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Abstract:   

The processing of porous architectures based on Layered Double Hydroxides (LDH) is 

reviewed. Especially, a focus was put on porosity in nm and m ranges that can be prepared via 

various post-treatments and templating techniques for the enhancement of the original properties. A 

challenge toward the desired porosity is control of structural ordering as well as crystal growth of 

LDH. The present review paper is mainly dedicated to summarizing the synthetic approaches to 

access the porous LDH that have found a wide range of applications such as adsorption/environment 

purification, catalysis, energy storage & production and bio-applications.   
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1. Introduction  

Inorganic porous materials have been employed in a wide range of applications, including 

catalysis, separation, energy storage, biomedical engineering. While amorphous materials with 

porosity are simply used as supports to load/accommodate functional centers, constructing porous 

textures with functional crystals can bring about further possibilities towards advanced 

applications.(Brezesinski et al., 2010; Crossland et al., 2013) The introduction of porosity into LDH, 

as a class of functional crystalline materials, has attracted attention in this context. Original features 

of LDH crystals can be further enhanced by introducing unique porosity thanks to increased surface 

area and better molecular/ion diffusion. In principle, nano/macrostructuration of crystalline 

materials is harder to achieve compared to that of amorphous counterpart, due to uncontrollable 

crystal growth which can disturb structural ordering, and/or structural deformation upon post 

treatments to compensate incompletion of crystallization.(Inagaki et al., 2002) Precipitation of 

aggregated particles typically form rather than homogeneous gels for crystalline LDH platelets. 

Controlling structural ordering as well as crystal growth of LDH is key to accomplish the synthesis 

of porous LDH.(Prevot and Tokudome, 2017)  

 This review paper overviews the synthesis and applications of LDH with various types of 

porous architectures. First, the main synthesis methods of LDH with porous architectures are 

reviewed, covering diverse pore-size scales from atomic/ionic, through nanometer, to micrometer, 

with shapes of films, powders, and monoliths. The representative synthesis methods for the porous 

LDHs include (1) Introduction of Textural porosity, (2) Post-treatment, (3) Sacrificial Templating, 

(4) Soft Templating, (5) Composited (supported) LDH Synthesis (Fig. 1). A primitive porous 

structure of crystalline materials is formed as interstices of crystal platelets, textual porosity. 

Post-treatment, for example, drying processes, such as spray drying and supercritical drying, are 
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applied to modify the particle aggregation and thereby control textual porosity. Toward better 

structural ordering of porous LDH, sophisticated templating techniques of Sacrificial Templating 

and Soft Templating have been developed, inspired by silica-based sol-gel chemistry. Recently, 

especially due to the requirement of LDH modification on electrodes, synthesis of LDH on porous 

conductive supports has drawn increasing attention. This type of Porous LDH based Composites is 

also closely described. Then, various applications taking advantage of these unique porous features 

are briefly envisaged. Special attention is paid to applications of (1) Adsorption and environment 

purification, (2) Catalysis, (3) Energy storage & production, (4) Bio-applications.  

 

Fig. 1. Schematic illustration showing representative synthesis methods and applications of porous 

LDH 

 

2. Synthesis approaches for porous LDH  
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  2.1 Introduction of Textual porosity 

  

 Porosity in crystalline materials is often introduced as interstices of crystal platelets. 

Starting from metal salts dissolved in an aqueous solvent, the occurrence of crystallization 

accompanies with aggregation of grown crystal platelets to form porosity. This type of textual 

porosity is the most primitive and widely employed to achieve porous LDH materials with a large 

surface area. Typical conditions for the precipitation of LDH (at high ionic strength and/or at pH 

nearby isoelectric point) preferably form LDH aggregates with a textual porosity. The choice of 

alkalization agents (NaOH, Na2CO3, NH4OH, urea, hexamethylenetetramine (HMT), propylene 

oxide (PO), glycidol) is primarily important to control the textual porosity. Co-precipitation by the 

addition of metal salt solutions to basic media, such as NaOH and Na2CO3 (Duan and Evans, 2006) 

and homogeneous precipitation by thermal hydrolysis of urea, known as “the urea 

method”(Costantino et al., 1998), are especially well-established. Textural pores obtained through 

the latter route tend to be larger than the one prepared with the former route due to the larger 

crystallite size (Fig. 2). The hydrolysis of urea is normally driven by heating, whereas enzymatic 

hydrolysis of urea is also reported as a unique scheme affording different textural properties thanks 

to lower reaction temperature.(Vial et al., 2006) Epoxides, such as propylene oxide and glycidol are 

reportedly advantageous to precipitate LDH without the inclusion atmospheric CO2, allowing for 

chloride-intercalated LDH.(Oestreicher and Jobbágy, 2013) Since epoxide molecules are miscible 

to water and can be introduced to a reaction system at a large content, a high degree of 

supersaturation is achieved to allow the nanocrystallization of hydroxides.(Gash et al., 2001) Thus 

formed nanometric hydroxides are advantageous to prepare hierarchically porous LDHs as 

described in the section of 2.4 Soft-Templating.(Tokudome et al., 2013) Additional important 

factors to define the textual porosity are choices of metal cations and counter anions employed for 

the synthesis of LDH. For example, substitution of divalent and trivalent cations in Mg-Al LDH 
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both influences on the textural properties of the resultant materials.(Carja et al., 2001; 

Triantafyllidis et al., 2010) 

  
Fig. 2. A typical macroscopic texture of LDH aggregates obtained by the urea method. Reproduced 

from Ref. (Costantino et al., 1998) with permission from John Wiley and Sons. 

 

 

 Hydrothermal reaction in the presence of urea as an alkalization agent also forms LDH 

with unique textural porosities, where high temperature and high pressure afford to yield LDH with 

relatively high purity. (Li et al., 2016; Song et al., 2012; Zhou et al., 2011a) Using non-aqueous 

polar solvents, such as methanol, ethylene glycol, N,N-dimethylformamide (DMF), and propanol 

are promising options for solvothermal synthesis to yield LDH with a textural porosity.(Gunawan 

and Xu, 2008; Tarutani et al., 2014; Yin et al., 2018) The respective reaction steps of nucleation, 

crystal growth, and aggregation of crystallites can be further tuned by applying sonication(Ni et al., 

2010) and/or adding chelating agents such as ethylene glycol and glycine.(Faour et al., 2012; Prevot 

et al., 2009) It was reported that chelating agent can impart dispersion stability of nano LDH 

crystals to form concentrated colloidal dispersion of LDH and layered hydroxide salts 

(LHS).(Tarutani et al., 2016; Tokudome et al., 2016b) The high dispersion stability allows us 

further nanostructuration of the formation of mesoporous structures as discussed in section 2.4 
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Soft-templating. An attracting aspect of hydrothermal and solvothermal reactions is that complex 

reactions can be successfully designed. For example, solvothermal synthesis is favored for the 

synthesis of graphene-based composites because alcohols work as reductants for graphene during 

the crystallization of LDH.(Dreyer et al., 2011) As a more complex reaction, Kiran et al reported 

that a hydrothermal reaction leads to the reduction of graphene oxide and removal of silica template 

as well as the crystallization of LDH to form Ni-Co LDH@rGO with a textured porosity.(Karthik 

Kiran et al., 2019) This type of composite synthesis of LDH-based material is closely described in 

2.5 Synthesis of porous LDH based Composites. 

 Apart from the bottom-up techniques from metal salt solutions mentioned above, 

assembling exfoliated nanosheets is another promising way to form textural porosity with a higher 

specific surface area. A critical drawback of using exfoliated nanosheets is the occurrence of 

ab-face restacking upon solvent drying. Even though each exfoliated nanosheet presents atomic 

scale thickness, the restacking results in a drastic decrease of specific surface which is accessible by 

gas molecules. O’Hare group has developed a strategy to avoid restacking with a technique named   

aqueous miscible organic solvent treatment (AMOST).(Chen et al., 2015; Wang and O’hare, 2013) 

Where, LDH are initially prepared using a conventional coprecipitation approach but before final 

isolation by drying the solid is re-dispersed in an AMO solvent. This process allows to form a 

disordered card-house structure of LDH with a high porosity with a surface area > 350 m
2
/g with 

remaining a high pore volume. Such exfoliated nanosheets have been used as building-units for 

compositing and functionalizing LDH as well as introducing porosity.(Yu et al., 2017) 

2.2 Post-treatment 

LDH are known to crystallize as platelet anisotropic particles and associate into a state of 

dense packing to form so-called stone-like aggregations. Stone-like aggregations are dense products 

with small pore volume as a result of face-to-face contact of platelets. Post-treatments, such as 
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controlled drying, recrystallization by hydrothermal and solvothermal treatments, and 

calcination/rehydration, are promising strategies to hinder face-to-face association and introduce 

porosity to the LDH-based materials (Table1).  

 

Table 1. Pore characteristics of LDH -based materials after specific post-treatments. 

