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In this paper, we consider a fourth order inner-controlled parabolic equation on an open bounded subset of R d , or a smooth compact manifold with boundary, along with general boundary operators fulfilling the Lopatinskiȋ-Šapiro condition. We derive a spectral inequality for the solution of the parabolic system that yields a null-controllability result. The spectral inequality is a consequence of an interpolation inequality obtained via a Carleman inequality for the bi-Laplace operator under the considered boundary conditions.

Introduction

In this paper, our aim is to study the interior null-controllability for a fourth order parabolic equation. A kind of fourth order parabolic equations describes the epitaxial growth of nanoscale thin films which has recently received increasing interest in materials science because compositions like YBa 2 Cu 3 O 7-δ (YBCO) are expected to be high-temperature super-conducting and could be used in the design of semi-conductors (see for instance [START_REF] King | A fourth-order parabolic equation modeling epitaxial thin film growth[END_REF] and the references therein). Therefore, studying the features of fourth order parabolic equations has realistic meanings.

Let Ω be a bounded connected open subset in R d , or a smooth bounded connected d-dimensional manifold, with smooth boundary ∂Ω. We consider the following controlled parabolic equation

     ∂ t y + ∆ 2 y = 1 Σ v in (t, x) ∈ R + × Ω, B 1 y |R + ×∂Ω = B 2 y |R + ×∂Ω = 0, y |t=0 = y 0 ∈ L 2 (Ω). (1.1)
Here, Σ is a nonempty open subset of Ω, B 1 and B 2 denote two boundary differential operators. The function v is the control and lies in L 2 ((0, ∞) × Ω). It only acts on the solution y in Σ. The function y may represent a scalled film height and the term ∆ 2 y represents the capillarity-driven surface diffusion (see [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF]).

The two boundary operators B 1 and B 2 are of order k j , j = 1, 2 respectively, yet at most of order 3 in the direction normal to the boundary ∂Ω. They are chosen such that the two following properties are fulfilled:

1. the Lopatinskiȋ-Šapiro boundary condition holds (this condition is fully described in what follows);

2. along with the homogeneous boundary conditions given above the bi-Laplace operator is selfadjoint and nonnegative.

We are concerned with the question of null-controllability for this controlled parabolic equation which is the following:

For a given initial data y 0 ∈ L 2 (Ω), and a given time T > 0, can one find v ∈ L 2 ((0, T) × Σ) such y(T) = 0?

The answer to this question rely on the derivation of a spectral inequality. With the second property, associated with the operator is then a Hilbert basis (φ j ) j∈N of L 2 (Ω). In the case of "clamped" boundary condition (B 1 y |∂Ω = y |∂Ω and B 2 y |∂Ω = ∂ ν y |∂Ω ) the following spectral inequality was proved by J. Le Rousseau and L. Robbiano in [START_REF] Rousseau | Spectral inequality and resolvent estimate for the bilaplace operator[END_REF].

Theorem 1.1. (spectral inequality for the "clamped" bi-Laplace operator).

Let ∅ be an open subset of Ω. There exists C > 0 such that ∥y∥ L 2 (Ω) ≤ Ce Cµ 1/4 ∥y∥ L 2 (∅) , µ > 0, y ∈ span{φ j ; µ j ≤ µ}, with ∆ 2 φ j = µ j φ j .

The proof of this theorem is based on a Carleman inequality for the augmented fourth-order elliptic operator D 4 s + ∆ 2 , that is, after the addition of a variable s. We are interested in proving such a spectral inequality for general boundary condition, that is, the operator ∆ 2 along with the general boundary operators B 1 and B 2 satisfy the Lopatinskiȋ-Šapiro condition. By considering for instance, the boundary operators B 1 (x, D) = D 2 d + αR(x, D ′ ) and B 2 (x, D) = D d , where D d = -i∂ d , α ∈ R and R(x, D ′ ) a tangential elliptic operator of order 2, we remark that having the Lopatinskiȋ-Šapiro condition for (∆ 2 , B 1 , B 2 ) does not imply that the Lopatinskiȋ-Šapiro condition holds true (D 4 s + ∆ 2 , B 1 , B 2 ).

With this approach, some boundary conditions that satisfy the Lopatinskiȋ-Šapiro condition cannot be used to prove the Carleman inequality required to obtain the spectral inequality. However, some boundary conditions allow this, for instance the clamped boundary condition. So, we have determined the boundary conditions allowing to prove such Carleman inequality and thus the spectral inequality.

Our first goal is thus the derivation of the Carleman inequality for the operator Q = D 4 s + ∆ 2 near the boundary under the boundary conditions given by B 1 and B 2 .

Then, from the Carleman estimate one deduces an interpolation inequality for the operator Q in the case of the prescribed boundary conditions. The spectral inequality then follows from this interpolation inequality.

Finally as an application of the spectral inequality one deduces a null-controllability result. The method we used is called the Lebeau-Robbiano method which is a quantitative unique continuation property for the sum of eigenfunctions of the operator ∆ 2 . Null-controllability of a fourth order parabolic equation in dimension greater or equal to two was studied in [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF][START_REF] Yu | Null controllability for a fourth order parabolic equation[END_REF] under the boundary conditions B 1 y |∂Ω = y |∂Ω and B 2 y |∂Ω = ∆y |∂Ω , see also the references therein for some interesting results concerning the null-controllability of this kind of equations. In [START_REF] Guerrero | Carleman estimate and null controllability of a fourth order parabolic equation in dimension N ≥ 2[END_REF], the authors proved the nullcontrollability of system (1.1) (with homogeneous Dirichlet boundary conditions on the solution and the laplacian of the solution), by establishing an observability inequality for the non-homogeneous adjoint system associated to (1.1), obtained from a Carleman estimate. The null interior controllability for a fourth order parabolic equation under the boundary conditions B 1 y |∂Ω = y |∂Ω and B 2 y |∂Ω = ∆y |∂Ω , obtained in [START_REF] Yu | Null controllability for a fourth order parabolic equation[END_REF] is based on Lebeau-Robbiano method.

On Carleman estimate for higher-order elliptic operators

If B is an elliptic operator of even order k, and φ is a Carleman weight function such that the couple (B, φ) satisfies the so-called sub-ellipticity condition, then a Carleman estimate can be obtained, even at the boundary, for instance from the results of [START_REF] Bellassoued | Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems[END_REF]. If k ≥ 4, it is however quite natural not to have sub-ellipticity, in particular if B is a product, say B = B 1 B 2 . Denote by b, b 1 and b 2 the principal symbols of B, B 1 and B 2 respectively. The conjugated operator B φ = e τφ Be -τφ reads B φ = B 1,φ B 2,φ with B ℓ,φ = e τφ B ℓ e -τφ for ℓ = 1, 2. If the semi-classical characteristic set Char(B 1,φ ) ∩ Char(B 2,φ ) ̸ = ∅, then the sub-ellipticity property fails to holds. We recall that the semi-classical characteristic set of a differential operator B with principal symbol b(ϱ) is defined as 

Char(B) = { ϱ = (z
(z, ζ + iτdφ(z)) = b 2 (z, ζ + iτdφ(z)) = 0.
In such cases of symbol "flatness", the Carleman estimate we can derive for B exhibits at least a loss of one full derivative.

Geometrical setting

On Ω we consider a Riemannian metric g x = (g ij (x)), with associated cometric (g ij (x)) = (g x ) -1 . It stands as a bilinear form that act on vector fields,

g x (u x , v x ) = g ij (x)u i x v j x , u x = u i x ∂ x i , v x = v i x ∂ x i .
For x ∈ ∂Ω we denote by ν x the unit outward pointing normal vector at x, unitary in the sense of the metric g, that is g x (ν x , ν x ) = 1 and g x (ν x , u x ) = 0 ∀u x ∈ T x ∂Ω.

We denote by ∂ ν the associated derivative at the boundary, that is, ∂ ν f (x) = ν x ( f ). We also denote by n x the unit outward pointing conormal vector at x, that is, n x = ν ♭

x , that is, (n x ) i = g ij ν j

x . Near a boundary point, we shall often use normal geodesic coordinates where Ω is locally given by {x d > 0} and the metric g takes the form

g = dx d ⊗ dx d + ∑ 1≤i,j≤d-1 g ij dx i ⊗ dx j .
Then, the vector field ν x is locally given by (0, . . . , 0, -1). The same for the one form n x .

Normal geodesic coordinates allow us to locally formulate boundary problems in a half-space geometry. We write

R d + := {x ∈ R d , x d > 0} where x = (x ′ , x d ) with x ′ ∈ R d-1 , x d ∈ R.
We shall naturally denote its closure by

R d + , that is, R d + = {x ∈ R d ; x d ≥ 0}. The Laplace-Beltrami operator is given by (∆ g f )(x) = (det g x ) -1/2 ∑ 1≤i,j≤d ∂ x i (det g x ) 1/2 g ij (x)∂ x j f (x). in local coordinates. Its principal part is given by ∑ 1≤i,j≤d g ij (x)∂ x i ∂ x j and its principal symbol by ∑ 1≤i,j≤d g ij (x)ξ i ξ j . The bi-Laplace operator is P = ∆ 2 g .
In the main text of the article we shall write ∆, ∆ 2 in place of ∆ g , ∆ 2 g .

Main results

We state the main Carleman estimate for the operator Q = D 4 s + ∆ 2 in normal geodesic coordinates as presented in Section 3.2. We note that V is an open bounded neighborhood of z 0 = (s 0 ,

x 0 ) ∈ R N , with N = d + 1. Theorem 1.2. Let Q = ∆ 2 + D 4
s and (s 0 , x 0 ) ∈ (0, S 0 ) × ∂Ω, with Ω locally given by {x d > 0} and S 0 > 0. Assume that (Q, B 1 , B 2 , φ) satisfies the Lopatinskiȋ-Šapiro condition of Definition 3.21 at

ϱ ′ = (s, x, σ, ξ ′ , τ, γ, ε) for all (σ, ξ ′ , τ, γ, ε) ∈ R × R d-1 × (0, +∞) × [1, +∞) × (0, 1]. Let φ(z) = φ γ,ε (z) be define as in section 2.1.
There exists an open neighborhood W of z 0 in (0, S 0 ) × R d , W ⊂ V, and there exist

τ 0 ≥ τ * , γ ≥ 1, ε 0 ∈ (0, 1] such that γ∥ τ-1 e τφ u∥ 4,0, τ + | tr(e τφ u)| 3,1/2, τ ≲ ∥e τφ Qu∥ + + 2 ∑ j=1 |e τφ B j u |x N =0 + | 7/2-k j , τ, for τ ≥ τ 0 , γ ≥ γ 0 , ε ≥ ε 0 , and u ∈ C ∞ c (W + ).
The general boundary differential operators B 1 and B 2 are given by

B ℓ (x, D) = ∑ 0≤j≤min(3,k ℓ ) B k ℓ -j ℓ (x, D ′ )(i∂ ν ) j , ℓ = 1, 2, with B k ℓ -j ℓ (x, D ′
) differential operators acting in the tangential variables. Let (P, D(P)) be the unbounded operator on L 2 (Ω), with

D(P) = u ∈ H 4 (Ω); B 1 u |∂Ω = B 2 u |∂Ω = 0 , (1.2) 
and given by Pu = ∆ 2 u for u ∈ D(P).

The following spectral inequality quantifies how linear combinations of the eigenfunctions of P can be observed from a subdomain. Theorem 1.3. (spectral inequality) . Let P and B 1 , B 2 be such that the Lopatinskiȋ-Šapiro condition holds on ∂Ω and (P, D(P)) is self-adjoint. We assume furthermore that Q = D 4 s + ∆ 2 and B 1 , B 2 satisfy the Lopatinskiȋ-Šapiro on (0, S 0 ) × ∂Ω. Let (ϕ j ) j∈N be a Hilbert basis of L 2 (Ω) made of eigenfunctions of (P, D(P)) associated with the sequence

µ 0 ≤ µ 1 ≤ • • • ≤ µ k ≤ • • • of eigenvalues. Let ω be an open set in Ω. There exists K > 0 such that for all µ ≥ max{µ 0 , 0} one has ∥y∥ L 2 (Ω) ≤ Ke Kµ 1/4 ∥y∥ L 2 (ω) , y ∈ span{ϕ j ; µ j ≤ µ}.
(1.3) Remark 1.4. If µ 0 ≤ 0, we replace P by P λ = P + λ Id with λ > -µ 0 . Then, the eigenvalues of P λ are simply 0 < µ 0 + λ ≤ µ 1 + λ ≤ . . . . In addition, observe that if one derives a spectral inequality as (1.3) for P λ then one obtains also such an inequality for P, since (µ + λ) 1/4 ≲ µ 1/4 for µ > 0. So, in the proof of the spectral inequality, we may therefore assume that µ 0 > 0.

Remark 1.5. In the statement of Theorem 1.3 we assume Lopatinskiȋ-Šapiro condition on (Q, B 1 , B 2 ) but we prove below in Proposition 3.22 there exists φ such that (Q, B 1 , B 2 , φ) satisfies Lopatinskiȋ-Šapiro condition. This allows to apply Theorem 1.2

The proof of Theorem 1.3 is given in Section 6.2.

Some perspectives

In the light of the results obtained here, it would be of interest to consider more general polyharmonic operators on Ω with more general Lopatinskiȋ-Šapiro conditions. More precisely, one can replace ∆ 2 by (-∆) k for k ≥ 3 along with k boundary conditions B 1 , B 2 , . . . , B k that satisfy the Lopatinskiȋ-Šapiro boundary condition. It would also be very interesting to investigate the boundary nullcontrollability of system (1.1) under a specify boundary conditions, let say in the case B 1 y = y and B 2 y = ∆y or ∂ n y on ∂Ω.

Some notation

The canonical inner product in

C m is denoted by (z, z ′ ) C m = m-1 ∑ k=0 z k z′ k , for z = (z 0 , • • • , z m-1 ) ∈ C m , z ′ = (z ′ 0 , • • • , z ′ m-1 ) ∈ C m . The associated norm will be denoted |z| 2 C m = m-1 ∑ k=0 |z k | 2 .
We shall use the notations a ≲ b for a ≤ Cb and a ≳ b for a ≥ Cb, with a constant C > 0 that may change from one line to another. We also write a ≍ b to denote a ≲ b ≲ a.

For an open set U of R N we set

U + = U ∩ R N + and C ∞ c (U + ) = {u = v |R N + ; v ∈ C ∞ c (R N ) and supp(v) ⊂ U}. (1.4) We set S (R N + ) = {u |R N + ; u ∈ S (R N )} with S (R N ) the usual Schwartz space in R N : u ∈ S (R N ) ⇔ u ∈ C ∞ (R N ) and ∀α, β ∈ N N sup x∈R N |x α D β x u(x)| < ∞.

Tangential semi-classical calculus and associated Sobolev norm

Dealing with boundary problems, we shall locally use coordinates so that the geometry is that of the half-space

R N + = {θ ∈ R N ; θ N ≥ 0}, θ = (θ ′ , θ N ) ∈ R N-1 × R. We shall use the notation υ = (θ, ϑ, τ) and υ ′ = (θ, ϑ ′ , τ) in this section. Let a(υ) ∈ C ∞ (R N + × R N-1
), τ a parameter in [1, +∞) and m ∈ R be such that, for all multi-indices α, β, we have

|∂ α θ ∂ β ϑ ′ a(υ ′ )| ≤ C α,β λ m-|β| T,τ
, where

λ 2 T,τ = τ 2 + |ϑ ′ | 2 , θ ∈ R N + , ϑ ′ ∈ R N-1 .
We then write a ∈ S m T,τ . We also define S -∞ T,τ = r∈R S r T,τ . For a ∈ S m T,τ we define the principal symbol σ(a) to be the equivalent class of a in S m T,τ /S m-1 T,τ . We recall that λ m

T,τ ∈ S m T,τ . If a(υ ′ ) ∈ S m T,τ , we set Op T (a)u(θ) = (2π) -(N-1) R N-1 e iθ ′ •ϑ ′ a(υ ′ ) û(ϑ ′ , θ N )dϑ ′ , u ∈ S (R N + ),
where û is the partial Fourier transform of u with respect to the tangential variables θ ′ . We denote by Ψ m T,τ the set of those pseudo-differential operators. We also set

Λ T,τ = Op T (λ m T,τ ) for m ∈ R. Let m ∈ N and m ′ ∈ R. If we consider a of the form a(υ) = m ∑ j=0 a j (υ ′ )ϑ j N , a j ∈ S m+m ′ -j T,τ , we define Op(a) = m ∑ j=0 Op T (a j )D j θ N . We then write a ∈ S m,m ′ τ and Op(a) ∈ Ψ m,m ′ τ .
We define the following norm for m ∈ N and m ′ ∈ R :

∥u∥ m,m ′ ,τ ≍ m ∑ j=0 ∥Λ m+m ′ -j T,τ D j θ N u∥ + , ∥u∥ m,τ = ∥u∥ m,0,τ ≍ m ∑ j=0 ∥Λ m-j T,τ D j θ N u∥ + , u ∈ S (R N + ) where ∥ • ∥ + := ∥ • ∥ L 2 (R N + ) . We have ∥u∥ m,τ ≍ ∑ |α|≤m α∈N N τ m-|α| ∥D α u∥ + ,
and for m ′ ∈ N we have

∥u∥ m,m ′ ,τ ≍ ∑ α N ≤m ∑ |α|≤m+m ′ α=(α ′ ,α N )∈N N τ m+m ′ -|α| ∥D α u∥ + .
At the boundary {θ N = 0} we define the following norms, for m ∈ N and m ′ ∈ R,

| tr(u)| 2 m,m ′ ,τ = m ∑ j=0 |Λ m+m ′ -j T,τ D j θ N u |θ N =0 + | 2 L 2 (R N-1 ) , u ∈ S (R N + ).

