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Abstract

We consider a model for reactive flows which describes the healing process induced by car-

bonation of a single crack in concrete structures. The aim of this paper is to study the

complex interplay between advection-diffusion mechanisms in a crack-matrix system com-

bined with different chemical reactions taking place (dissolution/precipitation). Carbonated

water is first injected through a crack. Then, a diffusion process of calcium ions (C2+
a ) takes

place from the porous matrix to the crack due to the existing calcium ions concentration

gradient. Finally, those calcium and carbonates ions (CO2−
3 ) from the percolating solution

react to form a calcite (CaCO3) layer responsible for the healing of the crack. The devel-

oped model takes the form of transport-reaction partial differential equations for both crack

and porous matrix. From numerical point of view these equations are discretized by means

of the Embedded Finite Element Method (E-FEM). The E-FEM allows to use meshes not

necessarily matching the physical interface, defined herein as the crack, while retaining the

accuracy of the classical finite element approach. This is achieved by introducing a weak

discontinuity in the calcium ions concentration field for finite elements where the crack is

present. A numerical solving strategy is presented to efficiently resolve the FE problem

both in terms of calcium and carbonate concentration field variables and weak discontinuity

parameters. In addition, an analytical model for the computation of the calcite layer width,

resulting in the healing process, is suggested. Finally, considering the dependence of the
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diffusivity and permeability coefficients on the width of the calcite, a coupled model arises

for the numerical modelling of the healing process induced by carbonation in a crack.

Keywords: Embedded Finite Element formulation; EAS method; Weak Discontinuity;

Healing process; Concrete; Crack; Structure durability;

1. Introduction1

The assessment of concrete structure lifetime is nowdays necessary for the design of2

durable structures. As a complementary means to experimental approaches, numerical3

modelling can be a relevant tool for this lifetime assessment. The development of thor-4

ough numerical models requires a comprehension not only of the degradation phenomena5

but also of the healing process. Indeed, healing process can improve the durability of struc-6

tures (storage or containment structures for instance). The healing process can occur in7

both ways (see [1], [2] and [3]):8

• naturally by calcium carbonate formation, expansion of hydrated cementitious matrix,9

blocking of cracks by impurities present in water (sealing) and further hydration of10

unreacted cement.11

• artificially by the use of chemical admixtures, polymers and geo-materials and even12

microorganism which are able to produce calcium carbonates.13

Among the natural healing processes mentionned above, the formation of calcium carbonate14

is investigated in this study, since it is considered as one of the most promising autogenous15

healing mechanisms (see [4], [5], [6] or [7] for a review and [8] for experimental results con-16

cerning microbially-induced calcium carbonate precipitation). Most publications dedicated17

to the modeling of natural self-healing process mainly concern the process of further hy-18

dration of unreacted cement ([1], [9], [10] and [11]). However concerning the modeling of19

the natural self-healing process induced by carbonation, there is not so much information in20
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the literature. The authors in [6] have proposed a simplified model for the evolution of the21

leakage rate through a cracked material versus time, while carbonated water flows through22

the crack. However, their approach is limited by the fact that two calibration parameters,23

whose values vary from one material to another, are present in the model. In [12], the authors24

have developed a multiple phase self-healing-model, that simulates three distinct stages in25

the healing process: fracture process, transport of healing agents to the healing location26

and mechanical strength recovery. The authors introduced a hygro-chemical transportation27

model (momentum and mass balance equations), in which the active species are transported28

by advective, diffusive and dispersive fluxes through the pore fluid to damaging and heal-29

ing sites. More recently, [13] have proposed a finite-element model describing self-healing30

mechanisms in engineered cementitious composites and based on CaCO3 precipitation. The31

model takes into account the diffusive mechanisms of aqueous species in the material, and32

the most fundamental chemical equations that take place during the healing phenomenon.33

The concentration of the three main species (calcium ions C2+
a , carbonate ions CO2−

3 and34

calcite CaCO3) acting on the healing process are identified as the main model variables and35

the modeling results into a reaction-diffusive set of equations. However, the model requires36

further validations. Indeed simplified assumptions are assumed by the authors such as the37

fact that the diffusion coefficients are independent from damage and healing variables. In38

addition no water-flowing through the crack is considered.39

In this paper, a numerical approach is presented in the context of the natural healing40

process. In this sense, we suggest a numerical model for the healing process induced by41

carbonation of a single crack in concrete structures. Transport equations of C2+
a and CO2−

342

written in the crack and transport equation of C2+
a written in the porous media are consid-43

ered and discretized by means of the Embedded Finite Element Method (E-FEM, see [14]44

for instance). The E-FEM allows to use meshes not necessarily matching the physical inter-45

face, defined herein as the crack, while retaining the accuracy of the classical finite element46

approach. This is achieved by considering a weak discontinuity [15] in the calcium ions con-47

centration field for finite elements where the crack is present. This enhancement, introduced48

in the framework of the EAS method [16], allows to have the calcium ions concentration49
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field continuous itself and a jump in the normal direction of the calcium ions concentration50

gradient, when passing through the crack. This results in a discontinuous leakage flux that51

flows from the porous matrix toward the crack. This flux represents the mass coupling term52

between the porous media surrounding the crack and the crack itself. It is important to53

stress the fact that this coupling term arises naturally in the weak form of the problem,54

since the crack is directly embedded in the mesh through the E-FEM. This a serious ad-55

vantage when the FE discretization is performed. Finally, having at hands the calcite and56

calcium concentration fields values for each time step, the width of the calcite layer in the57

crack is computed by means of an analytical model, resulting in the healing process in the58

crack. Finally, considering the fact that diffusivity and permeability coefficients values also59

depend on this calcite layer width, a coupled model arises for the numerical modelling of60

the healing process induced by carbonation in a crack.61

The outline of this paper is as follows. In Section 2, the governing equations of the62

problem are introduced. They consist in the transport equation of C2+
a in the porous media63

and in the crack, and the transport equation of CO2−
3 in the crack. In Section 3, the weak64

form of the problem is suggested. It is obtained by means of the Galerkin approximation,65

leading to the FE to be solved. In Section 4, the method to compute the coupling term66

is shown. Also we present the analytical model to evaluate the width of the calcite layer,67

resulting in the healing process. In Section 5, the FE discretization of the concentration68

fields, based upon the E-FEM, and the solving strategy are presented.69

2. Governing equations70

In this section a model for reactive flows which describes the healing process induced by71

carbonation of a single crack in concrete structures is considered. In this sense, the strong72

form of the model governing equations is presented. We consider the transport equations73

of C2+
a and CO2−

3 written in the crack and the transport equation of C2+
a written in the74

porous media. Also chemical reactions (dissolution/precipitation) in the porous matrix and75

the crack are regarded.76
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Technically speaking, carbonated water is first injected through the crack. Then, a77

diffusion process of calcium ions (C2+
a ) takes place from the porous matrix to the crack due78

to the existing calcium ions concentration gradient. Finally, those calcium and carbonates79

ions (CO2−
3 ) from the percolating solution react to form a calcite (CaCO3) layer responsible80

for the healing of the crack. Those mechanisms are illustrated in Fig. 1 and are described81

hereafter for each transport equation.82

Porous matrix
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Cas

C
2+
a

C
2+
a
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2+
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C
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C
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Ca Jm