Post-treatment 

Particle 

size 

/ nm 

Pore 

diameter 

/ nm 

Specific surface 

area 

/ m
2
 g

−1
 

Pore volume 

/ cm
3
 g

−1
 

Ref 

Spray drying 

20−200 87.9 43 1.29 
(Wang et 

al., 2008) 

30−100  72  
(Prevot et 

al., 2011b) 

100−400  49−101  
(Julklang et 

al., 2017) 

 6.16 20  
(Silva et al., 

2019) 

Freeze drying 

 4.08 100 0.15 
(Manohara, 

2014) 

61.1, 64.9 
a
  154, 137  

(Moriyama 

et al., 2016) 

~ 30 7−19 52−97 0.11−0.28 
(Liu et al., 

2019) 

 11.4 22  
(Silva et al., 

2019) 

7.1 25.6 117  
(Tao et al., 

2022) 

63.8 3.80 105 0.112 
(Fang et al., 

2022) 

Supercritical 

drying 

2−20  533−765  
(Choudary 

et al., 2005) 

21−145  53−356 0.34−1.67 
(Touati et 

al., 2012) 

 15.5−53.2 380−502 1.40−4.27 
(Tokudome 

et al., 



8 

 

a
 The values represent crystallite sizes

 

 Drying process determines textural pore characteristics of LDH-based materials because 

as-synthesized LDH are dispersed in a reaction solution and required to be separated from the 

solvent. In the case of spray drying, colloids and suspensions containing LDHs are atomized into 

microdroplets in the drying chamber, which allow evaporation in sub-second timescale. Such a 

rapid evaporation prevents dense packing of building block LDH particles, which leads to the 

formation of relatively large textural pores. F. Zhang et al. reported to synthesis LDH microparticles 

2016a) 

~ 10 43.6 306 5.3 

(Takemoto 

et al., 

2020b) 

Hydro/Solvotherm

al treatment 

250 4−5 232  
(Jia et al., 

2020) 

> 15 3.97−41.7 17−300 0.24−0.35 
(Song et al., 

2012) 

6.8−17.7 
a
 7.3−16.8 184−415 0.42−1.24 

(Tarutani et 

al., 2014) 

13 

(thickness) 

> 300 

6.1−12.6 46−155 0.29−0.47 
(Zhang et 

al., 2022) 

10−15 

(thickness) 
 70  

(Wu et al., 

2020b) 

 3.8 230  
(Liao et al., 

2022) 

30 

(thickness), 

600 

5−10 27 0.12 
(Li et al., 

2020a) 

 21, 24 56, 53 0.28, 0.29 
(Liu et al., 

2022) 

Calcination-rehydr

ation 

336, 419 20.7, 20.3 56, 66  
(Kim et al., 

2018) 

8.6−20.2
 a 

  5−204   
(Xu et al., 

2023) 

  3.3−16.4 26−112 0.03−0.33 
(Barros et 

al., 2022) 
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with textual porosity by spray drying.(Wang et al., 2008). The morphology, surface structures, 

porous structures of microparticles are controllable by changing processing conditions, such as 

drying temperature, gas flow rate, and sample concentration. (Julklang et al., 2017; Tarutani et al., 

2019a)  

Freeze drying is another approach to produce porous materials. Freezing and sublimation 

of the solvent (typically H2O) of LDH dispersed solution prevent association of particles and leave 

macropores. Freeze drying applied to LDH materials was first reported by C. Forano et al. to 

prevent restacking of exfoliated LDH nanosheets.(Leroux et al., 2001) The feature of freeze dried 

LDH materials is a fluffy texture with discrete particles resulting from minimized surface 

tension.(El Hassani et al., 2019; Intasa-Ard et al., 2019; Moriyama et al., 2016) Compared with 

conventional thermal drying, freeze dried LDH showed expansion of basal spacing (~ 0.20 Å), 

which may result in the elimination of interlayer water molecules.(Moriyama et al., 2016)  

Supercritical drying allows materials to dry without any surface tension, which is a 

promising way to avoid shrinking completely. Owing to this feature, the supercritical dried LDH 

materials showed significantly high specific surface area when nanocrystals are employed as 

building blocks. Prevot et al. first reported preparation of porous LDH materials by supercritical 

dying.(Touati et al., 2012) Nanoparticulate LDH with various chemical compositions were 

synthesized by fast precipitation and supercritical dried. Resultantly obtained aerogels showed a 

large specific surface area, 356 m
2
/g, and a pore volume, 1.67 cm

3
/g, at maximum. As another 

example, Tokudome and Kanamori et al. reported supercritical dried transparent LDH aerogel 

monolith with a high structural homogeneity showing specific surface area of 306 m
2
/g by using ~ 

10 nm sized LDH nanocrystals (Fig. 3).(Takemoto et al., 2020b) The relatively large pores (43.6 

nm) are formed as a result of the formation of a network of secondary particles. 
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Fig. 3. a) TEM image and (b) N2 adsorption–desorption isotherm of the Ni–Al LDH aerogel. Inset 

of (b) shows the cumulative pore volume (Vp) and pore size distribution (dVp/d(log dp)) calculated 

by the Barrett–Joyner–Halenda method using the adsorption branch. (c) SEM image of the Ni–Al 

LDH aerogel monolith. (d) Schematic illustration of a solid gel network of Ni–Al LDH aerogel. 

Reproduced from Ref. (Takemoto et al., 2020b) with permission from ACS publications. 

 

Hydrothermal and solvothermal treatments are employed as a post and additional step to 

assure better crystallization, leading to particle growth through the dissolution-recrystallization 

mechanism,(Song et al., 2012; Xu et al., 2006) and leaving pores as particle interstices. For example, 

it is reported that the crystallite size of LDHs increased from 6.8 nm to 17.7 nm after solvothermal 

treatment at 180 ºC, which increased mesopore size from 8.5 nm to 16.8 nm.(Tarutani et al., 2014)  

Calcination and rehydration treatment is an additional effective process to introduce pores 

to LDH materials.(Li et al., 2005; Othman et al., 2006) It is well understood that LDH form mixed 

metal oxides by heat treatment at the appropriate temperatures (300−600 ºC). Dehydration, 

deintercalation of anions during heat treatment, lead to the deformation of the layered structure and 
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meso-scale pores. These pores are maintained even after rehydration and increase specific surface 

area of rehydrated LDH materials.(Kim et al., 2018)  

2.3 Hard Sacrificial Templating  

  The sacrificial hard template methods have proven to be very suitable for the preparation 

of different kinds of hollow structured nanomaterials, promising when compared to bulk materials. 

In the case of LDH, two main strategies can be distinguished: i) the use of hard sacrificial templates 

which only play the role of support for LDH formation or deposition and are then completely 

removed to release the porosity and ii) the possibility of involving precursor materials which can act 

both as hard template to induce the LDH nanostructuring and shell formation, and as a sacrificial 

reservoir of precursors which is progressively consumed to form the hollow shell.  

 Concerning the first strategy, special attention should be given to two main aspects 

regarding the porous LDH synthesis, 1) firstly by exploring appropriate reaction conditions 

including reactants, solvent, precipitant agent, concentrations and temperature; and 2) ensuring for 

the resultant network of 2D LDH platelets with an appropriate rigidity to avoid the collapse of the 

porous LDH phase during the removal of the template. Spherical materials are frequently used as a 

sacrificial template; the deposition of LDH being carried out either by the self-assembly of 

preformed LDH nanoparticles or by in-situ coprecipitation on the surface. To perform the in-situ 

coprecipitation of LDH, adapted synthetic methods already reported for standard LDH synthesis 

(Forano et al., 2013) are carried out such as, classical coprecipitation in presence of basic agent, 

coprecipitation using retardant base (urea, HMT…), electrosynthesis through the nitrate reduction, 

or induced hydrolysis (Table 2). At the end of the process, the template spheres are removed 

according to their nature by either dissolution or combustion, resulting in an LDH porous structure. 

Interestingly, when the sacrificial template is removed by calcination at a moderate temperature, the 

derived layered mixed oxides formed can be to a certain extent regenerated in LDH structure by 

simple rehydration.  
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 Uniform polymer beads, easily prepared in a wide range of sizes and commercially 

available, are probably the most common colloidal particles used as a hard template. Hollow 

capsules of LDH can be prepared using polystyrene (PS) beads (Dp = 1.3 m) (Li et al., 2006) and 

the so-called layer-by-layer (LbL) assembly technique, initially developed by Decher and 

coworkers (Decher, 1997) to form uniform polymer films through the sequential adsorption of 

polyanions and polycations. In the case of LDH/PS core-shell particles, they are formed by 20 

alternate depositions of exfoliated Mg-Al LDH nanosheets and poly(sodium 4-styrene sulfonate) 

(PSS) onto PS spheres. The self-assembly was driven by electrostatic interaction between the 

positively charged LDH sheets and the latex beads leading to the formation of the 3D nanostructure. 

Hollow LDH capsules were subsequently obtained (Fig. 4A) after the removal of the PS core and 

the PSS polyanion by controlled calcination at 500 °C and exposure to humid air. It is also possible 

to obtain thin-walled macroporous honecomb nanostructures of LDH or derived mixed oxides by 

performing a direct coprecipitation in the presence of polymer beads followed by calcination.(Pan et 

al., 2020; Woodford et al., 2012)  

 In using well-organized colloidal crystal made of PS beads, three-dimensionally ordered 

macroporous (3- DOM) LDH with interconnected pores were prepared by filling the voids into the 

array. The wetting interactions during the infiltration were key to favoring the ordered macroporous 

morphology.(Géraud et al., 2006; Géraud et al., 2008; Martin et al., 2016; Mostajeran et al., 2017; 

Prevot et al., 2011a; Tokudome et al., 2016b) Different approaches were successfully described (Fig. 

4) to introduce LDH into voids of the array such as coprecipitation by successive impregnations, 

electrogeneration or infiltration of nanoparticles. It is noteworthy that the properties of such 

interconnected macroporous networks can be easily tuned by modifying the initial diameter and 

surface of the PS beads.  
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Fig. 4. Macroporous structures obtained in using polymer spheres as hard sacrificial template and 

A) LDH LbL deposition, B) LDH confined coprecipitation, C) LDH electrodeposition and D) LDH 

nanocluster infiltration. Reproduced from Ref. (Li et al., 2006; Prevot et al., 2011a) with permission 

from the Royal Society of Chemistry. Adapted with permission from (Géraud et al., 2008)Copyright 

(2016) American Chemical Society. 

