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Exploiting the Sparseness of Control-flow and Call Graphs
for Efficient and On-demand Algebraic Program Analysis∗

GIOVANNAKOBUSCONRADO, AMIR KAFSHDARGOHARSHADY, KERIMKOCHEKOV,
YUNCHEN TSAI, and AHMED KHALED ZAHER,Hong Kong University of Science and Technology,
Hong Kong

Algebraic Program Analysis (APA) is a ubiquitous framework that has been employed as a unifying model

for various problems in data-flow analysis, termination analysis, invariant generation, predicate abstraction

and a wide variety of other standard static analysis tasks. APA models program summaries as elements of a

regular algebra (𝐴,⊕,⊗,⊛, 0, 1). Suppose that a summary in 𝐴 is assigned to every transition of the program

and that we aim to compute the effect of running the program starting at line 𝑠 and ending at line 𝑡 . APA first

computes a regular expression 𝜌 capturing all program paths of interest. In case of intraprocedural analysis, 𝜌

models all paths from 𝑠 to 𝑡 , whereas in the interprocedural case it models all interprocedurally-valid paths,

i.e. paths that go back to the right caller function when a callee returns. This regular expression 𝜌 is then

interpreted over the algebra (𝐴,⊕,⊗,⊛, 0, 1) to obtain the desired result. Suppose the program has 𝑛 lines of

code and each evaluation of an operation in the regular algebra takes𝑂(𝑘) time. It is well-known that a single

APA query, or a set of queries with the same starting point 𝑠, can be answered in 𝑂(𝑛 ⋅ 𝛼(𝑛) ⋅ 𝑘), where 𝛼 is

the inverse Ackermann function.

In this work, we consider an on-demand setting for APA: the program is given in the input and can be

preprocessed. The analysis has to then answer a large number of on-line queries, each providing a pair (𝑠, 𝑡) of

program lines which are the start and end point of the query, respectively. The goal is to avoid the significant

cost of running a fresh APA instance for each query. Our main contribution is a series of algorithms that,

after a lightweight preprocessing of 𝑂(𝑛 ⋅ lg𝑛 ⋅ 𝑘), answer each query in 𝑂(𝑘) time. In other words, our

preprocessing has almost the same asymptotic complexity as a single APA query, except for a sub-logarithmic

factor, and then every future query is answered instantly, i.e. by a constant number of operations in the algebra.

We achieve this remarkable speedup by relying on certain structural sparsity properties of control-flow and

call graphs (CFGs and CGs). Specifically, we exploit the fact that control-flow graphs of real-world programs

have a tree-like structure and bounded treewidth and nesting depth and that their call graphs have small

treedepth in comparison to the size of the program. Finally, we provide experimental results demonstrating

the effectiveness and efficiency of our approach and showing that it beats the runtime of classical APA by

several orders of magnitude.

CCS Concepts: • Theory of computation→ Program analysis; Program verification; Program reason-
ing; Parameterized complexity and exact algorithms.

Additional Key Words and Phrases: Algebaric Program Analysis, Parameterized Algorithms, Graph Sparsity,

Treewidth, Treedepth, Data-flow Analysis
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1 INTRODUCTION

Algebraic Program Analysis (APA). Algebraic Program Analysis

traces its roots to the algebraic approach of solving path prob-

lems in graphs as exemplified by Backhouse and Carré [1975] and

Tarjan [1981b]. The elegant idea in Tarjan [1981b] was to first

compute a regular expression 𝜌 capturing all paths of interest in a

given graph and then reinterpret 𝜌 in a different algebraic structure

(𝐴,⊕,⊗,⊛, 0, 1), which is often a Kleene algebra. More formally, if

𝐴 is a Kleene algebra, then the reinterpretation is a homomorphism from regular expressions to

𝐴. For example, suppose we are interested in finding the length of a shortest path from vertex 1

to 4 in the graph 𝐺 = (𝑉 , 𝐸) above in which every edge has a real weight assigned by a function

J.K ∶ 𝐸 → R. We can first compute a regular expression 𝜌 that captures all paths from 1 to 4. For

example, we can set 𝜌 ∶= (𝑎 ⋅ 𝑐 ⋅ 𝑑)∗ ⋅ (𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 ⋅ 𝑒). We then consider the algebra (𝐴,⊕,⊗,⊛, 0, 1)
in which the parts are defined as follows:

𝐴 ∶= R ∪ {−∞,+∞} 𝑥 ⊕𝑦 ∶= min{𝑥,𝑦} 𝑥 ⊗𝑦 ∶= 𝑥 +𝑦 𝑥⊛ ∶= { 0 𝑥 ≥ 0
−∞ 𝑥 < 0 0 ∶= +∞ 1 ∶= 0

Replacing every edge in 𝜌 with its weight and reinterpreting the result in 𝐴 will yield the shortest

path from 1 to 4, since the ⊕ operator combines two paths by choosing the shorter one and the

operator ⊗ concatenates paths by adding their lengths. More specifically, the distance is

J𝜌K ∶= (J𝑎K⊗ J𝑐K⊗ J𝑑K)⊛ ⊗ (J𝑎K⊗ J𝑏K⊕ J𝑎K⊗ J𝑐K⊗ J𝑒K) .

Thus, to obtain the shortest path, the first step was to compute 𝜌 and the second step was to

reinterpret it in 𝐴. While shortest path is interesting in its own right, algebraic program analysis is

particularly focused on the case where the graph 𝐺 is the control-flow graph (CFG) of a program

𝑃 , or a combination of its control-flow and call graph (CG), so that the paths in 𝐺 model runs

of 𝑃, and the elements in 𝐴 are program summaries. The idea is to assign a semantic meaning

J𝑒K ∈ 𝐴 to every edge 𝑒 ∈ 𝐸 and extend the semantics to paths and regular expressions, in a way that

ensures J𝜌K is the desired result of the static analysis. For example, a standard data-flow analysis

such as Kildall [1973] can be modeled in this framework by an algebra in which every element

𝑎 ∈ 𝐴 is a transformer function, mapping data facts that hold before the execution of a program

fragment to those that may/must hold after its execution. Here, ⊗ is function composition and ⊕ is

the join/meet operator. Thus, J𝜌K yields the join/meet-over-all-paths answer. See Section 2 for a

more detailed example.

Notation. Throughout this work, we write J𝑥K to denote an element of the algebra 𝐴 that cor-

responds to or summarizes 𝑥 . When 𝑥 is an edge of the graph, then J𝑥K is simply its assigned

semantics. When 𝑥 is a regular expression, J𝑥K is its reinterpretation in 𝐴. Finally, when 𝑥 is a

function or a subprogram, J𝑥K summarizes all paths from the starting point of 𝑥 to its endpoint. In

other words, J𝑥K is the reinterpretation of the regular expression that captures all paths from the

start to the end of 𝑥 .
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The APA framework models a wide variety of static analysis tasks, including data-flow [Kildall

1973; Reps et al. 1995; Sagiv et al. 1996], recurrence analysis [Kincaid et al. 2017], predicate abstrac-

tion and loop summarization [Kroening et al. 2008], termination analysis [Zhu and Kincaid 2021]

and invariant generation [Kincaid et al. 2018]. See Breck [2020] and Kincaid et al. [2021] for a more

detailed treatment and a recent survey/tutorial on APA. APA provides a dualistic contrast to the

classical approach of iterative abstract interpretation. Most static analyses can be thought of as

ways of solving a system of possibly recursive semantic equations. As beautifully put in Kincaid

et al. [2021], APA’s approach is to first find a closed-form solution, i.e. the regular expression 𝜌,

and then interpret it based on program semantics. This is in contrast to the classical approach in

abstract interpretation which first interprets and then solves the equations by an iterative method.

Intraprocedural APA. If our underlying graph 𝐺 is the control-flow graph of a single function

in a program 𝑃 , then the APA approach above is said to be intraprocedural. At the heart of

intraprocedural APA is the algorithm of Tarjan [1981a] which can compute the regular path

expression 𝜌 in𝑂(𝑛 ⋅𝛼(𝑛))where 𝑛 is the number of vertices and edges
∗
in the graph𝐺 and 𝛼 is the

inverse Ackermann function. This algorithm is applicable to reducible flow graphs, which contain

almost all real-world control-flow graphs. Tarjan’s algorithm produces a representation of the path

expression as an expression tree with 𝑂(𝑛 ⋅ 𝛼(𝑛)) vertices. This bound is tight, i.e. there are cases

where the representation’s size is Ω(𝑛 ⋅𝛼(𝑛)). Thus, the overall runtime of an intraprocedural APA

is𝑂(𝑛 ⋅𝛼(𝑛) ⋅𝑘) assuming that the evaluation of each atomic operation in the algebra, i.e. ⊕,⊗ and

⊛, takes 𝑂(𝑘) time. Crucially, this is the runtime when the start vertex is fixed. More specifically,

given a fixed starting vertex 𝑠, which usually corresponds to the entry of the function, Tarjan’s

algorithm computes a regular expression 𝜌𝑡 for every vertex 𝑡 . This expression models all paths

from the fixed vertex 𝑠 to 𝑡 in 𝐺. We then reinterpret 𝜌𝑡 in (𝐴,⊕,⊗,⊛, 0, 1).
Interprocedural APA [Kincaid et al. 2021, Section 4]. The challenge in an interprocedural

APA, analyzing the entirety of a program 𝑃 which can include many functions, is that we can

no longer rely directly on the algorithm of Tarjan [1981a]. Suppose our graph 𝐺 = (𝑉 , 𝐸) is an
interprocedural control-flow graph, containing CFGs of each of the functions in 𝑃, together with

interprocedural edges that model function calls and returns. Given 𝑠, 𝑡 ∈ 𝑉 , Tarjan’s algorithm
produces a regular expression 𝜌 capturing all paths from 𝑠 to 𝑡 in 𝐺. However, not every path in 𝐺

corresponds to a valid execution of 𝑃 . For example, suppose that 𝑃 has three functions 𝑓1, 𝑓2, 𝑔 and

both 𝑓1 and 𝑓2 call 𝑔 in their code. An execution that starts with 𝑓1 and goes into 𝑔 should return

back to 𝑓1 when 𝑔 reaches its endpoint. However, in the graph 𝐺, the endpoint of 𝑔 also has an

edge that goes back to 𝑓2. Thus, 𝐺 contains a path that starts in 𝑓1, goes through 𝑔 and returns to

the wrong caller 𝑓2. Such paths are called interprocedurally invalid and should not be included in

the analysis. See Reps et al. [1995] for a more formal explanation of this point. To overcome this

difficulty, interprocedural APA often consists of three steps [Cousot and Cousot 1977; Sharir and

Pnueli 1978]:

(1) For every function 𝑔 of the program 𝑃, a summary J𝑔K ∈ 𝐴 is computed. J𝑔K models the behav-

ior and effects of 𝑔, including those of any descendant functions that might be (transitively)

called by 𝑔.

(2) Whenever a function 𝑓 contains a call to 𝑔, an edge 𝑒 is added from the vertex of the call site

in 𝑓 to its corresponding return site in 𝑓 . Moreover, we set J𝑒K based on J𝑔K such that the

entire execution of the call to 𝑔 can be summarized by a single edge in the graph. We also

remove the edge from the endpoint of 𝑔 back to 𝑓 .