Ca
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P1

vf
w

CO
2−

3

Cas dissolution

C2+
a + CO2−

3 → CaCO3

Figure 1: Schematic of the mechanisms taking place during the healing process induced by carbonation into

a single crack

2.1. Transport equation of C2+
a in the porous media83

We note CCa the calcium ions concentration in the pore solution of the matrix, Φm the84

matrix porosity and ϕCas a source term taking into account the dissolution of the calcium85

in the solid phase Cas. Transport by diffusion, resulting from the existing calcium ions86

concentration gradient between the crack and the porous matrix, is considered through the87

flux Jm
Ca

. Consequently, the transport equation (diffusion equation) of C2+
a in the porous88

media is such as:89

∂ΦmCCa

∂t
+∇ · (Jm

Ca) = ΦmϕCas (1)
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2.2. Transport equation of C2+
a in the crack90

Transport by diffusion and permeation is considered through the fluxes Jf
Ca and ΦfCCav

f
w
,91

respectively. Again transport by diffusion, resulting from the existing calcium ions concen-92

tration gradient between the crack and the porous matrix, is considered through the flux93

Jm
Ca

. Transport by permeation takes place because of the pressure gradient in between the94

bottom and the top side of the crack (see Fig. 1: ∇pw = P1 − P0). We note vf
w

the fluid95

velocity and Φf the crack porosity. Last but not least, considering the fact that the C2+
a96

and CO2−
3 ions react together all over the time to form calcite CaCO3 into the crack, the97

evolution of calcite formation has to be also taken into account. This is achieved by means98

of the source term −∂ξ

∂t
where ξ is the amount of calcite formed in the crack. This formation99

of calcite results in the healing process taking place into the crack.100

This leads to the following transport equation (diffusion-permeation equation) of C2+
a in101

the crack:102

∂ΦfCCa

∂t
+∇ · (Jf

Ca) +∇ · (ΦfCCav
f
w
) = −

∂ξ

∂t
(2)

2.3. Transport equation of CO2−
3 in the crack103

We note CCO3
the carbonate ions concentration in the crack. Transport by permeation is104

considered through the flux ΦfCCO3
vf
w
. It takes place also because of the pressure gradient105

in between the bottom and the top side of the crack.106

The transport equation of CO2−
3 in the crack is such as:107

∂ΦfCCO3

∂t
+∇ · (ΦfCCO3

vf
w
) = −

∂ξ

∂t
(3)

The amount of CaCO3, labeled as ξ, created in the crack is evaluated by means of the108

following relation:109

∂ξ

∂t
= KCCaCCO3

(4)

with K a constant value.110
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Last but not least, it is important to stress the fact that the diffusion model suggested111

in this paper based on Fick’s Law oversimplifies some physical phenomena. For instance,112

the electrical coupling between the ions and its effect on their movements is overlooked. It113

is worth noting because it can influence the kinetic of calcite formation and consequently114

the healing process.115

Having at hands the strong form of the transport equations, we now turn to Galerkin116

approximation of these equations.117

3. Galerkin approximation: weak form of the transport equations118

The domain Ω considered for the problem is shown in 2D in Fig. 2. We note ∂Ω the

external boundary where essential and natural boundary conditions are prescribed. Also

this domain contains a geometrical discontinuity labeled as Γd. We note Γ+
d and Γ−

d the

boundary of the discontinuity domain. The essential boundary conditions are imposed on

∂Ω such as

CCa = C̄Ca on ∂ΩCa
, (5)

where C̄Ca is the imposed calcium ions concentration on ∂ΩCa
.119

The natural boundary conditions are imposed on ∂Ω such as

Jm
Ca

· n = J̄m
Ca

on ∂ΩJm

Ca

. (6)

We note J̄m
Ca

the prescribed flux over ∂ΩJm

Ca

and n the unit outward normal vector to the120

external boundary ∂Ω, where the usual condition ∂ΩCa
∪ ∂ΩJm

Ca

= ∂Ω has to be respected.121

In addition, considering the fact that there is a geometrical discontinuity Γd embedded in

the domain Ω, a mass transfer coupling between the porous bulk material surrounding the

crack and the crack itself arises. In this paper, this mass transfer comes from the exchange

by diffusion of the calcium ions flow between the porous matrix surrounding the crack and

the crack itself. Consequently, on Γd we have:

[|Jm
Ca

|] · nΓd
= JΓd

on Γd (7)
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We note JΓd
the leakage flux of calcium ions induced by diffusion from the porous matrix122

toward the crack. As stated in [17] and [18] in the context of the X-FEM and in [19] in123

the context of the E-FEM, the normal component of this leakage flux is discontinuous when124

passing across Γd. The physical meaning of this discontinuity is that a part of the calcium125

ions flow induced by diffusion that enters in the crack through one of its faces flows away126

tangentially when inside the crack or can even be stored within the crack. Consequently127

the flux of calcium ions normal to the crack is discontinuous. We refer nΓd
as the the unit128

normal vector to the discontinuity Γd pointing out to Ω+ and [| • |] = •+ − •− as the jump129

between the values at Γ+
d and Γ−

d sides.130

Γd

∂Ω

∂ΩCa

∂ΩJmCa

J̄m
Ca

Γ+
d

Γ−

d

nΓ−

d

nΓ+
d

nΓd

C̄Ca

Ω

Ω+

Ω−

Figure 2: Illustration of the domain Ω including the discontinuity Γd and the boundary conditions (inspired

from [17])

3.1. Weak form of 1131

The discrete form of eqn. 1 is obtained by employing the Galerkin approximation. This132

approximation leads to :133

∫

Ω

δCCa

∂ΦmCCa

∂t
dΩ +

∫

Ω

δCCa∇ · (Jm
Ca

)dΩ =

∫

Ω

δCCaΦ
mϕCasdΩ, (8)

where δCCa is the virtual ions calcium concentration in the space C such as C = {δCCa :134

Ω 7→ R | δCCa ∈ H1, δCCa = 0 on ∂ΩCa
}.135
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Using the divergence theorem on the second term of eqn. 8 left hand side yields:
∫