 

 Monodisperse silica spheres, carbon microspheres, and hollow carbon microspheres have 

also been extensively used as sacrificial templates, silica being dissolved at basic pH while carbon 

spheres can be easily removed by calcination. Shao and co-authors reported that high alkaline 

conditions must be guaranteed to promote the complete dissolution of the silica core and 

preparation of hollow LDH microspheres. For intermediate basic conditions, LDH microspheres 

with various interior architectures were produced such as yolk-shell and core-shell 

architectures.(Shao et al., 2012) Usually, the LDH phase is associated to these sacrificial templates 

following similar strategies as previously described for polymer microspheres. However, in order to 

further promote the direct growth of LDH shell on the surface of the template, a thin layer of 

AlOOH can be deposited on the surface of the template which acts as a source of Al
3+

. Moreover, 

silica beads have also made it possible, in the presence of resorcinol-formaldehyde and melanin, to 

synthesize carbon hollow microspheres enriched in nitrogen, capable of producing carbon/LDH 

composites exhibiting high electrochemical performance .(Xu et al., 2014)  
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 Table 2 gathered the main hard sacrificial templates and the associated LDH deposition 

methods reported in the literature to prepare porous LDH phases.  

 

Table 2 Porous LDH obtained by sacrificial templating approach. 

Sacrificial 

template 

LDH composition Method Removal technique Ref 

PS spheres 

1.3 m 

MgAl- Layer-by-layer Calcination 480°C 4h (Li et al., 

2006) 

PS spheres 

1.0 m 

MgAl Layer-by-layer Dissolution in 

tetrahydrofuran 

(Katagiri et 

al., 2018) 

PS spheres 

350 nm 

MgAl- Coprecipitation Calcination 450°C 

15h 

(Woodford 

et al., 2012) 

PS spheres 

0.6-1.6 m 

CoFe- Coprecipitation Calcination 700°C 4h (Zhang et 

al., 2010) 

Hollow Polymer 

spheres 

NiAl Coprecipitation Calcination 300°C 5h (Pan et al., 

2020) 

PS Colloidal 

crystal 

NiAl- Nanoparticles 

infiltration 

Dissolution in 

chloroform 

(Tokudome 

et al., 

2016b) 

PS Colloidal 

crystal 

NiAl- Electrosynthesis Dissolution 

In toluene 

(Martin et 

al., 2016; 

Prevot et 

al., 2011a) 

PS Colloidal 

crystal 

MgAl, 

NiAl, CoAl, ZnAl, 

ZnCr, MgFeAl, 

MgCoAl, 

Successive 

impregnation 

Calcination 450°C 4h  

or dissolution in 

toluene 

(Abolghase

mi and 

Yousefi, 

2014; Da 

Silva et al., 

2014; 

Géraud et 

al., 2006; 

Géraud et 

al., 2008; 

Halma et 

al., 2009) 

SiO2/AlOOH MgAl-, NiAl Urea induced 

hydrolysis 

Basic dissolution 

Urea, 100°C, 48h 

(Shao et al., 

2012) 

SiO2 

250 nm 

NiFe- 

CoFe-CoNi- 

NiAl- 

In-situ 

co-precipitation 

Dissolution HMT, 

120°C, 24h 

(Zhang et 

al., 2016)  

SiO2 NiCo- 

NiMn- 

In-situ 

coprecipitation 

Dissolution 

0.5M KOH, 1h 

(Li et al., 

2017) 

SiO2/g-C3N4/Al

OOH 

NiAl- Urea induced 

hydrolysis 

Basic dissolution 

Urea, 100°C, 24h 

(Shi et al., 

2020a) 

SiO2/Carbon 

Hollow 

NiAl- Urea induced 

hydrolysis 

Etch process, 2M 

NaOH , 85°C, 12h 

(Xu et al., 

2014) 
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microspheres  

Carbon 

microspheres 

MgAl- Nanoparticles 

Self-assembly  

Calcination, 500°C, 

3h 

(Gunawan 

and Xu, 

2009) 

Carbon 

microsphere 

ZnAl- Nanoparticles 

Self-assembly 

Calcination, 500°C, 

3h 

(Lyu et al., 

2020) 

Carbon 

microsphere 

Mg2NiAl- Nanoparticles 

Self-assembly 

Calcination, 450°C, 

3h 

(Zhang et 

al., 2019)  

 

 In parallel, the second strategy of hard sacrificial template mainly involves the template 

etching of metal-organic frameworks (MOF) to prepare 3D non-spherical LDH hollow structures of 

great interest for applications in energy storage and conversion. MOF are crystalline materials, 

constructed from a variety of metal centers and polydentate organic ligands. In this strategy, MOFs 

act as both support and metal cation source, mainly Co
2+

 and Zn
2+

 for the precipitation of the LDH 

phase shell. The general process is based on the simultaneous acidic etching of the sacrificial MOF 

core and hydrolysis/oxidation of metal ions leading to the precipitation of the corresponding LDH 

shell. Interestingly, this method is simple to carry out and the final step corresponding to the temple 

removal is not necessary, which prevents possible damage to the hollow structures. Zeolitic 

imidazolate frameworks (ZIF) were mainly involved in the preparation of various hollow LDH 

structures such as dodecahedral nanocages. (Table 3).  

 

Table 3 Different LDH phases obtained using MOF as sacrificial template. 

LDH phase Hollow 

nanostructrue

s 

Sacrificial 

MOF 

Conversion conditions Ref 

NiCo-LDH 

MgCo-LDH 

Rhombic 

dodecahedral 

nanocages 

ZIF-67 Reflux1h in ethanol containing 

Mg
2+

 or Ni
2+

 nitrates 

(Jiang et 

al., 2013) 

NiCo-LDH Nanoparticles-

Nanoflakes 

ZIF-8 Ni(NO3)2/Co(NO3)2  in 

methanol solution 24h then 

transferred into 1M NaOH 

(Yu et 

al., 

2016a) 

NiCo-LDH Rhombic 

dodecahedral 

nanocages 

ZIF-67 Solvothermal treatment 120°C, 

2h in ethanol containing 

Ni(NO3)2 

(Yilmaz 

et al., 

2017) 

NiFe Polyhedrons MIL-88A Ethanol/water solution 

containing Ni(NO3)2 and urea 

(Zhang 

et al., 
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2018a)  

NiCo-LDH Dodecahedron ZIF-67 Solvothermal treatment 90°C 2h 

in ethanol containing Ni
2+

 

nitrates 

(Zhou et 

al., 2019)  

NiCo-LDH Dodecahedron ZIF-67 Ethanol containing Ni(NO3)2 

ultrasonication 45 min 

(Hu et 

al., 2019)  

NiCo-LDH Hollow 

nanocages in 

hollow sphere 

ZIF-67 Solvothermal treatment 90°C 1h, 

in ethanol with Ni(NO3)2 

(Lee et 

al., 2019) 

NiCo- Microsphere [Ni3(OH)(Ina

)3(BCD)1.5]* 

KOH 1M 6h (Xiao et 

al., 2019)  

 Tube MoO3@ZIF-

67 

Solvothermal treatment 90°C 4h 

in methanol with Ni(NO3)2 

(Chen et 

al., 2020) 

Fe-Co-Ni 

LDH 

Nanocages ZIF-67 Solvothermal treatment 80°C 1h 

in ethanol containing Fe
3+

 and 

Ni
2+

 nitrates  

(Zhang 

et al., 

2020c) 

NiFe-LDH Flowerlike MIL-100 Ni(NO3)2 in water with urea, 

hydrothermal treatment 120°C, 

12h 

(Shi et 

al., 

2020b)  

*BDC 1,4- benzenedicarboxylate; Ina : isonoctinate 

  

Typically, the NiCo LDH phase is formed through the gradual etching of ZIF-67, possible partial 

oxidation of the Co
2+

, hydrolysis of the metal nitrate in solution and subsequent coprecipitation of 

Ni
2+

 with Co
2+

/Co
3+

. Thanks to an intermediate pyrolysis step at 400°C of the ZIF-67 and 

sulfurization of the C/LDH formed, NiCo-LDH/Co9S8 hollow structure was constructed as shown in 

Fig. 5. retaining the original shape of the sacrificial template. CoNi-LDH hollow porous structures 

can also be used to generate CoP and Ni2P nanoheterostructures implanted in hollow porous 

N-doped polyhedrons.(Yilmaz et al., 2017)  
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Fig. 5. Schematic illustration for the synthesis process of hollow NiCo-LDH/Co9S8. SEM images of 

b) ZIF-67-C, c) C/LDH, and d) C/LDH/S polyhedrons. TEM images of e) ZIF-67-C, f) C/LDH, and 

g) C/LDH/S polyhedrons. Reproduced from Ref.(Yilmaz et al., 2017) with permission from Wiley 

 

 

 It should be underlined that not only MOF can act as sacrificial template precursors. 