(3) The intraprocedural APA algorithm is applied on the modified graph obtained in the previous

step.

∗
A control-flow graph with 𝑛 vertices has𝑂(𝑛) edges.
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The trick above reduces interprocedural APA to the intraprocedural case. Intuitively, any run of

the program that reaches the call to 𝑔 in 𝑓 is either going to return from that call, which is modeled

by 𝑒, or reach the analysis endpoint 𝑡 without returning, which is why we have removed the edge

from 𝑔 back to 𝑓 . See Section 2 for an example. Of course, the sticking point is how to compute

the summaries in Step (1) above. This can be done either using the Newtonian program analysis

technique of Esparza et al. [2010] or its more recent enhancement in Reps et al. [2017]. See Kincaid

et al. [2021, Section 4] for more details and examples. Note that, although each APA query has a

fixed start 𝑠 and endpoint 𝑡, the summaries in Step (1) have to be computed only once and can then

be reused for different values of 𝑠 and 𝑡 . Since computing function summaries is an orthogonal

problem, in this work, we assume they are given as part of the input and account for recursion.

On-Demand Analysis. In this work, we consider the on-demand setting for APA. In our setting,

the initial input consists of a program 𝑃, a regular algebra (𝐴,⊕,⊗,⊛, 0, 1), a semantic function

J.K ∶ 𝐸 → 𝐴 mapping every transition of the program to an element of the algebra, and a summary

J𝑓 K ∈ 𝐴 for every function 𝑓 in 𝑃 . The algorithm is allowed some time to preprocess this input and

then receives a large number of on-line APA queries. Each query provides two program points 𝑠

and 𝑡 and asks for the result of the APA analysis starting from 𝑠 and ending at 𝑡 . The goal is to

avoid running a new APA instance for each query and instead find a more scalable solution. In

other words, our goal is to spend 𝑜(𝑛 ⋅ 𝛼(𝑛) ⋅ 𝑘) time per query so that answering many queries is

strictly faster than handling each query separately.

Function Summaries. We do not consider the summarization step, i.e. Step (1) above, and instead as-

sume that the function summaries are given as part of the input. We also assume that the summaries

handle recursion and its resulting fixed-points. This is due to the following reasons: (i) Computing

function summaries is an orthogonal and well-studied task with well-known solutions [Esparza

et al. 2010; Reps et al. 2017], as well as analysis-specific worklist algorithms [Reps et al. 1995], and

(ii) Even a naïve algorithm that computes a new regular expression 𝑟 for every query can still reuse

the summaries. Hence, even without our contributions in this work, the summaries never had to be

computed more than once. Thus, the challenge is in speeding up Steps (2) and (3).

Motivation for On-Demand Analysis. On-demand analyses are quite common in the static

analysis literature. For example, Babich and Jazayeri [1978]; Chatterjee et al. [2020]; Duesterwald

et al. [1995]; Goharshady and Zaher [2023]; Horwitz et al. [1995]; Sridharan et al. [2005]; Yan et al.

[2011]; Zheng and Rugina [2008] and Reps [1993] are some of the works that consider an on-demand

variant of an analysis that can be modeled in the APA framework. Thus, our work can be seen as

their unification and extension. To quote from Chatterjee et al. [2020] and Reps [1993]: on-demand

analyses are especially important for just-in-time compilers and their speculative optimizations.

They also reduce the overall runtime of the analysis by (i) potentially reusing the information

obtained in previous queries to speed up future queries, (ii) narrowing down the focus to specific

points or facts of interest, (iii) reducing the work in preliminary phases by avoiding an exhaustive

computation of all query results in preprocessing, (iv) side-stepping incremental updating problems,

and (v) offering the analysis as a user-level operation that can be used by the programmers when

debugging. Note that during debugging, the programmer is not interested in the result of an analysis

whose startpoint 𝑠 is the beginning of the program, but would rather have an on-demand analysis

starting at the current point.

Structrual Sparsity Parameters. The main high-level insight that allows us to speed up on-

demand APA is to recognize that control-flow and call graphs (CFGs and CGs) of programs are

not arbitrarily complex. Instead, they have many natural structural sparsity properties that can be

exploited to obtain faster algorithms. Indeed, the classical algorithm of Tarjan [1981a] which is the

basis of modern APA is itself a faster version of Kleene’s NFA-to-regex translation [Kleene 1956]
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and the speedup was achieved by exploiting the fact that Gaussian elimination can be performed

more efficiently on reducible flow graphs. Unfortunately, the assumptions of Tarjan [1981a] are

not enough for our case. Instead, we consider several structural sparsity parameters for both CFGs

and CGs. More specifically, we rely on nesting depth or treewidth for CFGs, and treedepth for CGs.

These parameters are formally defined in Section 3, and the next paragraphs provide an intuitive

summary of the process.

Sketch of Intraprocedural Results. We first start with intraprocedural on-demand APA and

show how to make it more efficient assuming that the analyzed program 𝑃 is structured and has

a bounded nesting depth. While most real-world programs have a small nesting depth, one can

of course write structured programs with an arbitrary depth. Thus, we then extend our approach

to graphs with bounded treewidth. Treewidth [Robertson and Seymour 1986] is one of the most

commonly-used parameters in static analysis and model checking [Aiswarya 2022]. It is a measure

of tree-likeness of graphs. Intuitively, a graph with treewidth 𝑤 can be decomposed into parts

of size at most𝑤 + 1 that are connected to each other in a tree-like manner. This is called a tree

decomposition. It is well-known that structured programs have CFGs with a treewidth of at most 7

[Thorup 1998].

Sketch of Interprocedural Results. We then turn our attention to the more challenging problem

of interprocedural APA. To handle interprocedural queries and speed up on-demand APA, we

have to consider not only the CFGs but also the CG. Moreover, we cannot simply apply the

interprocedural-to-intraprocedural reduction mentioned above since this leads to a graph that does

not share the structural properties of the original CFGs, i.e. the treewidth can get arbitrarily large.

Thus, the reduction above is not applicable to the on-demand setting. To overcome this challenge,

we exploit two other graph sparsity parameters over the CGs. The first parameter is the number of

call sites in each function and the second parameter is the CG’s treedepth. Treedepth is a cousin of

treewidth that, intuitively, models the extent to which a graph looks like a shallow tree.

Small Treedepth Assumption. The speedups we obtain for interprocedural APA are reliant on the

assumption that the treedepth of the call graph is relatively small in comparison to the size of the

program. There is a recent work [Goharshady and Zaher 2023] that establishes the small-treedepth

property experimentally. In our experimental results, we observed the same phenomenon, i.e. the

treedepth was no more than 133 for standard benchmarks with more than a hundred thousand

nodes. Intuitively, call graphs of real-world programs are expected to have small treedepth, in

comparison to the size of the program, because most functions only call a small subset of previously

defined functions, so the call graph hardly forms large cliques or grids, which are necessary for a

large treedepth. Even a long chain of distinct non-recursive functions 𝑓1, 𝑓2, . . . , 𝑓𝑚 such that each 𝑓𝑖
calls 𝑓𝑖+1 would only have a treedepth of 𝑂(log𝑚). Note that we exploit the treedepth of the call

graph without any limits on the size of the function-call stack, which can grow arbitrarily large by

recursion. Functions that call themselves recursively have no impact on this treedepth. Finally, we

note that it is theoretically possible to create adversarial programs whose call graphs have arbitrarily

large treedepth. For example, consider a program with𝑚 functions in which every function calls

every other function. The call graph of this program is a complete graph with treedepth𝑚 − 1. We

believe such programs are not realistic.

Our Contributions. Based on the discussion above, our specific contributions are as follows:

● Intraprocedural APA
– Exploiting Nesting Depth: Assuming the CFG has bounded nesting depth, we provide

an algorithm for on-demand intraprocedural APA that takes 𝑂(𝑛 ⋅ log log𝑛 ⋅ 𝑘) time in

preprocessing and answers each APA query in𝑂(𝑘). Recall that 𝑛 is the number of lines of

code in the program and 𝑘 is the time needed to evaluate an atomic operation in the algebra.
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This algorithm has a very similar runtime to classical APA even on one query, differing

only by a factor of log log(𝑛)⇑𝛼(𝑛). The improvements get much more pronounced as

the number of queries grows. Our algorithm spends only 𝑂(𝑘) time per each extra query,

whereas classical APA takes 𝑂(𝑛 ⋅ 𝛼(𝑛) ⋅ 𝑘).
– Exploiting Treewidth: Assuming the CFG has bounded treewidth, we provide another

algorithm for on-demand APA that takes 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘) time in preprocessing and then

answers eachAPA query in𝑂(𝑘).Again, the improvements over classical APA are huge. Our

preprocessing is slower than a single APA only by a sub-logarithmic factor of log𝑛⇑𝛼(𝑛).
This is more than compensated for by our much faster query time. We spend only 𝑂(𝑘) to
answer each query, whereas the classical baseline takes 𝑂(𝑛 ⋅ 𝛼(𝑛) ⋅ 𝑘).

● Interprocedural APA
– Exploiting Treedepth: Assuming that the CG has small treedepth and that there is a constant

bound on the number of function call sites in each function, we present an algorithm

for interprocedural on-demand APA that matches our intraprocedural runtime bounds

and provides the exact same improvements over classical APA. Specifically, our algorithm

spends either𝑂(𝑛 ⋅ log𝑛 ⋅𝑘) or𝑂(𝑛 ⋅ log log𝑛 ⋅𝑘 +𝑚 ⋅ log𝑚 ⋅𝑘) time in preprocessing, where

𝑚 is the number of functions, and then answers each interprocedural APA query in 𝑂(𝑘).
Our runtime dependence on the treedepth is cubic.

● Experimental Results. Finally, we provide experimental results over real-world programs

from the literature, demonstrating the effectiveness of our approach and its significant gains

in efficiency, beating the classical APA’s runtime by several orders of magnitude.

Novelty. To the best of our knowledge, this is the first work to obtain faster runtimes for on-

demand APA in comparison with repeated application of classical APA. While similar results exist

for special cases of APA, as mentioned further below, none of the previous works were able to

handle general APA in an on-demand setting. Thus, our approach can be seen as a unification and

extension of all previous on-demand algorithms for special cases of APA, such as data-flow. In

terms of algorithmic ideas, the techniques used in our nesting-depth-based algorithm are entirely

novel. More importantly, our algorithm for treewidth-based APA uses an elegant combination of

tree decompositions and centroid decompositions, which was not known before and helps avoid

the treewidth blowup present in prior treewidth-based static analyses in the literature.

Related Works. We consider several families of related works:

● Treewidth-based Model Checking. Treewidth is arguably the most commonly used graph

parameter in static analysis and model checking. It was initially used for the problem of

register allocation in compiler optimization [Thorup 1998], but soon found more applications,

notably in model checking when specifications are given in the monadic second order logic of

graphs [Borie et al. 1992; Courcelle 1990; Kneis and Langer 2008], 𝜇-calculus [Obdrzálek 2003],

local restrictions of LTL [Ferrara et al. 2005] or Datalog and finite-variable logics [Dalmau

et al. 2002]. Treewidth has also been used in the analysis of Markov chains and decision

processes and to compute quantitative properties such as mean payoff [Asadi et al. 2020;

Chatterjee et al. 2021]. Recently, the work Conrado et al. [2023] showed that CFGs have

bounded pathwidth, too. See Aiswarya [2022] for a survey of treewidth-based results in

verification.