Ω

δCCa∇ · (Jm
Ca

)dΩ = −

∫

Ω

∇(δCCa) · J
m
Ca

dΩ+

∫

∂ΩJm
Ca

δCCaJ̄
m
Ca
d∂Ω +

∫

Γ+
d

δC+
Ca(J

m,+
Ca · nΓ+

d

)dΓ

+

∫

Γ−

d

δC−

Ca(J
m,−
Ca · nΓ−

d

)dΓ, (9)

where eqn. 6 on ∂ΩJm

Ca

and δCCa = 0 on ∂ΩCa
have been considered.136

Assuming the fact that the calcium ions concentration has the same value at both faces

of the crack ([18] and [17]): C+
Ca = C−

Ca = CCa and considering a Bubnov-Galerkin approach,

the virtual calcium ions concentration at both faces is such as δC+
Ca = δC−

Ca = δCCa. Finally

invoking nΓ−

d

= −nΓ+
d

= nΓd
, we obtain

∫

Ω

δCCa∇· (Jm
Ca

)dΩ = −

∫

Ω

∇(δCCa) ·J
m
Ca

dΩ+

∫

∂ΩJm
Ca

δCCaJ̄
m
Ca
d∂Ω−

∫

Γd

δCCaJΓd
dΓ, (10)

where eqn. 7 has been considered on Γd.137

Note that considering the same value for the calcium ions concentrations at both faces of138

the crack and in a more general manner considering an “hydraulic” variable as continuous139

passing through a crack is not something agreed in the computational mechanics commu-140

nity. An enlightening classification can be found in [20] where the author describes both141

continuous and discontinuous approaches for modelling the pressure field passing across a142

crack. The author shows that the discontinuity in the pressure field can be taken into ac-143

count by considering (1) a jump in the pressure field or (2) a jump in the pressure field144

plus an independent pressure at the discontinuity. The choice between (1) and (2) being145

done regarding the physics of the problem. In [19], a discontinuous capillary pressure is also146

considered accross a crack. In this case it is to fit the recquired nodal conditions imposed147

by the G-FEM for the capillary pressure field discretization.148

Finally combining eqn. 10 and 8, we obtain149

∫

Ω

δCCa

∂ΦmCCa

∂t
dΩ−

∫

Ω

∇(δCCa) · J
m
CadΩ+

∫

∂ΩJm
Ca

δCCaJ̄
m
Ca
d∂Ω−

∫

Γd

δCCaJΓd
dΓ

=

∫

Ω

δCCaΦ
mϕCasdΩ, (11)
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The sign - before the coupling term
∫

Γd

δCCaJΓd
dΓ indicates that JΓd

“leaves” the bulk150

material surrounding the crack and flows toward the crack. It is important to note that151

the coupling term, representing the exchange by diffusion of the calcium ions flow between152

the porous matrix surrounding the crack and the crack itself, arises naturally in the weak153

form of the transport equation (eqn. 1) since the discontinuity (crack) is embedded into the154

problem.155

3.2. Weak form of 2156

The discrete form of eqn. 9 is obtained by employing the Galerkin approximation. This157

approximation leads to :158

∫

Ωd

δCCa

∂ΦfCCa

∂t
dΩ +

∫

Ωd

δCCa∇ · (Jf
Ca)dΩ+

∫

Ωd

δCCa∇ · (ΦfCCav
f
w)dΩ

= −

∫

Ωd

δCCa

∂ξ

∂t
dΩ, (12)

where δCCa is the virtual ions calcium concentration in the space Cd,Ca
such as Cd,Ca

= {δCCa :159

Ωd 7→ R | δCCa ∈ H1, δCCa = 0 on ∂Ωd,Ca
}. We note Ωd the domain of the discontinuity.160

Using now the divergence theorem on the second term of eqn. 12 yields:

∫

Ωd

δCCa∇ · (Jf
Ca)dΩ = −

∫

Ωd

∇(δCCa) · (J
f
Ca)dΩ+

∫

Γ+
d

δC+
Ca(J

f,+
Ca · nΓ+

d

)dΓ

+

∫

Γ−

d

δC−

Ca(J
f,−
Ca · nΓ−

d

)dΓ (13)

Considering the fact that the calcium ions flow between the porous matrix surrounding

the crack and the crack itself is continuous at each of the faces Γ+
d and Γ−

d of the discontinuity

domain (see [18] for the same argument) :

J
f,+
Ca = J

m,+
Ca and J

f,−
Ca = J

m,−
Ca , (14)

the convention for the unit normal vectors within the discontinuity domain Ωd: −nΓ−

d

=161

nΓ+
d

= nΓd
(opposite to the convention for unit normal vectors within the domain Ω) and162

δC+
Ca = δC−

Ca = δCCa lead to163
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∫

Ωd

δCCa∇ · (Jf
Ca)dΩ = −

∫

Ωd

∇(δCCa) · (J
f
Ca)dΩ+

∫

Γd

δCCaJΓd
dΓ (15)

where eqn. 7 has been considered on Γd.164

Using the divergence theorem on the third term of eqn. 12 yields:

∫

Ωd

δCCa∇ · (ΦfCCav
f
w
)dΩ = −

∫

Ωd

∇(δCCa) · (Φ
fCCav

f
w
)dΩ+

∫

Γ+
d

δC+
Ca(Φ

fC+
Cav

f,+
w

) · nΓ+
d

dΓ

+

∫

Γ−

d

δC−

Ca(Φ
fC−

Cav
f,−
w

) · nΓ−

d

dΓ (16)

Invoking the arguments : C+
Ca = C−

Ca = CCa, δC
+
Ca = δC−

Ca = δCCa, −nΓ−

d

= nΓ+
d

= nΓd

and vf,−
w

= vf,+
w

= vf
w
in the domain Ωd leads to

∫

Ωd

δCCa∇ · (ΦfCCav
f
w
)dΩ = −

∫

Ωd

∇(δCCa) · (Φ
fCCav

f
w
)dΩ (17)

Finally combining eqn. 15, eqn. 17 and 12 gives:

∫

Ωd

δCCa

∂ΦfCCa

∂t
dΩ−

∫

Ωd

∇(δCCa) · (Φ
fCCav

f
w
)dΩ−

∫

Ωd

∇(δCCa) · (J
f
Ca)dΩ+

∫

Γd

δCCaJΓd
dΓ

= −

∫

Ωd

δCCa

∂ξ

∂t
dΩ (18)