Following a similar approach nickel nanoprism precursor was also successfully involved in the 

synthesis of NiFe LDH hollow tetragonal nanoprisms coprecipitated through hydrolysis of iron(II) 

sulfate solution and dissolution of the inner core (Yu et al., 2018) while hollow NiFe nanospheres 

were synthesized via the transformation in mild hydrothermal conditions of Ni(OH)2 nanospheres in 

presence of Fe
3+

.(Jia et al., 2020) 

 

2.4 Soft-templating  
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 Kuroda and coworkers reported the synthesis of mesoporous silica with a uniform pore size 

distribution from layered polysilicate, Kanemite in 1990.(Yanagisawa et al., 1990) In the same year 

of a patent application filed, Mobil’s group also reported mesoporous silica and aluminosilicate, 

M41S family.(Kresge et al., 1992) Since these innovative works, soft templating, especially known 

as liquid crystal templating, has been widely adopted to prepare mesoporous materials in 

alkoxide-derived sol–gel systems. Micelles of amphiphilic organic molecules (surfactants and water 

soluble polymers) are used to template well-defined mesoporous structures. Cooperative 

self-assembly of organic templates and inorganic precursors form organized architectures in 

mesoscale and subsequent removal of organic templates by extraction or calcination leave 

well-defined porous structures. The structure of the meso-phase depends on the packing properties 

of the surfactant molecules, and thereby the structure of mesopores obtained by soft templating is 

highly tunable by the nature of the surfactant and composition of the starting mixture.(Soler-Illia et 

al., 2002)  

 The synthesis of mesoporous materials with a crystalline wall, including mesoporous 

LDHs, is rather difficult to achieve compared to the ones with an amorphous wall. Micelles 

represent colloidal dispersions with a particle size normally within 5–100 nm range,(Torchilin, 

2007) and therefore, inorganic crystals constructing wall of mesopores are required to be small 

enough in nm range. Indeed, in several oxide systems, well-ordered mesoporous structures with a 

crystalline wall have been demonstrated with crystals less than 4–6 nm when pluronic surfactants 

(poloxamers) are used as soft templates.(Chane-Ching et al., 2005; Wong et al., 2001) As well as 

controlling the size of crystals, the affinity between constituent inorganic particles and template, 

and interparticle interactions also dictate the ordering and diversity of the mesostructures.(Tang et 

al., 2017; Tarutani et al., 2019b) The requirement for the synthesis of LDH nanoparticles with  

high dispersion stability is a primal challenge toward porous LDH via soft templating.  
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 To date, there have been many reports on the synthesis of porous LDH in the presence of 

surfactant molecules. Sodium dodecyl sulfate system (SDS) is widely-employed to prepare porous 

LDH materials. Various unique microstructures have been reported such as coral-like porous MgAl 

LDH microspheres,(Gunawan and Xu, 2008) flower-like MgAl porous microstructures(Sun et al., 

2016; Zhang et al., 2015), MgFe LDH microspheres with hollow, yolk–shell and solid interior 

structures(Shao et al., 2013). Electrostatic interaction between positively-charged hydroxide sheet 

and SDS allows intercalation of SDS into interlayer galleries to change d-spacing as well as 

macromorphology of LDH crystals.(Sun et al., 2016; Zhang et al., 2015) It is also allowed with the 

aid of SDS to construct composites with graphene oxides. (Wu et al., 2015; Zhan et al., 2016) For 

example, Wu et al. reported  porous Co-Al LDH nanosheets with a dual support system using 

dodecyl sulfate anions and graphene sheets as structural and conductive supports, respectively. Fast 

ion/electron transport, porous and integrated structure, both contribute to the improvement of 

electrochemical characteristics.(Wu et al., 2015)  

 Pore size in these porous LDH systems with using surfactant additives in most cases SDS 

and poloxamers (Xie et al., 2021) is far larger compared to the size of micelles, where micelles 

indeed influence the resultant porous structure, however, the pores are not formed as a result of 

transcription of micelles. For example, Xie et al. reported the synthesis of mesoporous 

Mg–Al–mixed metal oxide with P123 template, where an averaged pore diameter is over 20 nm. It 

has been reported that the organic surfactants and amphiphilic polymers rather work as capping 

agent, and/or initial nucleation sites(Sun et al., 2016; Zhang et al., 2015), and directing agents of 

self-assembly of nanocrystals to microspheres.(Gunawan and Xu, 2008) Apart from the direct 

crystallization of LDH with surfactant, Qin et al reported the synthesis of mesoporous CoCo LDHs 

by a topochemical method from soft- templated β-Co(OH)2.(Qin et al., 2019) Starting from the 

single crystalline mesoporous β-Co(OH)2, the oxidative intercalation process is triggered by 

bromine in acetonitrile and transformed to the CoCo LDHs with Br
−
 intercalated. Subsequent anion 
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exchange and exfoliation processes yield CoCo LDH nanomesh. The topochemical and/or 

pseudomorphic reaction from single metal hydroxide with defined meso/macrostructures has been 

also employed to prepare porous MOF as well as porous LDH.(Reboul et al., 2012) Where, the 

pseudomorphic replication proceeds via a rapid acid-base reaction between organic linkers and 

hydroxides. For example, Okada et al reported that the formation of Cu3(BTC)2 (H3BTC = 

1,3,5-benzenetricarboxylic acid)) occurs from Cu(OH)2 and H3BTC in < 1s, once the two reactants 

are contacted allowing for the replicated structure in a diffusion-limited manner.(Okada et al., 2014)    

 Two step reaction known as nanobuilding block (NBB) approach is another promising 

route to access crystalline mesoporous materials, where nanocrystals are first formed, dispersed in a 

solvent with a surfactant and subjected to soft-templating.(Chane-Ching et al., 2005) Tokudome et 

al reported a NBB approach to access to mesoporous LDH using a nonionic surfactant (Pluronic 

F127) from a concentrated colloidal suspension of NiAl LDH nanoparticles with a diameter as 

small as 8 nm (Fig. 6).(Tokudome et al., 2016b) The formation of colloidal suspension of the 

nanometric LDH involves the transient gelation followed by the deflocculation, which 

simultaneously achieves nanocrystallization and dispersion under highly supersaturated conditions. 

The addition of acetylacetone (acac) and the amphoteric nature of aluminum hydroxide play critical 

roles in the reaction. The successful synthesis of  

 

 
Fig. 6. (a) photograph and SEM images of NiAl LDH nanoparticles, (b) (c) N2 

adsorption-desorption isotherms of casted film samples prepared from suspensions of LDH 

nanoparticles with and without Pluronic F127. Reproduced from Ref. (Tokudome et al., 2016b) 

a b
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with permission from American Chemical Society. 

 

pure LDH suspended in a solvent at as high as ~100 g/L is achieved in the compositional range of 

0.75 ≤ acac/Al < 1.5. The increased pore volume on the N2 adsorption isotherm demonstrates the 

formation of mesopores via soft templating with Pluronic F127 (Fig. 6b). Another excellent 

example is demonstrated by Oka et al. on Mg-Al LDH with ordered mesostructures from Pluronic 

F127 and monodispersed Mg-Al LDH nanoparticles with 10 nm using 

tris(hydroxymethyl)aminomethane (THAM) as a surface stabilizing agent (Fig. 7).(Oka et al., 2017) 

The sizes of LDH can be tuned from 12 to 60 nm by changing the concentration of THAM used as a 

surface stabilizing agent. The successful introduction of mesopores is confirmed by the comparison 

of N2 isotherms of samples with and without Pluronic F127. The mesoporous mixed metal oxides 

(MMO) obtained by calcination was assessed by Knövenagel condensation of ethyl cyanoacetate 

with benzaldehyde, revealing that the mesoporous LDH prepared with the smallest LDH, 12 nm, 

exhibit the best catalytic activity.  

 The induction of phase separation in a gelling solution containing divalent and trivalent 

cations is another promising strategy to achieve (hierarchically) porous LDH (Fig. 8). The porous 

LDH possess macropores in μm range as a result of phase separation (Fig. 8a) and mesopores as 

interstices of primary particles (Fig. 8b). The primary particles are nanometric LDH with Al(OH)3 

impurity (Figs. 8c and d).   

The reaction occurs as follows : starting from an aqueous mixture of metal salts, homogeneous 

alkalization reaction induced by propylene oxide form embryonic poorly-crystallized LDH, leading 

to phase-separation into LDH-based solid phase and soluble polymer contained liquid 

phase.(Tokudome et al., 2007) Ambient drying or supercritical drying to remove the solvent phase 

leads to successful formation of hierarchically porous monolith. The monolithic LDH materials 

with hierarchical pores in μm and nm ranges have been reported for various systems of Mg-Al, 
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Mn-Al, Ni-Al, Ni-Al, Fe-Al, Co-Al. (Tarutani et al., 2015; Tarutani et al., 2014; Tokudome et al., 

2013)          

 

 

Fig. 7. (a)–(f) N2 adsorption–desorption isotherms and (g)–(k) BJH pore size distribution curves of 

(a, g) MMO(12), (b, h) MMO(12)‐ F127, (c, i) MMO(26), (d, j) MMO(26)‐ F127, (e, k) MMO(60), 

and (f, l) MMO(60)‐ F127. MMO(xx): Mg–Al mixed metal oxides prepared from MgAl LDH with 

an average diameter of xx nm.  Reproduced from Ref. (Oka et al., 2017) with permission from 

John Wiley and Sons. 
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Fig. 8. (a and b) FE-SEM (c) TEM images of hierarchically-porous MgAl LDH xerogel. The inset 

of (c) shows an electron diffraction pattern and the corresponding assignment. (d) Schematic 

illustration of agglomeration state of primary particles: green: LDH crystals; yellow: aluminum 

hydroxide. Reproduced from Ref. (Tokudome et al., 2013) with permission from The Royal Society 

of Chemistry. 

 

2.5 Porous LDH based Composites 

  The assembly of materials possessing complementary properties is a powerful approach to 

create materials with new functionalities that cannot be represented by single-phase materials. 

