f (h)(t T Γ d • G Ca )dΓ Ch Ca - Γ d (B T Ca • t Γ d )2h(ξ)Φ f k d (h)(t T Γ d • ∇p w )N Ca dΓ Ch Ca - Γ d (B T Ca • t Γ d )2h(ξ)Φ f k d (h)(t

a and CO 2- 3 written

 3 in the crack and the transport equation of C 2+ a written in the porous media. Also chemical reactions (dissolution/precipitation) in the porous matrix and the crack are regarded.
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 1 Figure 1: Schematic of the mechanisms taking place during the healing process induced by carbonation into a single crack
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 2 Figure 2: Illustration of the domain Ω including the discontinuity Γ d and the boundary conditions (inspired from [17])
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 4 Figure 4: 1D plot of the enhanced function M Ca
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 5 Figure 5: 1D plot of the enhanced function G Ca

  40, 41, 43, 44 and eqn. 33 and considering the fact that the weak form of the equations has to hold for all kinematically admissible test functions δ Ch Ca and δ Ch CO 3 and δC CO 3 depend only on x d (see the arguments before) and considering the fact that the weak form of the equation has to hold for all kinematically admissible test functions δ Ch CO 3 lead to:
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and

For eqn. 57, we have