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Abstract

Inspired by set functions and the greedy algorithm, we introduce matroid power series
to provide short formulations and proofs for many classical and new results in the theory
of graphs, matroids and oriented matroids, emphasizing the interest to study a matroid
together with its minors in a single object.

1 Introduction

Let G = (V,E) be a finite undirected multigraph, permitted to have both multiple edges and
loops. The main idea of [29, 30, 32] was to study not just G, but to consider at the same time
all of its 2|V | subgraphs induced by subsets V ′ of V . In other words, for every vertex v ∈ V
we have the choice to delete it (together with all its incident edges) or to conserve it. The
main advantage of this approach is the possibility to use the commutative algebra A[V ] of set
functions f : 2V → A, where A is a commutative ring.

It may, however, be preferable to study G from its set of edges E. In this situation, we have
three possibilities for every edge e ∈ E : we can delete it, contract it (i.e. delete it and identify
its endpoint nodes) or conserve it. Each of those 3|E| choices gives us a different minor of G
(all those minors are considered to be different although some of them can be isomorphic).

In this situation, the most important numerical values associated to G are the cardinality
|E| and the rank r(G) := |V | − c(G), where c(G) denotes the number of connected components
of G. In other words, r(G) is the cardinality of each spanning forest of G, called base of G.

This approach can be generalized in matroid theory. A matroid M = (E, r), |M | := |E|, on
a finite set E (in the special case of multigraphs, E is the set of edges) with rank function r
can be defined as follows. For every partition E = E′ ⊎D′ ⊎ C ′, we have the minor M\D′/C ′

which is a matroid on E′ of cardinality |M\D′/C ′| := |E′|, where (in the case of multigraphs)
all d′ ∈ D′ were deleted and all c′ ∈ C ′ were contracted. We denote by 3M the set of minors of
M , |3M | = 3|M |. Then our rank function r : 3M → R must satisfy the following three axioms :

a) For every minor M ′ := M\D′/C ′ on E′ (E = E′ ⊎ D′ ⊎ C ′) and for every partition
E′ = E′′ ⊎ E′′′, we have the fundamental relations (M ′/E′′′ = M\D′/(C ′ ∪ E′′′) and
M ′\E′′ = M\(D′ ∪ E′′)/C ′) :

|M′| = |M′/E′′′|+ |M′\E′′| and r(M′) = r(M′/E′′′) + r(M′\E′′). (1.1)

In particular, the rank of every minor of zero cardinality is equal to zero.
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b) For every minor M ′ ∈ 3M of cardinality one, we have r(M ′) ∈ {0, 1}.

c) For every minor M ′ ∈ 3M of cardinality two on the set {e, f}, we have

r(M ′) ≤ r(M ′\e) + r(M ′\f) ⇔ r(M ′) ≥ r(M ′/e) + r(M ′/f)

⇔ r(M ′/e) ≤ r(M ′\e) ⇔ r(M ′/f) ≤ r(M ′\f). (1.2)

In other words, contractions reduce the rank more than deletions.

It is not difficult to proof that those axioms are satisfied for graphs, and everybody familiar
with matroid theory can easily see their equivalence with any classical system of axioms. Of
course, most questions of exact enumeration in matroid theory make use only of our axiom a).
Therefore, one might want to call structures satisfying only this axiom praepolymatroids or
polypraematroids. If, moreover, our axiom b) is satisfied, we call the structure praematroid.

Up to isomorphism, the only praematroids of cardinality one are indeed the matroids E0

of rank zero (a loop) and E1 of rank one (an isthmus also called bridge). There are only five
praematroids of cardinality two, namely E0 ⊕ E0 = U0,2 (two loops), E1 ⊕ E1 = U2,2 (two
bridges), E0 ⊕ E1 (a loop and a bridge), as well as the two connected praematroids U1,2 (a
cycle of length two) and U ∼1,2, which can be defined as follows on the set {e, f} : r(U1,2) =
r(U1,2\e) = r(U1,2\f) = 1; and r(U ∼1,2) = 1, r(U ∼1,2\e) = r(U ∼1,2\f) = 0. Therefore a matroid is
a praematroid without any minor (of cardinality two) isomorphic to U ∼1,2.

The aim of this article, however, is not a generalization of matroid theory [41, 55]. On
the contrary, we often follow the example of the last chapter of Bollobás [6] and usually restrict
ourselves to graphical matroids (i.e. to multigraphs) leaving it to interested readers to formulate,
according to their needs, the evident generalizations to more general structures such as regular,
representable or oriented matroids, etc. In some cases, however, it is even easier to consider
matroids or oriented matroids, in particular for results motivated by the fact that oriented
matroids do not only generalize oriented graphs but also oriented hyperplane arrangements. In
all cases, we try to provide the easiest approach to our results.

It is classical that the structure of matroids is somehow equivalent to the fact that the
greedy algorithm provides a maximal basis, in particular a spanning tree of maximal weight for
a connected graph. This situation is easiest if all edges of the graph have a different weight. For
our purposes, however, it is most interesting to study carefully the case in which edges can have
the same weight. In that case, the optimal bases are actually the bases of a new decomposed
matroid, as we will show in section 2. The decompositions appearing there are essential to
understand the algebraic operations in all other sections. They will also be used directly in
section 6.

In section 3 we give a systematic introduction to our algebraic tools of matroid power series.
Those tools can be considered as classical, namely as the incidence algebra of the poset of
all subsets of the set of edges, and therefore as a subalgebra of upper triangular matrices.
Other motivations to introduce such algebraic tools came from Hopf algebras, coalgebras and
mathematical physics [12, 13, 25, 46, 47]. Our main motivation was to mimick the method of
formal power series and set functions [29, 30, 31, 32] in matroid theory. In particular, we think
that their most important igredients of substitutions and derivations are used systematically for
the first time in this article (and in [29, 31]). Our approach allows us to formulate many classical
and new results in a very short way. The proofs become then almost automatic. In particular,
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they often rely only on a fundamental lemma already mentioned at the end of section 3. In
other words, everything follows from the one element minors of our matroid.

In section 4 we give a short introduction to flows and tensions on graphs. In particular, we
use our matroid power series in order to formulate a new duality theorem. This theorem implies
that flow and tension polynomials can be calculated easily.

In section 5 we show that many classical and new results of algebraic or enumerative matroid
theory are just corollaries of the associativity and partial commutativity of the multiplication
of matroid power series. This concerns in particular the Tutte and Whitney polynomials and
their weighted generalizations such as the Potts model in physics or the weight enumerator in
the theory of error correcting codes. Proofs of convolution formulas [13, 26] become very short,
and simple substitutions allow us to reduce proofs of several pages to one line, for example
Matiyasevich’s attempt to prove the four-color theorem [39].

Our section 6 is devoted to consequences of the fact that there are just two non isomorphic
minors of cardinality 1 : one of rank 0 and one of rank 1. This is useful for counting forests
and trees, in particular of maximal weight. It also shows that the incidence algebra of the
lattice of flats of a matroid is a subalgebra of matroid power series. We use in this section
already some results on orientations established in [30, 32], although we provide a special section
on orientations (and oriented matroids) at the end of this article. The Tutte and Whitney
polynomials or the partition function of the random cluster model cover products of two factors,
but we show that more than two factors naturally occur in the theory of random minors and
also in the work of [42, 14] showing that the Tutte and Whitney polynomials only depend on
the lattice of cyclic flats.

In section 7 we introduce and study derivations and their many applications. First of all,
they allow us to get all known recurrence relations for Tutte polynomials and their weighted
generalizations. Moreover, we obtain easy formulations and proofs for results from algebraic
geometry [35, 36, 37, 38]. Last but not least, we get differential equations for flows and tensions
(first established in [29, 30]) with the help of Crapo’s beta invariants. These equations can
be solved with the help of a non commutative exponential function answering questions asked
by Gioan at the Dagstuhl Seminar 〈〈Comparative Theory for Graph Polynomials 〉〉 (2019) on
possible algebraic proofs of his nice enumerative results established in [20]. At the AMS-EMS-
SMF Joint International Meeting 2022, Brändén asked for a combinatorial treatment of a variant
of the Tutte polynomial introduced in algebraic geometry [4]. This is possible in almost the same
way and done at the end of section 7.

Since the algebra of matroid power series is not commutative, it is interesting to calculate
Lie brackets, to which our section 8 is devoted. In particular, we get a better understanding of
Crapo’s beta invariants in the light of the classical Baker-Hausdorff formula. Moreover, we see
that the axioms of matroids are closely related to Lie algebras.

In section 9 we finally study orientations for graphs and oriented matroids. It is particularly
surprising that we do not only get identities for the number of acyclic or strongly connected
(totally cyclic) orientations, but also for the indicator functions of acyclic minors or strongly
connected minors, answering questions in [2]. Once again, some identities, are closely related
to the axioms of oriented matroids. In particular, the famous 3-painting axiom [5] becomes a
simple identity for matroid power series.
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2 Decompositions

One of the most important ideas of our approach consists in exploiting in an automatic way
the decompositions appearing in the context of the greedy algorithm providing a maximal basis
of our matroid M = (E, r) with respect to a weight function w : E → {w1, w2, w3, . . . , wk},
w1 > w2 > w3 > · · · > wk, see [31]. Indeed, let B be an arbitrary basis of M having e1 elements
of weight w1, e2 elements of weight w2,. . . , ek elements of weight wk, then summation by parts
(also called Abel transformation) gives :

w(B) = e1w1 + e2w2 + e3w3 + · · ·+ ekwk (2.1)

= e1(w1 − w2) +

(e1 + e2)(w2 − w3) +

(e1 + e2 + e3)(w3 − w4) + · · ·+

(e1 + e2 + e3 + · · ·+ ek)wk (2.2)

≤ r(M\w−1{w2, w3, . . . , wk})(w1 − w2) +

r(M\w−1{w3, . . . , wk})(w2 − w3) +

r(M\w−1{w4, . . . , wk})(w3 − w4) + · · ·+

r(M)wk (2.3)

= r(M\w−1{w2, w3, . . . , wk})w1 +

r(M\w−1{w3, . . . , wk}/w
−1{w1})w2 +

r(M\w−1{w4, . . . , wk}/w
−1{w1, w2})w3 + · · ·+

r(M/w−1{w1, w2, w3, . . . , wk−1})wk. (2.4)

In other words, B is a maximal basis of M if and only if B is a basis of the matroid

M1 ⊕M2 ⊕ · · · ⊕Mk, Mi = M\w−1{wi+1, wi+2, . . . , wk}/w
−1{wi−1, wi−2, . . . , w1}

for every i = 1, 2, 3, . . . , k, see the following figure (c = contract, d = delete) :

w−1{wk} c

d w−1{wk−1} c
. . .

d w−1{w3} c

d w−1{w2} c

d w−1{w1}

The sequences of k matroids M1, M2, M3, . . . , Mk will appear in the products of k factors in
the following section.
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3 Algebraic tools

The main idea of this article is to study not just one matroid M , but to look at its 3|M | minors
simultaneously. The advantage of this approach is the possibility to use systematically the
associative algebra A[M ] formed by matroid fonctions f : 3M → A, where A is a commutative
ring with 1 (in most cases, the associativity of our ring is sufficient). Let us identify f with its
generating function called matroid power series

Mf (e,
d

c ) :=
∑

E′⊎D′⊎C′=E

f(M\D′/C ′) · eE
′
dD′

cC
′
, (3.1)

where the sum is taken over all ordered partitions of E (empty sets are allowed everywhere). The
A-module structure of A[M ] is evident, and the following definition for the multiplication seems
most natural, inspired by our axiom a) mentioned in the introduction and by the preceding
section.

Definition. For pairwise disjoint sets E′, D′, C ′ as well as E′′, D′′, C ′′ let us define

(eE
′
dD′

cC
′
) · (eE

′′
dD′′

cC
′′
) := eE

′∪E′′
d(D′∪D′′)\(E′∪E′′)c(C

′∪C′′)\(E′∪E′′) (3.2)

if E′ ∩ E′′ = E′ ∩ C ′′ = D′ ∩ E′′ = D′ ∩ C ′′ = C ′ ∩D′′ = ∅ ; otherwise this product equals zero.
In particular, if E′ ⊎D′ ⊎C ′ = E′′ ⊎D′′ ⊎C ′′ = E, then the product is equal to zero or equal to
eE

′∪E′′
dD′∩D′′

cC
′∩C′′

, see the following figure.

D′ E′ C ′

D′′ E′′ C ′′

It is evident that our multiplication is associative and that its unity is given by

1 =
∑

D⊎C=E

dDcC . (3.3)

Our algebra A[M ] of matroid power series is by no means new. Indeed, let P be the poset of
all subsets of E, et let us associate bijectively to each pair D1, D2 ⊆ E such that D1 ⊆ D2 a
partition E = E′ ⊎ D′ ⊎ C ′ by defining D′ := D1, C

′ := E\D2 and E′ := D2\D1 (as well as
C1 := E\D1 and C2 := E\D2, see the following figure).

D1 C1

D′ E′ C’

D2 C2

In this way, the incidence algebra of P becomes isomorphic to our algebra A[M ] (see [1], chapter
IV.1.A, or [50], chapter 3.6). Related algebraic approaches can be found in [12, 13, 25, 46, 47].
We have

(dD1cC1)Mf (e,
d

c )(d
D2cC2) = f(M\D′/C ′)eE

′
dD′

cC
′
, (3.4)
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and if E′ is not empty,

(dD1cC1)(dD2cC2)Mf (e,
d

c ) = 0,

Mf (e,
d

c )(d
D1cC1)(dD2cC2) = 0,

(dD2cC2)Mf (e,
d

c )(d
D1cC1) = 0. (3.5)

Therefore f : 3M → A must vanish on all minors with nonempty support (i.e. Mf (e,
d
c ) =

Mf (0,
d
c )), ifMf (e,

d
c ) shall commute with all matroid power series (clearly, the algebra of matroid

power series satisfying Mf (e,
d
c ) = Mf (0,

d
c ) is isomorphic to A2|M|

). In this case (i.e. Mf (e,
d
c ) =

Mf (0,
d
c )) we further have

Mf (e,
d

c )(e
E′
dD′

cC
′
) = f(M\D1/C1)e

E′
dD′

cC
′
,

(eE
′
dD′

cC
′
)Mf (e,

d

c ) = f(M\D2/C2)e
E′
dD′

cC
′
. (3.6)

Therefore a matroid power series commuting with all elements of A[M ] has to be a multiple
of 1.