The sign + before the term
∫

Γd

δCCaJΓd
dΓ indicates that JΓd

flows towards the crack165

and “leaves” the bulk material surrounding the crack. Again the coupling term appears166

naturally in the weak form (eqn. 18).167

3.3. Weak form of 3168

The discrete form of eqn. 10 is obtained by employing the Galerkin approximation. This169

approximation leads to :170

∫

Ωd

δCCO3

∂ΦfCCO3

∂t
dΩ+

∫

Ωd

δCCO3
∇ · (ΦfCCO3

vf
w
)dΩ = −

∫

Ωd

δCCO3

∂ξ

∂t
dΩ (19)

where δCCO3
is the virtual ions carbonate concentration in the space Cd,CO3

such as Cd,CO3
171

= {δCCO3
: Ωd 7→ R | δCCO3

∈ H1, δCCO3
= 0 on ∂Ωd,CO3

}.172
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Using now the divergence theorem on the second term of eqn. 19 yields:

∫

Ωd

δCCO3
∇ · (ΦfCCO3

vf
w
)dΩ = −

∫

Ωd

∇(δCCO3
) · (ΦfCCO3

vf
w
)dΩ+

∫

Γ+
d

δC+
CO3

(ΦfC+
CO3

vf,+
w

) · nΓ+
d

dΓ

+

∫

Γ−

d

δC−

CO3
(ΦfC−

CO3
vf,−
w

) · nΓ−

d

dΓ (20)

Invoking the arguments: C+
CO3

= C−

CO3
= CCO3

, δC+
CO3

= δC−

CO3
= δCCO3

(Bubnov-173

Galerkin approach also considered for δCCO3
), −nΓ−

d

= nΓ+
d

= nΓd
and vf,−

w = vf,+
w = vf

w174

in the domain Ωd leads to175

∫

Ωd

δCCO3
∇ · (ΦfCCO3

vf
w
)dΩ = −

∫

Ωd

∇(δCCO3
) · (ΦfCCO3

vf
w
)dΩ (21)

Finally combining eqn. 21 and eqn. 19 gives

∫

Ωd

δCCO3

∂ΦfCCO3

∂t
dΩ−

∫

Ωd

∇(δCCO3
) · (ΦfCCO3

vf
w
)dΩ = −

∫

Ωd

δCCO3

∂ξ

∂t
dΩ (22)

4. Evaluation of the coupling term
∫

Γd
δCCaJΓd

dΓ176

4.1. Numerical hypothesis within the crack177

In order to evaluate the coupling term
∫

Γd

δCCaJΓd
dΓ present in eqn. 11, we use eqn. 18

to express it as a function of the integrals on Ωd:

∫

Γd

δCCaJΓd
dΓ = −

∫

Ωd

δCCa

∂ΦfCCa

∂t
dΩ+

∫

Ωd

∇(δCCa) · (Φ
fCCav

f
w
)dΩ

+

∫

Ωd

∇(δCCa) · (J
f
Ca)dΩ−

∫

Ωd

δCCa

∂ξ

∂t
dΩ (23)

This approach is also retained in [17] for an hydraulic crack problem. Nervertheless178

terms related to the mechanical problem are furthemore present in this case. In [18], the179

author proposes two ways to handle the coupling. The first way is very close to the one180

presented in this paper and in [17]. The second way considers the crack totally filled by the181

fluid (no deformable solid in the crack). Starting from the fluid mass conservation equation182

in the crack, the author obtains the expression of the mass coupling term that ressembles183

to Reynolds lubrification equation (see [20]). This approach is also present in [21].184
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Hereafter the coupling term is evaluated in the local cartesian coordinate system (xd, yd).185

xd and yd are in the directions of the normal and tangent unit vectors to the discontinuity,186

nΓd
and tΓd

. We assume that:187

• the width of the crack 2h is negligible compared to its length (see [17] and [18] for the188

same argument). Consequently the variation of the calcium ions concentration in the189

nΓd
direction is not considered. CCa and δCCa have therefore a uniform value in the190

cross section of the discontinuity. They only depend on xd;191

• the width of the crack 2h evolves in function of the amount of CaCO3, ξ, created in192

the crack, i.e 2h(ξ). The physical meaning being that the amount of CaCO3 created193

decreases the crack width value;194

• the fluid velocity follows Darcy’s Law such as vf
w

= −kd(h)∇pw where kd(h) is the195

crack permeability depending on the crack width h through the cubic law [22] and196

∇pw is the pressure gradient imposed during the computation;197

• the transport by diffusion is induced by Fick’s Law such as J
f
Ca = −ΦfDf (h)∇CCa198

where Df(h) is the diffusion coefficient in the crack depending on the crack width h.199

4.2. Analytical model relating the width of the crack 2h and the amount of CaCO3200

In order to relate the width of the crack 2h to the amount of CaCO3, ξ, an analytical201

model is suggested hereafter.202

As suggested in [6], we assume that the updated crack width 2h taking into account the

layer of calcite e formed during the sealing process is

2h = 2h0 − 2e, (24)

where 2h0 is the initial width of the crack.203

According to [6], the layer calcite e can be written as follows:204

e = λVξC̄CaC̄CO3
, (25)
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where λ is a fitting parameter depending on the crack characteristics and Vξ the molar205

volume of calcite (37 cm3.mol−1). C̄Ca and C̄CO3
are the mean values of CCa and CCO3

in206

the crack.207

4.3. Computational aspects for the coupling term208

The first and last integrals in eqn. 23 are such as:

∫

Ωd

δCCa

∂ΦfCCa

∂t
dΩ =

∫

Γd

∫ h(ξ)

−h(ξ)

δCCa

∂ΦfCCa

∂t
dyddΓ =

∫

Γd

δCCa2h(ξ)
∂ΦfCCa

∂t
dΓ (26)

∫

Ωd

δCCa

∂ξ

∂t
dΩ =

∫

Γd

∫ h(ξ)

−h(ξ)

δCCa

∂ξ

∂t
dyddΓ =

∫

Γd

δCCa2h(ξ)
∂ξ

∂t
dΓ (27)

For the second term in eqn. 23, we have

∫

Ωd

∇(δCCa) · (Φ
fCCav

f
w
)dΩ = −

∫

Γd

∫ h(ξ)

−h(ξ)

∇(δCCa) · (Φ
fCCakd(h)∇pw)dyddΓ

= −

∫

Γd

∫ h(ξ)

−h(ξ)

(ΦfCCakd(h))

(
∂δCCa

∂xd

∂pw

∂xd

+
∂δCCa

∂yd

∂pw

∂yd

)

dyddΓ (28)

Because the (virtual) calcium ions concentration is supposed to be dependent only in xd,

its derivative in relation with yd vanishes. Consequently, eqn. 28 becomes:

∫

Ωd

∇(δCCa) · (Φ
fCCav

f
w
)dΩ = −

∫

Γd

ΦfCCakd(h)2h(ξ)
∂δCCa

∂xd

∂pw

∂xd

dΓ (29)

For the third term in eqn. 23, we have

∫

Ωd

∇(δCCa) · (J
f
Ca)dΩ = −

∫

Γd

∫ h(ξ)

−h(ξ)

∇(δCCa) · (Φ
fDf(h)∇CCa)dyddΓ

= −

∫

Γd

∫ h(ξ)

−h(ξ)

ΦfDf(h)

(
∂δCCa

∂xd

∂CCa

∂xd

+
∂δCCa

∂yd

∂CCa

∂yd

)

dyddΓ (30)

As mentioned, the (virtual) calcium ions concentration derivative in relation with yd

vanishes. Consequently, eqn. 30 becomes:

∫

Ωd

∇(δCCa) · (J
f
Ca)dΩ = −

∫

Γd

ΦfDf(h)2h(ξ)
∂δCCa

∂xd

∂CCa

∂xd

dΓ (31)
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Injecting eqn. 26, 27, 29 and 31 in eqn. 23 yields to the expression of the coupling term:

∫

Γd

δCCaJΓd
dΓ = −

∫

Γd

δCCa2h(ξ)
∂ΦfCCa

∂t
dΓ−

∫

Γd

ΦfCCakd(h)2h(ξ)
∂δCCa

∂xd

∂pw

∂xd

dΓ

−

∫

Γd

ΦfDf(h)2h(ξ)
∂δCCa

∂xd

∂CCa

∂xd

dΓ−

∫

Γd

δCCa2h(ξ)
∂ξ

∂t
dΓ (32)

Finally, combining eqn. 32 and eqn. 11 leads to:

∫

Ω

δCCa

∂ΦmCCa

∂t
dΩ−

∫

Ω

∇(δCCa) · J
m
CadΩ +

∫

∂ΩJm
Ca

δCCaJ̄
m
Ca
d∂Ω +

∫

Γd

δCCa2h(ξ)
∂ΦfCCa

∂t
dΓ

+

∫

Γd

ΦfCCakd(h)2h(ξ)
∂δCCa

∂xd

∂pw

∂xd

dΓ +

∫

Γd

ΦfDf(h)2h(ξ)
∂δCCa

∂xd

∂CCa

∂xd

dΓ +

∫

Γd

δCCa2h(ξ)
∂ξ

∂t
dΓ

=

∫

Ω

δCCaΦ
mϕCasdΩ. (33)

Eqn. 33 and 22 represent the equations of the problem to be solved in terms of CCa and209

CCO3
.210

Having in hand, the weak form of the problem equations, we now turn to the discretiza-211

tion of the concentration fields CCa and CCO3
.212

5. FE discretization of the governing equations213

5.1. Continuous form of the concentration fields214

5.1.1. Calcium ions concentration field215

As mentioned the fluid flow of calcium ions normal to the discontinuity has to be dis-216

continuous. Because the fluid flow is related to the calcium concentration gradient through217

Darcy’s Law, the gradient of the calcium ions concentration normal to the discontinuity218

has to be discontinuous. Consequently, the enrichment function of the interpolation of the219

calcium ions concentration field must be such as the calcium ions concentration itself is con-220

tinuous but has a discontinuous gradient in the normal direction. To fullfil this requirement,221

a weak discontinuity is introduced in the calcium ions concentration field through the EAS222

method [16]. In this sense, we consider both the calcium ions concentration and the virtual223

15



calcium ions concentration fields decomposed into a regular and an enhanced part. This224

assumption gives for the calcium ions concentration field225

CCa = C̄Ca
︸︷︷︸

regular

+ C̃Ca
︸︷︷︸

enhanced

, (34)

and for the virtual calcium ions concentration field

δCCa = δC̄Ca
︸ ︷︷ ︸

regular

+ δC̃Ca
︸ ︷︷ ︸

enhanced

. (35)

As in [16], we refer to C̃Ca and δC̃Ca as the enhanced parts of the calcium ions concen-226

tration fields. The notation (•̃) refers to the weak discontinuity.227

The enrichment function C̃Ca satisifying the condition - continuous concentration field

and discontinuous gradient in normal direction - is based upon a weak discontinuity such as:

C̃Ca = Θ nΓd
· (x− ξ) (36)

where ξ represents the position of Γd and Θ an unidentified shape function. The product228

nΓd
· (x− ξ) is called the signed distance function, ΣΓd

(x). This function is plotted in Fig.229

3 in the context of 1D problem. Note that when x is equal to ξ (in other words when we230

are on the discontinuity Γd), C̃Ca is equal to zero thus the calcium ions concentration is231

continuous through the discontinuity. A signed distance function is also considered in [14]232

and [23] for the meso-scale modelling of a two-phase quasi-brittle material and a two-phase233

poro-elastic material, respectively. Both authors suggest a model written in the E-FEM234

framework. In the context of the X-FEM, the absolute value of the signed distance function235

is regarded in [17] and [18] for the modelling of hydraulic crack and in [24] to represent236

complex microstructure geometries.237

Considering the gradient of ΣΓd
(x)yield (see [23]):

∇(ΣΓd
(x)) =




n1

n2



 = nΓd
. (37)
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x

ΣΓd(x)

Γd

nΓd

O (ξ, 0)
(0, 0)

nΓd
· (x1 − ξ)

nΓd
· (x2 − ξ)

ΣΓd
(x1) < 0

ΣΓd
(x2) > 0

Figure 3: 1D plot of the signed distance function ΣΓd
(x)

Finally, eqn. 37 gives for the gradient of C̃Ca the following form:

∇C̃Ca = Θ




n1

n2



 = ΘnΓd
. (38)

As it will be explained after, eqn. 38 satisfies the discontinuous requirement in the238

gradient normal direction.239

5.1.2. Carbonate ions concentration field240

For the carbonate ions concentration field, there is no need for an enhanced function.241

Only the regular part is recquired such as:242

CCO3
= C̄CO3

︸ ︷︷ ︸

regular

. (39)

5.2. Discrete form of the concentration fields243

After presenting the continuous forms of the concentration fields and more particularly244

the form of the enhanced calcium concentration field, we now turn to their discrete expres-245

sions.246
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5.2.1. Calcium ions concentration field247

Starting from eqn. 34 and 35, the discrete forms of CCa and δCCa labeled as Ch
Ca and248