Although mixtures of LDH with many types of nanomaterials (such as oxide microspheres (Al2O3, 

Fe2O3, Fe3O4, MnO2…), nanowires (CuO, Al, Ag), 2D layer systems (graphene, MXene…) which 

may bring additional functionalities to the heterostructures, are of current interest in the scientific 

community,(Gu et al., 2015) this will not be discussed here. Only the case of macro/meso 

/microporous materials will be detailed (Table 4). A well-developed strategy to enhance the LDH 

performance in many applications requires their association with a 3D porous support allowing to 

enhance especially the interparticle diffusion and the mass transport. The assemblies between LDH 
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nanoparticles and porous supports can be carried out either, by electrostatic interactions between the 

support and the positively charged LDH layers or, by in-situ coprecipitation of LDH over the 

surface. To promote the adhesion or the growth of LDH nanoparticles to the external surface of the 

porous support, a good compatibility in terms of charge and hydrophilicity must be ensured, 

requiring in certain cases a preliminary step of modification/activation of the support surface. For 

instance, carbon nanofibers were immersed in concentrated sulfuric acid before LDH in-situ 

coprecipitation to increase their hydrophilicity.(Lai et al., 2015) Since the surface of the support can 

also serve as a source of metal cation by partial hydrolysis for the LDH formation (vide supra), one 

way to prone oriented crystal growth of LDH on the outer surface is to modify the support surface 

by depositing a thin layer of reactive materials such as AlOOH.(Han et al., 2018)  

 When the LDH based composite is synthesized, following similar strategies as previously 

described for sacrificial hard template, special attention should be paid to the localization and 

uniform distribution of the LDH phases within the porous supports. Since multiphase materials are 

obtained, the structural characterization and purity of the formed LDH phases are usually difficult 

to put in evidence and deep characterization techniques are requested to get better insight on the 

materials. Table 4 summarizes the main kinds of porous inorganic and polymer materials used to 

support or confine LDH particles. Obviously, a large variety of supports were reported including 

macro/mesoporous alumina and silica, meso/microporous materials such as zeolites, MOF, sepiolite 

and vermiculite, but also porous carbonaceous materials including carbon nanotubes, 3D carbon 

foam or aerogel, carbon fibers, and hierarchical carbon are obtained by biotempate calcination (Fig. 

9).  

 For exemple, Xue et al.(Xue et al., 2018) used porous anodic aluminum oxide (AAO) 

acting both as a substrate and as a source of Al
3+

 to prepare 3-D NiAl LDH membrane by an in-situ 

growth technique, leading to the formation of uniform coverage of the template surface with 

perpendicular orientated LDH platelets. Ordered mesoporous silica can also be used as template to 
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produce core shell silica@LDH composite displaying a hierarchical structure as evidence on Figs. 9 

c and d. LDH were for example coprecipitated in-situ on mesporous silica particles, even without 

any pretreatment. When an aqueous miscible organic solvent treatment (AMOST) is associated to 

this template synthesis to avoid aggregation of primary LDH platelets, the LDH based composite 

exhibited a high surface area (SBET= 897 m
2
/g and Vp= 0.91 cm

3
/g

-1
).(Suo et al., 2019)  

 Concerning the metallic foams, they were extensively used as conductive template to 

develop LDH supported materials of great interest for electrocatalysis for instance. The 3D 

macroporous metallic foam coated by LDH allows to prepare free-standing electrode promoting  

diffusion to the surface and leading to highly exposed active site. Yu et al. (Yu et al., 2019) reported 

a hierarchical 3D electrode designed by electrodeposition of NiFe- LDH nanolayers on a 3D 

MXene/Nickel foam frame which can boost both OER and HER in alkaline conditions (see above) 

(Figs. 9 e-f). The addition of MXene into the structure, displaying high conductivity and interesting 

reactive and hydrophilic properties, allowed to enhance the charge transfer kinetics and the water 

molecule activation.   

 Previously, we discussed the possibility of using MOF as sacrificial templates to produce 

hollow LDH phases. An alternative strategy consists in associating the two materials in a 

micro-mesoporous heterostructures. A ZIF-67@Co LDH yolk-shell composite was successfully 

prepared (Figs. 9 g-h) in a one-pot process by the successive increase of cobalt concentration in the 

methanolic solution containing also the 2-methylimidazole used as the ZIF organic ligand.(Chen et 

al., 2019) The use of a high molar ratio of Co
2+

/2-methylimidazole favored the formation of Co 

based LDH. Such tendency can be explained due to a slight difference in thermodynamic stability 

between the Co-based LDH and the ZIF-67. Interestingly, the mesoporous LDH shell allowed to 

stabilize the ZIF-67 and its high permeability was favorable for the transport of various species. 
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Fig. 9. SEM and TEM images of porous LDH composites prepared using (a, b) Anodic Aluminum 

Oxide after 6h and 12h respectively (c, d) Mesoporous ordered silica, (e, f) nickel foam and (g, h) a 

cobalt zeolite imidazolate frameworks (ZIF-67) Adapted with permission from (Xue et al., 

2018);(Suo et al., 2019); (Chen et al., 2019) with permission from the Royal Society of Chemistry. 

Reprinted from (Chen et al., 2019), Copyright (2019), with permission from Elsevier.  

 

 

Moreover, the unique characteristics of polymers and biopolymers facilitate the design of numerous 

porous polymer structures capable of interacting/incorporating LDH nanoparticles into porous 

nanocomposite frameworks, such as hydrogels, foams, and mats of fibers (Table 4 and Fig. 10). 

This type of porous hierarchical nanocomposites is of great interest for the development of 

biomaterials and for applications in biomedicine, which will be detailed later in this chapter (3.4 

Bio-applications).  

 In parallel, as many natural materials such as vegetables, fruits, and biomacromolecules 

(cellulose, collagen…) present interesting hierarchical morphologies, they have been deeply studied 

as supports for developing biotemplate-assisted synthesis approaches generally easy to implement, 

cost-effective and environmentally friendly. Depending on the intended application, the biotemplate 

can also act as a carbon source to produce a unique hierarchical carbonaceous support at a 

preliminary step of carbonization. LDH can then be deposited or coprecipitated at the surface of the 

porous polymer or biotemplate.  
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 Carbon nanofiber membranes can be obtained from electrospun polyacrilonitrile 

subsequently submitted to pre-oxidation and carbonization in a nitrogen flow. As illustrated in Fig. 

10a, such a template allowed the preparation, by one-step solution deposition method, of a 

hierarchical structure of carbon nanofiber@NiCo LDH hybrid membrane. By using two different 

kinds of growth agents, such as urea and hexamethylenetetramine (HMT), it was possible to adjust 

the morphology of the Ni-Co phases either into nanosheehs or nanorods.(Lai et al., 2015) 

CoAl-LDH particles were also in-situ coprecipiated from divalent and trivalent metal sulfates and 

urea under hydrothermal treatment at 110°C, at the surface of a poly(melamine formaldehyde) 

sponge. In this latter example, SiO2 nanofibers were also present in the materials acting as pore size 

regulators. Modification of the surface was necessary not only to promote the growing of LDH 

particles but also to enhance the adhesion between the polymer sponge surface and the inorganic 

coating. (Fig. 10b) (Lv et al., 2017) 

 Interestingly the 3D porous nanocomposites can also be directly shaped from an LDH 

suspension containing the polymer in an adequate solvent. By this approach, MgAl-LDH based 

nanocomposite fibers involving polycaprolactone or polylactide were electrospun(Miao et al., 2012) 

from mixed solvent THF/DMF containing solid content, leading to a uniform dispersion of the LDH 

nanoparticles throughout the nanocomposite fibers as evidenced on the TEM image (Fig. 10c).  

Considering hydrogels containing LDH, they can be easily produced as many types of 

porous nanocomposites; the main aspect is to obtain well-dispersed LDH particles in order to 

achieve nanocomposites with improved performances. In the case of a thermoresponsive 

poly(N-isopropylacrylamide) hydrogels,(Zhang et al., 2018b) the nanocomposites were synthesized 

by in-situ free radical polymerization of monomers in water containing LDH nanoparticles (80 nm). 

The SEM image (Fig. 12 d) of the freeze-dried nanocomposite hydrogels along the vertical section 

exhibits a hierarchical layered porous architecture.  
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Fig. 10. SEM and TEM images of LDH nanocomposites prepared using porous polymers (a) carbon 

nanofibers derived from electrospun polyaniline, (b) poly(melamine formaldehyde) sponge (c) 

electrospun polycaprolactone and (d) poly(N-isopropylacrylamide). Adapted with permission 

from(Lai et al., 2015) and (Miao et al., 2012). Copyright (2015, 2012), with permission from 

Elsevier. Reprinted from (Lv et al., 2017), Copyright (2017), with permission from John Wiley and 

Sons. Adapted with permission from (Zhang et al., 2018b) with permission from the Royal Society 

of Chemistry. 

 

 

Table 4 Various porous supports and conditions used to prepare 3D porous LDH composites  

Support Support LDH 

phase 

Method Conditions Ref 

Porous 

Oxides 

Biotemplated 

Al2O3  

MgAl

-, 

ZnAl-

, 

NiAl- 

Induced 

hydrolysis  

75°C-140°C

/ 10h 

(Zhang et al., 

2014) 

 -Al2O3 spheres MgAl

- 

Induced 

hydrolysis  

HT 90°C/ 

24h 

(Zhang et al., 

2012) 

 Tubular  

-alumina 

MgAl

- 

Electrophoresis 1V- 20V (Kim et al., 2008) 

 Macroporous

Al2O3 

MgNi

Co- 

Induced 

hydrolysis Urea 

120°C/ 24h (Yue et al., 2015) 

 Anodic 

Aluminum 

Oxide (AAO) 

ZnAl-

, 

NiAl- 

Induced 

hydrolysis 

80°C/ 12h (Xue et al., 2018) 

 Mesoporous 

SiO2 coating 

MgAl

- 

In-situ sol-gel 

process 

RT/ 30 min (Cao et al., 

2018c)  
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 Mesoporous 

SiO2 spheres 

Co2Al

-  

Alternate 

deposition 

Formamide (Jiang et al., 

2014) 

 Mesoporous 

SiO2 spheres 

MgAl

- 

In-situ 

coprecipitation 

RT/ 30 min (Suo et al., 2019) 

 MCM-41 ZnCr- In-situ 

coprecipitation 

- (Sahoo et al., 

2020; Sahoo et 

al., 2019) 

 SBA-15 CuAl- In-situ 

coprecipitation 

80°C/ 18h (Ji et al., 2019) 