Semi-classical calculus with three parameters

We set N = d + 1 and W = R N × R N , often referred as phase space. A typical element of W will be

X = (s, x, σ, ξ), with s ∈ R, x ∈ R d , σ ∈ R, ξ ∈ R d . We also write x = (x ′ , x d ), x ′ ∈ R d-1 , x d ∈ R and ξ = (ξ ′ , ξ d ) ∈ R d-1 × R.
With s and x playing a very similar role in the definition of the calculus, we set z = (s,

x) ∈ R N , z ′ = (s, x ′ ) ∈ R d , and z N = x d . We also set ζ = (σ, ξ) ∈ R N , ζ ′ = (σ, ξ ′ ) ∈ R N-1 , and ζ N = ξ d .
We shall consider a weight function of the form

φ γ,ε (z) = e γψ ε (z) , ψ ε (z) = ψ(εz ′ , z N ), (2.1) 
with γ and ε as parameters satisfying γ ≥ 1, ε ∈ [0, 1], and ψ ∈ C ∞ (R N ). To define a proper pseudodifferential calculus, we assume the following properties for ψ :

ψ ≥ C > 0, ∥ψ (k) ∥ L ∞ < ∞, k ∈ N. (2.2)
In particular, there exists k > 0 such that sup

R N ψ ≤ (k + 1) inf R N ψ.
(2.3)

A class of semi-classical symbols

We introduce the following class of tangential symbols depending on

z ∈ R N , ζ ′ ∈ R d and t ∈ R N . We set λT = |ζ ′ | 2 + | t| 2 . Definition 2.1. Let m ∈ R. We say that a(z, ζ ′ , t) ∈ C ∞ (R N + × R N-1 × R d+1 ) belongs to the class S m T, t if for all multi-indices α ∈ N N , β ∈ N N-1 , there exists C α,β,δ > 0 such that |∂ α z ∂ β ′ ζ ′ ∂ δ t a(z, ζ ′ , t)| ≤ C α,β,δ λm-|β|-|δ| T , (z, ζ ′ , t) ∈ R N + × R N-1 × R N , | t| ≥ 1. If U is a conic open set in R N + × R N-1 × R N , we say that a ∈ S m T,
t in U if the above property holds for (z, ζ ′ , t) ∈ U . As opposed to the usual semi-classical symbols, some regularity is required with respect to the semiclassical parameter that is a vector of R N .

The above class of symbols will not be used as such to define a class of pseudo-differential operators but rather to generate other classes of symbols and associated operators in a more refined semi-classical culculus that we present below.

Metrics

For τ 0 ≥ 2. we set M = R N × R N × [τ 0 , +∞) × [1, +∞) × [0, 1] M T = R N + × R d × [τ 0 , +∞) × [1, +∞) × [0, 1]. We denote by ϱ = (z, ζ, τ, γ, ε) a point in M and ϱ ′ = (z, ζ ′ , τ, γ, ε) a point in M T . We recall that z = (s, x), ζ = (σ, ξ) and ζ ′ = (σ, ξ ′ ).
We set τ = τγφ γ,ε (z) ∈ R + . For simplicity, even though τ is independent of ζ ′ , we shall write τ = τ(ϱ ′ ) when we wish to keep in mind that τ is not just a parameter but rather a function. As ψ > 0, τ > τ 0 , and γ ≥ 1, we note that τ ≥ τ 0 . We then set

λ 2 τ = λ 2 τ (ϱ ′ ) = |ζ| 2 + τ(ϱ ′ ) 2 , λ 2 T, τ = λ 2 T, τ (ϱ ′ ) = |ζ ′ | 2 + τ(ϱ ′ ) 2 .
To simplify notation we dropped the explicit dependence of λ τ and λ T, τ upon ϱ and ϱ ′ . Similarly, we shall write φ(z) or simply φ in place of φ γ,ε (z).

We consider the following metric on the phase space W = R N × R N :

g = (1 + γε) 2 |dz ′ | 2 + γ 2 |dz N | 2 + λ -2 τ |dζ| 2 (2.4)
for τ ≥ τ 0 , γ ≥ 1, and ε ∈ [0, 1] (We remind that this metric is not to be confused with the Riemannian metric g on Ω).

On the phase space W = R N × R N-1 adapted to the tangential calculus, we consider the metric

g T = (1 + γε) 2 |dz ′ | 2 + γ 2 |dz N | 2 + λ -2 T, τ |dζ ′ | 2 (2.5) for τ ≥ τ 0 , γ ≥ 1, and ε ∈ [0, 1].
As shown in [9, Section 4.1.2], the metric g on W defines a Weyl-H örmander pseudo-differential calculus, and both φ and λ τ have the properties required of proper order functions. See for instance [START_REF] Örmander | The Analysis of Linear Partial Differential Operators[END_REF] for a presentation of the Weyl-H örmander calculus.

In [START_REF] Rousseau | Spectral inequality and resolvent estimate for the bilaplace operator[END_REF], the proof of the uncertainty principle uses the fact that τ 0 ≥ 2. The condition τ 0 ≥ 1 would suffice if one choses ψ ≥ ln(2). Consequently, τ(ϱ ′ ) is also an admissible order function for both calculi. The proofs of the following two propositions can be found in [9, Appendix A.2.1].

Proposition 2.2. The metric g and the order functions φ γ,ε , λ τ are admissible, in the sense that the following properties hold (uniformly with respect to the parameters τ, γ and ε).

g satisfies the uncertainty principle, that is, h

-1 g = γ -1 λ τ ≥ 1,
2. φ γ,ε , λ τ and g are slowly varying, 3. φ γ,ε , λ τ and g are tempered.

Similarly, we have the following proposition.

Proposition 2.3. The metric g T and the order functions φ γ,ε , λ T, τ are admissible. For tangential calculus we have h -1

g T = (1 + εγ) -1 λ T, τ ≥ 1.

Symbols

Let a(ϱ) ∈ C ∞ (R N × R N ), and let τ, γ and ε act as parameters, and let m, r ∈ R be such that for all multi-indices α, β ∈ N N with α = (α ′ , α N ) we have

|∂ α z ∂ β ζ a(ϱ)| ≤ C α,β γ |α N | (1 + εγ) |α ′ | τr λ m-|β| τ , ϱ ′ ∈ M.
With the notation of [START_REF] Örmander | The Analysis of Linear Partial Differential Operators[END_REF] we then have a(ϱ) ∈ S( τr λ m τ , g). Similarly, let a(ϱ

′ ) ∈ C ∞ (R N + × R N-1
), let τ, γ, and ε as parameters, and let m ∈ R. If for all multi-indices α = (α

′ , α N ) ∈ N N , β ′ ∈ N d-1 , we have |∂ α z ∂ β ′ ζ ′ a(ϱ ′ )| ≤ C α,β γ |α N | (1 + εγ) |α ′ | τr λ m-|β ′ | T, τ , ϱ ′ ∈ M T ,
we write a(ϱ ′ ) ∈ S( τr λ m T, τ, g T ). The principal symbol associated with a(ϱ ′ ) ∈ S( τr λ m T, τ, g T ) is given by the equivalence class of a(ϱ ′ ) in S( τr λ m T, τ, g T )/S((1 + εγ) τr λ m-1 T, τ , g T ). We define the following class of symbols that are polynomial with respect to

ζ N = ξ d : S m,m ′ τ = m ∑ j=0 S(λ m+m ′ -j T, τ , g T )ζ j N . For a(ϱ) ∈ S m,m ′ τ with a(ϱ) = m ∑ j=0 a j (ϱ ′ )ζ j N and a j (ϱ ′ ) ∈ S(λ m+m ′ -j T, τ , g T ), we denote the principal part of a(ϱ) by σ(a)(ϱ) = m ∑ j=0 σ(a j )(ϱ ′ )ζ j N .
For this calculus with three parameters to make sense, it is important to check that λ τ ∈ S(λ τ, g), λ T, τ ∈ S(λ T, τ, g T ) and τ ∈ S( τ, g) ∩ S( τ, g T ). In fact the have the following property which implies the first two. Lemma 2.4. We have τ = τγφ γ,ε ∈ S( τ, g) ∩ S( τ, g T ).

Proof. We first remark that only differentiation with respect to z = (s, x) of τ have to be considered since d ζ τ = 0. Then, for any α = (α ′ , α N ) ∈ N N , we can write ∂ α z τ(ϱ ′ ) as a linear combination of terms of the form

∂ α z τ(ϱ ′ ) = τγ 1+n φ γ,ε n ∏ j=0 ∂ α (j) z ψ ε (z) = τγ 1+n ε |α ′ | φ γ,ε n ∏ j=0 ∂ α (j) z ψ(εz ′ , z N ), with n ∑ j=1 α (j) = α, |α (j) | ≥ 1, j = 1, . . . , n and n ≤ |α|. As, γ ≥ 1, this implies |∂ α z τ(ϱ ′ )| ≤ τ(ϱ ′ )γ α N (εγ) |α ′ | ,
since ∥ψ∥ L ∞ ≤ C for any k ∈ N, which ends the proof. Observing that τ = γτφ γ,ε ≲ λ τ (resp. τ = γτ φ γ,ε ≲ λ T, τ), we conclude that λ τ ∈ S(λ τ, g), λ T, τ ∈ S(λ T, τ, g T ).

Operators and Sobolev bounds

For a ∈ S( τr λ m τ , g) we define the following pseudo-differential operator in R N :

Op(a)u(z) = (2π) -N R N e iz•ζ a(z, ζ, τ, γ, ε) û(ζ)dζ, u ∈ S (R N + ), (2.6) 
where û is the Fourier transform of u. The associated class of pseudo-differential operators is denoted by Ψ( τr λ m τ , g). If a is a polynomial in ζ and τ(ϱ ′ ) = τd z ψ ε (z), we write Op(a) ∈ D ( τr λ m τ , g). Similarly we define the tangential operators. For a ∈ S( τr λ m T, τ, g T ) we set

Op(a)u(z) = (2π) -(N-1) R 2(N-1) e i(z ′ -y ′ )•ζ ′ a(z, ζ ′ , τ, γ, ε)u(y ′ , z d )dζ ′ dy ′ , u ∈ S (R N + ), (2.7) 
and z ∈ R N . We write A = Op T (a) ∈ Ψ( τr λ m T, τ, g T ) and Λ m T, τ = Op T (λ m T, τ ). We also introduce the following class of operators that act as differential operators in the z N = x d variable and as tangential pseudo-differential operators in the z ′ = (s, x ′ ) variables:

Ψ m,r τ = m ∑ j=0 Ψ(λ m+r-j T, τ , g T )D j z N , m ∈ N, r ∈ R, that is, Op(a) ∈ Ψ m,r τ if a ∈ S m,r τ .
Operators of this class can be applied to functions that are only defined on the half-space R N + .

For functional norms we use the notation ∥.∥ for functions defined in the interior of the domain and |.| for functions defined on the boundary. In that spirit, we shall use the notation

∥u∥ + = ∥u∥ L 2 (R N + ) , (u, ũ) + = (u, ũ) L 2 (R N + ) ,
for functions defined in R N + and

|w| ∂ = ∥w∥ L 2 (R N-1 ) , (w, w) ∂ = (w, w) L 2 (R N-1 ) ,
for functions defined on {x d = 0}, such as traces. We define the following semi-classical Sobolev norms (here with τ):

|u| m, τ = |Λ m T, τ u |z d =0 + | L 2 (R N-1 ) , m ∈ R, u ∈ S (R N + ), ∥u∥ m, τ = ∥u∥ m,0, τ ≍ m ∑ j=0 ∥Λ m-j T, τ D j x d u∥ + , m ∈ N, u ∈ S (R N + ).
We also set, for m ∈ N and

m ′ ∈ R, ∥u∥ m,m ′ , τ ≍ m ∑ j=0 ∥Λ m+m ′ -j T, τ D j x d u∥ + , u ∈ S (R N + ).
At the boundary {x N = 0} we define the following norms, for m ∈ N and m ′ ∈ R,

| tr(u)| 2 m,m ′ , τ = m ∑ j=0 |Λ m+m ′ -j T, τ D j x d u |x N =0 + | 2 ∂ , u ∈ S (R N + ).

Boundary differential quadratic forms

A differential quadradic form acts on a function and involves differentiations of various degrees of the function. One can associate to these forms a symbol and positivity inequality that can be obtained in the form of a Gårding inequality. Such forms appear in proofs of Carleman estimates in the pioneering work of H örmander [START_REF] Örmander | Linear Partial Differential Operators[END_REF]Section 8.2].

Here differential quadradic forms are defined at the boundary. The result we present here without proof can be found in [START_REF] Bellassoued | Carleman estimates for elliptic operators with complex coefficients. Part I: Boundary value problems[END_REF] and [START_REF] Jér | Elliptic Carleman Estimates and Applications to Stabilization and Controllability[END_REF].

Definition 2.5. A set O ⊂ R N \ {0} is called a conic set if,
together with any point ξ, it contains all the points λξ where λ > 0. By a conic neighborhood of a point ξ ∈ R N \ {0}, we mean an open conic set that contains ξ. Definition 2.6. Let u ∈ S (R N + ). We say that

Q(u) = n ∑ k=1 (A k u |x N =0 + , B k u |x N =0 + ) ∂ , A k = a k (s, x, D, τ, γ, ε), B k = b k (s, x, D, τ, γ, ε), is a boundary differential quadratic form of type (m -1, r) with C ∞ coefficients, if for each k = 1, . . . n, we have a k (ϱ) ∈ S m-1,r ′ τ (R N + × R N ), b k (ϱ) ∈ S m-1,r ′′ τ (R N + × R N ) with r ′ + r ′′ = 2r, ϱ = (ϱ ′ , ζ N ) with ϱ ′ = (s, x, ξ ′ , τ, γ, ε). The symbol of the boundary differential quadratic form Q is defined by q(ϱ ′ , ξ N , ζN ) = n ∑ k=1 a k (ϱ ′ , ζ N )b k (ϱ ′ , ζN ). For z = (z 0 , . . . , z ℓ-1 ) ∈ C ℓ and a(ϱ) ∈ S ℓ-1,t τ , of the form a(ϱ ′ , ξ N ) = ∑ ℓ-1 j=0 a j (ϱ ′ )ζ j N with a j (ϱ ′ ) ∈ S(λ ℓ-1+t-j T, τ , g T ) we set Σ a (ϱ ′ , z) = ℓ-1 ∑ j=0 a j (ϱ ′ )z j .
(2.8)

From the boundary differential quadratic form Q we introduce the following bilinear symbol

Σ Q : C m × C m → C Σ Q (ϱ ′ , z, z ′ ) = n ∑ k=1 Σ a k (ϱ ′ , z)Σ b k (ϱ ′ , z ′ ), z, z ′ ∈ C m . (2.9) We let W be an open conic set in R × R N-2 × R N-2 × R + × [1, +∞)× ∈ [0, 1].
Definition 2.7. Let Q be a boundary differential quadratic form of type (m -1, r) with homogeneous principal symbol and associated with the bilinear symbol

Σ Q (ϱ ′ , z, z ′ ). We say that Q is positive definite in W if there exist C > 0 and R > 0 such that Re Σ Q (ϱ ′′ , x N = 0 + , z, z) ≥ C m-1 ∑ j=0 λ 2(m-1-j+r) T, τ |z j | 2 , for ϱ ′′ = (s, x ′ , ξ ′ , τ, γ, ε) ∈ W , with |(ξ ′ , τ)| ≥ R, and z = (z 0 , . . . , z m-1 ) ∈ C m .
We have the following Gårding inequality.