● On-demand Algorithms for Special Cases of APA. Standard formulations of data-flow analysis

are special cases of APA. This holds both for the intraprocedural analyses of Kildall [1973]

and the interprocedural (IFDS) framework of Reps et al. [1995]. There has been extensive

research focused on producing on-demand variants of these data-flow analyses [Babich and

Jazayeri 1978; Duesterwald et al. 1995; Horwitz et al. 1995; Reps 1993]. While these works

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 292. Publication date: October 2023.



Efficient and On-demand Algebraic Program Analysis 292:7

provide significant practical gains in efficiency, their only theoretical guarantee is that of same

worst-case runtime, i.e. they are guaranteed not to use more time than a repeated application

of classical data-flow. Chatterjee et al. [2020] provided the first on-demand interprocedural

data-flow analysis with a theoretically-improved runtime bound. However, it was severely

limited and could only handle same-context interprocedural queries, i.e. queries limited to

paths that leave the function-call stack unchanged. Notably, it used treewidth as a parameter.

Thus, our work can be seen as a significant extension of Chatterjee et al. [2020] which (a) can

handle general APA instead of just data-flow, and (b) is not limited to same-context queries. If

applied to data-flow analysis, our algorithms achieve the same complexity as Chatterjee et al.

[2020]. Another recent work in this direction is Goharshady and Zaher [2023], which also

uses treedepth for IFDS analysis. In comparison, we handle the more general case of APA,

instead of IFDS, and obtain the same runtime bounds. There are also on-demand approaches

to other special cases of APA such as alias and points-to analyses [Sridharan et al. 2005; Yan

et al. 2011; Zheng and Rugina 2008]. However, these directions are not as well-studied as

on-demand data-flow. Finally, the APA-based recurrence analyses in Kincaid et al. [2017]

have a compositional nature that makes them amenable to on-demand settings.

● Semiring-based ProgramAnalysis. Perhaps the closest works to ours are Chatterjee et al. [2019b,
2016, 2017, 2018]. These works consider a different variant of APA in which summaries are

taken from a semiring (𝐴,⊕,⊗, 0, 1) instead of a Kleene/regular algebra. Note the absence of

the Kleene star operator⊛. They then use parameterization by treewidth to obtain efficient on-

demand algorithms. Thus, it is fair to say we have been inspired by them as we are exploiting

the same parameter. However, these approaches have important limitations that are absent

in our work: (a) much like Chatterjee et al. [2020] they can only handle same-context queries,

and (b) they fix a constant bound ℎ on the stack height, whereas we consider all valid paths

with no limit on the height of the function-call stack. On the other hand, Chatterjee et al.

[2018] handles concurrent programs whereas our setting is single-threaded. These being

said, the most important difference between our work and Chatterjee et al. [2019b, 2016,

2020, 2018] is that we use an entirely different and novel treewidth-based algorithm. The

algorithms in these prior works require balanced tree decompositions that are in turn obtained

from Elberfeld et al. [2010] and Bodlaender and Hagerup [1998] at the expense of a linear

blowup in the treewidth. We sidestep balancing using centroid decompositions.

2 ALGEBRAIC PROGRAM ANALYSIS
In this section, we formally define our notation and the algebraic program analysis (APA) problem

in both intraprocedural and interprocedural settings.

Programs, Functions and CFGs. We define our programs in a manner similar to Reps et al.

[1995]. A program 𝑃 is a collection 𝑃 = {𝑓1, 𝑓2, . . . , 𝑓𝑚} of functions. Each function 𝑓𝑖 is defined by a

control-flow graph (CFG) 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ,⊺𝑖 ,⊥𝑖 ,𝐶𝑖 , 𝑅𝑖 ,Φ𝑖) in which:

● 𝑉𝑖 is a finite set of vertices, ⊺𝑖 ∈ 𝑉𝑖 is a distinguished start vertex and ⊥𝑖∈ 𝑉𝑖 is a distinguished
end vertex. Intuitively, each vertex corresponds to one line of the program, except that

function calls are broken into two lines as described below. ⊺𝑖 corresponds to the first line of

𝑓𝑖 and ⊥𝑖 to its last line.

● 𝐸𝑖 ⊆ 𝑉𝑖 ×𝑉𝑖 is a finite set of directed edges, modeling the flow of control in the program.

● 𝐶𝑖 ⊆ 𝑉𝑖 is a (potentially empty) set of call site vertices and is in one-to-one correspondence

with 𝑅𝑖 ⊆ 𝑉𝑖 which is the set of return site vertices. In other words, every 𝑐 ∈ 𝐶𝑖 has a

corresponding 𝑟𝑐 ∈ 𝑅𝑖 . There is an edge from 𝑐 to 𝑟𝑐 , which is the only outgoing edge of 𝑐 and

the only incoming edge of 𝑟𝑐 . The sets 𝐶𝑖 and 𝑅𝑖 are disjoint.
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1 void f(int *p, int *&q){

2 unsigned int temp; cin >>temp;

3 while(temp --)

4 swap(p, q);

5 }

6 int main (){

7 int *p, *q;

8 p = new int (100);

9 f(p, q);

10 return *q;

11 }

Fig. 1. A C++ Program (left) and its CFGs (right). The added edges in the augmented graph are dashed in red.

● Φ𝑖 ∶ 𝐶𝑖 → {𝑓1, . . . , 𝑓𝑚} assigns a function to each call site. Intuitively, when the program

reaches 𝑐 ∈ 𝐶𝑖 , it calls the function Φ𝑖(𝑐), and when that function’s execution ends, control

returns back to the corresponding return site 𝑟𝑐 .

We let 𝑉 ∶= ⋃𝑚𝑖=1𝑉𝑖 be the set of all vertices in the entire program and define 𝐺, 𝐸,𝐶, 𝑅, and Φ
analogously. A path in 𝐺 is a sequence 𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣2, 𝑣3), . . . , 𝑒𝑘 = (𝑣𝑘 , 𝑣𝑘+1) of edges in 𝐸

where each edge starts at the endpoint of the previous edge.

Example. Figure 1 shows a program written in C++ and its CFGs (black edges).

Regular Expressions. The set of regular expressions 𝜌 over the graph 𝐺 is defined using the

following grammar:

𝜌 ∶∶= 𝑒 ⋃︀ ∅ ⋃︀ 𝜖 ⋃︀ 𝜌 + 𝜌 ⋃︀ 𝜌 ⋅ 𝜌 ⋃︀ 𝜌∗ 𝑒 ∈ 𝐸
We often use parentheses when writing regular expressions and otherwise assume that

∗
takes

precedence over ⋅ which in turn precedes +. We use 𝜌𝑘 as syntactic sugar defined by 𝜌0 ∶= 𝜖 and
𝜌𝑘 ∶= 𝜌𝑘−1 ⋅ 𝜌 for 𝑘 ≥ 1. Every regular expression 𝜌 defines a set ∐︀𝜌̃︀ of strings over 𝐸 ∶

∐︀𝑒̃︀ ∶= {𝑒} ∐︀∅̃︀ ∶= ∅ ∐︀𝜖̃︀ ∶= {𝜖} ∐︀𝜌1 + 𝜌2̃︀ ∶= ∐︀𝜌1̃︀ ∪ ∐︀𝜌2̃︀

∐︀𝜌1 ⋅ 𝜌2̃︀ ∶= {𝑥𝑦 ⋃︀ 𝑥 ∈ ∐︀𝜌1̃︀ ∧𝑦 ∈ ∐︀𝜌2̃︀} ∐︀𝜌∗̃︀ ∶=
∞
⋃
𝑘=0

∐︀𝜌𝑘̃︀

Here, 𝜖 is the empty string.

Path Expressions [Tarjan 1981b]. Not every string of edges appearing in ∐︀𝜌̃︀ is necessarily a

path in the graph 𝐺. We say that 𝜌 is a path expression of type (𝑠, 𝑡) if every string appearing in

∐︀𝜌̃︀ is a path from 𝑠 to 𝑡 in 𝐺. Furthermore, we say 𝜌 is an (𝑠, 𝑡)-summary if ∐︀𝜌̃︀ is exactly the set

of all paths from 𝑠 to 𝑡 in 𝐺. The work Tarjan [1981a] provides an algorithm that computes an

(𝑠, 𝑡)-summary in time 𝑂(𝑛 ⋅ 𝛼(𝑛)) where 𝑛 is the number of vertices in the CFG.

Example. In Figure 1, we can compute a (1, 5)-summary 𝜌 = (𝑒1 ⋅ 𝑒2) ⋅ (𝑒3 ⋅ 𝑒4)∗ ⋅ 𝑒′3.
Regular Algebra. A regular algebra (𝐴,⊕,⊗,⊛, 0, 1) consists of a non-empty universe set 𝐴, two
distinguished elements 0, 1 ∈ 𝐴, together with two binary operations⊕ ∶ 𝐴×𝐴 → 𝐴 (known as choice,
branching or addition) and ⊗ ∶ 𝐴 ×𝐴 → 𝐴 (known as sequencing, concatenation or multiplication), as
well as a unary operation ⊛ ∶ 𝐴 → 𝐴 (known as iteration or Kleene star). With a slight misuse of

notation, we do not distinguish between the algebra and its universe and use 𝐴 to denote both. The

precedence of operators is ⊛ > ⊗ > ⊕.
(Re)interpretation. Let J.K ∶ 𝐸 → 𝐴 be a semantic function that assigns an algebra element J𝑒K ∈ 𝐴
to each edge 𝑒 ∈ 𝐸. Additionally, let 𝜌 be a regular expression as above. The J.K-interpretation or
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reinterpretation of 𝜌 in 𝐴 is denoted by J𝜌K and defined as follows:

J𝑒K ∶= J𝑒K J∅K ∶= 0 J𝜖K ∶= 1 J𝜌1 + 𝜌2K ∶= J𝜌1K⊕ J𝜌2K J𝜌1 ⋅ 𝜌2K ∶= J𝜌1K⊗ J𝜌2K J𝜌∗K ∶= J𝜌K⊛ .

Example. Suppose our goal is to do a null-pointer analysis on the program of Figure 1. Let𝐷 = {𝑝,𝑞}
where 𝑥 models the fact that 𝑥 might be null. Let 𝐴 be the set of data-flow transformer functions of

the form 2
𝐷 → 2

𝐷 , mapping the set of facts before the execution of a program fragment to those

that might hold afterwards. In this example, we have J𝑒7K ∶= 𝜆𝑋 . 𝐷, J𝑒8K ∶= 𝜆𝑋 . 𝑋 − {𝑝} and

J𝑒4K ∶= 𝜆𝑋 . (𝑞 ∈ 𝑋 ? {𝑝} ∶ ∅) ∪ (𝑝 ∈ 𝑋 ? {𝑞} ∶ ∅) .