 SBA-15 MgAl

- 

Induced 

hydrolysis 

600°C/6h 

HT 

rehydration 

(Li and Shi, 2008) 

 Meso-macro 

Al-SBA-15 

MgAl

- 

Induced 

hydrolysis 

450°C/15h 

HT 125°C/ 

21h 

(Creasey et al., 

2015) 

 ZnO nanorod on 

Carbon fiber 

cloth 

NiCo- Electrosynthesis 50°C/ 1.5h (Liu et al., 2017) 

Metallic 

foams 

FeCr alloy foam NiAl- Electrosynthesis -0.9 V/ 

-1.2V 

600-1800s 

(Basile et al., 

2008; Basile et 

al., 2009) 

 FeCr alloy foam MgAl

-  

Electrosynthesis -1.2 V/ 

2000 s 

(Benito et al., 

2014) 

 Ni foam NiFe- Electrosynthesis -1.0 V/ 300s (Lu and Zhao, 

2015) 

 Ni foam NiFe-

CoFe- 

Electrosynthesis -1.0 V/ 

<300 s 

(Li et al., 2015) 

 PPy 

nanowire/Ni 

foam 

NiCo-  Electrosynthesis -1.0 V/ < 

200 s 

(Shao et al., 2015) 

 Ni foam NiAl- In-situ 

coprecipitation  

HT 

120°C/12h  

(Liu et al., 2015c) 

 Ni foam CoAl- In-situ 

coprecipitation  

HT 

120°C/6h 

(Guoxiang et al., 

2014) 

 Co(OH)2/ Ni 

foam 

CoAl- In-situ 

coprecipitation  

HT 100°C/ 

24h 

(Abushrenta et 

al., 2015) 

 Co2(OH)2CO3/N

i foam 

CoFe- In-situ 

coprecipitation  

HT 100°C/ 

8h 

(Yang et al., 

2014) 

 Ni foam NiCo-  - 180°C/ 24h (Chen et al., 

2014) 

 Porous titanium MgAl

- 

Deposition 37°C/ 3 

days 

(Badar et al., 

2015)  

Porous  

minerals 

Zeolite MgAl

- 

In-situ 

coprecipitation  

2h/ RT (Chen et al., 

2016) 

 Sepiolite MgAl

- 

In-situ 

coprecipitation 

4h/ RT (Gómez-Avilés et 

al., 2016) 

 Sepiolite Fe
II
Fe

III
 

In-situ 

coprecipitation  

- (Tian et al., 

2016a) 

 Vermiculite MgAl

- 

In-situ 

coprecipitation  

HT 120°C/ 

24h 

(Tian et al., 

2016b) 
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 ZIF-8 MgAl Seeds deposition 

and growth 

- (Liu et al., 2014a; 

Liu et al., 2014b)  

 ZIF-67 Co
II
C

o
III

- 

In-situ 

formation 

RT/24h (Chen et al., 

2019)  

Porous 

carbons 

Carbon fiber 

cloth 

CoFe-  In-situ 

coprecipitation 

HT 

100°C/3h 

(Ma et al., 2016) 

 Carbon fibers CoAl- In-situ 

coprecipitation 

HT 90°C/ 

6h 

(Zhao et al., 

2013) 

 Electrospun 

carbon 

nanofibers 

NiCo In-situ 

coprecipitation 

80°C/ 6h (Lai et al., 2015)  

 Graphene 

sponge 

MnNi

-  

In-situ 

coprecipitation 

HT 90°C/6h (Wan et al., 2015) 

 MWCNT Ni/Co

Mn 

In-situ 

coprecipitation 

RT/24h (Jia et al., 2016) 

 GO nanocups  NiAl- In-situ 

coprecipitation 

HT 

100°C/24h 

(Lin et al., 2013) 

 Carbon cloth NiCo

Mn- 

Electrodepositio

n 

-1.0 

V/30-90s 

(Cao et al., 2019)  

 Carbon 

NP/AlOOH 

NiAl Induced 

hydrolysis Urea 

HT 

100°C/24h 

(Liu et al., 2015b) 

 Carbon cloth/ 

AlOOH 

NiAl-  Induced 

hydrolysis  

75°C/20h (Hai and Zou, 

2015) 

 Activated 

carbon fiber 

cloth 

Mg3A

l- 

Ca3Al

- 

Electrophoresis 40V / 60 

min 

(Ma et al., 2015) 

 ZIF-8 derived 

Carbon 

NiAl- Induced 

hydolysis 

- (Han et al., 2018)  

 Cotton dervived 

carbon fibers 

MgAl

- 

In-situ 

coprecipitation 

HT 130°C/ 

10h 

(Sun and Chen, 

2020) 

Polymers Polyurethane 

foam 

MgAl

- 

NiAl- 

Layer-by Layer Alginate 

and 

chitosan 

(Liu et al., 2015a) 

 Melamine 

polymer foam 

NiCo- Induced 

hydrolysis 

Ethanol 

reflux 1h 

(Ghani et al., 

2016) 

 PNIPAM/PAM MgAl

- 

In-situ 

polymerization 

25°C/ 72h (Zhang et al., 

2018b) (Hu and 

Chen, 2014)  

 Cellulose ZnAl- In-situ 

coprecipitation  

RT/ 24h (Mandal and 

Mayadevi, 2008) 

 Cellulose ZnAl- In-situ 

coprecipitation 

100°C/ 2h (Sobhana et al., 

2016) 

 Cellulose MgAl

- 

In-situ 

coprecipitation  

100°C/ 12h (Yang et al., 

2020a)  

 Poly (ethylene 

glycol) 

MgAl

- 

Mixture of 

aqueous 

suspension 

- (Huang et al., 

2016)  

 Alginate beads NiAl- In-situ 

coprecipitation 

RT/ 24h (Prevot et al., 

2020)  



31 

 

 Agarose  MgAl

- 

In-situ 

coprecipitation 

RT/ 2-3h (Hibino, 2020)  

 Agarose NiGa- Electric double 

migration 

25V/ 20 

min 

(Gwak et al., 

2017)  

 Chitosan MgAl

- 

Mixture and 

lyophylisation 

Acetic acid 

0.1M 

(Mahanta et al., 

2019)  

 Chitosan MgAl

- 

Electrodepositio

n 

3-4 V (Zhao et al., 

2015a)  

 Electrospun 

Polycaprolacton

e 

MgAl

- 

Mixture 

dispersed in 

acetone 

 (Romeo et al., 

2007)  

 Electrospun 

Polylactide 

MgAl

- 

Mixture 

dispersed in 

THF/DMF 

 (Miao et al., 

2012)  

 Electrospun 

PVDF 

MgAl

- 

In-situ 

coprecipitation  

HT 

120°C/24h 

(Sailaja et al., 

2015) 

 Electrospun 

PAN/PMMA 

MgAl

- 

In-situ 

coprecipitation  

HT 100°C/ 

8h 

(Shami et al., 

2016) 

  

3. Application  

3.1 Adsorption and environment purification  

 The hydroxide layers of LDHs interact through electrostatically bonding, which is 

relatively weak bonding, and enables to capture organic and inorganic anions. Since LDH show 

excellent anion adsorption capacity, have a low toxicity for environment and human health, and are 

synthesized at low cost, LDH-based materials have been used in environmental application scenes 

such as water purification, dye removal, and CO2 capture.(Daud et al., 2019; Goh et al., 2008; Yang 

et al., 2019) The introduction of porous structures enhances and maximizes the adsorption 

properties of LDH-based materials. Porous LDH-based materials showed excellent function in 

removal of harmful heavy metals, oxyanions, dye molecules, biomolecules, and CO2 molecules 

(Table 5). These adsorbates are in solution except CO2, therefore, improvement of diffusion by 

porous structures will enhance the adsorption property. It is reported that macropores (> 50 nm) 

enhance liquid/anion diffusion to deep inside of materials, on the other hand, mesopores (2−50 nm) 

increase the number of accessible sites.(Tarutani et al., 2014; Tokudome et al., 2013) In many 
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reports, calcined LDH are employed due to their high specific surface area. Although smaller pores 

are preferential for adsorption because they produce higher specific surface area in general, it is 

necessary to consider the size-exclusive effect of pores. For example, biomolecule (bovine serum 

albumin) sized as 5×7×7 nm
3
 effectively adsorbed to the LDH-based materials having larger 

mesopore (53.2 nm) despite  its smaller specific surface area. (Tokudome et al., 2016a)  

 There has been increasing demand for carbon capture and storage, and/or direct air capture 

by using LDHs in recent years because of global warming problem. LDH have been used for CO2 

sorption at high temperatures due to their advantageous characteristics; better adsorption capacity, 

fast kinetics, cyclic stability, and ease of preparation. Controlling nucleation and crystal growth 

produced LDHs with well-developed textural porosities. The textural pores  remained even after 

thermal activation at high temperatures, which effectively enhanced CO2 capture affinity. (Zeng et 

al., 2013) Synthesis of nanosized LDHs (~ 20 nm) and controlled association behavior using the 

isoelectric point method allows the formation of LDH materials having mesopores (18 nm) with a 

high specific surface area (103 m
2
/g).(Wang et al., 2013) Introduced mesoporosity not only 

enhances CO2 capture but also allows effective compositing with K2CO3 which is known to 

promote CO2 capture by LDHs. 

 

 

 

 

Table 5. Adsorption of heavy metals, oxyanions, dye molecules, biomolecules, and CO2 molecules 

by porous LDH-based materials.  