Proposition 2.8. Let Q be a boundary differential quadratic form of type (m -1, r), positive definite in W , an open conic set in R × R N-2 × R N-2 × [τ 0 , +∞) × [1, +∞)× ∈ [0, 1], with bilinear symbol Σ Q (ϱ ′ , z, z ′ ).
Let χ ∈ S(1, g T ) be homogeneous of degree 0, with supp(χ |x N =0 + ) ⊂ W and let M ∈ N. Then there exist

τ 0 > 0, γ ≥ 1, C > 0, C M > 0 such that Re Q(Op T (χ)u) ≥ C| tr(Op T (χ)u)| 2 m-1,r, τ -C M | tr(u)| 2 m-1,-M, τ, for u ∈ S (R N + ) and γ ≥ γ 0 , τ ≥ τ 0 , ε ∈ [0, 1].
The following lemma which can be found in [9, Lemma B.1], gives a perfect elliptic estimate. Let (s 0 , x 0 ) ∈ (0, S 0 ) × ∂Ω and V denotes the neighborhood of (s

0 , x 0 ) in R N . We set O T,V = V × R N-1 × [τ 0 , +∞) × [1, +∞) × [0, 1]. Let ℓ(ϱ) ∈ S m,0 τ with ϱ = (s, x, ξ, τ, γ, ε) and m ≥ 1 be a polynomial in ξ N with homogeneous coefficients in (σ, ξ ′ , τ) where τ = τγd z ψ(s, x) ∈ R N and let L = ℓ(z, D z , τ, γ, ε). Lemma 2.9. Let U be a conic open subset of O T,V . Assume that, for ℓ(ϱ ′ , ζ N ) viewed as a polynomial in ζ N , for ϱ ′ ∈ U • the leading coefficient is 1; • all roots of ℓ(ϱ ′ , ζ N ) = 0 have negative imaginary part. Let χ(ϱ ′ ) ∈ S(1, g T ) be homogeneous of degree zero and such that supp(χ) ⊂ U . Then, for any M ∈ N, there exist C > 0, τ 0 > 0, γ 0 ≥ 1 such that ∥Op T (χ)w∥ m,0, τ + | tr(Op T (χ)w)| m-1,1/2, τ ≤ C ∥LOp T (χ)w∥ + + ∥w∥ m,-M, τ , for w ∈ S (R N + ) and τ ≥ τ 0 , γ ≥ γ 0 , ε ∈ [0, 1].
3 The Lopatinskiȋ-Šapiro condition

The Lopatinskiȋ-Šapiro condition for the bi-Laplace operator

Let P = ∆ 2 with principal symbol p(x, ω) for (x, ω) ∈ T * Ω. One defines the following polynomial in ω d , p(x, ω ′ , ω d ) = p(x, ξ ′ -ω d n x ), for x ∈ ∂Ω, ω ′ ∈ T * x ∂Ω, ω d ∈ R
and where n x denotes the outward pointing conormal vector at x, unitary. Here x and ω ′ act as parameters. We denote by ρ j (x, ω ′ ), 1 ≤ j ≤ 4 the complex roots of p. One sets

p + (x, ω ′ , ω d ) = ∏ Im ρ j (x,ω ′ )≥0 (ω d -ρ j (x, ω ′ )).
Given the boundary differential operators B 1 and B 2 in a neighborhood of ∂Ω, with principal symbols b j (x, ω), j = 1, 2, one also sets b 

j (x, ω ′ , ω d ) = b j (x, ω ′ -ω d n x ).
f (ω d ) = ∑ 1≤j≤2 c j b j (x, ω ′ , ω d ) + h(ω d )p + (x, ω ′ , ω d ).
We say that the Lopatinskiȋ-Šapiro condition holds for (P,

B 1 , B 2 ) at x ∈ ∂Ω if it holds at (x, ω ′ ) for all ω ′ ∈ T * x ∂Ω with ω ′ ̸ = 0.
The general boundary differential operators B 1 and B 2 are then given by

B ℓ (x, D) = ∑ 0≤j≤min(3,k ℓ ) B k ℓ -j ℓ (x, D ′ )(i∂ ν ) j , ℓ = 1, 2, with B k ℓ -j ℓ (x, D ′
) differential operators acting in the tangential variables. We denote by b 1 (x, ω) and b 2 (x, ω) the principal symbols of B 1 and B 2 respectively. For (x, ω ′ ) ∈ T * ∂Ω, we set

b ℓ (x, ω ′ , ω d ) = ∑ 0≤j≤min(3,k ℓ ) b k ℓ -j ℓ (x, ω ′ )ω j d , ℓ = 1, 2. (3.1) 
We recall that the principal symbol of P is given by p(x, ω) = |ω| 4 g . One thus has

p(x, ω ′ , ω d ) = p(x, ω ′ -ω d n x ) = ω 2 d + |ω ′ | 2 g 2 . Therefore p(x, ω ′ , ω d ) = (ω d -i|ω ′ | g ) 2 (ω d + i|ω ′ | g ) 2 .
According to the above definition we set

p + (x, ω ′ , ω d ) = (ω d -i|ω ′ | g ) 2 .
Thus, the Lopatinskiȋ-Šapiro condition holds at (x, ω ′ ) with ω ′ ̸ = 0 if and only if for any function f (ω d ) the complex number i|ω ′ | g is a root of the polynomial function

ω d → f (ω d ) -c 1 b 1 (x, ω ′ , ω d ) -c 2 b 2 (x, ω ′ , ω d )
and its derivative for some c 1 , c 2 ∈ C. This leads to the following determinant condition Lemma 3.2. Let P = ∆ 2 on Ω, B 1 and B 2 be two boundary differential operators.

If x ∈ ∂Ω, ω ′ ∈ T * x ∂Ω, with ω ′ ̸ = 0, the Lopatinskiȋ-Šapiro condition holds at (x, ω ′ ) if and only if det b 1 b 2 ∂ ω d b 1 ∂ ω d b 2 (x, ω ′ , ω d = i|ω ′ | g ) ̸ = 0. (3.2) Remark 3.3.
With the determinant condition and homogeneity, we note that if the Lopatinskiȋ-Šapiro condition holds for (P, B 1 , B 2 ) at (x, ω ′ ) it also holds in a conic neighborhood of (x, ω ′ ) by continuity.

If it holds at x ∈ Ω, it also holds in a neighborhood of x.

Formulation in normal geodesic coordinates

Near a boundary point x ∈ ∂Ω, we shall use normal geodesic coordinates. Then the principal symbols of ∆ and ∆ 2 are given by ξ 2 d + r(x, ξ ′ ) and (ξ 2 d + r(x, ξ ′ )) 2 respectively, where r(x, ξ ′ ) is the principal symbol of a tangential differential elliptic operator R(x, D ′ ) of order 2, with

r(x, ξ ′ ) = ∑ 1≤i,j≤d-1 g ij (x)ξ ′ i ξ ′ j and r(x, ξ ′ ) ≥ C|ξ ′ | 2 .
Here g ij is the inverse of the metric g ij . Below, we shall often write |ξ ′ | 2 x = r(x, ξ ′ ) and we shall also 

write |ξ| 2 x = ξ 2 d + r(x, ξ ′ ), for ξ = (ξ ′ , ξ d ). If b 1 (x,
(P, B 1 , B 2 ) with P = ∆ 2 at (x, ξ ′ ) reads det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) ̸ = 0, (3.3) if |ξ ′ | x ̸ = 0 according to Lemma 3.2.
If the Lopatinskiȋ-Šapiro condition holds at some x 0 , because of homogeneity, there exists

C 0 > 0 such that det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x 0 , ξ ′ , ξ d = i|ξ ′ | x ) ≥ C 0 |ξ ′ | k 1 +k 2 -1 x , ξ ′ ∈ R d-1 . (3.4)

Boundary operators yielding symmetry

We give some examples of pairs of boundary operators B 1 , B 2 that 1. fulfill the Lopatinskiȋ-Šapiro condition, 2. yield symmetry for the bi-Laplace operator P = ∆ 2 , that is,

(Pu, v) L 2 (Ω) = (u, Pv) L 2 (Ω) for u, v ∈ H 4 (Ω) such that B j u |∂Ω = B j v |∂Ω = 0, j = 1, 2.
We first recall that following Green formula

(∆u, v) L 2 (Ω) = (u, ∆v) L 2 (Ω) + (∂ n u |∂Ω , v |∂Ω ) L 2 (∂Ω) -(u |∂Ω , ∂ n v |∂Ω ) L 2 (∂Ω) , (3.5) 
which applied twice gives

(Pu, v) L 2 (Ω) = (u, Pv) L 2 (Ω) + T(u, v) with T(u, v) = (∂ n ∆u |∂Ω , v |∂Ω ) L 2 (∂Ω) -(∆u |∂Ω , ∂ n v |∂Ω ) L 2 (∂Ω) + (∂ n u |∂Ω , ∆v |∂Ω ) L 2 (∂Ω) -(u |∂Ω , ∂ n ∆v |∂Ω ) L 2 (∂Ω) . (3.6)
Using normal geodesic coordinates in a neighborhood of the whole boundary ∂Ω allows one to write ∆ = ∂ 2 n + ∆ ′ where ∆ ′ is the resulting Laplace operator on the boundary, that is, associated with the trace of the metric on ∂Ω. Since ∆ ′ is selfadjoint on ∂Ω this allows one to write formula (3.6) in the alternative forms

T(u, v) = (∂ 3 n u |∂Ω , v |∂Ω ) L 2 (∂Ω) -((∂ 2 n + 2∆ ′ )u |∂Ω , ∂ n v |∂Ω ) L 2 (∂Ω) + (∂ n u |∂Ω , (∂ 2 n + 2∆ ′ )v |∂Ω ) L 2 (∂Ω) -(u |∂Ω , ∂ 3 n v |∂Ω ) L 2 (∂Ω) , (3.7) 
or 

T(u, v) = ((∂ 3 n + 2∆ ′ ∂ n )u |∂Ω , v |∂Ω ) L 2 (∂Ω) -(∂ 2 n u |∂Ω , ∂ n v |∂Ω ) L 2 (∂Ω) + (∂ n u |∂Ω , ∂ 2 n v |∂Ω ) L 2 (∂Ω) -(u |∂Ω , (∂ 3 n + 2∆ ′ ∂ n )v |∂Ω ) L 2 (∂Ω) . ( 3 
(x, ξ ′ , ξ d ) = 1 and b 2 (x, ξ ′ , ξ d ) = -ξ 2 d . It follows that det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) = det 1 |ξ ′ | x 0 -2i|ξ ′ | x = -2i|ξ ′ | x ̸ = 0, if ξ ′ ̸ = 0
∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) = det 1 |ξ ′ | x 0 -i = -i ̸ = 0.

Take

B 1 u |∂Ω = (∂ 2 n + 2∆ ′ )u |∂Ω and B 2 u |∂Ω = ∂ 3 n u |∂Ω . With (3.7) one finds T(u, v) = 0 in the case of homogeneous conditions, hence symmetry. We have b 1 (x, ξ ′ , ξ d ) = -ξ 2 d -2|ξ ′ | 2 x and b 2 (x, ξ ′ , ξ d ) = iξ 3 d and det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) = det -|ξ ′ | 2 x |ξ ′′ | 3 x -2i|ξ ′ | x -3i|ξ ′ | 2 x = 5i|ξ ′ | 4
x ̸ = 0, if ξ ′ ̸ = 0 and thus the Lopatinskiȋ-Šapiro condition holds by Lemma 3.2.

Take

B 1 u |∂Ω = ∂ n u |∂Ω and B 2 u |∂Ω = (∂ 3 n + A ′ )u |∂Ω ,
with A ′ a symmetric differential operator of order less than or equal to three on ∂Ω, with homogeneous principal symbol a

′ (x, ξ ′ ) such that a ′ (x, ξ ′ ) ̸ = 2|ξ ′ | 3 x for ξ ′ ̸ = 0. With (3.7) one finds T(u, v) = (-A ′ u |∂Ω , v |∂Ω ) L 2 (∂Ω) + (u |∂Ω , A ′ v |∂Ω ) L 2 (∂Ω) = 0,
in the case of homogeneous conditions, hence symmetry for P.

We have b 1 (x, ξ ′ , ξ d ) = -iξ d and b 2 (x, ξ ′ , ξ d ) = iξ 3 d + a ′ (x, ξ ′ ) with a ′ the principal symbol of A ′ . det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) = det |ξ ′ | x |ξ ′ | 3 x + a ′ (x, ξ ′ ) -i -3i|ξ ′ | 2 x = i a ′ (x, ξ ′ ) -2|ξ ′ | 3 x ̸ = 0, if ξ ′ ̸ = 0 since a ′ (x, ξ ′ ) ̸ = 2|ξ ′ | 3
x by assumption implying that the Lopatinskiȋ-Šapiro condition holds by Lemma 3.2.

Take

B 1 u |∂Ω = u |∂Ω and B 2 u |∂Ω = (∂ 2 n + A ′ ∂ n )u |∂Ω with A ′ a
symmetric differential operator of order less than or equal to one on ∂Ω, with homogeneous principal symbol a

′ (x, ξ ′ ) such that a ′ (x, ξ ′ ) ̸ = -2|ξ ′ | x for ω ′ ̸ = 0.
This is a refinement of the boundary conditions given in Example 3.4 above.

With (3.7) one finds

T(u, v) = (A ′ ∂ n u |∂Ω , ∂ n v |∂Ω ) L 2 (∂Ω) + (∂ n u |∂Ω , -A ′ ∂ n v |∂Ω ) L 2 (∂Ω) = 0,
in the case of homogeneous conditions, hence symmetry for P. We have b

1 (x, ξ ′ , ξ d ) = 1 and b 2 (x, ξ ′ , ξ d ) = -ξ 2 d -iξ d a ′ (x, ξ ′ ) with a ′ the principal symbol of A ′ . det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) = det 1 |ξ ′ | 2 g + |ξ ′ | x a ′ (x, ξ ′ ) 0 -2i|ξ ′ | x -ia ′ (x, ξ ′ ) = -i a ′ (x, ξ ′ ) + 2|ξ ′ | x ̸ = 0, if ξ ′ ̸ = 0 since a ′ (x, ξ ′ ) ̸ = -2|ξ ′ |
x by assumption implying that the Lopatinskiȋ-Šapiro condition holds by Lemma 3.2.

Take

B 1 u |∂Ω = (∂ 2 n + A ′ ∂ n )u |∂Ω and B 2 u |∂Ω = (∂ 3 n + 2∂ n ∆ ′ )u |∂Ω , with
A ′ a symmetric differential operator of order less than or equal to one on ∂Ω, with homogeneous principal symbol

a ′ (x, ξ ′ ) such that 2a ′ (x, ξ ′ ) ̸ = -3|ξ ′ | x for ξ ′ ̸ = 0. With (3.8) one finds T(u, v) = (A ′ ∂ n u |∂Ω , ∂ n v |∂Ω ) L 2 (∂Ω) + (∂ n u |∂Ω , -A ′ ∂ n v |∂Ω ) L 2 (∂Ω) = 0,
in the case of homogeneous conditions, hence symmetry for P. We have b

1 (x, ξ ′ , ξ d ) = -ξ 2 d -iξ d a ′ (x, ξ ′ ) and b 2 (x, ξ ′ , ξ d ) = iξ 3 d + 2iξ d |ξ ′ | 2 x and det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) = det |ξ ′ | 2 x + |ξ ′ | x a ′ (x, ξ ′ ) -|ξ ′ | 3 x -2i|ξ ′ | x -ia ′ (x, ξ ′ ) -i|ξ ′ | 2 x = -i|ξ ′ | 3 x 2a ′ (x, ξ ′ ) + 3|ξ ′ | x ̸ = 0, if ξ ′ ̸ = 0 since 2a ′ (x, ξ ′ ) + 3|ξ ′ |
x ̸ = 0 by assumption implying that the Lopatinskiȋ-Šapiro condition holds by Lemma 3.2.

Some properties of the bi-Laplace operator

Let (P, D(P)) be the unbounded operator on L 2 (Ω), with

D(P) = u ∈ H 4 (Ω); B 1 u |∂Ω = B 2 u |∂Ω = 0 , (3.9) 
and given by Pu = ∆ 2 u for u ∈ D(P). The boundary operators B 1 and B 2 of orders k j , j = 1, 2, less than or equal to 3 in the normal direction are chosen so that (i) the Lopatinskiȋ-Šapiro condition of Definition 3.1 is fulfilled for (P, B 1 , B 2 ) on ∂Ω;

(ii) the operator P is symmetric under homogeneous boundary conditions, that is,

(Pu, v) L 2 (Ω) = (u, Pv) L 2 (Ω) , (3.10) 
for u, v ∈ H 4 (Ω) such that B j u |∂Ω = B j v |∂Ω = 0 on ∂Ω, j = 1, 2.
With the assumed Lopatinskiȋ-Šapiro condition the operator

L : H 4 (Ω) → L 2 (Ω) ⊕ H 7/2-k 1 (∂Ω) ⊕ H 7/2-k 2 (∂Ω), u → (Pu, B 1 u |∂Ω , B 2 u |∂Ω ), (3.11) 
is Fredholm.

(iii) We shall further assume that the Fredholm index of the operator L is zero.

The previous symmetry property gives (Pu, u) L 2 (Ω) ∈ R. We further assume the following nonnegativity property:

(iv) For u ∈ H 4 (Ω) such that B j u |∂Ω = 0 on ∂Ω, j = 1, 2 one has (Pu, u) L 2 (Ω) ≥ 0.
(3.12)

Associated with P and the boundary operators B 1 and B 2 is the operator (P, D(P)) on L 2 (Ω), with domain

D(P) = u ∈ L 2 (Ω); Pu ∈ L 2 (Ω), B 1 u |∂Ω = B 2 u |∂Ω = 0 ,
and given by Pu = Pu ∈ L 2 (Ω) for u ∈ D(P). The definition of D(P) makes sense since having Pu ∈ L 2 (Ω) for u ∈ L 2 (Ω) implies that the traces ∂ k ν u |∂Ω are well defined for k = 0, 1, 2, 3. Since the Lopatinskiȋ-Šapiro condition holds on ∂Ω one has D(P) ⊂ H 4 (Ω) (see for instance Theorem 20.1.7 in [START_REF] Örmander | The Analysis of Linear Partial Differential Operators[END_REF]) and thus one can also write D(P) as in (3.9). From the assumed nonnegativity in (3.12) above one finds that P + Id is injective. Since the operator

L ′ : H 4 (Ω) → L 2 (Ω) ⊕ H 7/2-k 1 (∂Ω) ⊕ H 7/2-k 2 (∂Ω) u → (Pu + u, B 1 u |∂Ω , B 2 u |∂Ω )
is Fredholm and has the same zero index as L defined in (3.11), one finds that L ′ is surjective. Thus Ran(P + Id) = L 2 (Ω). One thus concludes that P is maximal monotone. From the assumed symmetry property (3.10) and one finds that P is selfadjoint, using that a symmetric maximal monotone operator is selfadjoint (see for instance Proposition 7.6 in [START_REF] Brézis | Functional analysis, Sobolev spaces and partial differential equations[END_REF]).

The resolvent of P + Id being compact on L 2 (Ω), P has a sequence of eigenvalues with finite multiplicities. With the assumed nonnegativity (3.12) they take the form of a sequence

0 ≤ µ 0 ≤ µ 1 ≤ • • • ≤ µ k ≤ • • • , with Pϕ j = µ j ϕ j and ∥ϕ j ∥ 2 L 2 (Ω) = 1.
that grows to +∞. Associated with this sequence is (ϕ j ) j∈N a Hilbert basis of L 2 (Ω).