δCh
Ca are249

Ch
Ca = NCaC̄

h

Ca +MCaC̃
h
Ca, (40)

and

δCh
Ca = NCaδC̄

h

Ca +MCaδC̃
h
Ca, (41)

where NCa is a row vector containing the standard shape functions, C̄
h

Ca is a column vector250

containing the regular calcium ions concentration unknowns. MCa is a scalar value cor-251

responding to the discrete form of the enhanced function (eqn. 36) and C̃h
Ca is a scalar252

value corresponding to the enhanced parameter. This parameter is computed during the253

resolution process only for the elements containing a crack.254

Following the idea presented in [23] and eqn. 36, the form of MCa is such as:255

MCa =







M⊕

Ca = Θ⊕n · (x⊕ − ξ) = V ⊖

V
n · (x⊕ − ξ) in Ω⊕

e

M⊖

Ca = Θ⊖n · (x⊖ − ξ) = −V ⊕

V
n · (x⊖ − ξ) in Ω⊖

e

, (42)

where V ⊕ and V ⊖ are the volume of Ω⊕

e and Ω⊖

e , respectively.256

Fig. 4 plots the enhanced function MCa in the 1D case. We have arbitrarily chosen V ⊖
257

equals to 0.3, V ⊕ to 0.7 and ξ to 0.3. The section and the length of the 1D domain are equal258

to 1.259

x

MCa(x)

Γd

nΓd
(1, 0)

(0.3, 0)(0, 0)

0.21

(1, 0)

0.21

Figure 4: 1D plot of the enhanced function MCa
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Consequently the gradients of Ch
Ca and δCh

Ca are260

∇Ch
Ca = BCaC̄

h

Ca +GCaC̃
h
Ca, (43)

and

∇δCh
Ca = BCaδC̄

h

Ca +GCaδC̃
h
Ca, (44)

where BCa is a matrix containing the derivatives of the shape functions NCa and GCa is a261

vector containing the derivative of MCa. GCa corresponds to the discrete form of eqn. 38.262

The form of GCa is such as

GCa =







G⊕

Ca = Θ⊕H = V ⊖

V
H in Ω⊕

e

G⊖

Ca = Θ⊖H = −V ⊕

V
H in Ω⊖

e

(45)

with

H =




n1

n2



 . (46)

Fig. 5 plots the enhanced function GCa in the 1D case and illustrates the discontinuous263

recquirement in the normal direction when passing through Γd.264

x

GCa(x)

Γd

nΓd
(1, 0)

(0.3, 0)(0, 0)

−0.7

(1, 0)

0.3

Figure 5: 1D plot of the enhanced function GCa

5.2.2. Carbonate ions concentration field265

The discrete form of the carbonate ions concentration field is such as:266

Ch
CO3

= NCO3
C̄

h

CO3
(47)

and

δCh
CO3

= NCO3
δC̄

h

CO3
, (48)
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where NCO3
is a row vector containing the standard shape functions and C̄

h

CO3
a column267

vector containing the regular carbonate ions concentration unknowns.268

Consequently the gradients of Ch
CO3

and δCh
CO3

are:269

∇Ch
CO3

= BCO3
C̄

h

CO3
(49)

and

∇δCh
CO3

= BCO3
δC̄

h

CO3
, (50)

where BCO3
is a matrix containing the derivatives of the shape functions NCO3

.270

5.3. Discrete form of the governing equations271

Combining eqn. 40, 41, 43, 44 and eqn. 33 and considering the fact that the weak form

of the equations has to hold for all kinematically admissible test functions δC̄
h

Ca and δC̃h
Ca

yield:






MC̄aC̄a
˙̄Ch
Ca +MC̄aC̃a

˙̃
Ch

Ca +HC̄aC̄aC̄
h

Ca +HC̄aC̃aC̃
h
Ca − Fint,C̄a = Fext,C̄a

MT

C̄aC̃a

˙̄Ch
Ca +MC̃aC̃a

˙̃
Ch

Ca +HT

C̄aC̃a
C̄

h

Ca +HC̃aC̃aC̃
h
Ca − Fint,C̃a = Fext,C̃a

(51)

Combining eqn. 47, 48, 49, 50 and eqn. 22, assuming that CCO3
and δCCO3

depend

only on xd (see the arguments before) and considering the fact that the weak form of the

equation has to hold for all kinematically admissible test functions δC̄
h

CO3
lead to:

Fint,C̄CO3

= 0 (52)

The definition of the matrix and vector coefficients are given in Appendix A.272

5.4. Linearization of the governing equations273

In a first time, we note for the k th iteration at the n + 1 time step :274

R
(k)
n+1 =

1

∆t
MC̄aC̄a|

(k)
n+1∆C̄

h

Ca|
(k)
n+1 +

1

∆t
MC̄aC̃a|

(k)
n+1∆C̃h

Ca|
(k)
n+1 +HC̄aC̄a|

(k)
n+1C̄

h

Ca|
(k)
n+1

+HC̄aC̃a|
(k)
n+1C̃

h
Ca|

(k)
n+1 − Fint,C̄a|

(k)
n+1 − Fext,C̄a|n+1,

(53)
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h
(k)
n+1 =

1

∆t
MT

C̄aC̃a
|
(k)
n+1∆C̄

h

Ca|
(k)
n+1 +

1

∆t
MC̃aC̃a|

(k)
n+1∆C̃h

Ca|
(k)
n+1 +HT

C̄aC̃a
|
(k)
n+1C̄

h

Ca|
(k)
n+1

+HC̃aC̃a|
(k)
n+1C̃

h
Ca|

(k)
n+1 − Fint,C̃a|

(k)
n+1 − Fext,C̃a|n+1, (54)

where the Newmark integration scheme for time dependent terms has been considered,275

and

Fint,C̄CO3

|
(k)
n+1 = 0. (55)

Although several schemes are possible, here we consider determinating ∆C̄
h

Ca|
(k+1)
n+1 ,276

∆C̃h
Ca|

(k+1)
n+1 and ∆C̄

h

CO3
|
(k+1)
n+1 by linearizing R

(k)
n+1, h

(k)
n+1 and Fint,C̄CO3

|
(k)
n+1 about the cur-277

rent state, defined by C̄
h

Ca|
(k)
n+1, C̃

h
Ca|

(k)
n+1 and C̄

h

CO3
|
(k)
n+1.278

Consequently, the linearization of eqn. 53, 54 and 55 leads to:279

−R
(k)
n+1 = [

1

∆t
MC̄aC̄a +HC̄aC̄a −

∂Fint,C̄a

∂C̄
h

Ca

]|
(k)
n+1∆C̄

h

Ca|
(k+1)
n+1

+ [
1

∆t
MC̄aC̃a +HC̄aC̃a −

∂Fint,C̄a

∂C̃h
Ca

]|
(k)
n+1∆C̃h

Ca|
(k+1)
n+1 −

∂Fint,C̄a

∂C̄
h

CO3

|
(k)
n+1∆C̄

h

CO3
|
(k+1)
n+1 ,

(56)