For every other black edge 𝑒, its interpretation J𝑒K is the identity function 𝜆𝑋 . 𝑋 . We define the

addition operation as union and the multiplication as function composition. The iteration operator

leads to the fixed-point that is the union of all compositions. More formally,

𝑎 ⊕ 𝑏 ∶= 𝜆𝑋 . 𝑎(𝑋) ∪ 𝑏(𝑋) 𝑎 ⊗ 𝑏 ∶= 𝜆𝑋 . 𝑏(𝑎(𝑋)) 𝑎⊛ ∶= 𝜆𝑋 . ∪∞𝑘=0 𝑎
𝑘(𝑋)

Recall that we already know a (1, 5)-summary 𝜌 = (𝑒1 ⋅ 𝑒2) ⋅ (𝑒3 ⋅ 𝑒4)∗ ⋅ 𝑒′3. Let’s reinterpret 𝜌 in our

algebra𝐴.We have J𝜌K = (J𝑒1K⊗J𝑒2K)⊗(J𝑒3K⊗J𝑒4K)⊛⊗J𝑒′
3
K = (𝜆𝑋 . 𝑋)2⊗(𝜆𝑋 . 𝑋⊗J𝑒4K)⊛⊗𝜆𝑋 . 𝑋 =

J𝑒4K⊛ = 𝜆𝑋 . (𝑋 = ∅ ? 𝑋 ∶ 𝐷). In other words, J𝜌K is a data-flow transformer function that tells us

the following: if none of 𝑝 and 𝑞 are null at the beginning of line 1, then none of them will be null

at the end of line 5. However, even if one of them might be null at 1, then either of them might be

null at 5.

Intraprocedural APA. Our first APA algorithm considers the case of a single function. Our input

has the following parts:

● A regular algebra (𝐴,⊕,⊗,⊛, 0, 1);
● A program 𝑃 consisting of a single function 𝑓 with no function call vertices;

● A semantic function J.K ∶ 𝐸 → 𝐴 mapping each edge to an element of the algebra.

Each APA query provides two vertices 𝑠, 𝑡 ∈ 𝑉 . The analysis should respond to this query by

outputting a single element 𝑎 ∈ 𝐴 where 𝑎 = J𝜌K for an (𝑠, 𝑡)-summary 𝜌.

Path Eqivalence. We say two elements 𝑎,𝑏 ∈ 𝐴 are path-equivalent and write 𝑎 ≡ 𝑏 if there exist

two path expressions 𝜌𝑎, 𝜌𝑏 such that J𝜌𝑎K = 𝑎, J𝜌𝑏K = 𝑏 and ∐︀𝜌𝑎̃︀ = ∐︀𝜌𝑏̃︀. Note that a query might

not have a unique answer as different (𝑠, 𝑡)-summaries might lead to different interpretations in 𝐴

but all answers are path-equivalent. The answer is unique if 𝐴 is a Kleene algebra (defined below).

Although having more than one possible answer is technically allowed and our algorithms can

handle it, this usually happens only when APA is combined with abstract interpretation [Kincaid

et al. 2021]. In these cases, we normally have a concrete algebra that is Kleene and an abstract one

which is not. Moreover, any abstract solution in 𝐴 is equally acceptable. See Kincaid et al. [2021]

and Tarjan [1981b] for examples of such analyses and more discussion.

Kleene Algebra [Kozen 1990]. In an algebra (𝐴,⊕,⊗,⊛, 0, 1), we say 𝑎 ≺ 𝑏 if 𝑎⊕𝑏 = 𝑏. The algebra
(𝐴,⊕,⊗,⊛, 0, 1) is a Kleene algebra if it satisfies the following requirements for all 𝑎,𝑏, 𝑐 ∈ 𝐴:
● Associativity: 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐 and 𝑎 ⊗ (𝑏 ⊗ 𝑐) = (𝑎 ⊗ 𝑏) ⊗ 𝑐;
● Commutativity of Addition: 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎;
● Distributivity: 𝑎 ⊗ (𝑏 ⊕ 𝑐) = 𝑎 ⊗ 𝑏 ⊕ 𝑎 ⊗ 𝑐 and (𝑏 ⊕ 𝑐) ⊗ 𝑎 = 𝑏 ⊗ 𝑎 ⊕ 𝑐 ⊗ 𝑎;
● Identity Elements: 𝑎 ⊕ 0 = 0⊕ 𝑎 = 𝑎 and 𝑎 ⊗ 1 = 1⊗ 𝑎 = 𝑎;
● Idempotence: 𝑎 ⊕ 𝑎 = 𝑎;
● Annihilation: 𝑎 ⊗ 0 = 0⊗ 𝑎 = 0;
● As a result of the previous requirements, ≺ is a partial order on 𝐴. We further require:

– Unfolding: 1⊕ 𝑎 ⊗ 𝑎⊛ ≺ 𝑎⊛ and 1⊕ 𝑎⊛ ⊗ 𝑎 ≺ 𝑎⊛.
– Induction: 𝑎 ⊗ 𝑏 ≺ 𝑏 ⇒ 𝑎⊛ ⊗ 𝑏 ≺ 𝑏 and 𝑏 ⊗ 𝑎 ≺ 𝑏 ⇒ 𝑏 ⊗ 𝑎⊛ ≺ 𝑏.
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Note that the algebra of regular expressions with union, concatenation and Kleene iteration is a

Kleene algebra. Many classical static analyses, such as data-flow [Kildall 1973; Reps et al. 1995],

use program summaries that form a Kleene algebra. Kleene algebras also satisfy the following

desirable property: If 𝜌1 and 𝜌2 are two (𝑠, 𝑡)-summaries and we reinterpret them in a Kleene

algebra (𝐴,⊕,⊗,⊛, 0, 1) using the same semantic function, we get J𝜌1K = J𝜌2K. In other words, if

we use a Kleene algebra in our APA, then we always get the same analysis result no matter what

path expression is used to summarize all the paths from 𝑠 to 𝑡, and thus the answer to every query

is unique. Nevertheless, our algorithms do not assume that (𝐴,⊕,⊗,⊛, 0, 1) is a Kleene algebra
and are applicable to any regular algebra. In some steps of the algorithms, it might seem like we

are assuming 𝐴 is a Kleene algebra, e.g. we do not put parentheses when multiplying a series of

elements, but this is not the case. Instead, we mean to emphasize the fact that multiplication order

does not matter since any path-equivalent answer is acceptable and regular expressions form a

Kleene algebra. We now turn to the interprocedural case of APA.

Function Summaries. A function summarizer is a function J.K ∶ {𝑓1, . . . , 𝑓𝑚} → 𝐴 that assigns an

element J𝑓𝑖K of the algebra𝐴 to every function 𝑓𝑖 in 𝑃 .We call J𝑓𝑖K the summary of 𝑓𝑖 . Intuitively, J𝑓𝑖K
models the effect of executing 𝑓𝑖 , including the actions taken by other functions that are recursively

called within 𝑓𝑖 . In practice, such summaries are computed either by the Newtonian program

analysis approach of Esparza et al. [2010] or its recent extension with tensor products [Reps et al.

2017]. For some analyses, there are also faster dedicated summarization procedures such as the

worklist algorithm of Reps et al. [1995] for data-flow.

Example. In Figure 1, since 𝑓 does not call any other functions, any (1, 5)-summary captures all

possible execution paths of 𝑓 . We already have a (1, 5)-summary 𝜌. However, note that in the

call to 𝑓 at line 9, the variable 𝑝 is passed by value but 𝑞 is passed by reference. Thus, 𝑞 is the

same variable in both the main function and 𝑓 , but each function has its own 𝑝. Hence, J𝑓 K cannot
affect 𝑝 in the main function. In other words, we have J𝑓 K ∶= 𝜆𝑋 . (J𝜌K(𝑋) − {𝑝}) ∪ (𝑋 ∩ {𝑝}) =
𝜆𝑋 . (𝑋 = ∅ ? ∅ ∶ {𝑞}) ∪ (𝑋 ∩ {𝑝}). Simply put, we summarized the effects of 𝑓 as follows: 𝑓 does

not affect the nullity of 𝑝. If either 𝑝 or 𝑞 is null when the call to 𝑓 is made, then 𝑞 might be null at

the end of 𝑓 ’s execution. Otherwise, 𝑞 is guaranteed to be non-null after 𝑓 ’s execution.

Augmented Graph [Reps et al. 1995]. Given a program 𝑃 consisting of functions 𝑓1, . . . , 𝑓𝑚, we

define the augmented graph ⧹︂𝐺 = (𝑉 , ⧹︂𝐸) ∶= (𝑉 , 𝐸 ∪ 𝐸𝐶 ∪ 𝐸𝑅), where 𝐸𝐶 is a set of interprocedural call
edges and 𝐸𝑅 is a set of intraprocedural call-to-return edges. For every call vertex 𝑐 ∈ 𝐶, there is an
edge 𝑒𝑐 ∈ 𝐸𝐶 and another edge 𝑒′𝑐 ∈ 𝐸𝑅 . Suppose that Φ(𝑐) = 𝑓𝑖 , i.e. 𝑐 calls the function 𝑓𝑖 , then 𝑒𝑐
would be an edge from 𝑐 to ⊺𝑖 and 𝑒′𝑐 a new edge from 𝑐 to its corresponding return site 𝑟𝑐 .

Extending the Semantic Function. Given that we added new edges to our graph, we have to

extend our semantics. The edge 𝑒′𝑐 = (𝑐, 𝑟𝑐) is supposed to summarize the effect of the function

call. Thus, we set J𝑒′𝑐K ∶= J(𝑐,⊺𝑖)K⊗ J𝑓𝑖K⊗ J(⊥𝑖 , 𝑟𝑐)K. The edge 𝑒𝑐 = (𝑐,⊺𝑖) should flow information

from the caller function (point 𝑐) to the callee 𝑓𝑖 . Thus J𝑒𝑐K is defined based on the particular

APA application. Similarly, the remaining edge between 𝑐 and 𝑟𝑐 should be used to transfer local

information.

Intuition. The paths in the augmented graph
⧹︂𝐺 correspond to interprocedurally valid execution

paths in 𝑃, i.e. paths that return to the correct callee when a called function’s execution ends. To see

this, consider an execution path of the program 𝑃 that reaches point 𝑐 and makes a call to 𝑓𝑖 . There

are two cases: Either this call to 𝑓𝑖 returns, in which case the entire execution of 𝑓𝑖 is summarized

by J𝑒′𝑐K = J𝑓𝑖K, or the analysis endpoint 𝑡 is reached before 𝑓𝑖 returns, in which case we can take the

edge 𝑒𝑐 . The subtle point here is that there is no edge from the endpoint of 𝑓𝑖 back to either 𝑐 or 𝑟𝑐 ,

thus a path that takes 𝑒𝑐 is committing not to return from 𝑓𝑖 ’s execution.
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Example. Figure 1 shows the additional edges in the augmented graph by dashed red lines. Since

𝑒9 simply passes 𝑝 and 𝑞 to 𝑓 , we have J𝑒9K ∶= 𝜆𝑋 . 𝑋 . However, 𝑒′
9
is supposed to short-circuit an

execution of 𝑓 and thus we set J𝑒′
9
K ∶= J𝑓 K. Moreover, the edge 𝑒′′

9
should pass the information

about nullity of 𝑝 from 𝑐9 to 𝑟9. Thus, we set J𝑒′′
9
K ∶= 𝜆𝑋 . 𝑋 ∩ {𝑝}. Suppose our goal is to see

which variables might be null at line 10 assuming the program starts at line 6. We compute a

(6, 10)-summary regular expression in
⧹︂𝐺 which is simply 𝑒6 ⋅𝑒7 ⋅𝑒8 ⋅ (𝑒′9 +𝑒′′9 ) ⋅𝑒′′′9 .We then interpret

it in 𝐴 to obtain 𝜆𝑋 . 𝑋 ⊗ 𝜆𝑋 . 𝐷 ⊗ 𝜆𝑋 . 𝑋 − {𝑝} ⊗ (J𝑒′
9
K ⊕ 𝜆𝑋 . 𝑋 ∩ {𝑝}) ⊗ 𝜆𝑋 . 𝑋 . After a tedious

calculation, the result is 𝜆𝑋 . {𝑞}, meaning that no matter which combination of variables are null

at line 6, the variable 𝑞 might be null at line 10.