Well-posedness for the parabolic system (1.1) is shown in [9, Corollary 1.10] and we recall it here.

Corollary 3.7. The operator (P, D(P)) generates an analytic C 0 -semigroup S(t) on L 2 (Ω). For T > 0, y 0 ∈ L 2 (Ω), and f ∈ L 2 (0, T; H -2 (Ω)), there exists a unique solution

y ∈ L 2 (0, T; D(P)) ∩ C ([0, T]; L 2 (Ω)) ∩ H 1 (0, T; H -2 (Ω)),
given by y(t) = S(t)y 0 + t 0 S(ts) f (s)ds, such that ∂ t y + ∆ 2 y = f for a.e. t ∈ (0, T), y |t=0 = y 0 .

The Lopatinskiȋ-Šapiro condition for the augmented operator

We consider the augmented operator Q = D 4 s + ∆ 2 , with s ∈ R. Let q denote the principal symbol of Q. We have

q(x, σ, ξ ′ , ξ d ) = σ 4 + (ξ 2 d + |ξ ′ | 2 x ) 2 = (ξ 2 d -iσ 2 + |ξ ′ | 2 x )(ξ 2 d + iσ 2 + |ξ ′ | 2 x ). 20 
We look for the roots of q(x, σ, ξ ′ , ξ d ) as a polynomial in ξ d . We recall that for a given complex number z = a + ib, the square root of z is given by:

± m + a 2 + i m -a 2 if b > 0, ± m + a 2 -i m -a 2 if b < 0, where m = √ a 2 + b 2 = |z|. Consequently the roots of q(x, σ, ξ ′ , ξ d ) are ±   σ 4 + |ξ ′ | 4 x -|ξ ′ | 2 x 2 + i σ 4 + |ξ ′ | 4 x + |ξ ′ | 2 x 2   ±   σ 4 + |ξ ′ | 4 x -|ξ ′ | 2 x 2 -i σ 4 + |ξ ′ | 4 x + |ξ ′ | 2 x 2   .
Let ρ 1 and ρ 2 denote the roots with positive imaginary part, then

ρ 1 := ρ 1 (x, σ, ξ ′ ) = - σ 4 + |ξ ′ | 4 x -|ξ ′ | 2 x 2 + i σ 4 + |ξ ′ | 4 x + |ξ ′ | 2 x 2 (3.13) ρ 2 := ρ 2 (x, σ, ξ ′ ) = σ 4 + |ξ ′ | 4 x -|ξ ′ | 2 x 2 + i σ 4 + |ξ ′ | 4 x + |ξ ′ | 2 x 2 . ( 3.14) 
We observe that ρ j (x, λσ, λξ ′ ) = λρ j (x, σ, ξ ′ ) for j = 1 or 2, then the roots ρ j are homogeneous of degree one in the variable (σ, ξ ′ ).

Remark 3.8. The roots ρ 1 and ρ 2 are equals if and only if σ = 0.

Set q + (x, σ, ξ ′ , ξ d ) = (ξ d -ρ 1 )(ξ d -ρ 2 ). According to Definition 3.1, the Lopatinskiȋ-Šapiro con- dition is satisfies for (Q, B 1 , B 2 ) at the point (x, ξ ′ , σ) with (ξ ′ , σ) ̸ = (0, 0) if for every polynomial function f (ξ d ), there exist c 1 , c 2 ∈ C and a polynomial function h(ξ d ) such that f (ξ d ) = c 1 b 1 (x, ξ ′ , ξ d ) + c 2 b 2 (x, ξ ′ , ξ d ) + h(ξ d )(ξ d -ρ 1 )(ξ d -ρ 2 ).
Therefore the Lopatinskiȋ-Šapiro condition holds if the complex numbers ρ 1 and ρ 2 are roots of the polynomial function

f (ξ d ) -c 1 b 1 (x, ξ ′ , ξ d ) -c 2 b 2 (x, ξ ′ , ξ d ). This leads to the following determinant condition det b 1 (x, ξ ′ , ξ d = ρ 1 ) b 2 (x, ξ ′ , ξ d = ρ 1 ) b 1 (x, ξ ′ , ξ d = ρ 2 ) b 2 (x, ξ ′ , ξ d = ρ 2 ) ̸ = 0. (3.15)
Remark 3.9. We have for ℓ = 1 or 2

b ℓ (x, λξ ′ , ρ ℓ (x, λσ, λξ ′ )) = λ k ℓ b ℓ (x, ξ ′ , ρ ℓ (x, σ, ξ ′ )) and b ℓ (x, λ ξ ′ λ , ρ ℓ (x, λ σ λ , λ ξ ′ λ )) = λ k ℓ b ℓ (x, ξ ′ λ , ρ ℓ (x, σ λ , ξ ′ λ
)).

But writing

ξ ′ λ + σ λ = ξ ′ (|ξ ′ | 4 x + σ 4 ) 1/4 :=X + σ (|ξ ′ | 4 x + σ 4 ) 1/4 :=Y with λ = (|ξ ′ | 4 x + σ 4 ) 1/4 , we have |X| 4 + Y 4 = 1.
If the Lopatinskiȋ-Šapiro condition holds at some (x 0 , σ 0 , ξ 0 ) where σ 0 ̸ = 0, because of homogeneity, there exists

C 0 > 0 such that det b 1 (x, ξ ′ , ξ d = ρ 1 ) b 2 (x, ξ ′ , ξ d = ρ 1 ) b 1 (x, ξ ′ , ξ d = ρ 2 ) b 2 (x, ξ ′ , ξ d = ρ 2 ) ≥ C 0 Λ k 1 +k 2 , (3.16) with Λ = (σ 4 + |ξ ′ | 4 x ) 1/4 = 1 2 (|ρ 1 | + |ρ 2 |) in a conic neighborhood U of (x 0 , σ 0 , ξ 0 ). Proposition 3.10. Let (x, ξ ′ ) ∈ T * ∂Ω ∼ = ∂Ω × R d-1
and σ ∈ R with (σ, ξ ′ ) ̸ = (0, 0). Suppose that the Lopatinskiȋ-Šapiro condition holds for (P, B 1 , B 2 ) at (x, ξ ′ ). Then the Lopatinskiȋ-Šapiro condition also holds true for (Q, B 1 , B 2 ) at (x, σ, ξ ′ ) for σ near zero.

Before the proof of this proposition we make the following key observation. 

1 (x, ξ ′ , ξ d ) = ξ 2 d + α|ξ ′ | 2 x and b 2 (x, ξ ′ , ξ d ) = ξ d .
Here R(x, D ′ ) denote a tangential differential elliptic operator of order 2 with principal symbol r(x, ξ ′ ) = |ξ ′ | 2 x and α ∈ R. The Lopatinskiȋ-Šapiro condition for (P, B 1 , B 2 ) (the case σ = 0) reads as follows (with ρ = i|ξ ′ | 2

x ):

ρ 2 + α|ξ ′ | 2 x ρ 2ρ 1 = -ρ 2 + α|ξ ′ | 2 x = (1 + α)|ξ ′ | 2 x ̸ = 0, if α ̸ = -1.
On the other hand, the Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 ) (the case σ ̸ = 0) reads as follows

ρ 2 1 + α|ξ ′ | 2 x ρ 1 ρ 2 2 + α|ξ ′ | 2 x ρ 2 = ρ 2 1 ρ 2 + αρ 2 |ξ ′ | 2 x -ρ 1 ρ 2 2 -αρ 1 |ξ ′ | 2 x = (ρ 1 -ρ 2 )(ρ 1 ρ 2 -α|ξ ′ | 2 x ).
(3.17)

We recall that ρ 1 = -ρ 2 and so

ρ 1 ρ 2 = -|ρ 1 | 2 = -σ 4 + |ξ ′ | 4
x . Therefore equation (3.17) becomes

(ρ 1 -ρ 2 )(ρ 1 ρ 2 -α|ξ ′ | 2 x ) = (ρ 1 -ρ 2 )(-σ 4 + |ξ ′ | 4 x -α|ξ ′ | 2 x ). If α < -1, then for σ 4 = (α 2 -1)|ξ ′ | 4 x , we have -σ 4 + |ξ ′ | 4 x -α|ξ ′ | 2 x = 0 while for σ = 0, -σ 4 + |ξ ′ | 4 x -α|ξ ′ | 2 x = -|ξ ′ | 2 x -α|ξ ′ | 2 x = -(α + 1)|ξ ′ | 2 x > 0.
This means that having Lopatinskiȋ-Šapiro condition for (P, B 1 , B 2 ) does not imply necessarily that the Lopatinskiȋ-Šapiro condition also holds true for (Q, B 1 , B 2 ).

More generally, we set

K = det b 1 (x, ξ ′ , ξ d = ρ 1 ) b 2 (x, ξ ′ , ξ d = ρ 1 ) b 1 (x, ξ ′ , ξ d = ρ 2 ) b 2 (x, ξ ′ , ξ d = ρ 2 ) and K ′ = det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = ρ).
Using the notation (3.1), straightforward computations gives:

K = (ρ 2 -ρ 1 ) b k 1 1 b k 2 -1 2 -b k 1 -1 1 b k 2 2 + (ρ 2 -ρ 1 ) b k 1 1 b k 2 -2 2 -b k 1 -2 1 b k 2 2 (ρ 2 + ρ 1 ) + (ρ 2 -ρ 1 ) b k 1 1 b k 2 -3 2 -b k 1 -3 1 b k 2 2 (ρ 2 2 + ρ 2 ρ 1 + ρ 2 1 ) + (ρ 2 -ρ 1 ) b k 1 -1 1 b k 2 -2 2 -b k 1 -2 1 b k 2 -1 2 (ρ 1 ρ 2 ) + (ρ 2 -ρ 1 ) b k 1 -1 1 b k 2 -3 2 -b k 1 -3 1 b k 2 -1 2 (ρ 1 ρ 2 )(ρ 2 + ρ 1 ) + (ρ 2 -ρ 1 ) b k 1 -2 1 b k 2 -3 2 -b k 1 -3 1 b k 2 -2 2 (ρ 1 ρ 2 ) 2
and

K ′ = b k 1 1 b k 2 -1 2 -b k 1 -1 1 b k 2 2 + 2 b k 1 1 b k 2 -2 2 -b k 1 -2 1 b k 2 2 ρ + 3 b k 1 1 b k 2 -3 2 -b k 1 -3 1 b k 2 2 ρ 2 + b k 1 -1 1 b k 2 -2 2 -b k 1 -2 1 b k 2 -1 2 ρ 2 + 2 b k 1 -1 1 b k 2 -3 2 -b k 1 -3 1 b k 2 -1 2 ρ 3 + 3 b k 1 -2 1 b k 2 -3 2 -b k 1 -3 1 b k 2 -2 2 ρ 4 .
Here we recall that ρ = i|ξ ′ | 2 x , ρ 1 and ρ 2 are given (3.13) and (3.14). We can see that having K ′ ̸ = 0 does not imply necessarily that K ̸ = 0 for σ ̸ = 0.

For σ near zero, we have that having the Lopatinskiȋ-Šapiro condition for (P, B 1 , B 2 ) implies that the Lopatinskiȋ-Šapiro condition holds true for (Q, B 1 , B 2 ). This is shown in the proof of Proposition 3.10 below.

Proof of Proposition 3.10. Set ρ

2 = ρ 1 + h with h = 2 √ σ 4 +|ξ ′ | 4 x -|ξ ′ | 2 x 2 which is equivalent to det b 1 (x, ξ ′ , ξ d = ρ 1 ) b 2 (x, ξ ′ , ξ d = ρ 1 ) b 1 (x,ξ ′ ,ξ d =ρ 1 +h)-b 1 (x,ξ ′ ,ξ d =ρ 1 ) h b 2 (x,ξ ′ ,ξ d =ρ 1 +h)-b 2 (x,ξ ′ ,ξ d =ρ 1 ) h = det b 1 (x, ξ ′ , ξ d = i|ξ ′ | x ) b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) ∂ ξ d b 1 (x, ξ ′ , ξ d = i|ξ ′ | x ) ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) ̸ = 0,
as σ → 0. Similarly we can also set

ρ 1 = -h + ir and ρ 2 = h + ir where h = √ σ 4 +|ξ ′ | 4 x -|ξ ′ | 2 x 2 ∈ R and r = √ σ 4 +|ξ ′ | 4 x +|ξ ′ | 2 x 2
∈ R. By using relation (3.15), we have

det b 1 (x, ξ ′ , ξ d = -h + ir) b 2 (x, ξ ′ , ξ d = -h + ir) b 1 (x, ξ ′ , ξ d = h + ir) b 2 (x, ξ ′ , ξ d = h + ir) ̸ = 0, which is equivalent to det b 1 (x, ξ ′ , ξ d = ρ 1 ) b 2 (x, ξ ′ , ξ d = ρ 1 ) b 1 (x,ξ ′ ,ξ d =θ)-b 1 (x,ξ ′ ,ξ d =ρ 1 ) 2h b 2 (x,ξ ′ ,ξ d =θ)-b 2 (x,ξ ′ ,ξ d =ρ 1 ) 2h = det b 1 (x, ξ ′ , ξ d = ir) b 2 (x, ξ ′ , ξ d = ir) ∂ ξ d b 1 (x, ξ ′ , ξ d = ir) ∂ ξ d b 2 (x, ξ ′ , ξ d = ir) ̸ = 0,
as h → 0 and since r = |ξ ′ | x . Hence, for σ small, having Lopatinskiȋ-Šapiro for (P, B 1 , B 2 ) implies Lopatinskiȋ-Šapiro for (Q, B 1 , B 2 ).

Some examples

In connection with the examples listed in Section 3.3, we check the validity of the Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 ) for some boundary conditions B 1 and B 2 at (ξ ′ , σ) ̸ = (0, 0).

Example 3.12 (Hinged boundary conditions). With B 1 u = u and B 2 u = ∆u, we then have the principal symbols b

1 (x, ξ ′ , ξ d ) = 1 and b 2 (x, ξ ′ , ξ d ) = -ξ 2 d . The Lopatinskiȋ-Šapiro condition for (D 4 s + ∆ 2 , B 1 , B 2 ) at (x, σ, ξ ′ ) with (σ, ξ ′ ) ̸ = (0, 0) is equivalent to have 1 -ρ 2 1 1 -ρ 2 2 = -ρ 2 2 + ρ 2 1 = -(ρ 2 -ρ 1 )(ρ 2 + ρ 1 ) ̸ = 0.
We note that ρ 1 = -ρ2 and therefore 

1 -ρ 2 1 1 -ρ 2 2 = ρ2 2 -ρ 2 2 = ( ρ2 -ρ 2 )( ρ2 + ρ 2 ). But ρ2 2 -ρ 2 2 = -4i Re ρ 2 Im ρ 2 = -4i √ σ 4 +|ξ ′ | 4 x -|ξ ′ | 2 x 2 × √ σ 4 +|ξ ′ | 4 x +|ξ ′ | 2 x 2 = -2iσ 2 ̸ = 0 if σ ̸ = 0.
(x, ξ ′ , ξ d ) = 1 and b 2 (x, ξ ′ , ξ d ) = -iξ d . The Lopatinskiȋ-Šapiro condition for (D 4 s + ∆ 2 , B 1 , B 2 ) at (x, σ, ξ ′ ) with (σ, ξ ′ ) ̸ = (0, 0) is equivalent to have 1 -iρ 1 1 -iρ 2 = -iρ 2 + iρ 1 = -i(ρ 2 -ρ 1 ) ̸ = 0. But ρ 2 -ρ 1 = 2 √ σ 4 +|ξ ′ | 4 x -|ξ ′ | 2 x 2 which is different from zero if σ ̸ = 0. Example 3.14. Let B 1 u = ∂ n u and B 2 u = ∂ n ∆u. We have b 1 (x, ξ ′ , ξ d ) = -iξ d and b 2 (x, ξ ′ , ξ d ) = iξ 3 d . The Lopatinskiȋ-Šapiro condition for (D 4 s + ∆ 2 , B 1 , B 2 ) at (x, σ, ξ ′ ) with (σ, ξ ′ ) ̸ = (0, 0) is equivalent to have -iρ 1 iρ 3 1 -iρ 2 iρ 3 2 = ρ 1 ρ 3 2 -ρ 2 ρ 3 1 = (ρ 2 -ρ 1 )(ρ 2 + ρ 1 )(ρ 2 ρ 1 ) ̸ = 0.
We note that ρ 1 = -ρ2 and then

ρ 1 ρ 3 2 -ρ 2 ρ 3 1 = -4i|ρ 2 | 2 Re ρ 2 Im ρ 2 = -2iσ 2 σ 4 + |ξ ′ | 4 x ̸ = 0 if σ ̸ = 0.
We give an additional example which is totally different from those boundary conditions listed in Section 3.3.