The product fg of two matroid functions f, g : 3M → A can also be defined, for every minor
M\D/C, by the formula

(fg)(M\D/C) :=
∑

E′⊎E′′=E\(D∪C)

f(M\D/(C ∪ E′′)) · g(M\(D ∪ E′)/C). (3.7)

It follows
Mfg(e,

d

c ) = Mf (e,
d

c ) ·Mg(e,
d

c ). (3.8)

It is well-known from the theory of incidence algebras that Mf (e,
d
c ) is invertible if and only if

f(M\D/C) is invertible for every partition D ⊎ C = E. In this cas,

Mf (e,
d

c )
−1 = Mf−1(e, dc ), (3.9)

where f−1 : 3M → A can be calculated recursively by using the identityMf (e,
d
c )·Mf (e,

d
c )
−1 = 1

or Mf (e,
d
c )
−1 ·Mf (e,

d
c ) = 1 : f−1(M\D/C) = f(M\D/C)−1 for all D⊎C = E, and otherwise,

for all ∅ ⊂ E∗ ⊎D ⊎ C = E (i.e. E∗ is not empty) :

f−1(M\D/C) = f(M\D/(C ∪ E∗))−1 ·
(

−
∑

E′∪E′′=E∗,E′ 6=∅

f(M\D/(C ∪ E′′))f−1(M\(D ∪ E′)/C)
)

=
(

−
∑

E′∪E′′=E∗,E′′ 6=∅

f−1(M\D/(C ∪ E′′))f(M\(D ∪ E′)/C)
)

·

f(M\(D ∪ E∗)/C)−1. (3.10)

Let us associate to every e ∈ E a variable xe (without loss of generality, we can suppose
xe ∈ A), and let us define, for every z ∈ A,

Mf (xee, z
d

c ) :=
∑

E′⊎D′⊎C′=E

f(M\D′/C ′) ·
(

∏

e∈E′

xe

)

· zr(M\D
′/C′) · eE

′
dD′

cC
′
. (3.11)
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The most important particular case is xe = x for every e ∈ E. It gives the identity

Mf (xe, z
d

c ) :=
∑

E′⊎D′⊎C′=E

f(M\D′/C ′) · x|M\D
′/C′| · zr(M\D

′/C′) · eE
′
dD′

cC
′
. (3.12)

It is evident that those definitions are compatible with the addition and multiplication of matroid
power series and that their behavior with respect to e (or x) does not differ from well known
properties of set functions (see [29, 30, 32]). In particular, Mf (e,

d
c ) is nilpotent if Mf (0,

d
c ) =

Mf (0e,
d
c ) is equal to zero (in what follows, this condition will almost always be satisfied). In

that case,

[1 +Mf (e,
d

c )]
−1 =

∞
∑

k=0

(−1)kMf (e,
d

c )
k, (3.13)

where the last sum is finite.
Let

EM (e, dc ) :=
∑

e∈E

∑

D⊎C=E\e

e{e}dDcC (3.14)

be the indicator function of minors of M of cardinality one, such that

exp[EM (e, dc )] =
∑

E′⊎D′⊎C′=E

eE
′
dD′

cC
′

(3.15)

is the indicator function of all minors of M . Therefore,

exp[EM (xee, z
d

c )] =
∑

E′⊎D′⊎C′=E

(

∏

e∈E′

xe

)

· zr(M\D
′/C′) · eE

′
dD′

cC
′

(3.16)

counts the weight (i.e. the product of the variables of the support E′) and the rank for all minors
of M .

Remark. For every matroid M = (E, r), there exists the dual matroid M∗ = (E, r∗), which can
be defined with the help of the identities r(M) + r∗(M∗) = |E| and M∗\D′/C ′ = (M\C ′/D′)∗

for every partition E = E′ ⊎ D′ ⊎ C ′. In other words, r∗(M∗\D′/C ′) := |E′| − r(M\C ′/D′).
This implies the following relation for the indicator functions of the minors of cardinality one
(see [29]) :

EM∗(e, zdc ) =
∑

e∈E

∑

D⊎C=E\e

zr(M
∗\D/C)e{e}dDcC

=
∑

e∈E

∑

D⊎C=E\e

zr
∗(M/D\C)e{e}dDcC

=
∑

e∈E

∑

D⊎C=E\e

z|M/D\C|

(

1

z

)r(M/D\C)

e{e}dDcC

= EM (ze, 1z
c

d). (3.17)

We could have chosen notations that emphasize more the duality aspects of matroid theory.
However, nobody writes neither (k, l) nor

(

k+l
k,l

)

for
(

k+l
k

)

=
(

k+l
l

)

; and in this perspective we
have preferred a notation which relies only on the matroid M itself. It allows us very well
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to express all aspects of M∗ while offering the additional advantage of uniqueness and of its
proximity to set functions.

Let us associate to each e ∈ E two variables xe and ye. It is evident that EM (xee,
d
c ) and

EM (yee,
d
c ) commute, because they are in reality just two set functions (see [29, 30, 32]). The

identity EM (xee,
d
c )·EM (yee,

d
c ) = EM (yee,

d
c )·EM (xee,

d
c ), however, remains valid if we replace

d
c by zdc , where z is an additional variable. We have proved the following lemma.

Lemma 1. Fundamental Lemma. For every xe, ye, z ∈ A or for variables xe, ye, z, the ma-
troid power series EM (xee, z

d
c ) and EM (yee, z

d
c ) commute, and their sum equals EM (xee, z

d
c )+

EM (yee, z
d
c ) = EM ((xe + ye)e, z

d
c ). Therefore,

exp[EM ((xe + ye)e, z
d

c )] = exp[EM (xee, z
d

c )] · exp[EM (yee, z
d

c )]

= exp[EM (yee, z
d

c )] · exp[EM (xee, z
d

c )]. (3.18)

In particular, exp[EM (xee, z
d
c )] and exp[EM (yee, z

d
c )] are inverse to each other if and only if

xe + ye = 0 for every e ∈ E.

4 Flows and Tensions

Let us choose an orientation for every edge of our multigraph G = (V,E) in an arbitrary way such
that, for every edge e ∈ E, we are able to distinguish its head h(e) and its tail t(e) (h(e) = t(e) if
and only if e is a loop). For every positive integer n, let Cn be a commutative group of cardinality
n equipped with a bilinear form 〈·, ·〉 : Cn × Cn → C, where C is a commutative group. Let us
denote by Cn(E) (resp. Cn(V )) the commutative group generated by the fonctions c : E → Cn

(resp. c : V → Cn) and let us extend our bilinear form to Cn(E) and to Cn(V ) in a canonical
way. Let ∂ be the incidence matrix of our multigraph G defined for every pair (v, e) ∈ V ×E by
∂(v, e) = 0 if v and e are not incident (or e is a loop), ∂(v, e) = −1 if t(e) = v, and ∂(v, e) = 1
if h(e) = v. We have the following two complexes well known from topology :

0 −−−−−→ Cn(E)
∂

−−−−−→ Cn(V ) −−−−−→ 0, (4.1)

0←−−−−− Cn(E)
∂T

←−−−−− Cn(V )←−−−−− 0. (4.2)

It is evident that Im ∂ and Ker ∂T as well as Im ∂T and Ker ∂ are orthogonal subspaces
with respect to our bilinear form. Moreover, the rank of ∂ equals |V | − c(G) = r(G) if G has
c(G) connected components (see the introduction), and we have |Ker ∂T | = nc(G), |Im ∂T | =
|Im ∂| = nr(G), and |Ker ∂| = n|E|−r(G).

The elements of Ker ∂ (resp. Im ∂T ) are called n-flows (resp. n-tensions or sometimes poten-
tial differences), see[3]. For every n-tension c ∈ Im ∂T , the number of corresponding potentials
(i.e. the cardinality of (∂T )−1(c)) equals nc(G) since a potential can be chosen arbitrarily on a
vertex of every connected component of G.

Let us look at a maximal forest (i.e. a base) of G having r(G) edges. We can define an n-
tension (resp. an n-flow) of G arbitrarily on the r(G) edges of this forest (resp. on the |E|−r(G)
edges not belonging to our forest), but then its value is determined uniquely everywhere. There-
fore we see once again that the number of different n-tensions (resp. n-flows) of our multigraph
G equals nr(G) (resp. n|E|−r(G)).
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Our aim, however, is to study the matroid M corresponding to our multigraph G (see the
introduction). For every minor M ′ ∈ 3M defined on the set of edges E′ ⊆ E, let us denote
the space of n-flows by Fn(M

′) and the space of n-tensions by Tn(M
′). We have the following

lemma.

Lemma 2. For every partition E′ = E′′ ⊎ E′′′, we have two canonical split exact sequences :

0 −−−−−→ Tn(M
′/E′′′) −−−−−→ Tn(M

′) −−−−−→
←−

Tn(M
′\E′′) −−−−−→ 0, (4.3)

0←−−−−− Fn(M
′/E′′′)

−→
←−−−−− Fn(M

′)←−−−−− Fn(M
′\E′′)←−−−−− 0. (4.4)

Proof. An n-tension of M ′/E′′′ is also an n-tension of M ′; and if we delete the edges of E′′ of
an n-tension of M ′, we get an n-tension of M ′\E′′. On the other hand, an n-tension of M ′\E′′

can be extended in nr(M ′/E′′′) different ways to get an n-tension of M ′.
Dually, an n-flow of M ′\E′′ is also an n-flow of M ′; and if we contract the edges of E′′′ of

an n-flow of M ′, we get an n-flow of M ′/E′′′. On the other hand, an n-flow of M ′/E′′′ can be
extended in n|M

′\E′′|−r(M ′\E′′) different ways to get an n-flow of M ′.

Let us attach to every e ∈ E a subset (not necessarily a subgroup) Cn(e) of the commutative
group Cn and let us denote Cn(e) := Cn\Cn(e). For every minor M ′ ∈ 3M defined on E′ ⊆ E,
we denote θM ′ [Cn(e)] (resp. φM ′ [Cn(e)]) the number of n-tensions (resp. n-flows) c : E′ → Cn

satisfying the condition c(e) ∈ Cn(e) for every edge e ∈ E′. Let us put

θM,Cn(e)(e,
d

c ) :=
∑

∅⊂E′⊎D′⊎C′=E

θM\D′/C′ [Cn(e)] · e
E′
dD′

cC
′
, (4.5)

φM,Cn(e)(e,
d

c ) :=
∑

∅⊂E′⊎D′⊎C′=E

φM\D′/C′ [Cn(e)] · e
E′
dD′

cC
′
, (4.6)

where the sums are taken over all partitions such that E′ 6= ∅ (D′ = ∅ or C ′ = ∅ is not excluded).
If Cn(e) = Cn for every e ∈ E, then EM (e, nd

c ) (resp. EM (ne, 1
n
d
c )) counts the number of

n-tensions (resp. n-flows) for all minors of cardinality one of our matroid M . Therefore the
preceding lemma allows us to conlude that

1 + θM,Cn(e,
d

c ) = exp[EM (e, nd

c )] and 1 + φM,Cn(e,
d

c ) = exp[EM (ne, 1
n
d

c )]. (4.7)

In particular, we have a third proof of the fact that θM [Cn] = nr(M) and φM [Cn] = n|M |−r(M).
Actually, if Cn(e) = {0} for every e ∈ E, then θM [{0}] = φM [{0}] = 1 and globally 1 +
θM,{0}(e,

d
c ) = 1 + φM,{0}(e,

d
c ) = exp[EM (e, dc )].

Our preceding lemma (or its proof) as well as the principle of inclusion-exclusion imply the
identities

exp[EM (e, nd

c )] · [1 + θM,Cn(e)(−e,
d

c )] = 1 + θ
M,Cn(e)

(e, dc ), (4.8)

[1 + φM,Cn(e)(−e,
d

c )] · exp[EM (ne, 1
n
d

c )] = 1 + φ
M,Cn(e)

(e, dc ), (4.9)

proving the following theorem.
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Theorem 1. Duality theorem for flows and tensions.

exp[EM (e, nd

c )] = [1 + θ
M,Cn(e)

(e, dc )] · [1 + θM,Cn(e)(−e,
d

c )]
−1

= [1 + θM,Cn(e)(e,
d

c )] · [1 + θ
M,Cn(e)

(−e, dc )]
−1, (4.10)

exp[EM (ne, 1
n
d

c )] = [1 + φM,Cn(e)(−e,
d

c )]
−1 · [1 + φ

M,Cn(e)
(e, dc )]

= [1 + φ
M,Cn(e)

(−e, dc )]
−1 · [1 + φM,Cn(e)(e,

d

c )]. (4.11)

Let λ and µ be two positive integers. In order to count true λ-tensions and µ-flows of M
which are not equal to zero on any edge, let us define θM (λ) := θM [Cλ\{0}] and φM (µ) :=
φM [Cµ\{0}] as well as θM,λ(e,

d
c ) := θM,Cλ\{0}(e,

d
c ) and φM,µ(e,

d
c ) := φM,Cµ\{0}(e,

d
c ). Our

duality theorem now implies the following corollary.

Corollary 1. We have

1 + θM,λ(e,
d

c ) = exp[EM (e, λd

c )] · exp[EM (−e, dc )], (4.12)

1 + φM,µ(e,
d

c ) = exp[EM (−e, dc )] · exp[EM (µe, 1
µ
d

c )]. (4.13)

In particular, θM (λ) and φM (µ) are two polynomials : the tension polynomial (also called
characteristic polynomial of the matroid M) and the flow polynomial (also called characteristic
polynomial of the dual matroid M∗), respectively.

The identities of our corollary are equivalent to

[1 + θM,λ(e,
d

c )] · exp[EM (e, dc )] = exp[EM (e, λd

c )], (4.14)

exp[EM (e, dc )] · [1 + φM,µ(e,
d

c )] = exp[EM (µe, 1
µ
d

c )], (4.15)

which have the following additional proofs : Every λ-tension vanishes on some (possibly empty)
subset of the edges, and is in bijection with a true λ-tension of the graph obtained after contract-
ing the vanishing edges. Dually, every µ-flow vanishes on some (possibly empty) subset of the
edges, and is in bijection with a true µ-flow of the graph obtained after deleting the vanishing
edges. Our Fundamental Lemma also allows us tu calculate the following inverses.

Corollary 2. We have

[1 + θM,λ(e,
d

c )]
−1 = 1 + θ

M,
1
λ
(e, λd

c ), (4.16)

[1 + φM,µ(e,
d

c )]
−1 = 1 + φ

M,
1
µ
(µe, 1

µ
d

c ). (4.17)

Remark. If M is the matroid corresponding to our multigraph G = (V,E), let us define
θG(λ) := θM (λ) and φG(µ) := φM (µ).

The chromatic polynomial χG(λ) counts the potentials of G providing nowhere zero λ-
tensions. According to our remarks at the beginning of this section, we have the fundamental
identity

χG(λ) = λc(G) · θG(λ), (4.18)

where c(G) denotes the number of connected components of G.
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5 The associativity and partial commutativity of multiplication

This section relies only on the axiom a) of our introduction and on the first corollary of our
preceding section, which we could consider as an additional axiom a’).

Following an implicit suggestion made by Etienne [16], let us define for the two families of
variables (x1)e, (x2)e as well as for λ1, λ2, µ1, µ2 :

1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )

= 1 +
∑

∅⊂E′⊎D′⊎C′=E

RM\D′/C′(λ1, λ2, µ1, µ2, (x1)e, (x2)e) · e
E′
dD′

cC
′

:= exp[EM ((x1)eµ1e,
λ1

µ1

d

c )] · exp[EM ((x2)eµ2e,
λ2

µ2

d

c )], (5.1)

and let us call RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e) the Etienne polynomial of our matroid M .