Interprocedural APA. Based on the intuition above, the interprocedural variant of on-demand

APA has an input consisting of the following parts:

● A regular algebra (𝐴,⊕,⊗,⊛, 0, 1);
● A program 𝑃 = {𝑓1, 𝑓2, . . . , 𝑓𝑚} together with a summary J𝑓𝑖K ∈ 𝐴 for each function 𝑓𝑖 ∈ 𝑃 ;
● A semantic function J.K ∶ ⧹︂𝐸 → 𝐴 that maps each edge of the augmented graph

⧹︂𝐺 to an element

of the algebra.

Each interprocedural APA query provides two vertices 𝑠, 𝑡 ∈ 𝑉 . The analysis should respond by

outputting an element 𝑎 ∈ 𝐴 where 𝑎 = J𝜌K for an (𝑠, 𝑡)-summary 𝜌 over the augmented graph
⧹︂𝐺.

Call Graph (CG). The call graph of 𝑃 is a directed graph 𝐻 = ({𝑓1, . . . , 𝑓𝑚}, 𝐸𝐻 ) having one vertex

for each function in 𝑃 and an edge (𝑓𝑖 , 𝑓𝑗) if the function 𝑓𝑖 has a direct call to 𝑓𝑗 , i.e. (𝑓𝑖 , 𝑓𝑗) ∈ 𝐸𝐻 iff

∃𝑐 ∈ 𝑉𝑖 Φ(𝑐) = 𝑓𝑗 . While control-flow graphs𝐺𝑖 have nice structural sparsity properties that we

will exploit for faster on-demand APA, these properties are not preserved by the augmented graph

⧹︂𝐺. Thus, our algorithms instead work with the call graph 𝐻 and the 𝐺𝑖 ’s. In our example, the call

graph has a single edge from main to 𝑓 .

3 GRAPH SPARSITY PARAMETERS AND DECOMPOSITIONS
Wenow define the graph structural sparsity parameters that will be used in our algorithms. Through-

out this section, suppose that a graph 𝐺 = (𝑉 , 𝐸) is fixed. The parameters and decompositions

defined below assume an undirected 𝐺. To apply them to a directed graph, we simply ignore the

directions of the edges. Thus, every graph in the rest of this section is undirected.

Depth Decompositions [Nesetril and de Mendez 2006]. A depth decomposition of 𝐺 is a tree /

forest 𝑇 = (𝑉 , 𝐸𝑇 ) on the same vertex set as 𝐺 such that every edge 𝑒 ∈ 𝐸 of 𝐺 connects a vertex

to one of its ancestors or descendants in 𝑇 . Let 𝐴𝑣 be the set of ancestors of 𝑣 in 𝑇 . If there is

a path from 𝑢 to 𝑣 in 𝐺, then it is straightforward to see that it has to visit 𝐴𝑢 ∩ 𝐴𝑣, since we

should start from 𝑢 and go to an ancestor/descendant each time, until we reach 𝑣 . Thus, the highest

internal vertex has to be an ancestor of both 𝑢 and 𝑣 . Intuitively, 𝐴𝑢 ∩𝐴𝑣 is a small cutset in 𝐺

that separates 𝑢 from 𝑣 . Figure 2 (center) shows a depth decomposition of the left graph. Edges

of the original graph are traced in dotted red lines to show that they go between a vertex and an

ancestor/descendant in the tree.

Treedepth [Nesetril and de Mendez 2006]. The treedepth of a graph is defined as the smallest

depth among all its depth decompositions. Intuitively, treedepth is a measure of how much a given

graph resembles a star or a shallow tree. It is experimentally seen that call graphs of real-world

programs have small treedepth [Goharshady and Zaher 2023]. Intuitively, this is because the

functions of a program are typically implemented in a chronological order and each function calls a

small number of those implemented before it and potentially also a few that are implemented after

it (in case of non-simple recursion) [Goharshady and Zaher 2023]. For any fixed constant 𝑑, there

is an algorithm that decides whether an input graph has treedepth at most 𝑑 in linear time and also
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Fig. 2. A graph 𝐺 = (𝑉 , 𝐸) (left), a depth decomposition of 𝐺 (center) and a tree decomposition of 𝐺 (right).

produces the witnessing depth decomposition if the answer is positive. Moreover, the treedepth of

a graph 𝐺 is always greater than or equal to its treewidth [Nesetril and de Mendez 2006].

Tree Decompositions [Robertson and Seymour 1986]. A tree decomposition of 𝐺 is a tree

𝑇 = (ℬ, 𝐸𝑇 ) such that:

● Each node 𝑏 ∈ ℬ of 𝑇 is called a bag and contains a set 𝑉𝑏 ⊆ 𝑉 of the vertices of 𝐺.

● The bags cover all vertices of 𝐺, i.e. ⋃𝑏∈ℬ𝑉𝑏 = 𝑉 .

● For every edge (𝑢, 𝑣) ∈ 𝐸, there is a bag 𝑏 ∈ ℬ that contains both endpoints, i.e. 𝑢, 𝑣 ∈ 𝑉𝑏 .
● Every vertex 𝑣 ∈ 𝑉 appears in a connected subtree of 𝑇 . Formally, suppose 𝑏3 is a bag on

the unique path from 𝑏1 to 𝑏2 in 𝑇 . Then, every vertex that appears in both 𝑏1 and 𝑏2 has to

appear in 𝑏3, as well, i.e. 𝑉𝑏1 ∩𝑉𝑏2 ⊆ 𝑉𝑏3 .
The width of a tree decomposition is the size of its largest bag minus 1, i.e.𝑤(𝑇 ) ∶= max𝑏∈ℬ ⋃︀𝑉𝑏 ⋃︀ − 1.
Figure 2 (right) shows a tree decomposition of the graph on the left with width 2. Much like depth

decompositions, tree decompositions also allow us to find small cuts. If there is a path 𝜋 from

𝑢 to 𝑣 in 𝐺 and if 𝑢 appears in a bag 𝑏𝑢 and 𝑣 in 𝑏𝑣 in 𝑇, then 𝜋 has to intersect every bag that

appears on the unique path from 𝑏𝑢 to 𝑏𝑣 in 𝑇 . Thus, if 𝑏 and 𝑏′ are two neighboring bags in 𝑇,

their intersection𝑉𝑏 ∩𝑉𝑏′ is a cut in𝐺 [Cygan et al. 2015, Chapter 7]. This is called the cut property
of tree decompositions.

Treewidth [Robertson and Seymour 1986]. The treewidth of 𝐺 is the smallest width among all

of its tree decompositions. Intuitively, a graph with treewidth𝑤 can be decomposed into smaller

parts by repeatedly finding cuts of size 𝑤 and removing them. Another intuition is that it can

be decomposed into small parts (bags) of size at most 𝑤 + 1 that are themselves connected in a

tree-like manner. It is well-known that control-flow graphs of structured goto-free programs have a

treewidth of at most 7 [Chatterjee et al. 2019a; Gustedt et al. 2002; Thorup 1998]. This result comes

with an algorithm that produces the corresponding tree decompositions in linear time. Moreover,

each goto statement can increase the treewidth by at most one.

Motivation for Decompositions. The main algorithmic importance of treedepth and treewidth is

that they enable dynamic programming approaches over the respective decompositions [Bodlaender

1988]. Thus, many efficient algorithms designed for trees can be extended to graphs with bounded

treedepth/treewidth, potentially by incurring an exponential runtime dependence on the parameter.

Therefore, a large number of NP-hard problems become tractable when limited to the families

of sparse graphs with bounded treewidth/treedepth [Ahmadi et al. 2022b; Chatterjee et al. 2019c;

Cygan et al. 2015; Goharshady and Mohammadi 2020; Meybodi et al. 2022; Nesetril and de Mendez

2006; Niedermeier 2004] and even problems with PTIME solutions can achieve an improved runtime

over these sparse graphs [Ahmadi et al. 2022a; Asadi et al. 2020; Fomin et al. 2018]. In our case,

since it is known that CFGs and CGs have bounded treewidth and treedepth, respectively, these are

the ideal parameters to exploit for efficient APA.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 292. Publication date: October 2023.



Efficient and On-demand Algebraic Program Analysis 292:13

Fig. 3. A tree 𝑇 (left) and a centroid decomposition 𝑇 ′ of 𝑇 (right) [Carpanese 2018].

Centroid [Jordan 1869]. In a tree𝑇 = (𝑉𝑇 , 𝐸𝑇 )with 𝑛 vertices, a centroid is a vertex whose removal

breaks the tree into connected components of size at most 𝑛⇑2 each. Every tree has at least one

centroid.

Centroid Decompositions. Given a tree 𝑇 = (𝑉𝑇 , 𝐸𝑇 ), a centroid decomposition of 𝑇 is a rooted

tree 𝑇 ′ on the same vertex set. We define 𝑇 ′ recursively: First, find a centroid 𝑐 of 𝑇 and put it as

the root of 𝑇 ′. Then, remove 𝑐 from 𝑇 to break it into connected components 𝑇1,𝑇2, . . . ,𝑇𝑚 . Next,

find a centroid decomposition 𝑇 ′𝑖 of each 𝑇𝑖 . Finally, connect all the 𝑇
′
𝑖 decompositions together by

making 𝑐 the joint parent of all their roots. Figure 3 shows a tree and a centroid decomposition.

The dotted regions show the subtrees 𝑇𝑖 at each step. This figure is adapted from Carpanese [2018],

which is an excellent tutorial on centroid decompositions. The centroid decomposition has a depth

of𝑂(lg𝑛) since we are cutting the size of the tree in half or less each time we find a centroid. As in

previous cases, we have a cut property in centroid decompositions, too: Suppose that 𝑢 and 𝑣 are

two vertices in𝑇 and 𝜋 is the unique path between them. Let 𝑙 be the lowest common ancestor of 𝑢

and 𝑣 in 𝑇 ′. The path 𝜋 is guaranteed to visit 𝑙 . Finally, it is notable that a centroid decomposition

can be computed in linear time [della Giustina et al. 2019].

4 INTRAPROCEDURAL ON-DEMAND APA
In this section, we provide two algorithms for intraprocedural on-demand APA, i.e. the case where

the program is a single function with no recursive calls. Since we have only one function, we

simplify our CFG notation to 𝐺 = (𝑉 , 𝐸,⊺,⊥). Our first algorithm is more efficient and assumes we

are given a structured program with loops and branches, but no arbitrary jumps (goto statements).