Example 3.15. Let us consider the two boundary differential operators B 1 and B 2 to be of order zero and one respectively with nonvanishing principal symbols b 1 (x, ξ) = ⟨ξ, ν x ⟩ and b 2 (x, ξ) = ⟨ξ, t x ⟩ + i⟨ξ, v x ⟩ where t x and v x are two real vector fields on Ω along ∂Ω, and ⟨•, •⟩ denotes the Euclidean scalar product. We write

v x = v ν x ν x + v ′ x and t x = t ν x ν x + t ′ x , with v ν x , t ν x ∈ R and v ′ x , t ′ x ∈ T x ∂Ω ∼ = R d-1
, ν x denote the unitary outward pointing vector on Ω along ∂Ω. We set

b j (x, ξ ′ , ξ d ) = b j (x, ξ ′ -ξ d n x ),
where n x denotes the outward unit pointing conormal vector at x. Therefore, we have

b 1 (x, ξ ′ , ξ d ) = -iξ d and b 2 (x, ξ ′ , ξ d ) = ⟨ξ ′ -ξ d n x , t x ⟩ + i⟨ξ ′ -ξ d n x , v x ⟩ = ⟨ξ ′ , t ′ x + iv ′ x ⟩ -ξ d (t ν x + iv ν x ). For ξ ′ ∈ T *
x ∂Ω such that ξ ′ ̸ = 0, the Lopatinskiȋ-Šapiro condition holds for (P,

B 1 , B 2 ) if and only if det b 1 b 2 ∂ ξ d b 1 ∂ ξ d b 2 (x, ξ ′ , ξ d = i|ξ ′ | x ) ̸ = 0.
This is equivalent to have

|ξ ′ | x ⟨ξ ′ , t ′ x + iv ′ x ⟩ -i|ξ ′ | x (t ν x + iv ν x ) -i -t ν x -iv ν x ̸ = 0. That is, -|ξ ′ | x (t ν x + iv ν x ) + i⟨ξ ′ , t ′ x + iv ′ x ⟩ + |ξ ′ | x (t ν x + iv ν x ) ̸ = 0 ⇐⇒ ⟨ξ ′ , t ′ x ⟩ + i⟨ξ ′ , v ′ x ⟩ ̸ = 0.
Hence, this holds if and only if ⟨ξ ′ , t ′ x ⟩ ̸ = 0 and ⟨ξ ′ , v ′ x ⟩ ̸ = 0. Therefore the Lopatinskiȋ-Šapiro condition holds for (P,

B 1 , B 2 ) at (x, ξ ′ ) with ξ ′ ̸ = 0 if and only if (⟨ξ ′ , t ′ x ⟩, ⟨ξ ′ , v ′ x ⟩) ̸ = (0, 0).
We say that the Lopatinskiȋ-Šapiro condition holds for (Q,

B 1 , B 2 ) at (x, σ, ξ ′ ) with (σ, ξ ′ ) ̸ = (0, 0) if and only if det b 1 (x, ξ ′ , ξ d = ρ 1 ) b 2 (x, ξ ′ , ξ d = ρ 1 ) b 1 (x, ξ ′ , ξ d = ρ 2 ) b 2 (x, ξ ′ , ξ d = ρ 2 ) ̸ = 0.
Therefore we have

b 1 (x, ξ ′ , ξ d = ρ) b 2 (x, ξ ′ , ξ d = ρ) b 1 (x, ξ ′ , ξ d = θ) b 2 (x, ξ ′ , ξ d = θ) = -iρ 1 ⟨ξ ′ , t ′ x + iv ′ x ⟩ -ρ 1 (t ν x + iv ν x ) -iρ 2 ⟨ξ ′ , t ′ x + iv ′ x ⟩ -ρ 2 (t ν x + iv ν x ) ̸ = 0, i.e., i(ρ 2 -ρ 1 )⟨ξ ′ , t ′ x + iv ′ x ⟩ ̸ = 0 ⇐⇒ ⟨ξ ′ , t ′ x ⟩ + i⟨ξ ′ , v ′ x ⟩ ̸ = 0, if ρ 1 -ρ 2 ̸ = 0, i.e., σ ̸ = 0. Hence the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 ) at (x, σ, ξ) with (σ, ξ ′ ) ̸ = (0, 0) if and only if (⟨ξ ′ , t ′ x ⟩, ⟨ξ ′ , v ′ x ⟩) ̸ = (0, 0).

Stability of the Lopatinskiȋ-Šapiro condition

To prepare the study of how the Lopatinskiȋ-Šapiro condition behave under conjugation with Carleman exponential weight function, we show that the Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 ) is stable under small perturbations.

Lemma 3.16. Let V 0 be a compact set of ∂Ω such that the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 ) at the point (x 0 , σ 0 , ξ 0 ) of V 0 , then the Lopatinskiȋ-Šapiro condition remains valid for (Q, B 1 , B 2 ) at every point (x, σ, ξ) of V 0 . That is to say that the Lopatinskiȋ-Šapiro condition is stable under small perturbations of the coefficients.

Proof. According to Definition 3.1, let

f (z) = c 1 b 1 (x, ξ ′ , z) + c 2 b 2 (x, ξ ′ , z) + g(z)h(x, σ, ξ ′ , z), for all ξ ′ ∈ R d-1 , x ∈ V 0 , σ ∈ R and z ∈ C.
We suppose that h is a polynomial function (in z) of order 2 and plays the same role as q + . In addition, we consider f to be at most of degree one, and

b 1 (x, ξ ′ , z) = b 1 1 (x, ξ ′ )z + b 0 1 (x, ξ ′ ), b 2 (x, ξ ′ , z) = b 1 2 (x, ξ ′ )z + b 0 2 (x, ξ ′ ), (3.18) 
where ξ ′ ∈ R d-1 . We distinguish two cases:

Case 1: The polynomial function h has two distinct roots with positive imaginary parts, let say r 1 and r 2 . Having the Lopatinskiȋ-Šapiro for (Q, B 1 , B 2 ) holds at x is equivalent to the following condition

b 1 (x, ξ ′ , z = r 1 ) b 2 (x, ξ ′ , z = r 1 ) b 1 (x, ξ ′ , z = r 2 ) b 2 (x, ξ ′ , z = r 2 ) ̸ = 0. (3.19)
Using the multi-linearity of the determinant together with (3.18), we find that condition (3.19) is equivalent to have

(r 2 -r 1 ) b 0 1 (x, ξ ′ ) b 0 2 (x, ξ ′ ) b 1 1 (x, ξ ′ ) b 1 2 (x, ξ ′ ) ̸ = 0.
Thus it suffices to have b

0 1 (x, ξ ′ ) b 0 2 (x, ξ ′ ) b 1 1 (x, ξ ′ ) b 1 2 (x, ξ ′ ) ̸ = 0 (3.20)
since r 1 and r 2 are distinct and different from zero for σ ̸ = 0. Now we aim to show that

A = b 1 (x, ξ ′ + ζ ′ , z = r 1 + δ) b 2 (x, ξ ′ + ζ ′ , z = r 1 + δ) b 1 (x, ξ ′ + ζ ′ , z = r 2 + δ) b 2 (x, ξ ′ + ζ ′ , z = r 2 + δ) ̸ = 0, where ζ ′ ∈ C d-1 and δ, δ ∈ C, with |δ| + |ζ ′ | < |r 1 |, | δ| + |ζ ′ | < |r 2 |.
Using again, the multi-linearity of the determinant, we find that

A = [(r 2 -r 1 ) + ( δ -δ)] b 0 1 (x, ξ ′ + ζ ′ ) b 0 2 (x, ξ ′ + ζ ′ ) b 1 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ) . So, it is suffices to have b 0 1 (x, ξ ′ + ζ ′ ) b 0 2 (x, ξ ′ + ζ ′ ) b 1 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ) ̸ = 0.
This follows from (3.20).

Case 2:

The polynomial function h has a double root, let say r and we have

b 1 (x, ξ ′ + ζ ′ , z = r + δ) b 2 (x, ξ ′ + ζ ′ , z = r + δ) ∂ z b 1 (x, ξ ′ + ζ ′ , z = r + δ) ∂ z b 2 (x, ξ ′ + ζ ′ , z = r + δ) = b 1 1 (x, ξ ′ + ζ ′ )(r + δ) + b 0 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ ′ )(r + δ) + b 0 2 (x, ξ ′ + ζ ′ ) b 1 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ ′ ) = (r + δ) b 1 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ ′ ) b 1 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ ′ ) =0 + b 0 1 (x, ξ ′ + ζ ′ ) b 0 2 (x, ξ ′ + ζ ′ ) b 1 1 (x, ξ ′ + ζ ′ ) b 1 2 (x, ξ ′ + ζ ′ ) ̸ =0 thanks to Case 1 ̸ = 0.

The Lopatinskiȋ-Šapiro condition after conjugation

Here, we study the Lopatinskiȋ-Šapiro condition for the augmented operator Q after conjugation.

The augmented operator

We conjugate the operator

Q = D 4 s + ∆ 2 with φ ∈ C ∞ (R N , R).
We shall refer to φ as the Carleman weight function. We set A = -∆ and we denote by A φ its conjugate. We consider a weight function that depends on the variable s and x with x = (x d , x ′ ). We also write

Q = Q 2 Q 1 , with Q j = (-1) j iD 2 s + A.
In normal geodesic coordinates, setting Q φ = e τφ Qe -τφ (with τ > 0) we have

Q φ = L 2 L 1 with L j = e τφ Q j e -τφ = (-1) j i(D s + iτ∂ s φ) 2 + A φ (3.21) with A φ = e τφ Ae -τφ = (D d + iτ∂ d φ(x)) 2 + R(x, D ′ + iτd x ′ φ(x)), x = (x d , x ′ ).
In fact, for j = 1, 2, we write L j in the following form

L j = (D d + iτ∂ d φ) 2 + Γ j , Γ j = (-1) j i(D s + iτ∂ s φ) 2 + R(x, D ′ + iτd x ′ φ). (3.22)
For j = 1, 2, we denote the principal symbols of L j and Γ j by ℓ j and γ j respectively, which gives with ϱ = (s, x, σ, ξ, τ)

ℓ j (ϱ) = (ξ d + iτ∂ d φ) 2 + γ j (ϱ ′ ), ϱ ′ = (s, x, σ, ξ ′ , τ)
where γ j (ϱ ′ ) = (-1) j i(σ + iτ∂ s φ) 2 + r(x, ξ ′ + iτd x ′ φ). We now study the roots of ℓ j viewed as a polynomial in the variable ξ d , with the other variables acting as parameters.

Roots properties and configuration for each factor

We consider the factors ξ d → ℓ j (ϱ) and we recall that

ℓ j (ϱ) = (ξ d + iτ∂ d φ) 2 + γ j (ϱ ′ ), j = 1, 2.
First, we consider the case γ j (ϱ ′ ) ∈ R -, that is, equal to -β 2 with β ∈ R . Then, the roots of ξ d → ℓ j (ϱ) are given by

-iτ∂ d φ + β and -iτ∂ d φ -β.
Both lie in the lower complex open half-plane.

Second, we consider the case γ j (ϱ ′ ) ∈ C \ R -. There exists a unique α j ∈ C such that Re α j > 0 and

α 2 j := α 2 j (ϱ ′ ) = γ j (ϱ ′ ), j = 1, 2.
We have

α 2 j = r(x, ξ ′ + iτd x ′ φ) + (-1) j i(σ + iτ∂ s φ) 2 ) = r(x, ξ ′ ) -τ 2 r(x, d x ′ φ) + 2iτ r(x, ξ ′ , d x ′ φ) + (-1) j i(σ + iτ∂ s φ) 2 , = r(x, ξ ′ ) -τ 2 r(x, d x ′ φ) + 2iτ r(x, ξ ′ , d x ′ φ) + (-1) j iσ 2 + 2(-1) j+1 στ∂ s φ + (-1) j+1 i(τ∂ s φ) 2 (3.23)
where r(x, ., .) denotes the symmetric bilinear form associated with the quadratic form r(x, .). We may then write

ℓ j (ϱ) = (ξ d + iτ∂ d φ) 2 + α 2 j = (ξ d -π j,+ (ϱ ′ ))(ξ d -π j,-(ϱ ′ )), with π j,± (ϱ ′ ) = -iτ∂ d φ ± iα j (ϱ ′ ), j = 1, 2. (3.24)
If τ∂ d φ > C 1 > 0, Im π j,-remains always in the complex lower half-plane while π j,+ may cross the real line.

Remark 3.17. Suppose that τ∂ d φ ≥ 0. Let j = 1 or 2. We have

π j,-(ϱ ′ ) = π j,+ (ϱ ′ ) ⇔ π j,-(ϱ ′ ) = π j,+ (ϱ ′ ) = -iτ∂ d φ ⇔ γ j (ϱ ′ ) = 0. One has Im π j,-< 0 since ∂ d φ ≥ C 1 > 0.
With Im π j,+ = -τ∂ d φ + Re α j one sees that the sign of Im π j,+ may change. The following lemma gives an algebraic characterization of the sign of Im π j,+ .

We recall the definition of ρ j for j = 1, 2 is given in (3.13) and (3.14). Lemma 3.18. Assume that ∂ d φ > 0, there exists K 0 > 0 sufficiently small such that |∂ s φ| + |d x ′ φ| x ≤ K 0 |∂ d φ|. There exist C 1 and C 2 such that, for j = 1, 2, if we have

(τ∂ d φ) 4 ≥ C 1 |ρ j | 3 (τ∂ d φ) + C 2 (τ∂ d φ) 2 |ρ j | 2 + σ 4 + (τ∂ s φ) 4 .
then Im π j,+ < 0, for j = 1, 2. 

Proof

     Re α 2 j = r(x, ξ ′ ) -r(x, τd x ′ φ) -2(-1) j σ(τ∂ s φ) (Im α 2 j ) 2 = 4τ 2 r(x, ξ ′ , d x ′ φ) 2 + (τ∂ s φ) 4 + σ 4 + 4(-1) j σ 2 τ r(x, ξ ′ , d x ′ φ) -4(-1) j (τ∂ s φ) 2 τ r(x, ξ ′ , d x ′ φ) -2σ 2 (τ∂ s φ) 2 .
Therefore the inequality 4(τ∂

d φ) 2 Re α 2 j -4(τ∂ d φ) 4 + (Im α 2 j ) 2 < 0 is equivalent to 4(τ∂ d φ) 2 r(x, ξ ′ ) + 4τ 2 r(x, ξ ′ , d x ′ φ) 2 + σ 4 + (τ∂ s φ) 4 < 4(τ∂ d φ) 4 + 4(τ∂ d φ) 2 r(x, τd x ′ φ) + 8(-1) j (τ∂ d φ) 2 σ(τ∂ s φ) + 2σ 2 (τ∂ s φ) 2 -4(-1) j σ 2 τ r(x, ξ ′ , d x ′ φ) + 4(-1) j (τ∂ s φ) 2 τ r(x, ξ ′ , d x ′ φ) < 4(τ∂ d φ) 2 |τd x φ| 2 x + 8(-1) j (τ∂ d φ) 2 σ(τ∂ s φ) + 2σ 2 (τ∂ s φ) 2 -4(-1) j σ 2 τ r(x, ξ ′ , d x ′ φ) + 4(-1) j (τ∂ s φ) 2 τ r(x, ξ ′ , d x ′ φ) (3.25) using the fact that |τd x φ| 2 x = |τd x ′ φ| 2 x + (τ∂ d φ) 2 . On the one hand, since |d x ′ φ| ≤ K 0 |∂ d φ| one has 4(τ∂ d φ) 2 r(x, ξ ′ ) + 4r(x, ξ ′ , τd x ′ φ) 2 + σ 4 + (τ∂ s φ) 4 ≤ (4 + 4K 2 0 )(τ∂ d φ) 2 |ξ ′ | 2 x + σ 4 + (τ∂ s φ) 4 ≤ (4 + 4K 2 0 )(τ∂ d φ) 2 |ρ j | 2 + σ 4 + (τ∂ s φ) 4 , (3.26) since |ρ j | 2 = (σ 4 + |ξ ′ | 4 x ) 1/2 ≥ |ξ ′ | 2 x , r(x, ξ ′ ) = |ξ ′ | 2 x and |r(x, ξ ′ , τd x ′ φ) 2 | ≤ |ξ ′ | 2 x |τd x ′ φ| 2 x .
On the other hand one has

4(τ∂ d φ) 2 |τd x φ| 2 + 8(-1) j (τ∂ d φ) 2 σ(τ∂ s φ) + 2σ 2 (τ∂ s φ) 2 -4(-1) j σ 2 τ r(x, ξ ′ , d x ′ φ) -4(-1) j (τ∂ s φ) 2 τ r(x, ξ ′ , d x ′ φ) ≥ 4(τ∂ d φ) 4 -8(τ∂ d φ) 2 |σ||τ∂ s φ| -4σ 2 |τd x ′ φ| x |ξ ′ | x -4|τd x ′ φ| x |ξ ′ | x (τ∂ s φ) 2 ≥ 4(τ∂ d φ) 4 -8K 0 (τ∂ d φ) 3 |ρ j | -4K 0 |ρ j | 3 (τ∂ d φ) -4K 3 0 |ρ j |(τ∂ d φ) 3 ≥ 4(τ∂ d φ) 4 -(8K 0 + 4K 3 0 )(τ∂ d φ) 3 |ρ j | -4K 0 |ρ j | 3 (τ∂ d φ).
Using xy 2 ≤ 1 3 x 3 + 2 3 y 3 , we then have

4(τ∂ d φ) 4 -(8K 0 + 4K 3 0 )(τ∂ d φ) 3 |ρ j | -4K 0 |ρ j | 3 (τ∂ d φ) ≥ 4(τ∂ d φ) 4 -(8K 0 + 4K 3 0 )( 1 3 |ρ j | 3 + 2 3 (τ∂ d φ) 3 )(τ∂ d φ) -4K 0 |ρ j | 3 (τ∂ d φ) ≥ (τ∂ d φ) 4 -CK 0 |ρ j | 3 (τ∂ d φ) (3.27)
for K 0 sufficiently small and some C > 0. From (3.26) and (3.27), (3.25) holds if one has 4 . This ends the proof.