Remark. We have RM∗(µ2, µ1, λ2, λ1, (x2)e, (x1)e) = RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e) for the
dual matroid (see [29]) :

1 +RM∗,µ2,µ1,λ2,λ1,(x2)e,(x1)e(e,
d

c )

= exp[EM∗((x2)eλ2e,
µ2

λ2

d

c )] · exp[EM∗((x1)eλ1e,
µ1

λ1

d

c )]

= exp[EM ((x2)eµ2e,
λ2

µ2

c

d)] · exp[EM ((x1)eµ1e,
λ1

µ1

c

d)]

= 1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
c

d), (5.2)

because exchanging c↔ d also exchanges the order in all multiplications.

Our fundamental lemma directly implies the following identity for variables λ1, λ2, . . . , λn,
µ1, µ2, . . . , µn and families of variables (x1)e, (x2)e, . . . , (xn)e.

Lemma 3. We have

exp[EM ((x1)eµ1e,
λ1

µ1

d

c )] · exp[EM (−(x2)eµ2e,
λ2

µ2

d

c )] ·

exp[EM ((x2)eµ2e,
λ2

µ2

d

c )] · exp[EM (−(x3)eµ3e,
λ3

µ3

d

c )] ·

· · ·

exp[EM ((xn−1)eµn−1e,
λn−1

µn−1

d

c )] · exp[EM (−(xn)eµne,
λn

µn

d

c )]

= exp[EM ((x1)eµ1e,
λ1

µ1

d

c )] · exp[EM (−(xn)eµne,
λn

µn

d

c )]. (5.3)

This proves the following theorem for the Etienne polynomial.

Theorem 2. We have

[1 +RM,λ1,λ2,µ1,µ2,(x1)e,−(x2)e(e,
d

c )] · [1 +RM,λ2,λ3,µ2,µ3,(x2)e,−(x3)e(e,
d

c )] · · ·

[1 +RM,λn−1,λn,µn−1,µn,(xn−1)e,−(xn)e(e,
d

c )] = 1 +RM,λ1,λn,µ1,µn,(x1)e,−(xn)e(e,
d

c ). (5.4)

If (x1)e = · · · = (xn)e = 1 for every e ∈ E, then the preceding theorem is equivalent to
proposition 5.10 of [13]. It is easy to prove the following relations for the Etienne polynomial.

Proposition 1. We have

[1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )]
−1 = 1 +RM,λ2,λ1,µ2,µ1,−(x2)e,−(x1)e(e,

d

c ), (5.5)

1 +RM,λ1,cλ1,µ1,cµ1,(x1)e,(x2)e(e,
d

c ) = exp[EM ((x1µ1 + x2cµ1)ee,
λ1

µ1

d

c )], (5.6)

1 +RM,c1λ1,c2λ2,c1µ1,c2µ2,(x1/c1)e,(x2/c2)e(e,
d

c ) = 1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c ) (5.7)

for all nonzero c, c1, c2.
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The multivariate Tutte polynomial (alias Potts model) studied in [48] can be defined with
the help of matroid power series :

1 + PM,q,we(e,
d

c ) = exp[EM (e, dc )] · exp[EM (wee,
1
q
d

c )]. (5.8)

This definition immediately implies the following proposition.

Proposition 2. We have

1 + PM,q,we(e,
d

c ) = 1 +RM,1,1/q,1,1,1,we
(e, dc ), (5.9)

1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c ) = 1 + P
M,

λ1µ2

µ1λ2
,
(x2)eµ2

(x1)eµ1

((x1)eµ1e,
λ1

µ1

d

c ). (5.10)

In other words, the Potts model and the Etienne polynomial can be calculated from each
other by easy transformations of variables. Kung’s subset-corank polynomial [26] can be defined
with the help of matroid power series in the following way :

1 + SCM,λ,xe
(e, dc ) = exp[EM (e, λd

c )] · exp[EM (xee,
d

c )] (5.11)

= 1 + PM,λ,xe
(e, λd

c ) (5.12)

= 1 +RM,λ,1,1,1,1,xe
(e, dc ). (5.13)

If we put in our preceding theorem or lemma or (5.3) n = 3, µ1 = µ2 = µ3 = 1, λ3 = 1, λ2 = µ,
λ1 = λµ, (x1)e = 1, (x2)e = xe and (x3)e = xeye for all e ∈ E, then we get the main theorem of
[26] (identity 1).

Corollary 3. (Kung) We have

[1 + SCM,λ,−xe
(e, µd

c )] · [1 + SCM,µ,−ye(xee,
d

c )] = [1 + SCM,λµ,−xeye(e,
d

c )]. (5.14)

If (x1)e = (x2)e = 1 for every e ∈ E and λ2 = µ1 = 1, then we get, by definition, the Whitney
polynomial RM (λ, µ) := RM (λ, 1, 1, µ, 1, 1) (see [55], chapter 15.4). For its matroid power series,
we have the following proposition (see [51], chapter IX.6).

Proposition 3. We have

1 +RM,λ,µ(e,
d

c ) = exp[EM (e, λd

c )] · exp[EM (µe, 1
µ
d

c )], (5.15)

[1 +RM,λ,µ(e,
d

c )]
−1 = 1 +R

M,
1
λ ,

1
µ
(−µe, λµ

d

c ), (5.16)

1 +RM,−λ,−1(e,−
d

c ) = 1 + θM,λ(e,
d

c ), (5.17)

1 +RM,−1,−µ(−e,−
d

c ) = 1 + φM,µ(e,
d

c ). (5.18)

For everybody familiar with the Tutte polynomial TM (λ, µ) (see [9]), it may be useful to recall
that TM (λ, µ) = RM (λ − 1, µ − 1). We have preferred to work with the Whitney polynomial
making all formulas slightly easier. The usefulness of the Whitney polynomial is precisely that
it allows the calculation of products of the following form (for z′ 6= z′′).

Lemma 4. We have

exp[EM (xe, z′dc )] · exp[EM (ye, z′′dc )] = 1 +R
M,

z′x
z′′y ,

y
x

(xe, z
′′y
x

d

c ). (5.19)
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If xe = ye = 1 for every e ∈ E, then our identity (5.3) can be rewritten using only the
Whitney polynomial. In this way, we get the following analogue of our preceding theorem.

Theorem 3. We have

[1 +R
M,−

λ1

λ2
,−

µ2

µ1

(µ1e,−
λ2

µ1

d

c )] · [1 +R
M,−

λ2

λ3
,−

µ3

µ2

(µ2e,−
λ3

µ2

d

c )] · · ·

[1 +R
M,−

λn−1

λn
,−

µn

µn−1

(µn−1e,−
λn

µn−1

d

c )] = [1 +R
M,−

λ1

λn
,−

µn

µ1

(µ1e,−
λn

µ1

d

c )]. (5.20)

For two factors, the identity of our preceding theorem can be rewritten in the following way :

[1 +R
M,−

λ1

λ2
,−

µ2

µ1

(e, λ2

λ3

d

c )] · [1 +R
M,−

λ2

λ3
,−

µ3

µ2

(µ2

µ1
e, µ1

µ2

d

c )] = 1 +R
M,−

λ1

λ3
,−

µ3

µ1

(e, dc ). (5.21)

Putting λ1

λ2
= a, λ2

λ3
= b, µ2

µ1
= c, µ3

µ2
= d, we get the following corollary, proved in [26] (identity

3), [53] (theorem 5.3), [13] (proposition 5.11).

Corollary 4. (Kung) We have

[1 +RM,−a,−c(e, b
d

c )] · [1 +RM,−b,−d(ce,
1
c
d

c )] = 1 +RM,−ab,−cd(e,
d

c ). (5.22)

If a = 1 or b = 1, then the corresponding Whitney polynomial can be replaced by a flow
polynomial, and if c = 1 or d = 1, then the corresponding Whitney polynomial can be replaced
by a tension polynomial, as shown in our preceding proposition.

For every identity of this section, we can find a direct one line proof, if we replace all terms by
products of type exp[EM (xee, z

d
c )] and use our fundamental lemma as well as the associativity

of multiplication. Nevertheless, we propose another quite general theorem, such that all other
results can be obtained by different specializations.

Theorem 4. For all te, fe, t
′
e, f

′
e as well as for λ and µ, we have

exp[EM (t′ee, λ
d

c )] · [1 + θM,λ(tee,
d

c )] ·

exp[EM ((te + fe)e,
d

c )]

·[1 + φM,µ(fee,
d

c )] · exp[EM (f ′eµe,
1
µ
d

c )]

= exp[EM ((te + t′e)e, λ
d

c )] · exp[EM ((fe + f ′e)µe,
1
µ
d

c )]

= 1 +RM,λ,1,1,µ,te+t′e,fe+f ′
e
(e, dc ). (5.23)

If there exists z such that (fe + f ′e)/(te + t′e) = z for all e ∈ E, the the result can be expressed
with the help of the Whitney (or Tutte) polynomial :

1 +RM,λ,1,1,µ,te+t′e,fe+f ′
e
(e, dc ) = 1 +R

M,λ·
1
z ,µ·z

((te + t′e) · e, z ·
d

c ), (5.24)

where we can replace R by θ (resp. φ) if and only if µ · z (resp. λ · 1z ) equals −1.

Proof. Using our formulae (4.12), (4.13) and the fundamental lemma, it is evident that all terms
of our theorem are equal to

exp[EM (t′ee, λ
d

c )] · exp[EM (tee, λ
d

c )] · exp[EM (−tee,
d

c )] · exp[EM (tee,
d

c )] ·

exp[EM (fee,
d

c )] · exp[EM (−fee,
d

c )] · exp[EM (feµe,
1
µ
d

c )] · exp[EM (f ′eµe,
1
µ
d

c )]. (5.25)
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Let us start by looking at the specialization t′e = f ′e = 0 for every e ∈ E.

Corollary 5. We have

[1+θM,λ(tee,
d

c )]·exp[EM ((te+fe)e,
d

c )]·[1+φM,µ(fee,
d

c )] = 1+RM,λ,1,1,µ,te,fe(e,
d

c ). (5.26)

If, moreover, we specialize te + fe = 1 for every e ∈ E, then we get the main theorem of
Etienne’s article [16], proved on almost an entire page with the help of the Möbius algebra.

In order to obtain the Whitney (or Tutte) polynomial, we can specialize te = t and fe = f
for every e ∈ E (see [29], chapter 5.4).

Corollary 6. We have

[1 + θM,λ(te,
d

c )] · exp[EM ((t+ f)e, dc )] · [1 + φM,µ(fe,
d

c )] = 1 +R
M,λ

t
f ,µ

f
t

(te, ft
d

c ). (5.27)

If we specialize t+f = 1, then we get the main theorem of Reiner’s article [45]. If, moreover,
we take λ = µ =: q, then we get the main theorem of Jaeger’s article [23]. Both proved their
results by verification of the recurrence relation on more than one page.

Particularly beautiful formulas can be obtained by putting t = f = 1 or t = −f = 1 (see [29],
chapter 5.4).

Corollary 7. We have

[1 + θM,λ(e,
d

c )] · exp[EM (2e, dc )] · [1 + φM,µ(e,
d

c )] = 1 +RM,λ,µ(e,
d

c ), (5.28)

[1 + θM,−λ(e,−
d

c )] · [1 + φM,−µ(−e,−
d

c )] = 1 +RM,λ,µ(e,
d

c ). (5.29)

The second formula (5.29) is the main theorem of Kook, Reiner and Stanton’s article [24],
proved on an entire page by a method closely related to ours. This result can also be found in
the chapters 4.5 and 5.4 of [29] and is also a consequence of [17].

If we take t = f =: s in (5.27) and t′e = t′ and f ′e = f ′ for every e ∈ E, then the preceding
theorem implies the following corollary.

Corollary 8. We have

exp[EM (t′e, λd

c )] · [1 +RM,λ,µ(se,
d

c )] · exp[EM (f ′µe, 1
µ
d

c )]

= exp[EM ((s+ t′)e, λd

c )] · exp[EM ((s+ f ′)µe, 1
µ
d

c )]

= 1 +R
M,λ

s+t′

s+f ′ ,µ
s+f ′

s+t′
((s+ t′)e, s+f ′

s+t′
d

c ). (5.30)

The special case f ′ = 0 and t′ = 1 is the main technical lemma in [54], pointed out to Welsh
by Vertigan.

On the one hand, let us consider the specializations µ = 1 and fe = 0 for every e ∈ E of
our preceding autodual theorem, and on the other hand, let us consider the dual specializations
λ = 1 and te = 0 for every e ∈ E.
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Corollary 9. We have

exp[EM (t′ee, λ
d

c )] · [1 + θM,λ(tee,
d

c )] · exp[EM ((te + f ′e)e,
d

c )]

= exp[EM ((te + t′e)e, λ
d

c )] · exp[EM (f ′ee,
d

c )]

= 1 +RM,λ,1,1,1,te+t′e,f
′
e
(e, dc ), (5.31)

exp[EM ((fe + t′e)e,
d

c )] · [1 + φM,µ(fee,
d

c )] · exp[EM (f ′eµe,
1
µ
d

c )]

= exp[EM (t′ee,
d

c )] · exp[EM ((fe + f ′e)µe,
1
µ
d

c )]

= 1 +RM,1,1,1,µ,t′e,fe+f ′
e
(e, dc ). (5.32)

Let t∗e be a family of additional variables. In order to count true λ-tensions according to
their support, let us follow [33], chapter 5.6, and introduce the homogenous weight enumerator

1 + θM,λ;te,t∗e (e,
d

c ) := [1 + θM,λ(tee,
d

c )] · exp[EM (t∗ee,
d

c )], (5.33)

where [1 + θM,λ(tee,
d
c )] counts the e ∈ E on which our tension does not vanish (the support),

whereas exp[EM (t∗ee,
d
c )] counts the e ∈ E on which our tension equals zero (the monochromatic

edges, where the potential is the same for the head and the tail). In other words, the matroid
power series 1+θM,λ;te,t∗e (e,

d
c ) counts λ-tensions in such a way that every edge e ∈ E contributes

a multiplication by t∗e if it is monochromatic, and a multiplication by te otherwise.
Dually, in order to count true µ-flows according to their support, let us introduce the ho-

mogenous weight enumerator

1 + φM,µ;fe,f∗
e
(e, dc ) := exp[EM (f∗e e,

d

c )] · [1 + φM,µ(fee,
d

c )], (5.34)

where [1 + φM,µ(fee,
d
c )] counts the e ∈ E on which our flow does not vanish (the support)

whereas exp[EM (f∗e e,
d
c )] counts the e ∈ E on which the flow is equal to zero.

In the first identity of our preceding corollary, let us put f ′e := t∗e − te, and in its second
identity, let us put t′e := f∗e − fe.