Adsorbate Pore structure Model Absorption Specific Ref 
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a
 capacity 

/ mg g
−1

 

surface area 

/ m
2
 g

−1
 

As(V) 

Cr(VI) 
Textural pore L 

216 

188 
225 

(Yu et al., 

2012) 

Cr(VI)   
L 

F 

52 

34 
52 

(Zhang et al., 

2020b) 

U(VI) 

Hollow 

structure 
L 557 208 

(Yuan et al., 

2019) 

Freeze dried 

L 
764 

1100 118 

163 

(Tao et al., 

2022) 
F 

165 

326 

Dichromate Textural pore L 388 400 
(Varga et al., 

2021) 

Phosphate 

Freeze dried L 59 105  

Freeze dried L 98 84 
(Liu et al., 

2019) 

Hollow 

structure 
L 

76 

232 

65 

158 

(Zhou et al., 

2011b) 

Fluoride 

Textural pore L 15 379 
(Zhao et al., 

2015b) 

Freeze dried - 
17 

82 

154 

- 

(Moriyama et 

al., 2016) 

Congo red 

Textural pore L 
166 

273 

139 

123 

(Jia and Liu, 

2019) 

Textural pore L 
205 

330 

60 

121 

(Lei et al., 

2017) 

Templated 

pore 
L 3470 221 

(Xie et al., 

2021) 

Hollow 

structure 
L 1230 133 

(Huang et al., 

2015) 

Methyl orange 

Textural pore L 490 203 (Li et al., 2014) 

Hollow 

structure 
L 833 127 

(Lyu et al., 

2020) 

Hollow 

structure 
L 1112 164 

(Xu et al., 

2017) 

Textural pore L 883 82 
(Zheng et al., 

2012) 
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a
 adsorption model; F and L are Freundlich and Langmuir model, respectively. 

 

Methyl blue 
Hollow 

structure 
L 398 99 

(Zong et al., 

2018) 

Methyl orange 

Coomassie 

Brilliant blue 

Congo red 

Eosin B 

Hollow 

structure 
L 

816 

655 

178 

95 

167 
(Huang et al., 

2017) 

Congo red 

Methyl orange 

Methyl blue 

Textural pore L 

1429 

476 

1667 

204 
(Zhang et al., 

2020a) 

Methyl orange 

Congo red 

Indigo carmine 

Textural pore 

L 

1052 

890 

513 
27 

(Li et al., 

2020a) 

F 

530 

527 

239 

2,4-dichlorophe

nol 

Hollow 

structure 
L 566 177 

(Zhang et al., 

2019) 

Trypsin 
Supercritical 

dried 
F 1517 305 

(Touati et al., 

2012) 

Bovine serum 

albumin 

Supercritical 

dried 
F 996 397 

(Tokudome et 

al., 2016a) 

CO2 

Freeze dried  1.4 mmol/g 276 
(Manohara, 

2014) 

Textural pore  0.24 mmol/g 133 
(Wang et al., 

2015) 

Textural pore  1.21 mmol/g 124 
(Martunus et 

al., 2011) 

Textural pore  0.91 mmol/g 348 
(Qin et al., 

2017) 

Textural pore  0.92 mmol/g 113 
(Zeng et al., 

2013) 

Textural pore  0.58 mmol/g 103 
(Wang et al., 

2013) 
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 3.2 Catalysis  

 The introduction of porosity increases the specific surface area accessible by reactants and 

enhances the catalytic activity of original LDHs. Some of the examples of catalytic applications 

taking advantage of unique porous structures are summarized in Table. 6. The enhancement of 

catalytic activity has been demonstrated for photocatalysts, oxidation and hydrogenation. Reaction 

selectivity imparted in micro-environment and/or enhanced diffusion as well as increased surface 

area have been achieved by the introduction of porosity. LDH is a solid basic material and itself can 

work as a catalytically-active site as well as a support; even a homogeneous so-gel reaction can be 

induced by using dispersion of nanometric LDH.(Tokudome et al., 2022) Nevertheless, as seen in 

Table 6, porous LDH catalysts are in many cases designed by complexing with metal nanoparticles, 

oxides, and metal complexes. It should be emphasized that porosity is also advantageous for 

successful loading of these co-catalysts.   

 Recently, increasing attention has been devoted to electrocatalytic reactions, oxygen 

evolution reaction (OER), hydrogen evolution reaction (HER), overall water splitting (OWS) on 

LDH-based catalysts with unique porous structures (Table.7). For these applications, electrical 

conductivity of LDH-based electrodes is required to be increased and which in turn, the external 

power to be reduced. At the same time, active sites should be increased to boost the reaction. The 

complexation of porous LDH with conductive supports, such as metal and carbon-based materials 

(multiwalled carbon nanotube (CNT), carbon quantum dots (CQD), and graphene sheets), is a 

widely-employed strategy for this purpose. Electrochemically active metal elements such as Ni, Fe, 

Co, that can take various valence states, are selected to form LDHs.  

 Selective etching of hydroxide sheets to form micropores (defects) is another method for 

porous LDH and layered hydroxides for electro catalytic applications. (Huang et al., 2018; Liang et 

al., 2015; Xie et al., 2017) For example, Liang et al. et al reported synthesis of porous -Ni(OH)2 
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nanosheets from NiGa LDH nanoplates by applying an alkaline treatment through selective 

dissolution of amphoteric Ga(OH)3. Since NiGa LDH and β-Ni(OH)2 are layered materials with 

similar brucite-like crystal structures, topotactic conversion of NiGa LDH into β-Ni(OH)2 occurs 

with preserving the overall morphology. As well as the direct use of hydroxide-based materials, 

they can be also employed as precursors for catalysts of metal sulfide, metals, MOF, and have been 

extensively investigated. A composite of metal hydroxides is known as a good precursor of 

homogeneous mixing of constitutive metal cations allowing for a targeted oxide phase with a 

stoichiometric composition by calcination at a relatively low temperature. For example, Takemoto 

et al. reported ZnGa2O4 catalysts prepared from a composite of metal hydroxides with a large 

hetero-interfaces of Zn(OH)2 and Ga(OH)3 nanoparticles. The material exhibits a stronger base 

strength even after the calcination at a high temperature, > 700 °C, compared to ZnGa2O4 prepared 

through a solid phase reaction.(Takemoto et al., 2020a) The enhanced surface is explained by the 

stoichiometric composition of the surface of ZnGa2O4. Such a catalytically-active surface of metal 

oxides can be more effectively used by coupling with mesoporosity by starting from mesoporous 

hydroxides.
 (Tarutani et al., 2016)

  

 

 

 

 

 

Table 6. Other catalytic applications of LDH taking advantage of unique porous structures.  

Type Reaction Composition 
complexed 

with  
year ref 
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Photocatalyst 

CO2 reduction NiAl- - 2018 (Tokudome et al., 2018) 

CO2 reduction CdAl- 

Pd 

nanoparticl

es 

2016 

(Saliba et al., 2016) 

Photoelectroche

mical water 

oxidation 

NiFe- 

WO3 

nanorod 

arrays 

2016 

(Fan et al., 2016) 

Cong red 

degradation 
ZnAl- ZnCo2O4 2016 

(Yu et al., 2016b) 

Degradation of 

pesticides 
MgAl- 

decatungsta

te 
2014 

(Da Silva et al., 2014) 

O2 generation ZnCr- titanate 2011 (Gunjakar et al., 2011) 

Oxidation 

Aerobic 

oxidation of 

alcohols 

NiAl- Ru/RuOx 2016 

(Tan et al., 2016) 

Oxidation of 

Hydrocarbon 
MgAl- 

Iron(III) 

porphyrins 
2009 

(Halma et al., 2009) 

Dry reforming 

of methane 
MgAl Alumina 2022 

(Taherian et al., 2022) 

Dry reforming 

of methane 
NiMgAl Alumina 2020 

(Huang et al., 2020) 

Dry reforming 

of methane 
NiMgAl Alumina 2021 

(Taherian et al., 2021) 

Hydrogenatio

n 

Selective 

hydrogenation 
MgAl- 

Pd 

nanoparticl

es / porous 

alumina 

2012 

(Zhang et al., 2012) 

Polymerizati

on 

Glycerol 

oligomerization 
MgAl - 2022 

(Barros et al., 2022) 

 

 

Table 7. Electrocatalytic applications of LDH taking advantage of unique porous structures. HER: 

Hydrogen Evolution Reaction; OER: Oxygen Evolution Reaction; OWS: Overall Water Splitting 

Type Reaction Composition complexed with  year ref 
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Electrocatalyst 
HER NiV- - 2020 

(He et al., 

2020) 

OWS NiFe Ni foam / Ag nanowire 2021 
(Ma et al., 

2021) 

OWS CoCo Cu foam / Cu3P 2021 
(Xu et al., 

2021) 

OER NiFe- 
N-doped graphene 

quantum dots 
2020 

(Dong et 

al., 2020) 

OER NiFe- NiO / C 2020 
(Li et al., 

2020b) 

OER NiFe- Ni foam / ZnO 2020 
(Luo et 

al., 2020) 

OER, ORR, 

OWS 
NiFe- CoxMo1P / Ni foam 2020 

(Mai et 

al., 2020) 

OER NiFe- 
NiCoP / N-doped carbon 

/ Ni foam 
2020 

(Nie et 

al., 2020) 

OER NiFeW- Ni foam 2020 

(Wu et 

al., 

2020a) 

OER CoFe- - 2020 
(Zhao et 

al., 2020) 

ORR, OER CoFe- 

multiwalled carbon 

nanotube / reduced 

graphene oxide 

2020 

(Yang et 

al., 

2020b) 

OER CoNiAl- ZIF-67 / Ni foam 2019 
(Xu et al., 

2019) 

OWS NiFe- Ni nanochain  2019 
(Cai et 

al., 2019) 

OER NiFe- 
reduced graphene oxide / 

Ni foam 
2019 

(Gu et al., 

2019) 

OER NiVFe- NiFe selenide 2019 
(Song et 

al., 2019) 

OER NiCoFe- Cabon cloth 2018 

(Cao et 

al., 

2018b) 