(τ∂ d φ) 4 -CK 0 |ρ j | 3 (τ∂ d φ) ≥ (4 + 4K 2 0 )(τ∂ d φ) 2 |ρ j | 2 + σ 4 + (τ∂ s φ) 4 , that is (τ∂ d φ) 4 ≥ CK 0 |ρ j | 3 (τ∂ d φ) + (4 + 4K 2 0 )(τ∂ d φ) 2 |ρ j | 2 + σ 4 + (τ∂ s φ)
Lemma 3.19. Let z ∈ C such that m = z 2 . For x 0 ∈ R such that x 0 ̸ = 0, we have | Re z| ⪋ |x 0 | ⇐⇒ 4x 2 0 Re m -4x 4 0 + (Im m) 2 ⪋ 0.
Proof. Let z = x + iy ∈ C. On the one hand we have z 2 = x 2y 2 + 2ixy = m and Re m = x 2y 2 , Im m = 2xy. On the other hand we have

4x 2 0 Re m -4x 4 0 + (Im m) 2 = 4x 2 0 (x 2 -y 2 ) -4x 4 0 + 4x 2 y 2 = 4(x 2 0 + y 2 )(x 2 -x 2 0 ),
thus with the same sign as

(x 2 -x 2 0 ). Since | Re z| ⪋ |x 0 | ⇔ x 2 -x 2 0 ⪋ 0 the conclusion follows. Lemma 3.20. There exists K 0 > 0 and C > 0 such that if |∂ s φ| + |d x ′ φ| ≤ K 0 |∂ d φ| and C|ρ j | ≤ (τ∂ d φ), j = 1, 2 then Im π j,+ (x, s, ξ ′ , σ, τ) < 0.
Proof. It is sufficient to prove the estimate of Lemma 3.18. From assumption we have

5(τ∂ d φ) 4 ≥ C|ρ j | 3 (τ∂ d φ) + C 2 (τ∂ d φ) 2 |ρ j | 2 + C 4 |ρ j | 4 + C 4 σ 4 + (τ∂ s φ) 4 , if K 0 is sufficiently small and as |ρ j | 4 = σ 4 + |ξ ′ | 4
x . This estimate implies the one of Lemma 3.18 as K 0 can be chosen sufficiently small and C sufficiently large.

We consider the boundary differential operators B 1 and B 2 of order k 1 and k 2 with b j (x, ξ) their principal symbol, j = 1, 2. The associated conjugated operators

B j,φ = e τφ B j e -τφ , have respective principal symbols b j,φ (s, x, ξ, τ) = b j (x, ξ + iτd z φ), j = 1, 2, z = (s, x).
We assume that the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 ) as in Definition 3.1 for any point

(s, x, σ, ξ ′ ) ∈ R × ∂Ω × R × R d-1
. We wish to know if the Lopatinskiȋ-Šapiro condition can hold for (Q, B 1 , B 2 , φ), as given by the following definition (in local coordinates for simplicity). +∞) with (σ, ξ ′ , τ) ̸ = (0, 0, 0). One says that the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 , φ) at (s, x, σ, ξ ′ , τ) if for any polynomial function f (ξ d ) with complex coefficients there exist c 1 , c 2 ∈ C and a polynomial function g(ξ d ) with complex coefficients such that, for all

Definition 3.21. Let (s, x, σ, ξ ′ , τ) ∈ ×R × ∂Ω × R × R d-1 × [0,
ξ d ∈ C f (ξ d ) = c 1 b 1,φ (s, x, ξ ′ , ξ d , τ) + c 2 b 2,φ (s, x, ξ ′ , ξ d , τ) + g(ξ d )q + φ (s, x, σ, ξ ′ , ξ d , τ), with q + φ (s, x, σ, ξ ′ , ξ d , τ) = ∏ Im r j (x,σ,ξ ′ ,τ)≥0 (ξ d -r j (x, σ, ξ ′ , τ)),
where r j (x, σ, ξ ′ , τ), j = 1, • • • , 4, denote the complex roots of q φ (s, x, σ, ξ ′ , ξ d , τ) viewed as a polynomial in ξ d .

Discussion on the Lopatinskiȋ-Šapiro condition according to the position of the roots

With the assumption that ∂ d φ > 0, for any point (s, x, σ, ξ ′ , τ) at most two roots lie in the upper complex closed half-plane. We then enumerate the following cases. Here, we drop the dependence of the roots of the polynomial q + φ (s, x, σ, ξ ′ , ξ d , τ) on the variables (x, σ, ξ ′ , τ).

• Case 1 : No root lying in the upper complex closed half-plane, then q + φ (s, x, σ, ξ ′ , ξ d , τ) = 1 and the Lopatinskiȋ-Šapiro condition of Definition 3.21 holds trivially at (s, x, σ, ξ ′ , τ).

• Case 2 : One root lying in the upper complex closed half-plane. Let us denote by r + that root, then q

+ φ (s, x, σ, ξ ′ , ξ d , τ) = ξ d -r + . With Definition 3.21, for any choice of f , the polynomial function ξ d → f (ξ d ) -c 1 b 1,φ (s, x, ξ ′ , ξ d , τ) -c 2 b 2,φ (s, x, ξ ′ ,
ξ d , τ) admits r + as a root for c 1 , c 2 ∈ C well chosen. Hence, the Lopatinskiȋ-Šapiro condition holds at (s, x, σ, ξ ′ , τ) if and only if

b 1,φ (s, x, ξ ′ , ξ d = r + , τ) ̸ = 0 or b 2,φ (s, x, ξ ′ , ξ d = r + , τ) ̸ = 0.
• Case 3 : Two different roots lying in the upper complex closed half-plane. Let denote by r + 1 and r + 2 these roots. One has

q + φ (s, x, σ, ξ ′ , ξ d , τ) = (ξ d -r + 1 )(ξ d -r + 2 )
. The Lopatinskiȋ-Šapiro condition holds at (s, x, σ, ξ ′ , τ) if and only if the complex numbers r + 1 and r + 2 are the roots of the polynomial function

ξ d → f (ξ d ) -c 1 b 1,φ (s, x, ξ ′ , ξ d , τ) -c 2 b 2,φ (s, x, ξ ′ , ξ d , τ), for c 1 , c 2 well chosen. This reads      f (r + 1 ) = c 1 b 1,φ (s, x, ξ ′ , ξ d = r + 1 , τ) + c 2 b 2,φ (s, x, ξ ′ , ξ d = r + 1 , τ), f (r + 2 ) = c 1 b 1,φ (s, x, ξ ′ , ξ d = r + 2 , τ) + c 2 b 2,φ (s, x, ξ ′ , ξ d = r + 2 , τ).
Being able to solve this system in c 1 and c 2 for any f is equivalent to having

det b 1,φ (s, x, ξ ′ , ξ d = r + 1 , τ) b 2,φ (s, x, ξ ′ , ξ d = r + 1 , τ) b 1,φ (s, x, ξ ′ , ξ d = r + 2 , τ) b 2,φ (s, x, ξ ′ , ξ d = r + 2 , τ) ̸ = 0.
• Case 4 : A double root lying in the upper complex closed half-plane. Denote by r + this root; one has q + φ (s, x, σ, ξ ′ , ξ d , τ)) = (ξ dr + ) 2 . The Lopatinskiȋ-Šapiro condition holds at at (x, σ, ξ ′ , τ) if and only if for any choice of f , the complex number r + is a double root of the polynomial function

ξ d → f (ξ d ) -c 1 b 1,φ (s, x, ξ ′ , ξ d , τ) -c 2 b 2,φ (s, x, ξ ′ , ξ d , τ) for some c 1 , c 2 ∈ C. Thus having the Lopatinskiȋ-Šapiro condition is equivalent of having the following determinant condition, det   b 1,φ (s, x, ξ ′ , ξ d = r + , τ) b 2,φ (s, x, ξ ′ , ξ d = r + , τ) ∂ ξ d b 1,φ (s, x, ξ ′ , ξ d = r + , τ) ∂ ξ d b 2,φ (s, x, ξ ′ , ξ d = r + , τ)   ̸ = 0.
Observe that case 4 can only occur if σ = 0 and τ∂ s φ = 0. In this case Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 , φ) is equivalent to Lopatinskiȋ-Šapiro condition for (P, B 1 , B 2 ) which has been assumed.

To carry on with the proof of Proposition 3.22 below, we now only have to consider having

τ∂ d φ ≤ C|ρ j |, (3.28) 
for j = 1, 2 and C > 0.

Proposition 3.22. Let x 0 ∈ ∂Ω and s 0 ∈ R. Assume that the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 ) at (s 0 , x 0 ) and thus in a compact neighborhood V 0 of (s 0 , x 0 ). Assume also that

∂ d φ ≥ C 1 > 0 in V 0 . There exist µ 0 > 0 if (s, x, σ, ξ ′ , τ) ∈ R × V 0 × ×R d-1 × [0, +∞) with (σ, ξ ′ , τ) ̸ = (0, 0, 0), |∂ s φ(s, x)| + |d x ′ φ(s, x)| ≤ µ 0 ∂ d φ, and Im π j,+ (s, x, σ, ξ ′ , τ) ≥ 0 then the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 , φ) at (s, x, σ, ξ ′ , τ).
The proof of Proposition 3.22 relies on the following lemma.

Lemma 3.23.

There exists C > 0 such that for 0 < µ 0 ≤ 1, one has

|∂ s φ(s, x)| + |d x ′ φ(s, x)| ≤ µ 0 ∂ d φ, and Im π j,+ (s, x, ξ ′ , σ, τ) ≥ 0 ⇒ iα j -ρ j + τ|d x ′ φ| ≤ (1 + C)µ 0 |ρ j |.
We recall that α j are defined at the beginning of Section 3.8.2, and ρ j at (3.13) and (3.14).

Proof. For j = 1, 2 and ℓ = 1, 2 we write

b ℓ,φ (s, x, ξ ′ , ξ d = π j,+ , τ) = b ℓ (x, ξ ′ + iτd x ′ φ, π j,+ + iτ∂ d φ) = b ℓ (x, ξ ′ + iτd x ′ φ, iα j ) = b ℓ (x, ξ ′ + iτd x ′ φ, i ρj + i(α j -ρj )), (3.29) 
where ρ j = i ρj . With the assumption that Im π j,+ ≥ 0, we have Re(α j ) ≥ (τ∂ d φ) and

4(τ∂ d φ) 2 Re α 2 j -4(τ∂ d φ) 4 + (Im(α 2 j )) 2 ≥ 0.
With (3.28), one has

τ|d x ′ φ| ≤ µ 0 τ∂ d φ ≲ µ 0 | ρj |. (3.30)
With the first-order Taylor formula one has

α 2 j = r(x, ξ ′ + iτd x ′ φ) + (-1) j i(σ + iτ∂ s φ) 2 = r(x, ξ ′ ) + 1 0 d ξ ′ r(x, ξ ′ + iτθ d x ′ φ)(iτd x ′ φ)dθ + (-1) j iσ 2 -2(-1) j σ(τ∂ s φ) -(-1) j (τ∂ s φ) 2 :=A .
With (3.30) and as d ξ ′ is linear with respect the second variable one has

d ξ ′ r(x, ξ ′ + iτθ d x ′ φ)(iτd x ′ φ) ≲ µ 0 |ξ ′ | x | ρj | + µ 2 0 | ρj | 2 ≲ µ 0 | ρj | 2 , since |ξ ′ | x ≤ | ρj |. On the one hand, since r(x, ξ ′ ) = |ξ ′ | 2
x and A ≲ µ 0 |ρ| 2 j , this yields

α 2 j = ρ2 j + O(µ 0 | ρj | 2 ) ⇐⇒ α 2 j -ρ2 j = O(µ 0 | ρj | 2 ).
On the other hand as Re α j > 0 and Re ρj ≥ 0,

|α j + ρj | ≥ | Re(α j + ρj )| ≥ Re( ρj ) ≥ √ 2 2 | ρj |. Therefore α 2 j -ρ2 j = (α j -ρj )(α j + ρj ) = O(µ 0 | ρj | 2 ) and |α j -ρj | = O(µ 0 | ρj |).
This and (3.30) give the result.

We now consider the root configurations that remain to consider according to the discussion in Section 3.8.3. We choose 0 < µ 0 ≤ 1 such that

µ 0 (1 + C) ≤ ε, ( 3.31) 
with C > 0 as given by Lemma 3.23.

Case 2.

In this case, one root of q φ lies in the upper complex closed half-plane. We denote this root by ρ + . According to the discussion in Section 3.8.3 it suffices to prove that 

b 1,φ (s, x, ξ ′ , ξ d = r + , τ) ̸ = 0 or b 2,φ (s, x, ξ ′ , ξ d = r + , τ) ̸ = 0. ( 3 
  b 1,φ (s, x, ξ ′ , ξ d = π 1,+ , τ) b 2,φ (s, x, ξ ′ , ξ d = π 1,+ , τ) b 1,φ (s, x, ξ ′ , ξ d = π 2,+ , τ) b 2,φ (s, x, ξ ′ , ξ d = π 2,+ , τ)   ̸ = 0. ( 3 

Case 4.

In this case (that only occurs if σ = 0) the Lopatinskiȋ-Šapiro condition holds also if one has

det b 1,φ b 2,φ ∂ ξ d b 1,φ ∂ ξ d b 2,φ (s, x, ξ ′ , ξ d = ρ + , τ) ̸ = 0. (3.34)
The proof uses again Lemma 3.16 (Case 2 in the proof of the Lemma) . This concludes the proof of Proposition 3.22.

Local stability of the algebraic conditions

In Section 3.7 we saw that the Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 ) in Definition 3.1 exhibits some stability property. This was used in the statement of Proposition 3.22 that states how the Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 ) can imply the Lopatinskiȋ-Šapiro condition of Definition 3.21 for (Q, B 1 , B 2 , φ), that is, the version of this condition for the conjugated operators. Below one exploits the algebraic conditions listed in Section 3.8.3 once the Lopatinskiȋ-Šapiro condition is known to hold at a point ϱ 0′ = (s 0 , x 0 , σ 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ) where (s 0 , x 0 , σ 0 , ξ 0′) is in tangential phase space. By abuse of notation we write γ and ε in ϱ ′ to take account that φ depends on γ and ε. One thus rather needs to know that these algebraic conditions are stable. Here also the answer is positive and is the subject of the present section.

As in Definition 3.21 for ϱ ′ = (s, x, ξ ′ , σ, τ, γ, ε) one denotes by π j (ϱ ′ ) the roots of q φ (ϱ) viewed as a polynomial in ξ d .

Let ϱ 0′ = (s 0 , x 0 , σ 0 , ξ 0′ , τ 0 , γ 0 ,

ε 0 ) ∈ R × ∂Ω × R × R d-1 × [0, +∞) × [1, +∞) ∈ (0, 1]. One sets E + = j ∈ {1, 2, 3, 4}; Im π j (ϱ 0′ ) ≥ 0}, E -= j ∈ {1, 2, 3, 4}; Im π j (ϱ 0′ ) < 0},
and, for ϱ ′ = (s, x, ξ ′ , σ, τ, γ, ε),

κ + ϱ 0′ (ϱ ′ ) = ∏ j∈E + ξ d -π j (ϱ ′ ) , κ - ϱ 0′ (ϱ ′ ) = ∏ j∈E - ξ d -π j (ϱ ′ ) .
Naturally, one has κ

+ ϱ 0′ (ϱ 0′ , ξ d ) = q + φ (s 0 , x 0 , σ 0 , ξ 0′ , ξ d , τ 0 ) and κ - ϱ 0′ (ϱ 0′ , ξ d ) = q - φ (s 0 , x 0 , σ 0 , ξ 0′ , ξ d , τ 0
). Moreover, there exists a conic open neighborhood U 0 of ϱ 0′ where both κ + ϱ 0′ (ϱ ′ ) and κ - ϱ 0′ (ϱ ′ ) are smooth with respect to ϱ ′ . One has

q φ = q + φ q - φ = κ + ϱ 0′ κ - ϱ 0′ .
Note however that for ϱ ′ = (s, x, ξ ′ , σ, τ, γ, ε) ∈ U 0 it may very well happen that q + φ (ϱ)

̸ = κ + ϱ 0′ (ϱ ′ , ξ d ) and q - φ (ϱ) ̸ = κ - ϱ 0′ (ϱ ′ , ξ d ).
The following proposition can be found in [1, proposition 1.8]. Proposition 3.24. Let the Lopatinskiȋ-Šapiro condition hold at ϱ 0′ = (s 0 , x 0 , σ 0 , ξ 0′ , τ 0 , γ 0 , ε

0 ) ∈ R × ∂Ω × R × R d-1 × [0, +∞) × [1, +∞) × (0, 1] for (Q, B 1 , B 2 , φ). Then, 1. The polynomial ξ d → q + φ (ϱ 0′
) is of degree less than or equal to two.

2. There exists a conic open neighborhood U of ϱ 0′ such that the family {b 1,φ (ϱ

′ , ξ d ), b 2,φ (ϱ ′ , ξ d )} is complete modulo κ + ϱ 0′ (ϱ ′ , ξ d
) at every point ϱ ′ ∈ U , namely for any polynomial f (ξ d ) with complex coefficients there exist c 1 , c 2 ∈ C and a polynomial ℓ(ξ d ) with complex coefficients such that, for all

ξ d ∈ C f (ξ d ) = c 1 b 1,φ (s, x, ξ ′ , ξ d , τ) + c 2 b 2,φ (s, x, ξ ′ , ξ d , τ) + ℓ(ξ d )κ + ϱ 0′ (ϱ ′ , ξ d ). (3.35)
We emphasize again that the second property in Proposition 3.24 looks very much like the statement of Lopatinskiȋ-Šapiro condition for (Q, B 1 , B 2 , φ) at ϱ ′ in Definition 3.21. Yet, it differs by having q + φ (x, ξ ′ , ξ d , τ) that only depends on the root configuration at ϱ ′ replaced by κ + ϱ 0′ (ϱ ′ , ξ d ) whose structure is based on the root configuration at ϱ 0′ . Actually q + φ and κ + ϱ 0′ are only different if at ϱ 0′ one root is real. The polynomial κ + ϱ 0′ is smooth with respect ϱ ′ in a neighborhood of ϱ 0′ but the degree of q + φ can be changed in a neighborhood of ϱ 0′ .