Corollary 10. We have

exp[EM (t′ee, λ
d

c )] · [1 + θM,λ;te,t∗e (e,
d

c )]

= exp[EM ((t′e + te)e, λ
d

c )] · exp[EM ((t∗e − te)e,
d

c )]

= 1 +RM,λ,1,1,1,t′e+te,t∗e−te(e,
d

c ), (5.35)

[1 + φM,µ;fe,f∗
e
(e, dc )] · exp[EM (f ′eµe,

1
µ
d

c )]

= exp[EM ((f∗e − fe)e,
d

c )] · exp[EM ((f ′e + fe)µe,
1
µ
d

c )]

= 1 +RM,1,1,1,µ,f∗
e−fe,f

′
e+fe(e,

d

c ), (5.36)

and in particular our weight enumerators can be expressed with the help of the Etienne polyno-
mial :

1 + θM,λ;te,t∗e (e,
d

c ) = exp[EM (tee, λ
d

c )] · exp[EM ((t∗e − te)e,
d

c )]

= 1 +RM,λ,1,1,1,te,t∗e−te(e,
d

c ), (5.37)

1 + φM,µ;fe,f∗
e
(e, dc ) = exp[EM ((f∗e − fe)e,

d

c )] · exp[EM (feµe,
1
µ
d

c )]

= 1 +RM,1,1,1,µ,f∗
e−fe,fe(e,

d

c ). (5.38)
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If λ = µ =: q, then the last two identities of our preceding corollary immediately imply the
following duality relations.

Corollary 11. If (t∗e − te)(f
∗
e − fe) = tefeq for every e ∈ E, then

1 + θM,q;te,t∗e ((f
∗
e − fe)e,

d

c ) = 1 + φM,q;fe,f∗
e
(tee, q

d

c ), (5.39)

1 + φM,q;fe,f∗
e
((t∗e − te)e,

d

c ) = 1 + θM,q;te,t∗e (feqe,
1
q
d

c ). (5.40)

If te = fe = 1 for every e ∈ E, then those duality relations become theorem 3.1 of [58],
proven by Woodall on almost two pages with the help of the deletion contraction method. He
has written : 〈〈There may be a direct way of doing this, but I do not know of one. 〉〉 This clearly
shows the usefulness of substitutions in matroid power series.

If we want to replace the Etienne polynomial in our equations (5.35) and (5.36) by the
Whitney polynomial (or the Tutte polynomial), we can specialize fe = f , f ′e = f ′, f∗e = f∗,
ne = n, n′e = n′ and n∗e = n∗ for every e ∈ E.

Corollary 12. We have

exp[EM (t′e, λd

c )] · [1 + θM,λ;t,t∗(e,
d

c )]

= exp[EM ((t′ + t)e, λd

c )] · exp[EM ((t∗ − t)e, dc )]

= 1 +R
M,λ

t′+t
t∗−t ,

t∗−t
t′+t

((t′ + t)e, t
∗−t
t′+t

d

c ), (5.41)

[1 + φM,µ;f,f∗(e, dc )] · exp[EM (f ′µe, 1
µ
d

c )]

= exp[EM ((f∗ − f)e, dc )] · exp[EM ((f ′ + f)µe, 1
µ
d

c )]

= 1 +R
M,

f∗−f
f ′+f ,µ

f ′+f
f∗−f

((f∗ − f)e, f ′+f
f∗−f

d

c ), (5.42)

and in particular our weight enumerators can be expressed with the help of the Whitney polyno-
mial :

1 + θM,λ;t,t∗(e,
d

c ) = exp[EM (te, λd

c )] · exp[EM ((t∗ − t)e, dc )]

= 1 +R
M,λ

t
t∗−t ,

t∗−t
t

(te, t
∗−t
t

d

c ), (5.43)

1 + φM,µ;f,f∗(e, dc ) = exp[EM ((f∗ − f)e, dc )] · exp[EM (fµe, 1
µ
d

c )]

= 1 +R
M,

f∗−f
f ,µ

f
f∗−f

((f∗ − f)e, f
f∗−f

d

c ). (5.44)

If we take t∗ = 1 in (5.43), then we get Greene’s classical result [21], proved by Brylawski and
Oxley in [9] on pages 182-184 in two different ways. If, however, we take t = 1 in (5.43), then
we get the main result of the paragraph 〈〈Two-variable Colouring 〉〉 of Brylawski and Oxley’s
article [9], proved on the pages 156-158 in three different ways, one of which is closely related
to ours.

We can simplify (5.41) by defining µ′ := (t∗−t)/(t′+t) ⇔ µ′t′ = t∗−t−µ′t and by replacing
λ by λµ′ and e by µ′e. Dually, we can simplify (5.42) by defining λ′ := (f∗ − f)/(f ′ + f) ⇔
λ′f ′ = f∗ − f − λ′f and by replacing µ by λ′µ and e by λ′e.
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Corollary 13. We have

exp[EM ((t∗ − t− µ′t)e, λµ′dc )] · [1 + θM,λµ′;t,t∗(µ
′e, dc )]

= 1 +RM,λ,µ′((t∗ − t)e, µ′dc ), (5.45)

[1 + φM,λ′µ;f,f∗(λ′e, dc )] · exp[EM ((f∗ − f − λ′f)λ′µe, 1
λ′µ

d

c )]

= 1 +RM,λ′,µ((f
∗ − f)λ′e, 1

λ′
d

c ). (5.46)

If we want to replace the Whitney polynomial in (5.45) by the flow polynomial, we have
to put λ := −1 and replace µ′ by −µ′ and e by −e. If we want to replace it by the tension
polynomial, however, we have to put µ′ := −1 and replace λ by −λ.

Dually, if we want to replace the Whitney polynomial in (5.46) by the tension polynomial,
we have to put µ := −1 and replace λ′ by −λ′ and e by −e. If we want to replace it by the flow
polynomial, however, we have to put λ′ := −1 and replace µ by −µ.

Corollary 14. We have

exp[EM ((t− t∗ − µ′t)e, µ′dc )] · [1 + θM,µ′;t,t∗(µ
′e, dc )]

= 1 + φM,µ′((t∗ − t)e, µ′dc ), (5.47)

exp[EM (t∗e, λd

c )] · [1 + θM,λ;t,t∗(−e,
d

c )]

= 1 + θM,λ((t
∗ − t)e, dc ), (5.48)

[1 + φM,λ′;f,f∗(λ′e, dc )] · exp[EM ((f − f∗ − λ′f)λ′e, 1
λ′

d

c )]

= 1 + θM,λ′((f∗ − f)λ′e, 1
λ′

d

c ), (5.49)

[1 + φM,µ;f,f∗(−e, dc )] · exp[EM (f∗µe, 1
µ
d

c )]

= 1 + φM,µ((f
∗ − f)e, dc ). (5.50)

If we take t := −1 and t∗ := 1 in our identity (5.47), then we get a result proved by Galluccio
and Loebl in [18] (theorem 4.9).

In order to simplify our equation (5.45) even further, let us put t∗− t = µ′t ⇔ t∗ = (µ′+1)t
and let us replace µ′e by e. Dually, in order to simplify (5.46), we take f∗ − f = λ′f ⇔ f∗ =
(λ′ + 1)f and replace λ′e by e.

Corollary 15. We have

1 + θM,λµ′;t,(µ′+1)t(e,
d

c ) = 1 +RM,λ,µ′(te, µ′dc ), (5.51)

1 + φM,λ′µ;f,(λ′+1)f (e,
d

c ) = 1 +RM,λ′,µ(fλ
′e, 1

λ′
d

c ). (5.52)

If, moreover, we take t = f = 1, we get results allowing us to express the Whitney polynomial
by true λµ′-tensions or by true λ′µ-flows. These results can also be found in the chapters 4.5
and 5.3 of [29] and in [58] (theorem 2.1).

Corollary 16. We have

[1 + θM,λµ′(e, dc )] · exp[EM ((µ′ + 1)e, dc )] = 1 +RM,λ,µ′(e, µ′dc ), (5.53)

exp[EM ((λ′ + 1)e, dc )] · [1 + φM,λ′µ(e,
d

c )] = 1 +RM,λ′,µ(λ
′e, 1

λ′
d

c ). (5.54)
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Let us replace, in the preceding corollary, λ by −1, µ′ by −µ′, µ by −1 and λ′ by −λ′. Then
we get results allowing us to express the flow polynomial by true µ′-tensions and the tension
polynomial by true λ′-flows.

Corollary 17. We have

[1 + θM,µ′(e, dc )] · exp[EM ((1− µ′)e, dc )] = 1 + φM,µ′(−e, µ′dc ), (5.55)

exp[EM ((1− λ′)e, dc )] · [1 + φM,λ′(e, dc )] = 1 + θM,λ′(−λ′e, 1
λ′

d

c ). (5.56)

For graphs, an expansion of the form (5.56) for its chromatic or tension polynomial was given
by Nagle [40]. In an attempt to understand the four-color theorem, Matiyasevich proved that φ
is, in fact, the flow polynomial : this is the main result of his article [39]. His proof, by number
theoretic methods, is longer than two pages. Other proofs can be found in the chapters 4.4 and
5.3 of [29], in [44] and in [58].

6 Minors of cardinality one

Since the rank of every one element minor of M is eiter 0 (loop) or 1 (coloop), it is natural to
define

E0
M (e, dc ) :=

∑

e∈E

∑

D⊎C=E\e,
r(M\D/C)=0

e{e}dDcC , E1
M (e, dc ) :=

∑

e∈E

∑

D⊎C=E\e,
r(M\D/C)=1

e{e}dDcC . (6.1)

Of course, exp[E0
M (e, dc )] is the indicator function of all minors which are collections of loops

whereas exp[E1
M (e, dc )] is the indicator function of all minors which are collections of coloops.

Moreover,
EM ((x)eµe,

λ
µ
d

c ) = µ · E0
M ((xe)e,

d

c ) + λ · E1
M ((xe)e,

d

c ). (6.2)

The following lemma is an immediate consequence of the definition for the multiplication of
matroid power series.

Lemma 5. For all minors of M ,

1 +RM,0,0(e,
d

c ) = exp[E0
M (e, dc )] · exp[E

1
M (e, dc )] (6.3)

counts the number of bases (or spanning forests),

1 +RM,1,0(e,
d

c ) = exp[EM (e, dc )] · exp[E
1
M (e, dc )] (6.4)

counts the number of independent sets (or forests), and

1 +RM,0,1(e,
d

c ) = exp[E0
M (e, dc )] · exp[EM (e, dc )] (6.5)

counts the number of coindependent sets (or spanning subgraphs).

Let w : E → {w1, w2, w3, . . . , wk} be a fixed weight function with w1 > w2 > w3 > · · · > wk.
For every i ∈ {1, . . . , k} let us define

E0
M,wi

(e, dc ) :=
∑

e∈E,
w(e)=wi

∑

D⊎C=E\e,
r(M\D/C)=0

e{e}dDcC , (6.6)

E1
M,wi

(e, dc ) :=
∑

e∈E,
w(e)=wi

∑

D⊎C=E\e,
r(M\D/C)=1

ewie{e}dDcC , (6.7)
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where e is Euler’s number. Our section on decompositions immediately implies the following
theorem.

Theorem 5. The matroid power series

exp

[

k
∑

i=1

E0
M,wi

(e, dc )

]

· exp

[

k
∑

i=1

E1
M,wi

(e, dc )

]

(6.8)

counts every basis B of our matroid M with its weight

∏

b∈B

ew(b) = e
∑

b∈B w(b), (6.9)

whereas
exp[E0

M,wk
(e, dc )] exp[E

1
M,wk

(e, dc )] · · · exp[E
0
M,w1

(e, dc )] exp[E
1
M,w1

(e, dc )] (6.10)

counts only every maximal basis of our matroid with its weight.

For every M ′ ∈ 3M let L(M ′) be the set of its loops and C(M ′) be the set of its coloops.
Then we have the following lemma.

Lemma 6. We have

exp[EM (xee, λ
d

c )] · exp[E
0
M (yee,

d

c )] =

1 +
∑

∅⊂E′⊎D′⊎C′=E,
M ′=M\D′/C′

λr(M ′)
∏

e∈E′\L(M ′)

xe
∏

e∈L(M ′)

(xe + ye) · e
E′
dD′

cC
′
, (6.11)

exp[E1
M (yee,

d

c )] · exp[EM (xeµe,
1
µ
d

c )] =

1 +
∑

∅⊂E′⊎D′⊎C′=E,
M ′=M\D′/C′

µ|M
′|−r(M ′)

∏

e∈E′\C(M ′)

xe
∏

e∈C(M ′)

(xe + ye) · e
E′
dD′

cC
′
. (6.12)

In particular, exp[EM (e, λd
c )] · exp[E

0
M (−e, dc )] is the rank generating function for loop free mi-

nors whereas exp[E1
M (−e, dc )] · exp[EM (µe, 1

µ
d
c )] is the corank generating function for coloop free

minors.

Our preceding lemma and the identity

(

exp[EM (xee, λ
d

c )] · exp[E
0
M (−xee,

d

c )]
)

·
(

exp[E0
M (xee,

d

c )] · exp[EM (yeµe,
1
µ
d

c )]
)

= exp[EM (xee, λ
d

c )] · exp[EM (yeµe,
1
µ
d

c )] ⇔

[1 +RM,λ,0,1,1,xe,−xe
(e, dc )] · [1 +RM,0,1,1,µ,xe,ye(e,

d

c )]

= 1 +RM,λ,1,1,µ,xe,ye(e,
d

c ) (6.13)

for the Etienne polynomial imply the following proposition generalizing the proposition 5.12 of
[13].
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Proposition 4. For any matroid M = (E, r) we have

RM (λ, 1, 1, µ, xe, ye) =
∑

F flat of M

RM |F (0, 1, 1, µ, xe, ye) · λ
r(M)−r(F ) ·

∏

e∈E\F

xe, (6.14)

where M |F denotes the restriction of M to the flat F , i.e. the deletion of its complement. In
particular,

(

exp[EM (e, dc )] · exp[−E
0
M (e, dc )]

)

·
(

exp[E0
M (e, dc )] · exp[−EM (e, dc )]

)

= 1 (6.15)

reflects the fact that the zeta function of the lattice of flats of M (first factor) and its Möbius
function (second factor) 1 + θM,0(e,

d
c ) are inverse to each other.

More generally, we have the following theorem.

Theorem 6. If the matroid function f : 3M → A does not depend on loops, then the matroid
power series Mf (e,

d
c )·exp[−E

0
M (e, dc )] counts f only for minors without loops ; and the incidence

algebra of the lattice of flats of our matroid M is isomporphic to the algebra of matroid power
series vanishing on minors with loops.