It uses the nesting depth of the program as a parameter that is presumed to be small and obtains a

preprocessing time of𝑂(𝑛 ⋅ log log𝑛 ⋅𝑘), after which it can answer each query in𝑂(𝑘). This handles
the vast majority of real-world programs as goto statements and large nesting depths are highly

discouraged by programming style standards. However, there are also real-world programs that

have large nesting depth or a few goto statements in each function. To handle these, we provide a

second algorithm with a slightly higher preprocessing time of 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘) which only assumes

the treewidth of the CFG is bounded. It is well-known that a structured program with 𝑔 goto
statements has a treewidth of at most 7 +𝑔 [Thorup 1998] and that human-written programs never

have a treewidth larger than 5 in practice [Gustedt et al. 2002].

4.1 Exploiting Nesting Depth

Overview. Our first algorithm exploits the fact that real-world programs usually have bounded

nesting depth, which is the maximum number of nested statements in a block of code. At a high

level, our algorithm consists of the following steps:
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(1) Linearization: The algorithm recursively obtains summaries for each subprogram, e.g. each

while loop. This allows us to intuitively flatten the program and focus on straight-line

queries.

(2) Construction of a Square-root Tree: The algorithm constructs a data structure known as

square-root tree, which helps us efficiently compute summaries of straight-line segments.

(3) Answering an APA query: We break each query into smaller parts, one for each nesting

depth, and use the square-root tree to answer each part efficiently. Since the nesting depth is

bounded, we have a constant number of parts.

We now formalize these ideas in more detail.

Structured Programs. A simple program is defined using the following grammar:

𝑃 ∶= 𝑃 ;𝑃 ⋃︀ branch𝑙 𝑃, 𝑃, . . . , 𝑃 end𝑙 ⋃︀ loop𝑙 𝑃 end𝑙 ⋃︀ break𝑙 ⋃︀ continue𝑙 ⋃︀ 𝜎

Here, 𝜎 is an atomic operation that has no bearing on the control flow. branch captures multi-way

branching caused by statements such as if and switch in common programming languages. We

also have a generalized loop structure that can be instantiated to model for or while loops by

assigning a suitable semantic meaning J𝑒K to each edge 𝑒 of the CFG. Finally, note that our break
and continue statements are labeled and can apply to any enclosing loop. We call these programs

simple since they have only one procedure/function.

CFGs. Given a simple program 𝑃 we define its CFG 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃 ,⊺𝑃 ,⊥𝑃) recursively as follows:

𝑃 𝑉𝑃 𝐸𝑃 ⊺𝑃 ⊥𝑃
𝜎 {𝜎} ∅ 𝜎 𝜎

continue𝑙 {continue𝑙} ∅ continue𝑙 continue𝑙
break𝑙 {break𝑙} ∅ break𝑙 break𝑙
𝑃1;𝑃2 𝑉𝑃1 ∪𝑉𝑃2 𝐸𝑃1 ∪ 𝐸𝑃2 ∪ {(⊥𝑃1 ,⊺𝑃2)} ⊺𝑃1 ⊥𝑃2

branch𝑙 𝑃1, 𝑃2, . . . , 𝑃𝑚 end𝑙
⋃𝑚𝑖=1𝑉𝑃𝑖

∪{branch𝑙 , end𝑙} ⋃𝑚𝑖=1 (𝐸𝑃𝑖 ∪ {(branch𝑙 ,⊺𝑃𝑖 ), (⊥𝑃𝑖 , end𝑙)}) branch𝑙 end𝑙

loop𝑙 𝑃
′end𝑙

𝑉𝑃 ′

∪{loop𝑙 , end𝑙}

𝐸𝑃 ′ ∪ {(loop𝑙 ,⊺𝑃 ′), (⊥𝑃 ′ , loop𝑙), (loop𝑙 , end𝑙)}
∪{(𝑣, loop𝑙) ⋃︀ 𝑣 ∈ 𝑉𝑃 ′ ∧ 𝑣 ≡ continue𝑙}
∪{(𝑣, end𝑙) ⋃︀ 𝑣 ∈ 𝑉𝑃 ′ ∧ 𝑣 ≡ break𝑙}

loop𝑙 end𝑙

A pictorial representation is provided further below. Note that we distinguish between different

instances of break𝑙 or continue𝑙 , even when they apply to the same loop. Moreover, we assume

that every loop label 𝑙 has a constant number of corresponding break and continue statements.

Nesting Depth. We define the nesting depth 𝑑(𝑃) of a program 𝑃 as the maximum number

of nested loop and branch statements. More formally, 𝑑(𝜎) ∶= 𝑑(continue𝑙) ∶= 𝑑(break𝑙) ∶=
0, 𝑑(𝑃1;𝑃2) = max{𝑑(𝑃1), 𝑑(𝑃2)}, 𝑑(branch𝑙 𝑃1, 𝑃2, . . . , 𝑃𝑚 end𝑙) ∶= 1 + max

𝑚
𝑖=1 𝑑(𝑃𝑖), and finally

𝑑(loop𝑙 𝑃 ′end𝑙) ∶= 1+𝑑(𝑃 ′).We assign a level 𝜆(𝑣) to each vertex 𝑣 of our CFG: a vertex appearing

in an innermost block of code has a level of 0. A vertex that appears in a block which itself includes

another block nested in it has a level of 1, and so on. Figure 4 shows an example Python program

with the levels of each line.

In this section, we assume our CFG 𝐺𝑃 is obtained using the definition above from a program 𝑃

that has a constant depth 𝑑(𝑃) = 𝛿. We will relax these restrictions in the next section. Recall that

we assume every edge 𝑒 of the CFG has a semantic meaning J𝑒K ∈ 𝐴. An APA query is of the form

𝑞(𝐺,𝑠, 𝑡) and returns J𝜌K for a path expression 𝜌 that summarizes all paths from 𝑠 to 𝑡 in𝐺. We are

now ready to present our algorithm.

APA Preprocessing. Our preprocessing is structurally recursive. Before considering any program

𝑃, we first recursively preprocess all its maximal subprograms 𝑃 ′ that have the smaller depth

𝑑(𝑃) − 1. This enables us to make APA queries on each such 𝑃 ′. After all such subprograms are

preprocessed, our algorithm performs the following steps on 𝑃 ∶
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x = 1

while x < 1 0 0 :

x+=1

if x%2 == 1 :

x ∗= 3

x+=1

y=10

2

2

1

1

0

1

2

Fig. 4. An example program (left) and the level of each statement (right).

Preprocessing Step 1: Linearizing the CFG. In this step, our goal is to obtain a linearized CFG
𝐿𝑃 = (𝑉 𝐿

𝑃 , 𝐸
𝐿
𝑃) in which: (i) 𝑉 𝐿

𝑃 ∶= {𝑣 ∈ 𝑉𝑃 ⋃︀ 𝜆(𝑣) = 𝑑(𝑃)} is the set of all vertices that appear in

𝐺𝑃 but not in any 𝐺𝑃 ′ , (ii) 𝐿𝑃 is a union of disjoint directed paths, and (iii) for any two vertices

𝑠, 𝑡 ∈ 𝑉 𝐿
𝑃 , we have 𝑞(𝐿𝑃 , 𝑠, 𝑡) ≡ 𝑞(𝐺𝑃 , 𝑠, 𝑡). Intuitively, 𝐿𝑃 is a simplified version of 𝐺𝑃 in which we

have summarized all the loops and branches and thus our graph is simply a path. If we ever have

to answer a query between two points in 𝑃 that were not inside a nested loop or branch, we can

perform this query in the linearized CFG 𝐿𝑃 instead of the much larger original CFG 𝐺𝑃 and we

are guaranteed to obtain a path-equivalent result. To obtain 𝐿𝑃 , we start with 𝐺𝑃 and apply the

following reductions (See Figure 5):

● Branch Summarization: If a branching operation branch𝑙 𝑃1, 𝑃2, . . . , 𝑃𝑚 end𝑙 appears directly
in 𝑃, i.e. not nested within another loop or branch, then we perform the following operations

for each 𝑃𝑖 ∶
– Compute J𝜌𝑖K ∶= 𝑞(𝐺𝑃𝑖 ,⊺𝑃𝑖 ,⊥𝑃𝑖 ). Note that we can perform this APA query since 𝑃𝑖 has

already been preprocessed before 𝑃 .

– Add a new edge 𝑒𝑃𝑖 from branch𝑙 to end𝑙 and set

J𝑒𝑃𝑖 K ∶= J(branch𝑙 ,⊺𝑃𝑖 )K⊗ J𝜌𝑖K⊗ J(⊥𝑃𝑖 , end𝑙)K.
– Delete all vertices in 𝑉𝑃𝑖 .

As an example, see Figure 5. The top part of the changes from the first graph to the second

graph show the effects of branch summarization.

● Loop Summarization: Summarizing loops is a bit more complicated than branches due to

the possible existence of break and continue statements. Let loop𝑙 𝑃
′ end𝑙 be a loop that

appears directly in 𝑃, not nested within another loop or branch. Every iteration of the loop

either (1) terminates normally and goes back to the header loop𝑙 , or (2) reaches a continue𝑙
statement and goes to loop𝑙 , or (3) reaches a break𝑙 statement and transitions to end𝑙 . We

have to add summaries for each of these cases separately. Thus, we do the following:

– Compute J𝜂1K ∶= 𝑞(𝐺𝑃 ′ ,⊺𝑃 ′ ,⊥𝑃 ′) and add a self-loop 𝑒1𝑃 ′ to loop𝑙 with J𝑒1𝑃 ′K ∶= J(loop𝑙 ,⊺𝑃 ′)K⊗
J𝜂1K⊗ J(⊥𝑃 ′ , loop𝑙)K. This summarizes any iteration of type (1). Note that it does not add

any information about iterations of type (2) and (3) above since any break𝑙 or continue𝑙
vertex is a dead-end in 𝐺𝑃 ′ .

– For every vertex 𝑣 ∈ 𝑉𝑃 ′ that is a continue𝑙 , compute J𝜂2𝑣K ∶= 𝑞(𝐺𝑃 ′ ,⊺𝑃 ′ , 𝑣). Add a self-loop
𝑒2𝑣 from loop𝑙 to itself and set J𝑒2𝑣K ∶= J(loop𝑙 ,⊺𝑃 ′)K⊗ J𝜂2𝑣K⊗ J(𝑣, loop𝑙)K. This summarizes

an iteration of type (2).

– Similarly, for each vertex 𝑣 ∈ 𝑉𝑃 ′ that is a break𝑙 , compute J𝜂3𝑣K ∶= 𝑞(𝐺𝑃 ′ ,⊺𝑃 ′ , 𝑣). Add an

edge 𝑒3𝑣 from loop𝑙 to end𝑙 and set J𝑒3𝑣K ∶= J(loop𝑙 ,⊺𝑃 ′)K⊗ J𝜂3𝑣K⊗ J(𝑣, end𝑙)K.
– Finally, delete all vertices in 𝑉𝑃 ′ .