Let m + be the common degree of q + φ (ϱ 0′ , ξ d ) and κ + ϱ 0′ (ϱ ′ , ξ d ) and m -be the common degree of

q - φ (ϱ 0′ , ξ d ) and κ - ϱ 0′ (ϱ ′ , ξ d ) for ϱ ′ ∈ U . One has m + + m -= 4 and thus m -≥ 2 for ϱ ′ ∈ U since m + ≤ 2.
Invoking the Euclidean division of polynomials, one sees that it is sufficient to consider polynomials f of degree less than or equal to m + -1 ≤ 1 in (3.35). Since the degree of b j,φ (ϱ ′ , ξ d ) can be as high as 3 > m + -1 it however makes sense to consider f of degree less than or equal to m = 3. Then, the second property in Proposition 3.24 is equivalent to having

{b 1,φ (s, x, ξ ′ , ξ d , τ), b 2,φ (s, x, ξ ′ , ξ d , τ)} ∪ 3-m + ℓ=0 {κ + ϱ 0′ (ϱ ′ , ξ d )ξ ℓ d }
be a complete in the set of polynomials of degree less than or equal to m = 3. Note that this family is made of m ′ = 6m + = 2 + m -polynomials.

We now express an inequality that follows from Proposition 3.24 that will be key in the boundary estimation given in Proposition 4.1 below.

Symbol positivity at the boundary

The symbols b j,φ , j = 1, 2, are polynomial in ξ d of degree k j ≤ 3 and we may thus write them in the form

b j,φ (ϱ ′ , ξ d ) = k j ∑ ℓ=0 b ℓ j,φ (ϱ ′ )ξ ℓ d , with b ℓ j,φ homogeneous of degree k j -ℓ. The polynomial ξ d → κ + ϱ 0′ (ϱ ′ , ξ d ) is of degree m + ≤ 2 for ϱ ′ ∈ U with U
given by Proposition 3.24. Similarly, we write

κ + ϱ 0′ (ϱ ′ , ξ d ) = m + ∑ ℓ=0 κ +,ℓ ϱ 0′ (ϱ ′ )ξ ℓ d ,
with κ +,ℓ ϱ 0′ homogeneous of degree m + -ℓ. We introduce

e j,ϱ 0′ (ϱ ′ , ξ d ) = b j,φ (ϱ ′ , ξ d ) if j = 1, 2, κ + ϱ 0′ (ϱ ′ , ξ d )ξ j-3 d if j = 3, . . . , m ′ .
As explained above, all these polynomials are of degree less than or equal to three. If we now write

e j,ϱ 0′ (ϱ ′ , ξ d ) = 3 ∑ ℓ=0 e ℓ j,ϱ 0′ (ϱ ′ )ξ ℓ d , for j = 1, 2 one has e ℓ j,ϱ 0′ (ϱ ′ ) = b ℓ j,φ (ϱ ′
), with ℓ = 0, . . . , k j and e ℓ j,ϱ 0′ (ϱ ′ ) = 0 for ℓ > k j , and for j = 3, . . . , m ′ ,

e ℓ j,ϱ 0′ (ϱ ′ ) =        0 if ℓ < j -3, κ +,ℓ+3-j ϱ 0′ (ϱ ′ ) if ℓ = j -3, . . . , m + + j -3 ≤ m + + m ′ -3, 0 if ℓ > m + + j -3.
In particular e ℓ j,ϱ 0′ (ϱ ′ ) is homogeneous of degree m + + j -ℓ -3. Note that m + + m ′ -3 = 3. We thus have the following result. Lemma 3.25. Set the m ′ × (m + 1) matrix M(ϱ ′ ) = (M j,ℓ (ϱ ′ )) 1≤j≤m ′ 0≤ℓ≤m with M j,ℓ (ϱ ′ ) = e ℓ j,ϱ 0′ (ϱ ′ ). Then, the second point in Proposition 3.24 states that M(ϱ ′ ) is of rank m + 1 = 4 for ϱ ′ ∈ U . 

Indeed, we have

M(ϱ ′ ) =            e 0 1,ϱ 0′ e 1 1,
           (ϱ ′ ).
1. For m + = 0, we have m ′ = 6m + = 6 and

M(ϱ ′ ) =            b 0 1,φ b 1 1,φ b 2 1,φ b 3 1,φ b 0 2,φ b 1 2,φ b 2 2,φ b 3 2,φ κ +,0 ϱ ′0 0 0 0 0 κ +,0 ϱ ′0 0 0 0 0 κ +,0 ϱ ′0 0 0 0 0 κ +,0 ϱ ′0            (ϱ ′ ).
2. For m + = 1, we have m ′ = 6m + = 5 and

M(ϱ ′ ) =          b 0 1,φ b 1 1,φ b 2 1,φ b 3 1,φ b 0 2,φ b 1 2,φ b 2 2,φ b 3 2,φ κ +,0 ϱ ′0 κ +,1 ϱ ′0 0 0 0 κ +,0 ϱ ′0 κ +,1 ϱ ′0 0 0 0 κ +,0 ϱ ′0 κ +,1 ϱ ′0          (ϱ ′ ). 3. For m + = 2, we have m ′ = 6 -m + = 4 and M(ϱ ′ ) =       b 0 1,φ b 1 1,φ b 2 1,φ b 3 1,φ b 0 2,φ b 1 2,φ b 2 2,φ b 3 2,φ κ +,0 ϱ ′0 κ +,1 ϱ ′0 κ +,2 ϱ ′0 0 0 κ +,0 ϱ ′0 κ +,1 ϱ ′0 κ +,2 ϱ ′0       (ϱ ′ ).
There exists a 4 × 4 sub-matrix such that det M(ϱ ′ ) ̸ = 0. Since the rank of M(ϱ ′ ) is the same as the maximum of the ranks of the largest square sub-matrices of M(ϱ ′ ), then rank M(ϱ ′ ) = 4.

Recall that m ′ = m -+ 2 ≥ 4.

We now set φ) and let U be as given by Proposition 3.24. Then, if ϱ ′ ∈ U there exists C > 0 such that

Σ e j,ϱ 0′ (ϱ ′ , z) = 3 ∑ ℓ=0 e ℓ j,ϱ 0′ (ϱ ′ )z ℓ = 3 ∑ ℓ=0 M j,ℓ (ϱ ′ )z ℓ , z = (z 0 , . . . , z 
= (s 0 , x 0 , σ 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ) ∈ R × ∂Ω × R × R d-1 × [0, +∞) × [1, +∞) × (0, 1] for (Q, B 1 , B 2 ,
m ′ ∑ j=1 Σ e j,ϱ 0′ (ϱ ′ , z) 2 ≥ C|z| 2 C 4 , z = (z 0 , . . . , z 3 ) ∈ C 4 .
Proof. In C 4 define the bilinear form

Σ B (z, z ′ ) = m ′ ∑ j=1 Σ e j,ϱ 0′ (ϱ ′ , z)Σ e j,ϱ 0′ (ϱ ′ , z ′ ).
With (3.36) one has

Σ B (z, z ′ ) = M(ϱ ′ )z, M(ϱ ′ )z ′ C m ′ = t M(ϱ ′ )M(ϱ ′ )z, z ′ C 4 .
As rank t M(ϱ ′ )M(ϱ ′ ) = rank M(ϱ ′ ) = 4 by Lemma 3.25 one obtains the result.

Estimate for the boundary norm under Lopatinskiȋ-Šapiro condition

Near x 0 ∈ ∂Ω we consider two boundary operators B 1 and B 2 . As in Section 3.8 the associated conjugated operators are denoted by B j,φ , j = 1, 2 with respective principal symbols b j,φ (s, x, ξ, τ).

The main result of this section is the following proposition for the fourth-order conjugated operator Q φ . It is key in the final result of the present article. It states that all traces are controlled by norms of

B 1,φ v |x N =0 + and B 2,φ v |x N =0 + if the Lopatinskiȋ-Šapiro condition holds for (Q, B 1 , B 2 , φ). Proposition 4.1. Let Q = ∆ 2 + D 4
s and (s 0 , x 0 ) ∈ (0, S 0 ) × ∂Ω, with Ω locally given by {x d > 0} and S 0 > 0. Assume that (Q, B 1 , P 2 , φ) satisfies the Lopatinskiȋ-Šapiro condition of Definition 3.21 at ϱ

′ = (s, x, ξ ′ , σ, τ, γ, ε) for all (σ, ξ ′ , τ, γ, ε) ∈ R × R d-1 × (0, +∞) × [1, +∞) × (0, 1] such that τ > 0.
Then, there exist W 0 a neighborhood of (s 0 , x 0 ), C > 0, τ 0 > 0 such that

| tr(v)| 3,1/2, τ ≤ C ∥Q φ v∥ + + 2 ∑ j=1 |B j,φ v |x N =0 + | 7/2-k j , τ + ∥v∥ 4,-1, τ , for τ ≥ τ 0 , γ ≥ 1 and v ∈ C ∞ c (W 0 + ).
For the proof of Proposition 4.1 we start with a microlocal version of the result.

A microlocal estimate

Proposition 4.2. Let (s 0 , x 0 ) ∈ (0, S 0 ) × ∂Ω, with Ω locally given by {x d > 0} and S 0 > 0 and let W be a bounded open neighborhood of (s

0 , x 0 ) in R × R d . Let (σ 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ) ∈ R × R d-1 × (0, +∞) × [1, ∞) × (0, 1]
nonvanishing with τ 0 > 0 and such that (P, B 1 , B 2 , φ) satisfies the Lopatinskiȋ-Šapiro condition of Definition 3.21 at ϱ 0′ = (s 0 , x 0 , σ 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ).

Then, there exists U a conic neighborhood of

ϱ 0′ in W × R × R d-1 × (0, +∞) × [1, +∞) × (0, 1] where τ ≥ τ 0 such that if χ ∈ S(1, g T ), homogeneous of degree 0 in (σ, ξ ′ , τ) with supp(χ) ⊂ U , there exist C > 0 and τ 0 > 0 such that | tr(Op T (χ)v)| 3,1/2, τ ≤ C 2 ∑ j=1 |B j,φ v |x N =0 + | 7/2-k j , τ + ∥Q φ v∥ + + ∥v∥ 4,-1, τ + | tr(v)| 3,-1/2, τ , for τ ≥ τ 0 and v ∈ C ∞ c (W + ).
Proof. We choose a conic open neighborhood U 0 of ϱ 0′ according to Proposition 3.24 and such that

U 0 ⊂ W × R × R d-1 × (0, +∞) × [1, +∞) × (0, 1] . Assume moreover that τ ≥ τ 0 in U 0 .
In Section 3.10 we introduced the symbols e j,ϱ

0′ (ϱ ′ , ξ d ), j = 1, . . . , m ′ = m -+ 2 = 6 -m + . For a conic set W denote S W = {ϱ ′ = (s, x, σ, ξ ′ , τ, γ, ε) ∈ W ; |(σ, ξ ′ , τ)| = 1}.
Consequence of the Lopatinskiȋ-Šapiro condition holding at ϱ 0′ , by Lemma 3.26 for all ϱ ′ ∈ S U 0 there exists C > 0 such that

m ′ ∑ j=1 Σ e j,ϱ 0′ (ϱ ′ , z) 2 ≥ C|z| 2 C 4 , z = (z 0 , . . . , z 3 ) ∈ C 4 . Let U 1 be a second conic open neighborhood of ϱ 0′ such that U 1 ⊂ U 0 . Since S U 1 is compact (recall that W is bounded), there exists C 0 > 0 such that m ′ ∑ j=1 Σ e j,ϱ 0′ (ϱ ′ , z) 2 ≥ C 0 |z| 2 C 4 , z = (z 0 , . . . , z 3 ) ∈ C 4 , ϱ ′ ∈ S U 1 .
Introducing the map

N t ϱ ′ = (s, x, tσ, tξ ′ , t τ), for ϱ ′ = (s, x, ξ ′ , σ, τ, γ, ε) with t = λ -1 T, τ one has m ′ ∑ j=1 Σ e j,ϱ 0′ (N t ϱ ′ , z) 2 ≥ C 0 |z| 2 C 4 , z = (z 0 , . . . , z 3 ) ∈ C 4 , ϱ ′ ∈ U 1 , (4.1) 
since N t ϱ ′ ∈ S U 1 . Now, for j = 1, 2 one has

Σ e j,ϱ 0′ (ϱ ′ , z) = k j ∑ ℓ=0 e ℓ j,ϱ 0′ (ϱ ′ )z ℓ ,
with e ℓ j,ϱ 0′ (ϱ ′ ) homogeneous of degree k j -ℓ, and for 3 ≤ j ≤ m ′ one has

Σ e j,ϱ 0′ (ϱ ′ , z) = 3 ∑ ℓ=0 e ℓ j,ϱ 0′ (ϱ ′ )z ℓ , with e ℓ j,ϱ 0′ (ϱ ′ ) homogeneous of degree m + + j -ℓ -3. We define z ′ ∈ C 4 by z ′ ℓ = t ℓ-7/2 z ℓ , ℓ = 0, . . . , 3. One has Σ e j,ϱ 0′ (N t ϱ ′ , z ′ ) = t k j -7/2 Σ e j,ϱ 0′ (ϱ ′ , z), j = 1, 2,
and

Σ e j,ϱ 0′ (N t ϱ ′ , z ′ ) = t m + +j-13/2 Σ e j,ϱ 0′ (ϱ ′ , z), j = 3, . . . , m ′ .
Thus, from (4.1) we deduce

2 ∑ j=1 λ 2(7/2-k j ) T, τ Σ e j,ϱ 0′ (ϱ ′ , z) 2 + m ′ ∑ j=3 λ 2(13/2-m + -j) T, τ Σ e j,ϱ 0′ (ϱ ′ , z) 2 ≥ C 0 3 ∑ ℓ=0 λ 2(7/2-ℓ) T, τ |z ℓ | 2 , ( 4.2) 
for z = (z 0 , . . . , z 3 ) ∈ C 4 , and ϱ ′ ∈ U 1 , since t = λ -1 T, τ . We now choose U a conic open neighborhood of ϱ 0′ , such that U ⊂ U 1 . Let χ ∈ S(1, g T ) be as in the statement and let χ ∈ S(1, g T ) be homogeneous of degree 0, with supp( χ) ⊂ U 1 and χ ≡ 1 in a neighborhood of U , and thus in a neighborhood of supp(χ).

For j = 3, . . . , m ′ one has e j,ϱ 0′ (ϱ ′ , ξ d ) = κ + ϱ 0′ (ϱ ′ , ξ d )ξ j-3 d ∈ S m + +j-3,0 τ
. Set E j = Op( χe j,ϱ 0′ ). The introduction of χ is made such that χe j,ϱ 0′ is defined on the whole tangential phase-space. Observe that 

B(w) = 2 ∑ j=1 |B j,φ w |x N =0 + | 2 7/2-k j , τ + m ′ ∑ j=3 |E j w |x N =0 + | 2 13/2-m + -j, τ = 2 ∑ j=1 |Λ 7/2-k j T, τ B j,φ w |x N =0 + | 2 ∂ + m ′ ∑ j=3 |Λ 13/2-m + -j T, τ E j w |x N =0 + | 2 ∂ is a
| tr(u)| 2 3,1/2, τ ≲ 2 ∑ j=1 |B j,φ u |x N =0 + | 2 7/2-k j , τ + m ′ ∑ j=3 |E j u |x N =0 + | 2 13/2-m + -j, τ + | tr(v)| 2 3,-M, τ. (4.3) 
for u = Op T (χ)v and τ ≥ τ 0 chosen sufficiently large.

In U 1 one can write

q φ = q + φ q - φ = κ + ϱ 0′ κ - ϱ 0′ , with κ + ϱ 0′ of degree m + and κ - ϱ 0′ of degree m -. In fact we set κ+ ϱ 0′ (ϱ ′ ) = ∏ j∈E + ξ d -χπ j (ϱ ′ ) , κ- ϱ 0′ (ϱ ′ ) = ∏ j∈E - ξ d -χπ j (ϱ ′ ) ,
with the notation of Section 3.9, thus making the two symbols defined on the whole tangential phasespace. In U , one has also

q φ = κ+ ϱ 0′ κ- ϱ 0′ .
The factor κϱ 0′ is associated with roots with negative imaginary part. With Lemma 2.9 given in Section 2.1 one has the following microlocal elliptic estimate ∥Op T (χ)w∥ m -, τ + | tr(Op T (χ)w)| m --1,1/2, τ ≲ ∥Op T ( κ- ϱ 0′ )Op T (χ)w∥ + + ∥w∥ m -,-M, τ, for w ∈ S (R N + ) and τ ≥ τ 0 chosen sufficiently large. We apply this inequality to w = Op T ( κ+ ϱ 0′ )v. 

Proof of Proposition 4.1

As mentioned above the proof relies on a patching procedure of microlocal estimates given by Proposition 4.2.

We set

Γ d = {(σ, ξ ′ , τ, γ, ε) ∈ R × R d-1
× (0, +∞) × (0, 1]; τ ≥ τ 0 , γ ≥ γ 0 }, and

S d = {(σ, ξ ′ , τ, γ, ε) ∈ Γ d ; |(σ, ξ ′ , τ)| = 1}.
Consider (σ 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ) ∈ S d . Since the Lopatinskiȋ-Šapiro condition holds at ϱ 0′ = (σ 0 , x 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ), we can invoke Proposition 4.2:

1. There exists a conic open neighborhood

U ϱ 0′ of ϱ 0′ in W × R d-1 × (0, +∞) × [1, +∞) × (0, 1]
where τ ≥ τ 0 , γ ≥ γ 0 ;

2. For any χ ϱ 0′ ∈ S(1, g T ) homogeneous of degree 0 supported in U ϱ 0′ the estimate of Proposition 4.2 applies to Op T (χ ϱ 0′ )v for τ ≥ τ 0 , γ ≥ γ 0 .