−h
(k)
n+1 = [

1

∆t
MT

C̄aC̃a
+HT

C̄aC̃a
−

∂Fint,C̃a

∂C̄
h

Ca

]|
(k)
n+1∆C̄

h

Ca|
(k+1)
n+1

+ [
1

∆t
MC̃aC̃a +HC̃aC̃a −

∂Fint,C̃a

∂C̃h
Ca

]|
(k)
n+1∆C̃h

Ca|
(k+1)
n+1 −

∂Fint,C̃a

∂C̄
h

CO3

|
(k)
n+1∆C̄

h

CO3
|
(k+1)
n+1 ,

(57)

and

−Fint,C̄CO3

|
(k)
n+1 =

∂Fint,C̄CO3

∂C̄
h

Ca

|
(k)
n+1∆C̄

h

Ca|
(k+1)
n+1 +

∂Fint,C̄CO3

∂C̃h
Ca

|
(k)
n+1∆C̃h

Ca|
(k+1)
n+1

+
∂Fint,C̄CO3

∂C̄
h

CO3

|
(k)
n+1∆C̄

h

CO3
|
(k+1)
n+1 . (58)

The form of the partial derivatives are given hereafter.280
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For eqn. 56, we have281

∂Fint,C̄a

∂C̄
h

Ca

|
(k)
n+1 = −

1

∆t

∫

Γd

NT
Ca2h(ξ)Φ

fNCadΓ−

∫

Γd

(BT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·BCa)dΓ

−

∫

Γd

(BT
Ca · tΓd

)2h(ξ)Φfkd(h)(t
T
Γd

· ∇pw)NCadΓ

−

∫

Γd

NT
Ca2h(ξ)KNCa(NCO3

C̄
h

CO3
)dΓ, (59)

∂Fint,C̄a

∂C̃h
Ca

|
(k)
n+1 = −

1

∆t

∫

Γd

NT
Ca2h(ξ)Φ

fMCadΓ−

∫

Γd

(BT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·GCa)dΓ

−

∫

Γd

(BT
Ca · tΓd

)2h(ξ)Φfkd(h)(t
T
Γd

· ∇pw)MCadΓ

−

∫

Γd

NT
Ca2h(ξ)KMCa(NCO3

C̄
h

CO3
)dΓ, (60)

and

∂Fint,C̄a

∂C̄
h

CO3

|
(k)
n+1 = −

∫

Γd

NT
Ca2h(ξ)K(NCaC̄

h

Ca +MCaC̃
h
Ca)NCO3

dΓ. (61)

For eqn. 57, we have282

∂Fint,C̃a

∂C̄
h

Ca

|
(k)
n+1 = −

1

∆t

∫

Γd

MT
Ca2h(ξ)Φ

fNCadΓ−

∫

Γd

(GT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·BCa)dΓ

−

∫

Γd

(GT
Ca · tΓd

)2h(ξ)Φfkd(h)(t
T
Γd

· ∇pw)NCadΓ

−

∫

Γd

MT
Ca2h(ξ)KNCa(NCO3

C̄
h

CO3
)dΓ, (62)

∂Fint,C̃a

∂C̃h
Ca

|
(k)
n+1 = −

1

∆t

∫

Γd

MT
Ca2h(ξ)Φ

fMCadΓ−

∫

Γd

(GT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·GCa)dΓ

−

∫

Γd

(GT
Ca · tΓd

)2h(ξ)Φfkd(h)(t
T
Γd

· ∇pw)MCadΓ

−

∫

Γd

MT
Ca2h(ξ)KMCa(NCO3

C̄
h

CO3
)dΓ, (63)
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and

∂Fint,C̃a

∂C̄
h

CO3

|
(k)
n+1 = −

∫

Γd

MT
Ca2h(ξ)K(NCaC̄

h

Ca +MCaC̃
h
Ca)NCO3

dΓ. (64)

For eqn. 58, we have283

∂Fint,C̄CO3

∂C̄
h

Ca

|
(k)
n+1 =

∫

Γd

NT
CO3

2h(ξ)KNCa(NCO3
C̄

h

CO3
)dΓ, (65)

∂Fint,C̄CO3

∂C̃h
Ca

|
(k)
n+1 =

∫

Γd

NT
CO3

2h(ξ)KMCa(NCO3
C̄

h

CO3
)dΓ, (66)

and

∂Fint,C̄CO3

∂C̄
h

CO3

|
(k)
n+1 =

1

∆t

∫

Γd

NT
CO3

2h(ξ)ΦfNCO3
dΓ

+

∫

Γd

(BT
CO3

· tΓd
)2h(ξ)Φfkd(h)(t

T
Γd

· ∇pw)NCO3
dΓ

+

∫

Γd

NT
CO3

2h(ξ)K(NCaC̄
h

Ca +MCaC̃
h
Ca)NCO3

dΓ. (67)

5.5. Numerical solving strategy284

From eqn. 58, we can establish the expression of ∆C̄
h

CO3
|
(k+1)
n+1 in function of ∆C̄

h

Ca|
(k+1)
n+1

and ∆C̃h
Ca|

(k+1)
n+1 such as:

∆C̄
h

CO3
|
(k+1)
n+1 =

[∂Fint,C̄CO3

∂C̄
h

CO3

|
(k)
n+1

]−1[

− Fint,C̄CO3

|
(k)
n+1 −

∂Fint,C̄CO3

∂C̄
h

Ca

|
(k)
n+1∆C̄

h

Ca|
(k+1)
n+1

−
∂Fint,C̄CO3

∂C̃h
Ca

|
(k)
n+1∆C̃h

Ca|
(k+1)
n+1

]

. (68)

Combining eqn. 68 and eqn. 57 gives the expression of ∆C̃h
Ca|

(k+1)
n+1 in function of

∆C̃h
Ca|

(k+1)
n+1 such as:

∆C̃h
Ca|

(k+1)
n+1 =

[

A|
(k)
n+1

]−1[

− h
(k)
n+1 − B|

(k)
n+1 −X|

(k)
n+1∆C̄

h

Ca|
(k+1)
n+1

]

(69)
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where, for sake of clarity, we note

X|
(k)
n+1 =

[ 1

∆t
MT

C̄aC̃a
+HT

C̄aC̃a
−

∂Fint,C̃a

∂C̄
h

Ca

+
∂Fint,C̃a

∂C̄
h

CO3

[∂Fint,C̄CO3

∂C̄
h

CO3

]−1∂Fint,C̄CO3

∂C̄
h

Ca

]∣
∣
∣

(k)

n+1
,

(70)

A|
(k)
n+1 =

[ 1

∆t
MC̃aC̃a +HC̃aC̃a −

∂Fint,C̃a

∂C̃h
Ca

+
∂Fint,C̃a

∂C̄
h

CO3

[∂Fint,C̄CO3

∂C̄
h

CO3

]−1∂Fint,C̄CO3

∂C̃h
Ca

]∣
∣
∣

(k)

n+1
,

(71)

and

B|
(k)
n+1 =

∂Fint,C̃a

∂C̄
h

CO3

|
(k)
n+1

[∂Fint,C̄CO3

∂C̄
h

CO3

|
(k)
n+1

]−1

Fint,C̄CO3

|
(k)
n+1. (72)

We eventually obtain the problem to be solved in terms of ∆C̄
h

Ca|
(k+1)
n+1 by combining eqn.