The bottom part of the changes from the first graph to the second graph in Figure 5 is an

example of loop summarization.
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Fig. 5. The process of obtaining the linearized control-flow graph 𝐿𝑃 . The letters in red are the semantics of
the edges. Subgraphs are shown by dashed boxes. Blue letters are path expressions in the subgraphs. New
edges are shown in green. Note that our algorithm is not symbolic and every green expression is actually
evaluated to a single element in 𝐴 which is saved as the semantics of the edge.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

9 10 11 12

9 10 11 12

13 14 15 16

13 14 15 16

Fig. 6. A square-root tree for an array of size 16.

● Eliminating Multi-edges and Self-loops: Applying the summarizations above leads to a graph

containing multiple edges between the same pair of vertices and self-loops, e.g. Figure 5

(middle graph). To achieve a linear CFG 𝐿𝑃 we first eliminate multi-edges. If 𝑒1, 𝑒2, . . . , 𝑒𝑚
are all the edges from a vertex 𝑢 to another vertex 𝑣, we remove them and instead add a

single new edge 𝑒 = (𝑢, 𝑣) with J𝑒K ∶= J𝑒1K ⊕ J𝑒2K ⊕ . . . ⊕ J𝑒𝑚K. Next, we have to eliminate

self-loops. Let 𝑒1, 𝑒2, . . . , 𝑒𝑚 be self-loops on vertex 𝑢. Take every incoming edge of the form

𝑒′ = (𝑣,𝑢) and replace J𝑒′K with J𝑒′K⊗ 𝜒𝑢 where 𝜒𝑢 ∶= (J𝑒1K⊕ J𝑒2K⊕ . . . ⊕ J𝑒𝑚K)⊛ . Similarly,

for every outgoing edge 𝑒′′ = (𝑢, 𝑣) replace J𝑒′′K with 𝜒𝑢 ⊗ J𝑒′′K. As an example, see the

changes between the last two graphs in Figure 5. We also save 𝜒𝑢 for future use.

Since we always preserve path equivalence, the process above produces a linearized CFG 𝐿𝑃 with

the desired properties
†

†
For brevity, we only present the case where 𝐿𝑃 is a connected path. Technically, it is possible that 𝐿𝑃 is not a single

path but instead a union of disjoint paths. This can happen if 𝑃 contains a break or continue statement for an outer loop

that encloses the entirety of 𝑃. In this case, our algorithm simply processes each connected component of 𝐿𝑃 separately.
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Preprocessing Step 2: Generating a Sqare-root Tree. Our linearized CFG 𝐿𝑃 is a path. Let us

denote it by 𝑣1, 𝑒1, 𝑣2, 𝑒2, . . . , 𝑒𝑚, 𝑣𝑚+1 . We know that if an APA query of the form 𝑞(𝐺𝑝 , 𝑣𝑖 , 𝑣 𝑗+1) is
requested, we can answer it in 𝐿𝑝 instead of𝐺𝑝 . More precisely, if 𝑗 + 1 < 𝑖, there is no path and the

answer is 0. If 𝑗 + 1 = 𝑖, then the answer is simply 𝜒𝑣𝑖 , which is already computed, and if 𝑗 + 1 > 𝑖,
the answer is

J𝑒𝑖K⊗ J𝑒𝑖+1K⊗ . . . ⊗ J𝑒 𝑗 K. (1)

Thus, we would like to do some extra preprocessing so that we can later compute expressions of

form (1) quickly. The classical solution is to create a segment tree [de Berg et al. 2000] on 𝐿𝑃 . This

problem can also be solved by the methods of Alon and Schieber [1987]. However, to gain more

efficiency, we opt for a different data structure, called a square-root tree [Kernozhitsky et al. 2022].

This data structure is defined by a root node, which represents a segment of length 𝑛, and has

⌋︂
𝑛

children, each representing consecutive segments of length

⌋︂
𝑛 of the original array. The tree is

then defined recursively for each of the children. This structure is exemplified in Figure 6 for a

simple array. The steps taken to preprocess 𝐿𝑃 are as follows:

● Ensure the number𝑚 of edges is a power of two by adding dummy edges with semantics 1

to the end of the path 𝐿𝑃 . If𝑚 ≤ 2, stop.
● Compute the evaluation of all prefixes of the form J𝑒1K⊗ J𝑒2K⊗ . . . J𝑒 𝑗 K and all suffixes of the

form J𝑒𝑖K⊗ J𝑒𝑖+1K⊗ . . . J𝑒𝑚K.
● Let𝑚′ be the smallest power of two such that𝑚′ ≥

⌋︂
𝑚. Break 𝐿𝑃 into paths 𝐿1𝑃 , 𝐿

2

𝑃 , . . . , 𝐿
𝑚
′′

𝑃

each of size𝑚′.
● Compute the evaluation of all “big-step” expressions of the form J𝐿𝑖𝑃 K⊗ J𝐿𝑖+1𝑃 K⊗ . . . ⊗ J𝐿 𝑗

𝑃 K.
Note that there are only 𝑂(𝑚) such expressions.

● Create a tree in which each vertex models a path and the 𝐿𝑖𝑃 ’s are children of 𝐿𝑃 .

● Recursively process each subpath 𝐿𝑖𝑃 and thus extend the tree.

This concludes our APA preprocessing.

Motivation for Sqare-root Tree. Intuitively, our goal is to effeciently compute expressions of

the form (1), which correspond to a segment from index 𝑖 to index 𝑗 of an array. In a traditional

segment tree, each node has two children and the subarrays assigned to the children are the left

and right halves of the parent’s subarray. This leads to a tree of depth 𝑂(log𝑛). Thus, computing

each expression of form (1) can take logarithmic time. In contrast, in a square-root tree, each node

has Θ(
⌋︂
𝑚) children, where𝑚 is the size of the subarray assigned to this node. This ensures that

the tree is shallower and has a depth of only 𝑂(log log𝑛). The lemma below formalizes this point:

Lemma 4.1. Assuming an APA query on a preprocessed subprogram can be answered in 𝑂(𝑘), the
entire APA preprocessing as described above takes 𝑂(𝑛 ⋅ log log𝑛 ⋅ 𝑘) time.

Proof. Since every statement in the CFG is summarized once, the linearization step makes𝑂(𝑛)
queries and performs an additional 𝑂(𝑛) operations in the algebra (𝐴,⊕,⊗,⊛, 0, 1). Thus, this part
takes 𝑂(𝑛 ⋅ 𝑘). Let 𝑑(𝑚) denote the depth of our tree when we have𝑚 elements. Our root has

𝑂(
⌋︂
𝑚) children, each with 𝑂(

⌋︂
𝑚) elements, but the number of children does not matter for the

depth. Thus, we have 𝑑(𝑚) = 1 + 𝑑(
⌋︂
𝑚). If we define 𝑙 ∶= log𝑚 and 𝐷(𝑙) ∶= 𝑑(2𝑙) = 𝑑(𝑚), we get

𝑑(𝑚) = 𝐷(𝑙) = 1 +𝐷(𝑙⇑2). The latter can be solved by Master’s theorem leading to 𝐷(𝑙) ∈ 𝑂(log 𝑙)
which is equivalent to 𝑑(𝑚) ∈ 𝑂(log log𝑚). So the square-root tree has a depth of 𝑂(log log𝑚).
Let𝑚𝑖 denote the number of vertices represented by the root of the 𝑖-th square-root tree. Based on

the discussion above, creating this square-root tree takes 𝑂(𝑚𝑖 ⋅ log log𝑚𝑖 ⋅ 𝑘) time. However the

sum of all𝑚𝑖 ’s is 𝑛. Thus, the total runtime is 𝑂(𝑛 ⋅ log log𝑛 ⋅ 𝑘). □

We now set the stage for our APA query phase.
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Lemma 4.2. Using the square-root tree created in the preprocessing procedure above, an expression
of form (1) can be evaluated in 𝑂(𝑘).

Proof. We aim to evaluate J𝑒𝑖K⊗ J𝑒𝑖+1K⊗ . . . ⊗ J𝑒 𝑗 K. Let us look at the first level of our tree. If

the segment (︀𝑒𝑖 , 𝑒 𝑗 ⌋︀ transcends several subpaths 𝐿𝑖
′

, 𝐿𝑖
′+1, . . . , 𝐿 𝑗

′−1, 𝐿 𝑗 , we have

J𝑒𝑖K⊗J𝑒𝑖+1K⊗. . .⊗J𝑒 𝑗 K = (J𝑒𝑖K⊗ . . . ⊗ J𝑒𝑖′⋅𝑚′K)⊗(J𝐿𝑖
′+1K⊗ . . . ⊗ J𝐿 𝑗

′−1K)⊗(J𝑒(𝑗 ′−1)⋅𝑚′+1K⊗ . . . ⊗ J𝑒 𝑗 K) .

The first part is a suffix, the second a big-step expression and the third a prefix. They are all

precomputed. Thus, the query only needs to perform two operations in the algebra which takes

𝑂(𝑘). The only remaining case is if (︀𝑒𝑖 , 𝑒 𝑗 ⌋︀ is entirely inside one subpath 𝐿𝑖
′

. In this case, a similar

analysis should be performed, but at a lower level of the tree. Given that all paths in the tree have

lengths that are powers of two, we can find the suitable level by simple bitwise operations on 𝑖 and

𝑗 which take 𝑂(1). □

Predecessors and Successors at Higher Levels. Let 𝑣 ∈ 𝑉𝑃 be a vertex of our CFG and 𝜆 ≥ 𝜆(𝑣).
A vertex 𝑢 at level 𝜆 is an 𝜆-successor of 𝑣 if there exists a path 𝜋 from 𝑣 to 𝑢 such that (i) all vertices

in 𝜋 are at level 𝜆 or lower, and (ii) 𝑢 is the first/only vertex in 𝜋 that has level 𝜆. Similarly, 𝑢 is

an 𝜆-predecessor of 𝑣 if there exists a path from 𝑢 to 𝑣 such that (i) all vertices in 𝜋 are at level

𝜆 or lower, and (ii) 𝑢 is the last/only vertex in 𝜋 that has level 𝜆. Every vertex 𝑣 has exactly one

𝜆-predecessor and at most two 𝜆-successors at any level 𝜆 ≥ 𝜆(𝑣). More specifically, if 𝜆 = 𝜆(𝑣),
then 𝑣 is its own unique 𝜆-predecessor and 𝜆-successor. Otherwise, 𝑣 is nested within another

structure at level 𝜆. If 𝑣 is nested within branch𝑙 𝑃1, 𝑃2, . . . , 𝑃𝑚 end𝑙 with 𝜆(branch𝑙) = 𝜆(end𝑙) = 𝜆,
then the only 𝜆-predecessor of 𝑣 is branch𝑙 and its only 𝜆-successor is end𝑙 . Similarly, if 𝑣 is nested

within loop𝑙 𝑃
′ end𝑙 with 𝜆(loop𝑙) = 𝜆(end𝑙) = 𝜆, then its only 𝜆-predecessor is loop𝑙 but both

loop𝑙 and end𝑙 can be 𝜆-successors since an execution that starts at 𝑣 might break/continue the

loop. For every vertex 𝑣 and its every 𝜆-successor 𝑢, we can find a summary J𝑣 → 𝑢K of all paths 𝜋
defined as above in 𝑂(𝑘). More specifically, let 𝑃 ′ be the subprogram nested inside 𝑢 that contains

𝑣, we define and compute:

J𝑣 → 𝑣K ∶= 𝑞(𝐿𝑣, 𝑣, 𝑣) J𝑣 → 𝑢K ∶= ⊕
𝑢′∈𝑃 ′ ∶ (𝑢′,𝑢)∈𝐸𝑃

𝑞(𝐺𝑃 ′ , 𝑣,𝑢
′) ⊗ J(𝑢′,𝑢)K for 𝑢 ≠ 𝑣 .