OWS NiFeV- Ni foam 2018 
(Dinh et 

al., 2018) 

OER CoCo- glassy carbon 2018 (Xu et al., 
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2018) 

OER NiZn- 
N-doped reduced 

graphene oxide 
2017 

(Nadeema 

et al., 

2017) 

OER CoFe- Ni foam 2017 
(Feng et 

al., 2017) 

OER NiFe- 
Porous graphitized 

carbon 
2017 

(Ni et al., 

2017) 

OER CoAl- 3D graphene 2016 
(Ping et 

al., 2016) 

OER NiFe- Ni foam 2016 

(Liu et 

al., 

2015d) 

OER NiFe- reduced graphene oxide 2016 
(Zhan et 

al., 2016) 

OER NiFe- reduced graphene oxide 2015 
(Yu et al., 

2015) 

Electrocatalytic 

oxidation of 

ethanol  

MgFe- - 2013 

(Shao et 

al., 2013) 

 

 3.3 Energy storage & production 

Catalytic and electrochemical characteristics of LDH have attracted many attention to 

generate and store energy through an environmentally benign process. Transesterification of 

triglycerides for biodiesel is one of the examples of the effective use of LDHs for production of 

green energy. LDH are safe, benign and effective solid base catalyst compared with conventional 

NaOH aqueous solution catalyst, which is harmful to the environment, human health, and 

production machines. A. F. Lee et al., reported that introduction of hierarchical meso/macroporous 

structure using sacrificial polystyrene sphere templates. (Woodford et al., 2012) Obtained porous 

LDH showed a fast methanol transesterification reaction because the meso/macropores improved 

the diffusion of viscous raw materials and increased accessible reaction sites (Fig. 11). Calcination 
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of LDHs is an effective strategy to achieve superior catalyst because calcination leads to increasing 

not only specific surface area but also the basicity of LDHs It is demonstrated that calcination of 

LDH increased specific surface area, from 85.32 to 223.52 m
2
/g, and basic site densities, from 1.29 

to 14.64 μmol/m
2
, which improved functionality for biodiesel production. (Sun et al., 2019)  

 Electrochemically active LDH, composed of transition metal elements, are known as 

conventional battery materials, and their functionalities were improved by the introduction of 

macropores and mesopores.(Liu et al., 2015e; Meng et al., 2019; Shao et al., 2012; Song et al., 

2012) These electrochemically active LDHs are employed as battery type electrodes of hybrid 

capacitors more recently. LDH show poor electron conductivity, therefore, compositing with 

conductive materials, such as transition metal oxides (Dai et al., 2019) and carbon-based materials 

(Zhu et al., 2020), or direct crystallization on conductive metal foams are a general approach to 

construct devices. Table 8 summarizes the characteristics of porous LDH materials-based hybrid 

supercapacitor. It was reported that compositing with carbon-based materials increased not only 

conductivity but also specific surface area.(Zhao et al., 2014) The pecific surface area (198 m
2
/g) 

and pore volume (0.38 cm
3
/g) of NiMn-LDH/CNT were larger than the respective materials; 53 

m
2
/g and 0.12 cm

3
/g for NiMn-LDH and 78 m

2
/g and 0.16 cm

3
/g for CNT. The formed textural 

pores worked as mesochannels and effectively transported liquid and ions, which resulted in high 

capacity, energy density, and power density of assembled hybrid capacitors. In the case of 

LDH-based materials with hollow structures, macrochannels were introduced in addition to 

mesochannels, which effectively transport liquid containing OH
−
 to improve the progress of 

electrochemical reactions. (Bai et al., 2017) 
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Fig. 11. SEM images of (a) conventional LDHs and (b) SEM and (c) TEM images of macroporous 

LDHs. Fatty acid methyl esters production via conventional LDHs (•) and macroporous LDHs (○) 

catalysed methanol transesterification of (d) tributyrin, (e) tricaprylin, (f) trilaurin and (g) triolein. 

Reproduced from Ref. (Woodford et al., 2012) with permission from RSC publishing. 
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Table 8. Characteristics of hybrid capacitors composed of porous LDH-based materials.  

 3.4 Bio-applications  

 The structural and morphological two-dimensionality of LDH combined with 

their ability to sequester, adsorb and self-assemble with anionic organic or biologic 

species such as drugs, antibacterial agents, genes and biomacromolecules, make them 

promising biocompatible host materials for various applications in biomedical sciences 

(Laipan et al., 2020; Mishra et al., 2018; Ray et al., 2018; Rives et al., 2014). Amongst 

others, we can cite drug delivery and controlled release systems, as antibacterial agents, 

biocatalysts, and biosensor development, (Taviot-Guého et al., 2018) tissue engineering 

scaffold and coating for implant applications (Tan et al., 2020). Various researchers 

have pointed out that nanostructured LDH, leading to hierarchical architecture with high 

porosity combining mesopores and macropores and enhanced surface properties, 

generally display considerably improved performance in bio applications. Moreover, the 

ability of LDH nanoparticles to be involved in porous nanocomposites also appeared as 

a great advantage to develop efficient LDH based biomaterials and further tune their 

biocompatibility and diffusion properties. 

 Porous LDH phases and porous LDH nanocomposites have proven to be highly 

efficient as nano-reservoirs for drugs such as diclofenac (Tammaro et al., 2009), 

ibuprofen (Barkhordari et al., 2014; Gunawan and Xu, 2009), flurbiprofen axetil (Yang 

et al., 2015), amoxicillin (Valarezo et al., 2013), naproxen (Figueiredo et al., 2020). 

Recently, many studies focused on porous electrospun fibers. For instance, Gao et al. 

(Gao et al., 2017) synthesized fibers by electrospinning based on poly(-caprolactone) 

mixed with LDH intercalated by the non-steroidal anti-inflammatory drugs ibuprofen 
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and ketoprofen. The authors showed that the nanocomposites fibers displayed slower 

sustained release of drugs compared to both pure drugs intercalated LDH and drug/ 

poly(-caprolactone) fibers (Figs. 12 a and b) with 44-48% and 20-25% of released for 

ibuprofen and ketoprofen respectively. Mats of electrospun fibers modified with drug 

loaded LDH were also investigated as bone tissue engineered scaffolds to promote cell 

adhesion and proliferation and then accelerate the tissue regeneration. (Belgheisi et al., 

2020). Following a similar strategy an antimicrobial system based on electrospun 

poly(lactic acid) scaffold containing MgAl-LDH intercalated with silver sulfadiazine, an 

antibiotic being able to control bacterial infection was designed. Such porous 

nanocomposite scaffold gives place to a slow release of the active molecules displaying 

an interesting antimicrobial activity and a good biocompatibility of great interest for 

transdermal applications and antimicrobial wound dressings. (Malafatti et al., 2020)  

 LDH based hydrogels involving well-dispersed LDH and silver nanoparticles 

also exhibited interesting antimicrobial properties. (Boccalon et al., 2020; Cao et al., 

2018a) For instance, a 3D interconnected macroporous scaffold with pore size in the 

range of 100-300 m, obtained from a mixture of MgSrFe LDH and chitosan with 

well-dispersed Ag nanoparticles on its surface exhibited excellent cytocompatibility, 

osteoinductivity and antibacterial properties (Fig. 12 c). It was also evidenced that LDH 

chitosan scaffolds having three-dimensional interconnected macroporous network act 

efficiently as therapeutic bone scaffolds, enhancing stem cell osteogenic differentiation 

and bone regeneration. The loading of the scaffolds with pilithrin- enhanced their 

ability for cell differentiation (Fig. 12 d).(Chen et al., 2017)  

 Lee and coll. (Lee et al., 2017) also reported on a 2D/3D nanocomposite 

system promising as an injectable stem cell system. The presence of 2D LDH particles 
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enhanced the mechanical properties of the (poly(ethylene 

glycol)-poly(L-alanine)-poly(L-aspartate) thermogel especially the rigidity, slowed 

down the release of kartogenin a soluble factor of mesenchymal stem cells 

differentiation and improved the interaction between the cell and the material.  

 

Fig. 12. SEM images of poly(-caprolactone) fibers containing a) 5% ibuprofen 

intercalated LDH, b) 5% ketoprofen intercalated LDH, c) Ag MgSrFe LDH / chitosan 

composite scaffold and d) bone cells on pilithrin- loaded MgAl LDH chitosan scaffold 

(40 M). Adapted from (Gao et al., 2017) and (Chen et al., 2017). Copyright (2017), 

with permission from the Royal Society Elsevier. Reprinted from (Cao et al., 2018a) , 

Copyright (2017), with permission from John Wiley and Sons.  

 

4. Conclusion   
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Processing porous architectures based on LDHs has been overviewed. Various 

techniques of soft- and hard-templating, post-treatments, compositing with 

supports/other functional materials, have been developed to tune and enhance the 

physical and chemical characteristics of LDHs. Simultaneous control of the 

crystallization, nano-and macro structuration is required to achieve desirable porous 

structures, and for this end, processes are designed to properly control reactions such as, 

dissolution-(re)crystallization, heterogeneous nucleation, interaction with organic 

molecules/polymers, and solvation/hydration. In contrast passive inorganic supports 

materials accommodating functional centers, the original features of LDH crystals can 

be enhanced by introducing unique porosity thanks to increased surface area and better 

molecular/ion diffusion. As a result, the introduced porosity indeed has displayed 

considerable advantages for various applications such as adsorption for environmental 

purposes, energy production, storage and conversion, photo-and electro-catalysis, and 

biosciences. The soft chemical features of LDHs on their synthesis and applications, 

and the capability of using ubiquitous metal elements will further pave a way to develop 

functional materials in an environmental-friendly way, where the processing of 3D 

porous architectures summarized in this chapter is ready to be integrated.   
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