68 and 69 into eqn. 56 such as:

K̂
(k)
n+1∆C̄

h

Ca|
(k+1)
n+1 = F̂

(k)
n+1, (73)

where285

K̂
(k)
n+1 =

[ 1

∆t
MC̄aC̄a +HC̄aC̄a −

∂Fint,C̄a

∂C̄
h

Ca

−
[ 1
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∂Fint,C̄a

∂C̃h
Ca

][

A
]−1[

X
]

+
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∂C̄
h

CO3
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h

CO3
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∂C̄
h

Ca

−
∂Fint,C̄a

∂C̄
h

CO3

[∂Fint,C̄CO3
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h

CO3
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[

A
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X
]]∣
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(74)

and

F̂
(k)
n+1 = −R

(k)
n+1 −

∂Fint,C̄a

∂C̄
h

CO3

|
(k)
n+1

[∂Fint,C̄CO3

∂C̄
h

CO3

|
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|
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+
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+
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h
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∣
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(k)
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[

A|
(k)
n+1

]−1[

h
(k)
n+1 +B|

(k)
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]

. (75)

Once ∆C̄
h

Ca|
(k+1)
n+1 is known, ∆C̃h

Ca|
(k+1)
n+1 and ∆C̄

h

CO3
|
(k+1)
n+1 can be computed through eqn.286

69 and 68, respectively.287
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6. Conclusion288

In this paper, we have suggested a numerical model for the healing process induced by289

carbonation of a single crack in concrete structures. We have shown that careful consider-290

ations concerning the transport equations are needed to have a realistic model. Chemical291

reactions such as the calcite precipitation (resulting in the healing process), transport by292

diffusion and permeation equations written in the porous matrix and in the crack and de-293

pendence of the permeability and diffusivity coefficients on the calcite width are for instance294

worth noting. In addition, considering the fact that there is a geometrical discontinuity Γd295

embedded in the domain Ω, a mass transfer coupling between the porous bulk material sur-296

rounding the crack and the crack itself arises. This mass transfer comes from the exchange297

by diffusion of the calcium ions flow between the porous matrix surrounding the crack and298

the crack itself. It is important to stress the fact that this coupling term arises naturally in299

the weak form of the problem, since the crack is directly embedded in the mesh through the300

E-FEM. This a serious advantage when the FE discretization is performed. Consequently,301

concerning this term, an accurate FE approximation capable of accomodating the jump in302

the normal direction of the calcium ions gradient has to be introduced. In this sense, a303

weak discontinuity in the calcium ions concentration field for finite elements where the crack304

is present is added in the framework of the EAS method. In addition, the solution proce-305

dure for this class of problems retained in this paper is attractive since the framework of a306

classical FE code is preserved. The enhanced parameters are just post-calculated. Finally,307

the experimental validation of the model and its sensitivity analysis will be the object of a308

forthcoming work. In addition, healing process implies consideration of strength recovery309

in the mechanical process. However the numerical model suggested in this paper only deals310

with reactive transport equations. In this sense, no mechanical considerations are regarded311

for the moment. One lead for introducing the healing process into a mechanical problem312

could be to consider a (weak) coupled approach as done in [25]. The key point is to express313

the mechanical properties (Young modulus for example) as a function of the crack opening314

value, which depends itself on the calcite concentration. This idea is inspired by the work315
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of [26] where the authors obtain the diffusion coefficient as a function of the crack opening316

in the context of chloride ingress problem.317

7. Appendix A318

The matrix and vector coefficients involved in system 51 and eqn. 52 are given herefater.319

MC̄aC̄a =

∫

Ω

NT
CaΦ

mNCadΩ

MC̄aC̃a =

∫

Ω

NT
CaΦ

mMCadΩ

MC̃aC̃a =

∫

Ω

MT
CaΦ

mMCadΩ

HC̄aC̄a =

∫

Ω

BT
CaΦ

mDmBCadΩ

HC̄aC̃a =

∫

Ω

BT
CaΦ

mDmGCadΩ

HC̃aC̃a =

∫

Ω

GT
CaΦ

mDmGCadΩ

Fint,C̄a =

∫

Γd

NT
CaJΓd

dΓ

= −

∫

Γd

NT
Ca2h(ξ)Φ

fNCadΓ
˙̄Ch
Ca

−

∫

Γd

NT
Ca2h(ξ)Φ

fMCadΓ
˙̃
Ch

Ca

−

∫

Γd

(BT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·BCa)dΓC̄

h

Ca

−

∫

Γd

(BT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·GCa)dΓC̃

h
Ca

−

∫
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Ca · tΓd

)2h(ξ)Φfkd(h)(t
T
Γd

· ∇pw)NCadΓC̄
h

Ca

−

∫
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T
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−

∫
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dΓ
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∫

Ω

NT
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mϕCasdΩ−

∫

∂ΩJm
Ca

NT
CaJ̄

m
Ca
d∂Ω (76)
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Fint,C̃a =

∫

Γd

MT
CaJΓd

dΓ

= −

∫
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Ca2h(ξ)Φ
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∫
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−

∫
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)2h(ξ)ΦfDf(h)(tTΓd
·BCa)dΓC̄

h

Ca

−

∫
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(GT
Ca · tΓd

)2h(ξ)ΦfDf(h)(tTΓd
·GCa)dΓC̃

h
Ca

−

∫
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−

∫
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Ca · tΓd
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−

∫
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Ca2h(ξ)
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∫
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CaΦ
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Ca
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m
Ca
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Fint,C̄CO3

=

∫

Γd

NT
CO3

2h(ξ)ΦfNCO3
dΓ ˙̄Ch

CO3

+

∫

Γd

(BT
CO3

· tΓd
)2h(ξ)Φfkd(h)(t

T
Γd
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h

CO3

+

∫
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2h(ξ)
∂ξ
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dΓ (78)
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