Let us define the absolute value of the Möbius function of the lattice of flats of our matroid
M by

1 +A∗M (e, dc ) = 1 + θM,0(e,−
d

c ) = 1 +RM,0,−1(e,
d

c )

= exp[E0
M (e, dc )] · exp[E

1
M (e, dc )− E0

M (e, dc )]. (6.16)

For graphs, it also counts the number of acyclic orientations with a fixed source (or sink)
(see [30]), and for oriented matroids, it counts the number of equivalence classes of acyclic
orientations, where acyclic orientations are considered to be equivalent if they can be obtained
from each other by reorientations of oriented cuts. Dually, we can see with the help of the
deletion contraction method or other methods that

1 + S∗M (e, dc ) = 1 + φM,0(−e,−
d

c ) = 1 +RM,−1,0(e,
d

c )

= exp[E0
M (e, dc )− E1

M (e, dc )] · exp[E
1
M (e, dc )] (6.17)

counts the number of equivalence classes of strongly connected orientations, where strongly
connected orientations are considered to be equivalent if they can be obtained from each other
by reorientations of oriented cycles. In particular,

[1 +A∗M (e, dc )] · [1 + S∗M (e, dc )] = exp[E0
M (e, dc )] · exp[E

1
M (e, dc )] (6.18)

counts the number of bases or spanning forests.
Moreover, exp[EM (e, λd

c )]·exp[E
0
M (−e, dc )] (the rank generating function for loop free minors)

and exp[E1
M (−e, dc )] · exp[EM (µe, 1

µ
d
c )] (the corank generating function for coloop free minors)

are nonnegative. We have proved the following proposition corresponding to theorem 5.1 of [30]
(see also [22, 52]), where we have shown that 1 + θM,−λ(e,−

d
c ) counts all acyclic orientations

according to their numbers of components.
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Theorem 7. We have

1 + θM,−λ(e,−
d

c ) = exp[EM (e, λd

c )] · exp[EM (−e,−d

c )]

=
(

exp[EM (e, λd

c )] · exp[E
0
M (−e, dc )]

)

· [1 +A∗M (e, dc )], (6.19)

1 + φM,−µ(−e,−
d

c ) = exp[EM (e,−d

c )] · exp[EM (µe, 1
µ
d

c )]

= [1 + S∗M (e, dc )] ·
(

exp[E1
M (−e, dc )] · exp[EM (µe, 1

µ
d

c )]
)

. (6.20)

In particular, it follows that (−1)r(M)θM (−λ) is a polynomial with nonnegative coefficients in λ
whereas (−1)|M |−r(M)φM (−µ) is a polynomial with nonnegative coefficients in µ.

If we put λ = 1 and µ = 1 in the preceding theorem, then we count all acyclic and strongly
connected orientations, respectively (see our section on orientations).

Corollary 18. The matroid power series

1 +AM (e, dc ) = 1 + θM,−1(e,−
d

c ) = 1 +RM,1,−1(e,
d

c )

= exp[EM (e, dc )] · exp[EM (−e,−d

c )]

=
(

exp[EM (e, dc )] · exp[E
0
M (−e, dc )]

)

· [1 +A∗M (e, dc )] (6.21)

counts acyclic orientation whereas

1 + SM (e, dc ) = 1 + φM,−1(−e,−
d

c ) = 1 +RM,−1,1(e,
d

c )

= exp[EM (e,−d

c )] · exp[EM (e, dc )]

= [1 + S∗M (e, dc )] ·
(

exp[E1
M (−e, dc )] · exp[EM (e, dc )]

)

(6.22)

counts strongly connected orientations. In particular, we have the identities

[1 +AM (e, dc )] · [1 + SM (e, dc )] = exp[EM (2e, dc )], (6.23)

[1 + θM,λ(e,
d

c )][1 +AM (e, dc )] · [1 + SM (e, dc )][1 + φM,µ(e,
d

c )] = 1 +RM,λ,µ(e,
d

c ). (6.24)

Gessel and Sagan [19] have counted acyclic orientations not only according to their numbers
of components with respect to a variable x, but also according to their numbers of edges with
respect to a variable y. Moreover, they were interested in acyclic suborientations, i.e. edges could
also be deleted instead of being oriented. We can formulate their theorem 3.4 in the following
way.

Corollary 19. We have

exp[EM (e, xdc )] · [1 + θM,−x(ye,−
d

c )] = exp[EM ((1 + y)e, xdc )] · exp[EM (−ye,−d

c )]

= 1 +R
M,

x(1+y)
y ,

−y
1+y

((1 + y)e, y
1+y

d

c ). (6.25)

Gessel and Sagan [19] have also counted subdigraphs according to their numbers of compo-
nents with respect to a variable x, and according to their numbers of edges with respect to a
variable y. Once again, edges can be deleted, but now, they can also be contracted if and only
if they were oriented in both directions contributing a factor of y2. Moreover, all edges belong-
ing to oriented cycles can be contracted without any influence on the number of components.
Therefore we can formulate theorem 4.4 of [19] in the following way.
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Corollary 20. We have

exp[EM (e, xdc )] · [1 + θM,−x(ye,−
d

c )] · [1 + SM (ye, dc )] · exp[EM (y2e, dc )]

= exp[EM ((1 + y)e, xdc )] · exp[EM ((1 + y)ye, dc )]

= 1 +RM,
x
y ,y

((1 + y)e, ydc ). (6.26)

Remark. According to the preceding theorem, we know that

1 + θM,−λ(e,−
d

c ) = exp[EM (e, λd

c )] · exp[E
1
M (e, dc )− E0

M (e, dc )], (6.27)

1 + φM,−µ(−e,−
d

c ) = exp[E0
M (e, dc )− E1

M (e, dc )] · exp[EM (µe, 1
µ
d

c )]. (6.28)

Since 1+θM,−λ(e,−
d
c ) vanishes on minors with loops and 1+φM,−µ(−e,−

d
c ) vanishes on minors

with coloops, the products

1 +RM,λ,µ(e,
d

c ) = [1 + θM,−λ(e,−
d

c )] · [1 + φM,−µ(−e,−
d

c )], (6.29)

exp[EM ((1 + 1
λ)e, λ

d

c )] = [1 + θM,−λ(e,−
d

c )] · [1 + φ
M,−

1
λ
(−e,−d

c )], (6.30)

exp[EM ((1 + µ)e, 1
µ
d

c )] = [1 + θ
M,−

1
µ
(e,−d

c )] · [1 + φM,−µ(−e,−
d

c )] (6.31)

are just sums over cyclic flats (i.e. flats without coloops).
In a similar way, Plesken, Bächler and Eberhardt [42, 14] have introduced and studied what

they called the cloud polynomial CM (λ) and flock polynomial FM (µ) of a matroid M . We can
easily define them with the help of matroid power series :

1 + CM,λ(e,
d

c ) = 1 +
∑

∅⊂E′⊎D′⊎C′=E

CM\D′/C′(λ) · eE
′
dD′

cC
′

:= exp[EM (e, λd

c )] · exp[−E
0
M (e, dc )] · exp[E

1
M (e, dc )], (6.32)

1 + FM,µ(e,
d

c ) = 1 +
∑

∅⊂E′⊎D′⊎C′=E

FM\D′/C′(µ) · eE
′
dD′

cC
′

:= exp[−E1
M (e, dc )] · exp[E

0
M (e, dc )] · exp[EM (µe, 1

µ
d

c )]. (6.33)

Since those two polynomials are products of three factors, they cannot be evaluated with the
help of the Whitney (or Tutte) polynomial. Nevertheless, the cloud polynomial vanishes on
minors with loops and the flock polynomial vanishes on minors with coloops. Therefore the
products

1 +RM,λ,µ(e,
d

c ) = [1 + CM,λ(e,
d

c )] · [1 + FM,µ(e,
d

c )], (6.34)

exp[EM ((1 + 1
λ)e, λ

d

c )] = [1 + CM,λ(e,
d

c )] · [1 + F
M,

1
λ
(e, dc )], (6.35)

exp[EM ((1 + µ)e, 1
µ
d

c )] = [1 + C
M,

1
µ
(e, dc )] · [1 + FM,µ(e,

d

c )] (6.36)

are just sums over cyclic flats and were used by Eberhardt [14] to show that the cloud, flock,
Whitney and Tutte polynomials all depend only on the lattice of cyclic flats. All those formulae
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can be dualized :

1 + F ∗M,λ(e,
d

c ) = exp[EM (e, λd

c )] · exp[E
1
M (e, dc )] · exp[−E

0
M (e, dc )], (6.37)

1 + C∗M,µ(e,
d

c ) = exp[E0
M (e, dc )] · exp[−E

1
M (e, dc )] · exp[EM (µe, 1

µ
d

c )], (6.38)

1 +RM,λ,µ(e,
d

c ) = [1 + F ∗M,λ(e,
d

c )] · [1 + C∗M,µ(e,
d

c )], (6.39)

exp[EM ((1 + 1
λ)e, λ

d

c )] = [1 + F ∗M,λ(e,
d

c )] · [1 + C∗
M,

1
λ

(e, dc )], (6.40)

exp[EM ((1 + µ)e, 1
µ
d

c )] = [1 + F ∗
M,

1
µ

(e, dc )] · [1 + C∗M,µ(e,
d

c )]. (6.41)

In particular, the multiplication of exp[EM (e, λd
c )] with

exp[E1
M (e, dc )− E0

M (e, dc )], exp[−E0
M (e, dc )] · exp[E

1
M (e, dc )], exp[E1

M (e, dc )] · exp[−E
0
M (e, dc )]

gives three different results, but all of them vanish on minors with loops.

Products of more than two factors also appear naturally in the context of random minors.
For each e ∈ E of our matroid M , let us delete e with probability pe and let us contract e
with probability qe. Then e remains in our random minor of M with probability re such that
pe+ qe+ re = 1 for every e ∈ E. Let RM [(p)e,(q)e,(r)e](λ, µ) be the expected value of the Whitney
polynomial of our random minor of M and let

1+RM [(p)e,(q)e,(r)e],λ,µ(e,
d

c ) := 1+
∑

∅⊂E′⊎D′⊎C′=E

RM\D′/C′[(p)e,(q)e,(r)e](λ, µ) ·e
E′
dD′

cC
′
(6.42)

be the matroid power series of those expected values for all minors of M .

Proposition 5. We have

1 +RM [(p)e,(q)e,(r)e],λ,µ(e,
d

c ) = exp[EM (pee,
d

c )] ·

exp[EM (ree, λ
d

c )] · exp[EM (reµe,
1
µ
d

c )] ·

exp[EM (qee,
d

c )]. (6.43)

Let us suppose that pe = p, qe = q and re = r for all e ∈ E. Then we can evaluate those
expected values with the help of the classical Whitney (or Tutte) polynomial in some special
cases allowing to reduce our product of four factors to two factors, see our equation (5.19).

Corollary 21. For q = 0 the expected value of the flow polynomial is given by

exp[EM (pe, dc )] · [1 + φM,µ(re,
d

c )] = exp[EM ((p− r)e, dc )] · exp[EM (rµe, 1
µ
d

c )]

= 1 +R
M,

p−r
r ,

rµ
p−r

((p− r)e, r
p−r

d

c ), (6.44)

the expected number of acyclic orientations is given by

exp[EM (pe, dc )] · [1 +AM (re, dc )] = exp[EM (e, dc )] · exp[EM (−re,−d

c )]

= 1 +R
M,

1
r ,−r

(e, rdc ) (6.45)

and the expected number of independent sets is given by

exp[EM (pe, dc )] · exp[EM (re, dc )] exp[E
1
M (re, dc )] = exp[EM (e, dc )] · exp[E

1
M (e, rdc )]

= 1 +R
M,

1
r ,0

(e, rdc ). (6.46)
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In the case of graphs, the results of the preceding corollary can be found in [54]. For matroids,
however, it is natural to dualize them as well.

Corollary 22. For p = 0 the expected value of the tension polynomial is given by

[1 + θM,λ(re,
d

c )] · exp[EM (qe, dc )] = exp[EM (re, λd

c )] · exp[EM ((q − r)e, dc )]

= 1 +R
M,

rλ
q−r ,

q−r
r

(re, q−rr
d

c ), (6.47)

the expected number of strongly connected orientations is given by

[1 + SM (re, dc )] · exp[EM (qe, dc )] = exp[EM (re,−d

c )] · exp[EM (e, dc )]

= 1 +R
M,−r,

1
r
(re, 1r

d

c ) (6.48)

and the expected number of coindependent sets is given by

exp[E0
M (re, dc )] exp[EM (re, dc )] · exp[EM (qe, dc )] = exp[E0

M (re, 1r
d

c )] · exp[EM (e, dc )]

= 1 +R
M,0,

1
r
(re, 1r

d

c ). (6.49)

Remark. For q = 0 we cannot simplify

exp[EM (pe, dc )] · [1 + θM,λ(re,
d

c )] (6.50)

but we can simplify

exp[EM (pe, λd

c )] · [1 + θM,λ(re,
d

c )] = exp[EM (e, λd

c )] · exp[EM (−re, dc )]

= 1 +R
M,

λ
−r ,−r

(e,−rdc ), (6.51)

see [54]. Moreover, for q = 0

exp[E0
M (pe, dc )] · exp[EM (re, dc )] = 1 +RM,0,

r
p
(pe, rp

d

c ) (6.52)

denotes the probability that our random minor is coindependent (it is the all terminal reliability,
see [56]) whereas

exp[EM (pe, Pd

c )] · exp[EM (re, dc )] = 1 +R
M,

pP
r ,

r
p

(pe, rp
d

c ) (6.53)

is essentially the partition function of the random cluster model, see [56].

7 Derivations

Let f : 3M → A be a matroid function and let

Mf (e,
d

c ) =
∑

E′⊎D′⊎C′=E

f(M\D′/C ′) · eE
′
dD′

cC
′

(7.1)
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be its matroid power series, where the sum is taken over all ordered partitions of E (empty sets
are allowed everywhere). For every e ∈ E, we can define the partial derivative ∂e by

∂eMf (e,
d

c ) :=
∑

e∈E′⊎D′⊎C′=E

f(M\D′/C ′) · eE
′
dD′

cC
′
. (7.2)

In other words, ∂e leaves the value of f(M\D′/C ′) unchanged if e ∈ E′ where E′ = E\(D′∪C ′),
but it replaces the value of f(M\D′/C ′) by 0 if e /∈ E′.

Remark. More generally, for any E′′ ⊆ E we can define ∂E′′
: it leaves the value of f(M\D′/C ′)

unchanged if E′′ ⊆ E′, but it replaces the value of f(M\D′/C ′) by 0 otherwise.

Of course, ∂e is a linear operator acting on matroid functions and matroid power series. For
deriving a product of matroid power series, we have the following lemma, well known from set
functions [29, 30, 32].

Lemma 7. Product Rule. For any matroid functions f, g : 3M → A we have

∂e[Mf (e,
d

c ) ·Mg(e,
d

c )] = [∂eMf (e,
d

c )] ·Mg(e,
d

c ) +Mf (e,
d

c ) · [∂
eMg(e,

d

c )]. (7.3)

Proof. The lemma immediately follows from the fact that for any disjoint subsets E′, E′′ ⊆ E
we have

e ∈ E′ ⊎ E′′ ⇔ e ∈ E′ or e ∈ E′′. (7.4)

Remark. The multiplication of matroid power series is not commutative, and in general, it is
not true that

[∂eMf (e,
d

c )] ·Mf (e,
d

c ) = Mf (e,
d

c ) · [∂
eMf (e,

d

c )]. (7.5)

However, if our matroid function f : 3M → A depends only on its support, that is f(M\D′/C ′) =
f(M\D′′/C ′′) for all D′ ⊎C ′ = D′′ ⊎C ′′ = E\E′, then (7.5) is obviously true, and remains true
if (e, dc ) is replaced by (xee, z

d
c ) everywhere. In particular, we have

∂e exp[EM (xee, z
d

c )] = [∂eEM (xee, z
d

c )] · exp[EM (xee, z
d

c )]

= exp[EM (xee, z
d

c )] · [∂
eEM (xee, z

d

c )]. (7.6)

First of all, our element derivation ∂e allows us to prove the following recurrence relations
for the Etienne polynomial.