Without any loss of generality we may choose U ϱ 0′ of the form

U ϱ 0′ = O ϱ 0′ × Γ ϱ 0′ , with O ϱ 0′
⊂ W an open neighborhood of (s 0 , x 0 ) and Γ ϱ 0′ a conic open neighborhood of (σ 0 , ξ 0′ , τ 0 , γ 0 , ε 0 ) in R × R d-1 × (0, +∞) × [1, +∞) × (0, 1] where τ ≥ τ 0 , γ ≥ γ 0 . Since {(s 0 , x 0 )} × S d is compact we can extract a finite covering of it by open sets of the form of U ϱ 0′ . We denote by Ũi , i ∈ I with |I| < ∞, such a finite covering. This is also a finite covering of {(s 0 , x 0 )} × Γ d .

Each Ũi has the form Ũi = O i × Γ i , with O i an open neighborhood of (s 0 , x 0 ) and Γ i a conic open set in R d-1 × [0, +∞) × [0, +∞) where τ ≥ τ 0 . We set O = ∩ i∈I O i and U i = O × Γ i , i ∈ I.

Let W 0 be an open neighborhood of (s 0 , x 0 ) such that W 0 ⋐ O. The open sets U i give also an open covering of W 0 × S d and W 0 × Γ d . With this second covering we associate a partition of unity χ i , i ∈ I, of W 0 × S d , where each χ i is chosen smooth and homogeneous of degree one for |(σ, ξ ′ , τ, )| ≥ 1, that is: for some C i > 0, for τ ≥ max i τ i for some τ i > 0, γ ≥ 1.

Putting together the estimates of Propositions 4.1 and 5.1, we produce the following final local estimate for the augmented operator Q. Theorem 5.2. Let Q = ∆ 2 + D 4 s and (s 0 , x 0 ) ∈ (0, S 0 ) × ∂Ω, with Ω locally given by {x d > 0} and S 0 > 0. Assume that (Q, B 1 , B 2 , φ) satisfies the Lopatinskiȋ-Šapiro condition of Definition 3.21 at ϱ ′ = (s, x, σ, ξ ′ , τ, γ, ε) for all (σ, ξ ′ , τ, γ, ε) ∈ R × R d-1 × (0, +∞) × [1, +∞) × (0, 1]. Let φ(z) = φ γ,ε (z) be define as in section 2.1. There exists an open neighborhood W of z 0 in (0, S 0 ) × R d , W ⊂ V, and there exist τ 0 ≥ τ * , γ ≥ 1, ε 0 ∈ (0, 1] such that 

Spectral inequality and an application

Before we state and prove the spectral inequality, we start by stating an interpolation-type inequality which follows from the Carleman inequality of Theorem 5.2. Finally, as an application of such a spectral inequality, we deduce a null-controllability result of the fourth order parabolic equation (1.1).

An interpolation inequality

Let S 0 > 0 and α ∈ (0, S 0 /2). We introduce the cylinder Z = (0, S 0 ) × Ω and we define Y = (α, S 0α) × Ω for some α > 0. We recall that Q denotes the augmented elliptic operator Q := D 4 s + ∆ 2 . Following the proof the the interpolation inequality of Theorem 5.1 in [9, Section 5], one can derive the following interpolation inequality. where H m (Ω) denote the classical Sobolev spaces in Ω.

Spectral inequality

Let ϕ j and µ j be eigenfunctions and associated eigenvalues of the bi-Laplace operator P = ∆ 2 with the boundary operators B 1 and B 2 , which form a Hilbert basis for L 2 (Ω) (see section 3.3 ), with

0 < µ 0 ≤ µ 1 ≤ • • • ≤ µ k ≤ • • • .
We now prove the spectral inequality of Theorem 1.3, viz., for some K > 0, ∥y∥ L 2 (Ω) ≤ Ke Kµ for all u ∈ H 4 (Ω).

We recall that k 1 and k 2 denote respectively the orders of B 1 and B 2 .

Proof. Let µ > 0 and y ∈ span{ϕ j ; µ j ≤ µ}, meaning that y = ∑ µ j ≤µ α j ϕ j . We set u(s, x) = ∑ µ j ≤µ α j µ -3/4 j f (sµ 1/4 j )ϕ j (x). 

  , ζ, τ) : (ζ, τ) ̸ = (0, 0) ; b(ϱ) = 0}. In fact, if b φ , b 1,φ and b 2,φ are respectively the semi-classical symbols of B φ , B 1,φ and B 2,φ , that is,b φ = b(z, ζ + iτdφ(z)) and b ℓ,φ = b ℓ (z, ζ + iτdφ(z)), ℓ = 1, 2, we can write {b φ , b φ } = {b 1,φ b 2,φ , b 1,φ b 2,φ } = |b 1,φ | 2 {b 2,φ , b 2,φ } + |b 2,φ | 2 {b 1,φ , b 1,φ } + f |b 1,φ ||b 2,φ |for some function f and where {•, •} denotes the Poisson bracket. Hence {b φ , b φ } vanishes if b 1,φ = b 2,φ = 0 and thus the sub-ellipticity property cannot hold for B. Observe that in this example, we have d z,ζ b(z, ζ + iτdφ(z)) = 0 if b 1

  ξ) and b 2 (x, ξ) are the principal symbols of the boundary operators B 1 and B 2 in the normal geodesic coordinates then the Lopatinskiȋ-Šapiro condition for
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 35 and thus the Lopatinskiȋ-Šapiro condition holds by Lemma 3.2. Clamped boundary conditions). This type of conditions refers to B 1 u |∂Ω = u |∂Ω and B 2 u |∂Ω = ∂ n u |∂Ω . With (3.7) one finds T(u, v) = 0 in the case of homogeneous conditions, hence symmetry. With the notation of Section 3.1 this gives b 1 (x, ξ ′ , ξ d ) = 1 and b 2 (x, ξ ′ , ξ d ) = -iξ d . It follows that We have det b 1 b 2

Observation 3 . 11 .

 311 Consider the following two boundary operators B 1 (x, D) = D 2 d + αR(x, D ′ ) and B 2 (x, D) = D d , where D d = -i∂ d , and with respective principal symbols b
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 3 13 (Clamped boundary conditions). With B 1 u = u and B 2 u = ∂ n u, we then have the principal symbols of B 1 and B 2 given respectively by b 1

d 2 ∑

 2 Op T ( κ+ ϱ 0′ )u |x N =0 + | m --j-1/2, τ ≳ m ′ ∑ j=3 |E j u |x N =0 + | 5/2+m --j, τ -| tr(v) |x N =0 + | 3,-1/2, τ,using that ξ j d κ+ ϱ 0′ = χe j+3,ϱ 0′ in a conic neighborhood of supp(χ) and using that m -= m ′ -2. We thus obtainm ′ ∑ j=3 |E j u |x N =0 + | 13/2-m + -j, τ ≲ ∥Q φ v∥ + + ∥v∥ 4,-1, τ + | tr(v)| 3,-1/2, τ, since 13/2m + = 5/2 + m -. With (4.3) then one finds | tr(u)| 3,1/2, τ ≲ j=1 |B j,φ u |x N =0 + | 2 7/2-k j , τ + ∥Q φ v∥ + + ∥v∥ 4,-1, τ + | tr(v)| 3,-1/2, τ.In addition, observing that|B j,φ u |x N =0 + | 7/2-k j , τ ≲ |B j,φ v |x N =0 + | 7/2-k j , τ + | tr(v)| 3,-1/2, τ,the result of Proposition 4.2 follows.

∑ 2 ∑

 2 i∈I χ i (ϱ ′ ) = 1 for ϱ ′ = (s, x, σ, ξ ′ , τ, γ, ε) in a neighborhood of W 0 × Γ d , and |(σ, ξ ′ , τ)| ≥ 1. Let u ∈ C ∞ c (W 0 + ). Since each χ i is in S(1, g T ) and supported in U i , Proposition 4.2 applies: | tr(Op T (χ i )v)| 3,1/2, τ ≤ C i j=1 |B j,φ v |x N =0 + | 7/2-k j , τ + ∥Q φ v∥ + + ∥v∥ 4,-1, τ + | tr(v)|3,-1/2, τ , (4.4)

γ∥ τ- 1 e 2 ∑ 3 ∑ 2 ∑

 1232 τφ u∥ 4,0, τ + | tr(e τφ u)| 3,1/2, τ ≲ ∥e τφ Qu∥ + +j=1 |e τφ B j u |x N =0 + | 7/2-k j , τ, for τ ≥ τ 0 , γ ≥ γ 0 , ε ≥ ε 0 , and u ∈ C ∞ c (W + ).We recall that the notion of the function space is introduced in (1.4).Using the notations of Section 2 for semi-classical norms, we can write the Carleman inequality of Theorem 5.2 as follows:γ ∑ |α|≤4 ∥ τ3-|α| e τφ D α s,x u∥ + + r=0 |e τφ D r x N u |∂Z |7/2-r, τ ≲ ∥e τφ Qu∥ + + j=1 |e τφ B j u |x N =0 + | 7/2-k j , τ.
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 61 (interpolation inequality). Let O be nomempty subset of Ω. There exist C > 0 and δ ∈ (0, 1) such that for u ∈ H 4 (Z) that satisfiesB 1 u |x∈∂Ω = 0, B 2 u |x∈∂Ω = 0, s ∈ (0, S 0 ), we have ∥u∥ H 3 (Y) ≤ C∥u∥ 1-δ H 3 (Z) ∥Qu∥ L 2 (

√ 2 / 2 . 4 )H 3 2 ∑ j=1 |B j u |s=0 | H 3 -

 22432j=13 Here α j ∈ C for j = 0, . . . , k with k ∈ N, where f (s) = β sin(βs) cosh(βs)β cos(βs) sinh(βs) withβ = Straightforward computation shows that D 4 s f = ∂ 4 s f =f . Therefore, we have Qu = 0 with Q = D 4 s + ∆ 2 .Moreover, we note thatf (0) = f ′ (0) = f (2) (0) = 0, f (3) (0) = 1 and f (s) = h(βs) = 1 2 e -s cos(s -π e s cos(s + π 4) .Applying inequality (6.1) of Theorem 6.1 to u reads∥u∥ H 3 (Y) ≤ C∥u∥ 1-δ α j ϕ j (x) = y, we have k j (O) ≍ ∥y∥ L 2 (O) . Then ∥u∥ H 3 (Y) ≤ C∥u∥ 1-δ H 3 (Z) ∥y∥ δ L 2 (O) .

  Definition 3.1 (Lopatinskiȋ-Šapiro boundary condition). Let (x, ω ′ ) ∈ T * ∂Ω with ω ′ ̸ = 0. One says that the Lopatinskiȋ-Šapiro condition holds for (P, B 1 , B 2 ) at (x, ω ′ ) if for any polynomial function f (ω d ) with complex coefficients, there exists c 1 , c 2 ∈ C and a polynomial function h(ω d ) with complex coefficients such that, for all ω d ∈ C,

  .8) With this computations, one can provide a list of examples in which the boundary operators yield symmetry and fulfill the Lopatinskiȋ-Šapiro condition. This can be found in [10, Section 3.5]. We start our list of examples with the most basics ones. (Hinged boundary conditions). This type of conditions is given by B 1 u |∂Ω = u |∂Ω and B 2 u |∂Ω = ∆u |∂Ω . With (3.6) one finds T(u, v) = 0 in the case of homogeneous conditions, hence symmetry. We have b 1
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  . From (3.24) one has Im π j,+ < 0 if and only if Re α j < τ∂ d φ = |τ∂ d φ|, that is, if and only if 4(τ∂ d φ) 2 Re α 2 j -4(τ∂ d φ) 4 + (Im α 2 j ) 2 < 0, by Lemma 3.19 below. With (3.23), we have

  .32)In fact, one has r + = π j,+ with j = 1 or 2. As (Q, B 1 , B 2 ) satisfies the Lopatinskiȋ-Šapiro, and from Lemma 3.23 we have |ρ jπ j,+ | ≲ µ 0 |ρ j |. From Lemma 3.16 Lopatinskiȋ-Šapiro is also satisfied at |π j,+ |. This means that (3.32) is satisfied.

	Case 3.
	In this case Im π 1,+ > 0 and Im π 2,+ > 0. According to the discussion in Section 3.8.3 it suffices to
	prove that
	det

  .33) We use again Lemma 3.16 with ζ ′ = iτd x ′ φ, δ = i(α 1ρj ), and δ = i(α 2ρj ). With (3.29) and (3.31) with Lemma 3.16 one obtains (3.33).

  Let the Lopatinskiȋ-Šapiro condition hold at a point ϱ 0′

	(3.36)
	in agreement with the notation introduced in (2.8) in Section 2.2. One has the following positivity
	result.
	Lemma 3.26.

3 ) and j = 1, . . . , m ′ .

  Since Op T ( κ- ϱ 0′ )Op T (χ)Op T ( κ+ ϱ 0′ ) = Op T (χ)Q φ mod Ψ 4,-1 ∥Q φ v∥ + + ∥v∥ 4,-1, τ. With [Op T (χ), Op T ( κ+ ϱ 0′ )] ∈ Ψ m + ,-1 ∥Q φ v∥ + + ∥v∥ 4,-1, τ + | tr(v)| 3,-1/2, τ,with u = Op T (χ)v as above, using that m + + m -= 4. Note that | tr(Op T ( κ+ ϱ 0′ )u)|

			τ	,
	one obtains	
	| tr(Op T (χ)Op T ( κ+ ϱ 0′ )v)|	m --1,1/2,
	τ	one then has
	| tr(Op T ( κ+ ϱ 0′ )u)|	m --1,1/2,

τ ≲ τ ≲

  1/4 ∥y∥ L 2 (ω) , µ > 0, y ∈ span{ϕ j ; µ j ≤ µ}.(6.2) We use the following corollary, whose proof can be adapted to the proof of Corollary 3.3 in[START_REF] Jér | Elliptic Carleman Estimates and Applications to Stabilization and Controllability[END_REF] Section 3.1]. Assume that (P, B 1 , B 2 ) fulfills the Lopatinskiȋ-Šapiro condition on ∂Ω. Then there exists C > 0 such that∥u∥ H 4 (Ω) ≤ C ∥Pu∥ L 2 (Ω) + |B 1 u |∂Ω | H 7/2-k 1 (∂Ω) + |B 1 u |∂Ω | H 7/2-k 2 (∂Ω)

	Corollary 6.2.

We set χ = 1 -∑ i∈I χ i . One has χ ∈ ∩ M∈N S(λ -M T, τ , g T ) microlocally in a neighborhood of W 0 × Γ d . Thus, considering the definition of Γ d , we then have χ ∈ ∩ M∈N S(λ -M T, τ , g T ) locally in a neighborhood of W 0 .

For any M ∈ N using that supp(v) ⊂ W 0 one has

Summing estimates (4.4) together for i ∈ I we thus obtain

for τ ≥ max i∈I τ i for some τ i > 0. Therefore, by choosing τ ≥ τ 0 sufficiently large and γ ≥ 1 one obtains the result of Proposition 4.1.

Local Carleman estimate for the augmented conjugated operator

We recall that

with, in the selected normal geodesic coordinates,

In [9, Section 4.5], a local Carleman estimate for the augmented conjugated operator Q φ is obtained by combining microlocal estimates in three different microlocal regions.

Let V be an open bounded neighborhood of z 0 = (s 0 , x 0 ) in R N . We use the following result due to J. Le Rousseau and L. Robbiano.

Proposition 5.1 ([9]

). Let φ(z) = φ γ,ε (z) be define as in section 2.1. There exists an open neighborhood W of z 0 in (0, S 0 ) × R d , W ⊂ V, and there exist

We also have ∥u∥

Using the change of variable t = βµ 1/4 j s, it follows that

we have used the following lemma, whose proof can be found in [ 

In order to complete the proof, we now estimate ∥u∥ H 3 (Z) with the use of the following lemma, which by estimate (6.3), allows to conclude the proof of Theorem 1.3.

Lemma 6.4.

There exists K > 0 such that ∥u∥ H 3 (Z) ≤ Ke Kµ 1/4 ∥y∥ L 2 (Ω) .

Proof. We have

Integrating this estimate over (0, S 0 ) and summing over ℓ yields ∥u∥ H 3 (Z) ≤ Ke Kµ 1/4 ∥y∥ L 2 (Ω) .

A null-controllability result

Let T > 0, we consider the controlled evolution equation on (0, T) × Ω under general boundary conditions:

where Σ is an open subset of Ω and 1 Σ ∈ L ∞ is such that 1 Σ > 0 on Σ. We recall that he function v ∈ L 2 ((0, T) × Σ) is the control function. One may ask the following question: can one choose v to drive the solution from its initial condition y 0 to zero in final time T? Thanks to the spectral inequality of Theorem 1.

3 one can answer to this null-controllability question in the affirmative.

Theorem 6.5. (Null-controllability) There exists C > 0 such that for any y 0 ∈ L 2 (Ω), there exists v ∈ L 2 ((0, T) × Ω) such that the solution to (6.4) vanishes at time T and moreover the control v satisfies the bound ∥v∥ L 2 ((0,T)×Ω) ≤ C∥y 0 ∥ L 2 (Ω) .

The proof can be adapted in a straightforward manner from the proof scheme in section 6.1 of [8] developed for the heat equation.