Proposition 6. For any e ∈ E, we have

RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e) = [(x1)eµ1 + (x2)eµ2]RM\e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) (7.7)

if e is a loop,

RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e) = [(x1)eλ1 + (x2)eλ2]RM/e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) (7.8)

if e is a coloop (also called isthmus or bridge) and

RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e) = (x1)eµ1RM\e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) +

(x2)eλ2RM/e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) (7.9)

otherwise.
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Proof. We have

∂e[1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )]

= [∂e exp[EM ((x1)eµ1e,
λ1

µ1

d

c )]] · exp[EM ((x2)eµ2e,
λ2

µ2

d

c )] +

exp[EM ((x1)eµ1e,
λ1

µ1

d

c )] · [∂
e exp[EM ((x2)eµ2e,

λ2

µ2

d

c )]]

= [∂eEM ((x1)eµ1e,
λ1

µ1

d

c )] · [1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )] +

[1 +RM,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )] · [∂
eEM ((x2)eµ2e,

λ2

µ2

d

c )]. (7.10)

The factor [∂eEM ((x1)eµ1e,
λ1

µ1

d
c )] is nonzero only on one element minors with support e. If

we contract all other elements, then it has rank 0 providing a multiplication by (x1)eµ1, unless
e is a coloop of rank 1 providing a multiplication by (x1)eλ1. In any case, e must be deleted for
the second factor, but if e is a coloop, it can equivalently be contracted.

The factor [∂eEM ((x2)eµ2e,
λ2

µ2

d
c )] is nonzero only on one element minors with support e. If

we delete all other elements, then it has rank 1 providing a multiplication by (x2)eλ2, unless e
is a loop of rank 0 providing a multiplication by (x2)eµ2. In any case, e must be contracted for
the first factor, but if e is a loop, it can equivalently be deleted.

Remark. For every e ∈ E, let us define the coefficients of the preceding proposition by

xe := (x2)eλ2, ye := (x1)eµ1, (7.11)

Xe := (x1)eλ1 + (x2)eλ2, Ye := (x1)eµ1 + (x2)eµ2. (7.12)

According to Bollobás and Riordan [7] the following determinants have to be equal for all
e, f ∈ E :

∣

∣

∣

∣

xe ye
xf yf

∣

∣

∣

∣

=

∣

∣

∣

∣

xe Ye
xf Yf

∣

∣

∣

∣

and

∣

∣

∣

∣

xe ye
xf yf

∣

∣

∣

∣

=

∣

∣

∣

∣

Xe ye
Xf yf

∣

∣

∣

∣

. (7.13)

The first of those two equations is valid for all e, f ∈ E if and only if either the vector xe (e ∈ E)
is zero (this happens for λ2 = 0) or the difference of the vectors Ye (e ∈ E) and ye (e ∈ E) is a
multiple of the vector xe (e ∈ E) (this happens for λ2 6= 0). The second of those two equations
is valid for all e, f ∈ E if and only if either the vector ye (e ∈ E) is zero (this happens for µ1 = 0)
or the difference of the vectors Xe (e ∈ E) and xe (e ∈ E) is a multiple of the vector ye (e ∈ E)
(this happens for µ1 6= 0).

On the other hand, our coefficients xe, ye, Xe, Ye are of the most general form satisfying the
equations (7.13) even if λ2 = µ1 = 1 (Zaslavsky’s normal functions [62]) or λ2 = 0 et µ1 = 1
(Zaslavsky’s primal elementary functions [62]) or λ2 = 1 et µ1 = 0 (Zaslavsky’s dual elementary
functions [62]) or λ2 = µ1 = 0 (Zaslavsky’s paranil functions [62]).

Therefore our Etienne polynomial provides a natural common generalization of all those
families of solutions.

26



Corollary 23. For any e ∈ E, we have

∂

∂(x1)e
RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e)

=

{

λ1RM\e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) if e is a coloop,

µ1RM\e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) otherwise,
(7.14)

∂

∂(x2)e
RM (λ1, λ2, µ1, µ2, (x1)e, (x2)e)

=

{

µ2RM/e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) if e is a loop,

λ2RM/e(λ1, λ2, µ1, µ2, (x1)e, (x2)e) otherwise.
(7.15)

Remark. It is also possible to use matroid power series with different supports. For example,
if M = M1 +M2 is a direct sum, then

1 +RM1+M2,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )

= exp[EM1
((x1)eµ1e,

λ1

µ1

d

c ) + EM2
((x1)eµ1e,

λ1

µ1

d

c )] ·

exp[EM1
((x2)eµ2e,

λ2

µ2

d

c ) + EM2
((x2)eµ2e,

λ2

µ2

d

c )]

= exp[EM1
((x1)eµ1e,

λ1

µ1

d

c )] exp[EM1
((x2)eµ2e,

λ2

µ2

d

c )] ·

exp[EM2
((x1)eµ1e,

λ1

µ1

d

c )] exp[EM2
((x2)eµ2e,

λ2

µ2

d

c )]

= [1 +RM1,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )] · [1 +RM2,λ1,λ2,µ1,µ2,(x1)e,(x2)e(e,
d

c )]. (7.16)

Therefore

RM1+M2
(λ1, λ2, µ1, µ2, (x1)e, (x2)e)

= RM1
(λ1, λ2, µ1, µ2, (x1)e, (x2)e) ·RM2

(λ1, λ2, µ1, µ2, (x1)e, (x2)e). (7.17)

If xe = ye = 1 for every e ∈ E and λ2 = µ1 = 1, then our preceding proposition simplifies to
the classical recurrence relations for the Whitney polynomial (see [55], chapter 15.4).

Corollary 24. For any e ∈ E, we have

RM (λ, µ) = [1 + µ]RM\e(λ, µ) if e is a loop, (7.18)

RM (λ, µ) = [λ+ 1]RM/e(λ, µ) if e is a coloop, (7.19)

RM (λ, µ) = RM\e(λ, µ) +RM/e(λ, µ) otherwise. (7.20)

In particular, RM (λ, µ) is a polynomial with nonnegative coefficients in λ + 1 and µ + 1,
(−1)r(M)θM (−λ) = RM (λ,−1) is a polynomial with nonnegative coefficients in λ + 1 and
(−1)|M |−r(M)φM (−µ) = RM (−1, µ) is a polynomial with nonnegative coefficients in µ+ 1.

Remark. For all e, f ∈ E, ∂eEM (e, dc ) and ∂fEM (e, dc ) commute because both are set functions.
By substitution, this implies the commutativity of ∂eEM ((x)eµe,

λ
µ
d
c ) and ∂fEM ((x)eµe,

λ
µ
d
c ).

In particular, ∂eE0
M (e, dc ) and ∂fE0

M (e, dc ) as well as ∂
eE1

M (e, dc ) and ∂fE1
M (e, dc ) commute with

each other, as can also be seen by direct verification on all two element minors. ∂eE0
M (e, dc )
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and ∂fE1
M (e, dc ), however, do not commute, as can be seen on the only connected two element

matroid, a circle of length two.

With the help of the deleting contraction method we have already seen that the coefficients
of the Tutte polynomial TM (λ, µ) = RM (λ− 1, µ− 1) are nonnegative. In particular, this is true
for Crapo’s beta invariants (see [11] and [55], chapter 15.4)

β1(M) :=
∂

∂λ
TM (λ, µ)

∣

∣

∣

λ=µ=0
, β0(M) :=

∂

∂µ
TM (λ, µ)

∣

∣

∣

λ=µ=0
. (7.21)

We will study them in detail in the next section (in [20], β1(M) = β(M) and β0(M) = β∗(M)).
In this section, we show that their nonnegativity implies the nonnegativity of the coefficients of
the Tutte polynomial. For this purpose, we use the matroid power series

TM,λ,µ(e,
d

c ) :=
∑

∅⊂E′⊎D′⊎C′=E

TM\D′/C′(λ, µ) · eE
′
dD′

cC
′
, (7.22)

β1
M (e, dc ) :=

∑

∅⊂E′⊎D′⊎C′=E

β1(M\D′/C ′) · eE
′
dD′

cC
′
, (7.23)

β0
M (e, dc ) :=

∑

∅⊂E′⊎D′⊎C′=E

β0(M\D′/C ′) · eE
′
dD′

cC
′
, (7.24)

and get the following theorem proved in [29].

Theorem 8. We have

1 + TM,λ,µ(e,
d

c ) = exp[λE1
M (e, dc ) + EM (e,−d

c )] · exp[µE
0
M (e, dc )− EM (e,−d

c )]. (7.25)

Moreover, for every e ∈ E we have

∂eTM,λ,µ(e,
d

c ) = exp[λE1
M (e, dc ) + EM (e,−d

c )] ·

[λ∂eE1
M (e, dc ) + µ∂eE0

M (e, dc )] ·

exp[µE0
M (e, dc )− EM (e,−d

c )], (7.26)

∂eβ1
M (e, dc ) = exp[EM (e,−d

c )] · [∂
eE1

M (e, dc )] · exp[−EM (e,−d

c )], (7.27)

∂eβ0
M (e, dc ) = exp[EM (e,−d

c )] · [∂
eE0

M (e, dc )] · exp[−EM (e,−d

c )]. (7.28)

Remark. We have already remarked that for all e, f ∈ E, ∂eE0
M (e, dc ) and ∂fE0

M (e, dc ) as well as
∂eE1

M (e, dc ) and ∂fE1
M (e, dc ) commute with each other. Therefore, this is also true for ∂eβ0

M (e, dc )
and ∂fβ0

M (e, dc ) as well as for ∂
eβ1

M (e, dc ) and ∂fβ1
M (e, dc ).

Corollary 25. For every e ∈ E we have

exp[EM (e, dc )] · ∂
eβ1

M (−e,−d

c ) = ∂eE1
M (e, dc ) · exp[EM (e, dc )], (7.29)

−∂eβ1
M (e,−d

c ) · exp[EM (e, dc )] = exp[EM (e, dc )] · ∂
eE1

M (e, dc ), (7.30)

− exp[EM (e, dc )] · ∂
eβ0

M (−e,−d

c ) = ∂eE0
M (e, dc ) · exp[EM (e, dc )], (7.31)

∂eβ0
M (e,−d

c ) · exp[EM (e, dc )] = exp[EM (e, dc )] · ∂
eE0

M (e, dc ). (7.32)
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Let w : E → A be a fixed weight function and let

∂w :=
∑

e∈E

w(e)∂e (7.33)

be a linear combination of our partial derivatives ∂e. We have

∂w exp[µE0
M (e, dc )− EM (e,−d

c )] = [µ∂wE0
M (e, dc ) + ∂wE1

M (e, dc )− ∂wE0
M (e, dc )] ·

exp[µE0
M (e, dc )− EM (e,−d

c )] (7.34)

proving the following corollary.

Corollary 26. We have

∂wTM,λ,µ(e,
d

c ) = exp[λE1
M (e, dc ) + EM (e,−d

c )] ·

[(λ+ µ− λµ)∂wE0
M (e, dc ) + λ∂w] ·

exp[µE0
M (e, dc )− EM (e,−d

c )], (7.35)

∂wθM,−λ(e,−
d

c ) = exp[EM (e, λd

c )] ·

[(λ+ 1)(∂wE0
M (e, dc ) + ∂w)] ·

exp[EM (−e,−d

c )]. (7.36)

The first identity of our preceding corollary can be written down without using matroid power
series in the following way

w(E)TM (λ, µ) =
∑

E′⊆E

(λ−1)r(E)−r(E′)(µ−1)|E
′|−r(E′)[(λ+µ−λµ)w(E′\E′)+λw(E′)], (7.37)

where E′ is the closure of E′ and
w(E′) =

∑

e∈E′

w(e) (7.38)

its weight. This identity (generalizing results from [35, 36, 37]) is the most general formula
which Massey, Simion, Stanley, Vertigan, Welsh and Ziegler obtained in [38] (and proved on
more than two pages).

The Möbius inversion identities
(

exp[EM (e,−d

c )] · exp[−E
0
M (e, dc )]

)

· [1 +A∗M (e, dc )] = 1, (7.39)

[1 + S∗M (e, dc )] ·
(

exp[−E1
M (e, dc )] · exp[EM (−e,−d

c )]
)

= 1 (7.40)

inspire the following corollary.

Corollary 27. For every e ∈ E we have

(

exp[EM (e,−d

c )] · exp[−E
0
M (e, dc )]

)

· ∂eA∗M (e, dc ) = ∂eβ1
M (e, dc ), (7.41)

∂eS∗M (e, dc ) ·
(

exp[−E1
M (e, dc )] · exp[EM (−e,−d

c )]
)

= ∂eβ0
M (e, dc ). (7.42)
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We can also derive our tension polynomial (or characteristic polynomial)

∂e[1 + θM,−λ(e,−
d

c )] = exp[EM (e, λd

c )] · ∂
e[EM (e, λd

c ) + EM (−e,−d

c )] · exp[EM (−e,−d

c )]

= exp[EM (e, λd

c )] · exp[EM (−e,−d

c )] ·

exp[EM (e,−d

c )] · (λ+ 1)∂eE1
M (e, dc ) · exp[EM (−e,−d

c )]

= [1 + θM,−λ(e,−
d

c )] · (λ+ 1)∂eβ1
M (e, dc ) (7.43)

proving the following theorem established in [29] and [30], theorem 5.2.

Theorem 9. Differential Equations for Tensions and Flows. For every e ∈ E we have

∂e[1 + θM,−λ(e,−
d

c )] = [1 + θM,−λ(e,−
d

c )] · (λ+ 1)∂eβ1
M (e, dc ), (7.44)

∂e[1 + φM,−µ(−e,−
d

c )] = (µ+ 1)∂eβ0
M (e, dc ) · [1 + φM,−µ(−e,−

d

c )]. (7.45)

In particular, for λ = 0 and µ = 0 we have

∂e[1 +A∗M (e, dc )] = [1 +A∗M (e, dc )] · ∂
eβ1

M (e, dc ), (7.46)

∂e[1 + S∗M (e, dc )] = ∂eβ0
M (e, dc ) · [1 + S∗M (e, dc )]. (7.47)

Let f : 3M → A be a matroid function and let Mf (e,
d
c ) be its matroid power series. If

Mf (0e,
d
c ) = Mf (0,

d
c ) is equal to 0, that is f vanishes on all minors with empty support, then

[Mf (e,
d
c )]

k is a sum over set partitions into k nonempty blocks of support. There are k! ways
to choose the order of multiplication among them, and if, for reasons of commutativity, they all
give the same result, then [Mf (e,

d
c )]

k/k! is well defined for any commutative ring A, and instead
of calculating this average, we can also calculate one specific product of the k! possible ones. If
all elements of E are totally ordered, let us denote by ← (respectively →) the choice where the
minimal elements of the k blocks of support are increasing from right to left (respectively left
to right). If we sum over k, we get the operators

exp
←−

[Mf (e,
d

c )] and exp
−→

[Mf (e,
d

c )] (7.48)

(which coincide with exp in the case of commutativity, see [29, 30, 32]). They allow us to solve
the differential equations of the preceding theorem (see [29] and [30], theorem 5.2).

Theorem 10. We have

1 + θM,−λ(e,−
d

c ) = exp
←−

[(λ+ 1)β1
M (e, dc )], (7.49)

1 + φM,−µ(−e,−
d

c ) = exp
−→

[(µ+ 1)β0
M (e, dc )], (7.50)

1 +A∗M (e, dc ) = exp
←−

[β1
M (e, dc )], (7.51)

1 + S∗M (e, dc ) = exp
−→

[β0
M (e, dc )]. (7.52)

In particular, it follows that (−1)r(M)θM (−λ) is a polynomial with nonnegative coefficients in
λ+ 1 whereas (−1)|M |−r(M)φM (−µ) is a polynomial with nonnegative coefficients in µ+ 1.

Using the identity (5.29) we get theorem 3.13 of [20] proved there in beautiful and interesting
bijective ways.
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Theorem 11. (Gioan-Las Vergnas) For the Tutte polynomial we have

1 + TM,λ,µ(e,
d

c ) = exp
←−

[λ · β1
M (e, dc )] · exp−→

[µ · β0
M (e, dc )]. (7.53)

Motivated by geometry and inequalities, the following 4-variable transformation of the Tutte
polynomial was introduced in [4] :

tM (x, y, z, w) :=
(y + z)r(M)(x+ w)|M |−r(M)

x+ y
TM

(

x+ y

y + z
,
x+ y

x+ w

)

. (7.54)

If M is the empty matroid, however, tM (x, y, z, w) = 1
x+y . Therefore, it is natural to introduce

TM (x, y, z, w) := (y + z)r(M)(x+ w)|M |−r(M)TM

(

x+ y

y + z
,
x+ y

x+ w

)

= (x+ y)tM (x, y, z, w) (7.55)

as well as their matroid power series

tM,x,y,z,w(e,
d

c ) :=
∑

∅⊂E′⊎D′⊎C′=E

tM\D′/C′(x, y, z, w) · eE
′
dD′

cC
′
, (7.56)

TM,x,y,z,w(e,
d

c ) :=
∑

∅⊂E′⊎D′⊎C′=E

TM\D′/C′(x, y, z, w) · eE
′
dD′

cC
′
. (7.57)

Since TM (λ, µ) = RM (λ− 1, µ− 1), we have

1 + TM,x,y,z,w(e,
d

c ) = 1 + T
M,

x+y
y+z ,

x+y
x+w

((x+ w)e, y+z
x+w

d

c )

= exp[EM ((x+ w)e, x−z
x+w

d

c )] · exp[EM ((y − w)e, y+z
y−w

d

c )]

= exp[(x+ w)E0
M (e, dc ) + (x− z)E1

M (e, dc )] ·

exp[(y − w)E0
M (e, dc ) + (y + z)E1

M (e, dc )] (7.58)

implying the following propositions (in the same way as the first proposition of this section was
proved).

Proposition 7. For any e ∈ E, we have

TM (x, y, z, w) = (x+ y)TM\e(x, y, z, w) (7.59)

if e is a loop or a coloop and

TM (x, y, z, w) = (x+ w)TM\e(x, y, z, w) + (y + z)TM/e(x, y, z, w) (7.60)

otherwise. The same recurrence relations hold for tM (x, y, z, w), but the initialization is differ-
ent : TM (x, y, z, w) = 1 for the empty matroid whereas tM (x, y, z, w) = 1 for all one element
matroids.
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Proposition 8. We have

1 + TM,x,y,z,w(e,
d

c ) = exp[xEM (e, dc ) + wE0
M (e, dc )− zE1

M (e, dc )] ·

exp[yEM (e, dc )− wE0
M (e, dc ) + zE1

M (e, dc )], (7.61)

and for any e ∈ E, we have

∂e[1 + TM,x,y,z,w(e,
d

c )] = exp[xEM (e, dc ) + wE0
M (e, dc )− zE1

M (e, dc )] · (x+ y)∂eEM (e, dc ) ·

exp[yEM (e, dc )− wE0
M (e, dc ) + zE1

M (e, dc )], (7.62)

∂etM,x,y,z,w(e,
d

c ) = exp[xEM (e, dc ) + wE0
M (e, dc )− zE1

M (e, dc )] · ∂
eEM (e, dc ) ·

exp[yEM (e, dc )− wE0
M (e, dc ) + zE1

M (e, dc )]. (7.63)

Our last proposition as well as the fundamental lemma directly imply the following theorem.

Theorem 12. We have

1 + TM,x,y,z,w(e,
d

c ) = [1 + TM,x,0,z,w(e,
d

c )] · [1 + TM,0,y,z,w(e,
d

c )], (7.64)

and for every e ∈ E, we have

∂etM,x,y,z,w(e,
d

c )

= [1 + TM,x,0,z,w(e,
d

c )] · ∂
etM,0,0,z,w(e,

d

c ) · [1 + TM,0,y,z,w(e,
d

c )] (7.65)

= [1 + TM,x,0,z,w(e,
d

c )] · ∂
etM,0,y,z,w(e,

d

c ) (7.66)

= ∂etM,x,0,z,w(e,
d

c ) · [1 + TM,0,y,z,w(e,
d

c )], (7.67)

∂e[1 + TM,x,y,z,w(e,
d

c )]

= [1 + TM,x,0,z,w(e,
d

c )] · (x+ y)∂etM,0,0,z,w(e,
d

c ) · [1 + TM,0,y,z,w(e,
d

c )] (7.68)

= [1 + TM,x,0,z,w(e,
d

c )] · (x+ y)∂etM,0,y,z,w(e,
d

c ) (7.69)

= (x+ y)∂etM,x,0,z,w(e,
d

c ) · [1 + TM,0,y,z,w(e,
d

c )], (7.70)

and

∂e[1 + TM,x,0,z,w(e,
d

c )] = [1 + TM,x,0,z,w(e,
d

c )] · x∂
etM,0,0,z,w(e,

d

c ), (7.71)

∂e[1 + TM,0,y,z,w(e,
d

c )] = y∂etM,0,0,z,w(e,
d

c ) · [1 + TM,0,y,z,w(e,
d

c )]. (7.72)

Our identities (7.66) and (7.67) provide very short proofs of the lemma I.2 in [4]. Moreover,
we have

∂etM,0,0,z,w(e,
d

c )

= exp[EM (we,− z
w
d

c )] · ∂
e[1zE

1
M (we, z

w
d

c ) +
1
wE

0
M (we, z

w
d

c )] · exp[−EM (we,− z
w
d

c )]

= ∂e[1zβ
1
M (we, z

w
d

c ) +
1
wβ

0
M (we, z

w
d

c )]

=: ∂eβM,z,w(e,
d

c ), (7.73)

where the vary last equality is a definition. Our identities (7.71), (7.72), (7.64) and (7.65) prove
the following theorem.
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Theorem 13. We have

1 + TM,x,0,z,w(e,
d

c ) = exp
←−

[xβM,z,w(e,
d

c )], (7.74)

1 + TM,0,y,z,w(e,
d

c ) = exp
−→

[yβM,z,w(e,
d

c )], (7.75)

1 + TM,x,y,z,w(e,
d

c ) = exp
←−

[xβM,z,w(e,
d

c )] · exp−→
[yβM,z,w(e,

d

c )], (7.76)

∂etM,x,y,z,w(e,
d

c ) = exp
←−

[xβM,z,w(e,
d

c )] · ∂
eβM,z,w(e,

d

c ) · exp−→
[yβM,z,w(e,

d

c )]. (7.77)

8 Lie Algebra

Since the algebra of matroid power series A[M ] is not commutative, it is interesting to calculate
Lie brackets. The operator

ad∂eE0
M (e, dc ) : A[M ]→ A[M ] (8.1)

is classically defined by

ad∂eE0
M (e, dc )

(

Mf (e,
d

c )
)

:=
[

∂eE0
M (e, dc ),Mf (e,

d

c )
]

:= ∂eE0
M (e, dc ) ·Mf (e,

d

c )−Mf (e,
d

c ) · ∂
eE0

M (e, dc ) (8.2)

for every f : 3M → A. We use the notation

Mf0
e
(e, dc ) := ad∂eE0

M (e, dc )
(

Mf (e,
d

c )
)

. (8.3)

For all E′ ⊎D′ ⊎ C ′ = E we have

f0
e (M\D

′/C ′) = f(M\(D′ ∪ e)/C ′), (8.4)

if e ∈ E′ and e is neither a loop nor a coloop in M\D′/C ′ ;

f0
e (M\D

′/C ′) = f(M\(D′ ∪ e)/C ′)− f(M\D′/(C ′ ∪ e)), (8.5)

if e ∈ E′ is a loop in M\D′/C ′ (this value equals 0 if f : 3M → A depends only on the
isomorphism classes of matroids) ; and

f0
e (M\D

′/C ′) = 0 (8.6)

in all other cases. Similarly, we define

Mf1
e
(e, dc ) := −ad∂eE1

M (e, dc )
(

Mf (e,
d

c )
)

(8.7)

and have
f1
e (M\D

′/C ′) = f(M\D′/(C ′ ∪ e)), (8.8)

if e ∈ E′ and e is neither a loop nor a coloop in M\D′/C ′ ;

f1
e (M\D

′/C ′) = f(M\D′/(C ′ ∪ e))− f(M\(D′ ∪ e)/C ′), (8.9)

if e ∈ E′ is a coloop in M\D′/C ′ (this value equals 0 if f : 3M → A depends only on the
isomorphism classes of matroids) ; and

f1
e (M\D

′/C ′) = 0 (8.10)

in all other cases. We have proved the following proposition for Lie-monomials.
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Proposition 9. If E = {e1, . . . , en}, ε1, . . . , εn ∈ {0, 1}, M0 := M and for all i = 1, . . . , n

Mi :=

{

Mi−1\ei if εi = 0,
Mi−1/ei if εi = 1,

then we have

(−1)ε1ad∂e1Eε1
M (e, dc ) . . . (−1)

εn−1ad∂en−1E
εn−1

M (e, dc )
(

∂enEεn
M (e, dc )

)

= ε · eE , (8.11)

ε ∈ {0, 1}, where ε = 1 if and only if M0, M1, . . . , Mn−1 and Mn are connected matroids and
εn−1 6= εn (in the last step, a coloop must be contracted and a loop must be deleted, earlier they
cannot appear anyway if ε 6= 0).

We call a reduction of our matroid M as in the preceding proposition with ε = 1 a connected
eεnn -reduction. By linearity,

ad∂e1EM (e,−d

c )ad∂
e2EM (e,−d

c ) . . . ad∂
en−1EM (e,−d

c )
(

∂enEεn
M (e, dc )

)

(8.12)

counts the number of connected eεnn -reductions respecting a fixed order among the elements
e1, . . . , en−1. For any i, j ∈ {1, . . . , n}, however, ∂eiEM (e, dc ) and ∂ejEM (e, dc ) commute with
each other, because both are just set functions. By substitution, ∂eiEM (e,−d

c ) and ∂ejEM (e,−d
c )

commute as well, and by the Jacobi identity, also ad∂eiEM (e,−d
c ) and ad∂ejEM (e,−d

c ) commute
with each other. Therefore the number of connected eεnn -reductions is the same for any fixed
order among the elements e1, . . . , en−1 and, by linearity, it is also counted by

1

(n− 1)!

(

adEM (e,−d

c )
)n−1 (

∂enEεn
M (e, dc )

)

. (8.13)

We can now use [34], chapter 5.9, exercise 7 (see also chapter 5.10, exercise 1, as well as [8],
chapter II.6, exercise 1, and [43], lectures 5-6) in order to prove the following theorem.

Theorem 14. Let us fix e ∈ E. Then, for all minors of M and for any fixed order among the
elements of E\{e}

∂eβ1
M (e, dc ) = exp[EM (e,−d

c )] · [∂
eE1

M (e, dc )] · exp[−EM (e,−d

c )]

= exp[adEM (e,−d

c )][∂
eE1

M (e, dc )] (8.14)

counts the number of connected e1-reductions whereas

∂eβ0
M (e, dc ) = exp[EM (e,−d

c )] · [∂
eE0

M (e, dc )] · exp[−EM (e,−d

c )]

= exp[adEM (e,−d

c )][∂
eE0

M (e, dc )] (8.15)

counts the number of connected e0-reductions. Moreover,

∂e[β0
M (e, dc ) + β1

M (e, dc )] = exp[adEM (e,−d

c )][∂
eEM (e, dc )], (8.16)

∂e[β0
M (e, dc )− β1

M (e, dc )] = ∂eEM (e,−d

c ). (8.17)
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For any partition E = E′ ⊎D′ ⊎ C ′ and any matroid function f : 3M → A, the differential
operator

∂ :=
∑

e∈E

∂e (8.18)

multiplies the value of f(M\D′/C ′) by |E′|. In particular,

∂E1
M (e, dc ) = E1

M (e, dc ) and ∂E0
M (e, dc ) = E0

M (e, dc ). (8.19)

It gives us the following corollary.

Corollary 28. We have

∂β1
M (e, dc ) = exp[EM (e,−d

c )] · E
1
M (e, dc ) · exp[−EM (e,−d

c )]

= exp[adEM (e,−d

c )]E
1
M (e, dc ), (8.20)

∂β0
M (e, dc ) = exp[EM (e,−d

c )] · E
0
M (e, dc ) · exp[−EM (e,−d

c )]

= exp[adEM (e,−d

c )]E
0
M (e, dc ). (8.21)

Of course, it is always possible to make substitutions such as (e, dc )↔ (e,−d
c ). If we replace

(e, dc ) by (d′e, c′

d′
d
c ) and (e,−d

c ) by (d′e,− c′

d′
d
c ) then we see that every connected eε-reduction has

to contract r(M) elements of E and to delete |M | − r(M) ones.

The uniform matroid Uk,n is defined over a set of n elements. A subset of the elements is
independent if and only if it contains at most k elements. A subset is a basis if it has exactly k
elements, and it is a circuit if it has exactly k + 1 elements. The smallest connected matroids
(with at most four elements) are U1,2 (a circuit of length two or, equivalently, two parallel
edges), U1,3 (three parallel edges), U2,3 (a circuit of length three), U1,4 (four parallel edges), U2,4

(a matroid not graphic and not even binary), U3,4 (a circuit of length four) and W2 (a circuit of

length three with one edge doubled). Let U1,2
M (e, dc ), U

1,3
M (e, dc ), U

2,3
M (e, dc ), U

1,4
M (e, dc ), U

2,4
M (e, dc ),

U3,4
M (e, dc ) and W 2

M (e, dc ) be the indicator functions of U1,2, U1,3, U2,3, U1,4, U2,4, U3,4 and W2,

respectively (the matroid power series U1,2
M (e, dc ) takes the value 1 on all minors of M isomorphic

to U1,2 and the value 0 elsewhere).

Proposition 10. We have

[E0
M (e, dc ), E

1
M (e, dc )] = 2 · U1,2

M (e, dc ), (8.22)

[E0
M (e, dc ), U

1,2
M (e, dc )] = 3 · U1,3

M (e, dc ), (8.23)

[U1,2
M (e, dc ), E

1
M (e, dc )] = 3 · U2,3

M (e, dc ), (8.24)

[E0
M (e, dc ), U

1,3
M (e, dc )] = 4 · U1,4

M (e, dc ), (8.25)

[U2,3
M (e, dc ), E

1
M (e, dc )] = 4 · U3,4

M (e, dc ), (8.26)

[E0
M (e, dc ), U

2,3
M (e, dc )] = [U1,3

M (e, dc ), E
1
M (e, dc )]

= 4 · U2,4
M (e, dc ) + 2 ·W 2

M (e, dc ), (8.27)

and for all e, f, g ∈ E we have

[∂{e}E0
M (e, dc ), ∂

{f}E1
M (e, dc )] = ∂{e,f}U1,2

M (e, dc ), (8.28)

[∂{e}E0
M (e, dc ), ∂

{f,g}U1,2
M (e, dc )] = ∂{e,f,g}U1,3

M (e, dc ), (8.29)

[∂{f,g}U1,2
M (e, dc ), ∂

{e}E1
M (e, dc )] = ∂{e,f,g}U2,3

M (e, dc ). (8.30)
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Last but not least, we can use those concepts to define matroids axiomatically. Praematroids
can be defined by the properties

∂eE0
M (e, dc ), ∂

eE1
M (e, dc ) ≥ 0, (8.31)

∂eE0
M (e, dc ) + ∂eE1

M (e, dc ) = ∂eEM (e, dc ), (8.32)

[∂eE0
M (e, dc ), ∂

fE0
M (e, dc )] = [∂eE1

M (e, dc ), ∂
fE1

M (e, dc )] = 0, (8.33)

and for matroids we need the additional axiom

[∂eE0
M (e, dc ), ∂

fE1
M (e, dc )] ≥ 0. (8.34)

9 Orientations

Let us choose an orientation for every edge of our multigraph G = (V,E) (of course, there are
2|E| possible orientations of G). This orientation also defines an orientation for every minor
M ′ ∈ 3M , where M is the matroid corresponding to our multigraph G. An orientation is called
acyclic if and only if it does not contain an oriented cycle, and it is called totally cyclic or
strongly connected if and only if it does not contain an oriented cut. For every minor M ′ ∈ 3M ,
let us define ia(M ′) = 1 if our orientation of M ′ is acyclic and ia(M ′) = 0 if it contains an
oriented cycle. Dually, is(M ′) = 1 if our orientation of M ′ is strongly connected and is(M ′) = 0
if it contains an oriented cut. Then the indicator matroid power series of acyclic minors and
strongly connected minors are

IAM (e, dc ) :=
∑

∅⊂E′⊎D′⊎C′=E

ia(M\D′/C ′) · eE
′
dD′

cC
′
, (9.1)

ISM (e, dc ) :=
∑

∅⊂E′⊎D′⊎C′=E

is(M\D′/C ′) · eE
′
dD′

cC
′
, (9.2)

where the sums are taken over all partitions such that E′ 6= ∅ (D′ = ∅ or C ′ = ∅ is not excluded).
If we delete edges of an acyclic orientation, then the orientation remains acyclic (this is

not necessarily true for contractions). Dually, if we contract edges of a strongly connected
orientation, then the orientation remains strongly connected (this is not necessarily true for
deletions). By Minty’s lemma (see [3], chapter 2.1), every edge either belongs to an oriented
cycle or to an oriented cut, but not to both. If we want to get an acyclic orientation by
contractions, then we have to contract at least all egdes belonging to oriented cycles. If we want
to get a strongly connected orientation by deletions, then we have to delete at least all edges
belonging to oriented cuts. This observation is also true for all minors M ′ ∈ 3M and equivalent
to an axiomatic characterization of oriented matroids (generalizing oriented graphs) via the 3-
painting axiom, where the three colors correspond to edges deleted, contracted or conserved ([5],
theorem 3.4.4, Bland and Las Vergnas). It is equivalent to the following theorem.

Theorem 15. 3-painting axiom. For any oriented matroid M , we have

[1 + IAM (e, dc )] · [1 + ISM (e, dc )] = exp[EM (e, dc )]. (9.3)
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Remark. For oriented matroids [5], acyclic orientations are usually called topes or maximal
covectors, whereas covectors are acyclic orientations of minors obtained only by contractions
and minimal covectors also called cocircuits are oriented cuts.

Dually, totally cyclic or strongly connected orientations are called maximal vectors, whereas
vectors are totally cyclic orientations of minors obtained only by deletions and minimal vectors
also called circuits are oriented cycles.

For every minor M ′ ∈ 3M , let a(M ′) be the number of acyclic orientations of M ′ and let
s(M ′) be the number of strongly connected orientations of M ′. Their matroid power series are
definded by

AM (e, dc ) :=
∑

∅⊂E′⊎D′⊎C′=E

a(M\D′/C ′) · eE
′
dD′

cC
′
, (9.4)

SM (e, dc ) :=
∑

∅⊂E′⊎D′⊎C′=E

s(M\D′/C ′) · eE
′
dD′

cC
′
, (9.5)

where the sums are taken over all partitions such that E′ 6= ∅ (D′ = ∅ or C ′ = ∅ is not excluded).
If we sum up the identity of the 3-painting axiom over all orientations of our graph G (or all
reorientations of our oriented matroid M), then we get the following corollary of [29], chapter
5.4.

Corollary 29. For any oriented matroid M , we have

[1 +AM (e, dc )] · [1 + SM (e, dc )] = exp[EM (2e, dc )]. (9.6)

Let us suppose that the vertex set of our graph G = (V,E) is V = {1, . . . , n}, and let us
associate a variable xi to every vertex i ∈ {1, . . . , n}. It is natural to represent an edge between
the vertices i and j by the equation xi = xj of a hyperplane in R

n. An orientation of this
edge from i to j is represented by the inequality xi < xj , and an orientation of G is acyclic
if and only if the system of inequalities has solutions. If we consider the inequalities xi ≤ xj ,
then we get a convex cone in R

n. The boundary of this cone is defined by equalities in some
of our inequalities, and those equalities can be identified with contractions of the corresponding
edges of G. In other words, we can look at an acyclic orientation of G together with all graphs
obtained from G by contracting some edges such that our acyclic orientation remains acyclic.
Those graphs form a ranked partially ordered set corresponding to our cone. It is called the
Edmonds-Mandel or Las Vergnas face lattice ([5], definition 4.1.2). For topological reasons it
is evident that the Möbius function of this partially ordered set is given by −1 to the power
of rank difference. These observations naturally generalize to oriented matroids ([5], corollary
4.3.8) and allow us to prove the following theorem.

Theorem 16. For any oriented matroid M , we have

[1 + IAM (e,−d

c )] · [1 + IAM (e, dc )] = 1, (9.7)

[1 + ISM (−e,−d

c )] · [1 + ISM (e, dc )] = 1. (9.8)

Proof. If we apply the first identity to the dual oriented matroid, then we get the second identity.
Therefore it is sufficient to prove the first one.

If our orientation of M is not acyclic, then the second factor of our product must take care
of all edges belonging to directed cycles, because all those edges have to be contracted in order

37



to make the orientation acyclic for the first factor. In this case, however, the first factor deletes
only edges belonging to directed cuts, but this cannot make the orientation acyclic for the second
factor. In other words, the contribution is 0 if our orientation of M is not acyclic.

If our orientation ofM is acyclic, then it remains acyclic after all deletions of edges. Therefore
the second factor always contributes a multiplication by 1. The first factor, however, contributes
a multiplication by −1 to the power of rank difference if the contraction of some edges provides an
acyclic orientation. Otherwise, it contributes a multiplication by 0. Therefore the first identity
of our theorem reflects exactly the multiplication of the Möbius function with the zeta function
of the Edmonds-Mandel or Las Vergnas face lattice. This concludes our proof.

If we sum up the identities of the preceding theorem over all orientations of our graph G (or
all reorientations of our oriented matroid M), then we get the following corollary.

Corollary 30. For any oriented matroid M , we have

[1 +AM (e,−d

c )] · [1 +AM (e, dc )] = 1, (9.9)

[1 + SM (−e,−d

c )] · [1 + SM (e, dc )] = 1. (9.10)

Since [1+ IAM (e, dc )] and [1+ IAM (e,−d
c )], [1+ ISM (e, dc )] and [1+ ISM (−e,−d

c )] as well as
exp[EM (e, dc )] and exp[EM (−e, dc )] are inverse to each other, our preceding theorems also imply
the following one.

Theorem 17. For any oriented matroid M , we have

[1 + ISM (−e,−d

c )] · [1 + IAM (e,−d

c )] = exp[EM (−e, dc )], (9.11)

[1 + IAM (e,−d

c )] · exp[EM (e, dc )] = [1 + ISM (e, dc )], (9.12)

[1 + ISM (e, dc )] · exp[EM (−e, dc )] = [1 + IAM (e,−d

c )], (9.13)

exp[EM (e, dc )] · [1 + ISM (−e,−d

c )] = [1 + IAM (e, dc )], (9.14)

exp[EM (−e, dc )] · [1 + IAM (e, dc )] = [1 + ISM (−e,−d

c )]. (9.15)

For the special case of graphs, our last two identities can easily seen to be equivalent to the
identities (53) and (54) of [2], where the authors asked for additional proofs.

If we sum up the identities of the preceding theorem over all orientations of our graph G (or
all reorientations of our oriented matroid M), then we get the following corollary.

Corollary 31. For any oriented matroid M , we have

[1 + SM (−e,−d

c )] · [1 +AM (e,−d

c )] = exp[EM (−2e, dc )], (9.16)

[1 +AM (e,−d

c )] · exp[EM (2e, dc )] = [1 + SM (e, dc )], (9.17)

[1 + SM (e, dc )] · exp[EM (−2e, dc )] = [1 +AM (e,−d

c )], (9.18)

exp[EM (2e, dc )] · [1 + SM (−e,−d

c )] = [1 +AM (e, dc )], (9.19)

exp[EM (−2e, dc )] · [1 +AM (e, dc )] = [1 + SM (−e,−d

c )]. (9.20)

For the special case of graphs, our last identity can easily seen to be equivalent to the identity
(71) of [2], where the authors asked for additional proofs.

We have already considered a fixed acyclic orientation of our graph G = (V,E) in a geometric
way, but in the same way, we can consider all acyclic orientations of G together geometrically,
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as well as acyclic orientations of graphs obtained from G by contracting some edges. In this
way, we get a partially ordered set called the big face lattice, if we adjoin a top element 1. Once
again, for topological reasons it is evident that the Möbius function of this partially ordered
set is given by −1 to the power of rank difference. These observations naturally generalize to
oriented matroids ([5], corollary 4.3.8) and allow us to prove the following identity :

[1 +AM (e,−d

c )] · exp[EM (e, dc )]− exp[EM (e,−d

c )] = 0. (9.21)

This identity reflects the fact that the product of the Möbius function and the zeta function of
the big face lattice gives the value 0 for the maximal interval from 0 to 1. Here − exp[EM (e,−d

c )]
is the contribution of the Möbius function of this interval itself, whereas [1 + AM (e,−d

c )] gives
the Möbius function for all graphs or matroids obtained after some contractions.

Our preceding identity can also be considered for the dual matroid and proves the following
theorem.

Theorem 18. (Las Vergnas-Zaslavsky-Winder-Stanley-Cartier-Foata-Gessel-Viennot) For any
oriented matroid M , we have

1 +AM (e, dc ) = exp[EM (e, dc )] · exp[EM (−e,−d

c )] = 1 + θM,−1(e,−
d

c ), (9.22)

1 + SM (e, dc ) = exp[EM (e,−d

c )] · exp[EM (e, dc )] = 1 + φM,−1(−e,−
d

c ). (9.23)

Several versions of the preceding theorem can be found for matroids in [27, 28, 59, 60, 61]
as well as [5] (theorem 4.6.1) and [29] (chapter 5.4), for hyperplane arrangements in [57], and
for graphs in [49], [10] (théorème 2.4), [52] (proposition 5.1) and [30] (théorème 3.1).

Our preceding theorem implies all our preceding corollaries of this section, as well as the
following one.

Corollary 32. For any oriented matroid M , we have

[1 +AM (e,−d

c )] · exp[EM (e, dc )] = exp[EM (e,−d

c )], (9.24)

exp[EM (e, dc )] · [1 +AM (−e, dc )] = exp[EM (e,−d

c )], (9.25)

[1 + SM (−e, dc )] · exp[EM (e, dc )] = exp[EM (−e,−d

c )], (9.26)

exp[EM (e, dc )] · [1 + SM (−e,−d

c )] = exp[EM (−e,−d

c )], (9.27)

exp[EM (e, dc )] · [1 +AM (e, dc )] · exp[EM (−e,−d

c )] = 1 +AM (2e, dc ), (9.28)

exp[EM (e,−d

c )] · [1 + SM (e, dc )] · exp[EM (e, dc )] = 1 + SM (2e, dc ). (9.29)

We have already seen that the first identity of our corollary is equivalent to corollary 4.3.8 of
[5] if Y is the the top element 1. The second identity of our corollary is equivalent to corollary
4.3.10 of [5], see [15]. For the special case of graphs, the last identity of our corollary can easily
seen to be equivalent to the identity (70) of [2], where the authors asked for additional proofs.

Let us consider an arbitrary acyclic orientation and let us fix an element e ∈ E. If we
reorient e, then our orientation remains acyclic if and only if the contraction of e leaves it
acyclic. Otherwise, reorienting e provides a unique strongly connected component (maybe all
E) to which e belongs (3-painting axiom), and if we contract this component, our orientation
remains acyclic. Moreover, if we reorient not just e but the whole connected component, we get
another acyclic orientation in bijection with our initial one. Of course, all those considerations
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can also be dualized. Let ∂eIβ1
M (e, dc ) be the indicator matroid power series of acyclic minors

of M becoming totally cyclic be reorienting e. By definition, its value is 1 on minors of rank 1
with support e. Dually, let ∂eIβ0

M (e, dc ) be the indicator matroid power series of totally cyclic
minors of M becoming acyclic be reorienting e. By definition, its value is 1 on minors of rank 0
with support e. We have proved the following theorem.

Theorem 19. Differential Equations for Acyclic and Totally Cyclic Sets. For every
e ∈ E we have

∂e[1 + IAM (e, dc )] = [1 + IAM (e, dc )] · ∂
eIβ1

M (e, dc ), (9.30)

∂e[1 + ISM (e, dc )] = ∂eIβ0
M (e, dc ) · [1 + ISM (e, dc )]. (9.31)

If we sum the equations of the previous theorem over all reorientations, we obtain exactly the
equations (7.44) for λ = 1 and (7.45) for µ = 1. Therefore, we get exactly Crapo’s β invariants
and the following theorem.

Theorem 20. Differential Equations for Acyclic and Totally Cyclic Orientations. For
every e ∈ E we have

∂e[1 +AM (e, dc )] = [1 +AM (e, dc )] · 2∂
eβ1

M (e, dc ), (9.32)

∂e[1 + SM (e, dc )] = 2∂eβ0
M (e, dc ) · [1 + SM (e, dc )]. (9.33)

In particular, for oriented matroids with at least two elements, Crapo’s β invariants β1(M) and
β0(M) both count the number of orientations switching between acyclic and totally cyclic by
reorienting a single edge e.
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