Here, 𝐿𝑣 is the linearized CFG at level 𝜆(𝑣) that contains 𝑣 . Recall that a query on a linearized CFG

can be answered in 𝑂(𝑘) by Lemma 4.2. The second part recursively calls a constant number of

APA queries on 𝑃 ′ which has a lower depth. Note that there are constantly many possible vertices

𝑢′ since we assumed every loop is broken/continued in constantly many places. Similarly, if 𝑢 is

the 𝜆-predecessor of 𝑣 we have:

J𝑣 → 𝑣K ∶= 𝑞(𝐿𝑣, 𝑣, 𝑣) J𝑢 → 𝑣K ∶= J(𝑢,⊺𝑃 ′)K⊗ 𝑞(𝐺𝑃 ′ ,⊺𝑃 ′ , 𝑣) for 𝑢 ≠ 𝑣 .

Again, the former is computed using Lemma 4.2 and the latter is an APA query in the program 𝑃 ′
that has lower depth than 𝜆.

Remark. The values J𝑢 → 𝑣K or J𝑣 → 𝑢K above can be computed either in preprocessing or in each

APA query when they are needed. This choice has no effect on the runtime complexity. Below, we

assume they are computed in query.

Answering an APA Query. Based on the ideas above, we are finally ready to show how a general

APA query can be answered. Suppose we are given an APA query 𝑞(𝐺𝑃 , 𝑠, 𝑡) and 𝑃 is a program

with nesting depth 𝛿. Let us consider all paths from 𝑠 to 𝑡 in 𝐺𝑃 . We can divide these paths in two

sets: (1) those that never visit a vertex at level 𝛿, and (2) those that do visit a vertex at level 𝛿. We

find an answer for each part separately and then use the ⊕ operation in our algebra:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 292. Publication date: October 2023.



Efficient and On-demand Algebraic Program Analysis 292:19

(1) Paths of type (1) can exist only if there is a subprogram 𝑃 ′ of depth 𝛿 − 1 that contains both 𝑠
and 𝑡 . In this case, we can recursively compute 𝑎1 ∶= 𝑞(𝐺𝑃 ′ , 𝑠, 𝑡). If no such 𝑃 ′ exists, we set
𝑎1 ∶= 0.

(2) By definition, any path that starts at 𝑠, gets to level 𝛿, and then proceeds to reach 𝑡 has

to go through one of the 𝛿-successors of 𝑠 and the 𝛿-predecessor of 𝑡 . Thus, we compute

𝑎2 ∶= ⊕𝑠′J𝑠 → 𝑠′K ⊗ 𝑞(𝐿𝑃 , 𝑠′, 𝑡 ′) ⊗ J𝑡 ′ → 𝑡K, where 𝑠′ is a 𝛿-successor of 𝑠 and 𝑡 ′ is the 𝛿-
predecessor of 𝑡 . The first and last multiplicands are computed as explained above and the

middle multiplicand is obtained by Lemma 4.2.

Finally, our algorithm returns 𝑎1 ⊕ 𝑎2 as the desired value for 𝑞(𝐺𝑃 , 𝑠, 𝑡).

Lemma 4.3. The algorithm above answers an intraprocedural query 𝑞(𝐺𝑃 , 𝑠, 𝑡) in 𝑂(𝑘).

Proof. Recall that we assumed the depth 𝛿 is a constant. We prove the lemma by induction on

𝛿. The case 𝛿 = 0 is trivial. For 𝛿 > 0, our algorithm makes constantly many recursive APA queries

on subprograms 𝑃 ′ with depth 𝛿 − 1 and constantly many linearized queries using Lemma 4.2, each

of which takes 𝑂(𝑘) by induction hypothesis and Lemma 4.2. □

Finally, we have our main theorem, which is a direct result of Lemmas 4.1 and 4.3:

Theorem 4.4. Given a program 𝑃 with bounded nesting depth, an algebra (𝐴,⊕,⊗,⊛, 0, 1), and a
semantic function J.K ∶ 𝐸 → 𝐴 that assigns an element of 𝐴 to every edge of the CFG𝐺𝑃 , our algorithm
preprocesses 𝑃 in𝑂(𝑛 ⋅ log log𝑛 ⋅𝑘) time and then answers each intraprocedural APA query 𝑞(𝐺𝑃 , 𝑠, 𝑡)
in 𝑂(𝑘), where 𝑛 is the size of 𝐺𝑃 and 𝑘 is the time needed to perform a single atomic operation in 𝐴.

Runtime Dependence on the Nesting Depth. The dependence on the nesting depth 𝛿 has

been ommited from the complexity since 𝛿 is assumed to be a constant. The complexity of the

preprocessing does not depend on the nesting depth, as the linearization and the building of the

square-root tree depend only on the number of vertices in the CFG. The query phase makes a

constant number of queries per nesting depth, according to Lemma 4.3, and therefore takes𝑂(𝑘 ⋅𝛿).

4.2 Exploiting Treewidth
In this section, we provide an alternative algorithm for on-demand intraprocedural APA that does

not depend on nesting depth. Instead, we assume the given control-flow graph 𝐺 has bounded

treewidth 𝜏 . This assumption is shown to hold for real-world structured programs both theoreti-

cally [Thorup 1998] and in practice [Gustedt et al. 2002]. Since we handle programs of any nesting

depth, our setting is strictly more general than Section 4.1. The tradeoff is an increase in our

preprocessing time from 𝑂(𝑛 ⋅ log log𝑛 ⋅ 𝑘) to 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘).
Overview. The central idea in our algorithm is to consider a centroid decomposition of a tree

decomposition and then precompute summaries from every bag to each of its ancestors in the

centroid decomposition. Note that every bag has at most 𝑂(log𝑛) ancestors. We then show that

every APA query can be broken down into a combination of a constant number of precomputed

summaries, which allows us to answer queries with a constant number of operations in the algebra.

Our algorithm executes the following steps:

(1) Computing a Decomposition: The algorithm computes a tree decomposition of the CFG using

an external tool.

(2) Same-bag Summaries: The algorithm finds a summary between every two nodes of the CFG

that appear somewhere in the same bag in the tree decomposition. This can be done using a

variant of the Floyd-Warshall algorithm for bounded-treewidth graphs.

(3) Centroid Decomposition: The algorithm computes a centroid decomposition of the tree de-

composition. This is a tree of logarithmic height that allows us to write all 𝑂(𝑛2) summaries
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between pairs of vertices in the original tree as a combination of 𝑂(𝑛 ⋅ log𝑛) precomputed

summaries.

(4) Precomputed Summaries: The algorithm computes𝑂(𝑛 ⋅ log𝑛) summaries using the structure

of the centroid decomposition. Intuitively, we compute summaries between every node and

its ancestors/descendants.

(5) Answering an APA query: Given an APA query, the algorithm breaks it down into a constant

number of possibilities based on the precomputed summaries and thus computes the result

in 𝑂(𝑘).
Motivation for Decompositions. As mentioned, our goal is to precompute a small number of

path summaries, so that we can write any given query as a combination of a constant number of

precomputed summaries. For this, we are considering a centroid decomposition of a tree decom-

position of our CFG. This combination of decompositions might look strange in the first glance,

but actually exploits a natural shared property of both types of decompositions, namely the cut

property. Consider a graph 𝐺, a tree decomposition 𝑇 of 𝐺 and a centroid decomposition 𝑇 ′ of 𝑇 .
Suppose the query provides two vertices 𝑢 and 𝑣 in 𝐺. Let 𝑏𝑢 and 𝑏𝑣 be two bags in 𝑇 that contain

𝑢 and 𝑣, respectively. By the cut property of tree decompositions, any path from 𝑢 to 𝑣 in 𝐺 has to

visit every bag that is on the path from 𝑏𝑢 to 𝑏𝑣 in 𝑇 . Now, let 𝑏 be the lowest common ancestor of

𝑏𝑢 and 𝑏𝑣 in𝑇
′ . By the cut property of centroid decompositions, 𝑏 is on the path from 𝑏𝑢 to 𝑏𝑣 in𝑇 .

Thus, every path from 𝑢 to 𝑣 in 𝐺 has to intersect 𝑉𝑏 . Therefore, if we already have precomputed

summaries between 𝑢 and 𝑣 on the one hand, and every vertex in 𝑉𝑏 on the other hand, we can

cover all possible paths from 𝑢 to 𝑣 by simply iterating over the intermediate vertex that is in 𝑉𝑏 .

We are now ready to provide a more formal and detailed description of the algorithm.

APA Preprocessing. Our preprocessing uses a novel and clever combination of tree decompositions

and centroid decompositions. We precompute the answers to certain types of APA queries. The

structure of these queries is such that any other query’s result can be obtained from them by a

constant number of operations in the algebra (𝐴,⊕,⊗,⊛, 0, 1).
Preprocessing Step 1: Computing a Tree Decomposition. We start by computing a tree decom-

position𝑇 = (ℬ, 𝐸𝑇 ) of our control-flow graph𝐺 . This can be done using standard algorithms [Bod-

laender 1996; Thorup 1998].

Preprocessing Step 2: In-bag Summaries. In this step, for every bag 𝑏 ∈ ℬ and every two vertices

𝑢, 𝑣 ∈ 𝑉𝑏, we compute and save 𝑞(𝐺,𝑢, 𝑣). We also add a new summary edge 𝑒 = (𝑢, 𝑣) with

J𝑒K ∶= 𝑞(𝐺,𝑢, 𝑣). Moreover, despite adding edges to 𝐺, this step keeps 𝑇 a valid tree decomposition

for 𝐺 since the added edges are always to a pair of vertices that appear in the same bag.

Of course, it would not be efficient to perform all these queries separately. Instead, this step

is achieved by a recursive algorithm. Suppose 𝑏𝑙 ∈ ℬ is a leaf bag in the tree decomposition 𝑇 .

We say a vertex 𝑣 ∈ 𝑉 is special if the only bag it appears in is 𝑏𝑙 . Our first subgoal is to remove

𝑏𝑙 from 𝑇 and all special vertices from 𝐺 while preserving the query values between any pair of

non-special vertices (or changing them to path-equivalent values). We perform a local all-pairs

summarization in 𝑏𝑙 , i.e. for any two vertices 𝑢, 𝑣 ∈ 𝑉𝑏𝑙 , we add a new edge 𝑒𝑢,𝑣 in𝐺 from 𝑢 to 𝑣 with

J𝑒𝑢,𝑣K ∶= 𝑞(𝐺(︀𝑉𝑙 ⌋︀,𝑢, 𝑣). In other words, we summarize all paths that are entirely in 𝑉𝑏𝑙 by direct

edges. Since the algebra of regular expressions is idempotent, this preserves path equivalence. Now,

let 𝑇− be the result of removing 𝑏𝑙 from 𝑇 and 𝐺− be the graph obtained by removing all special

vertices from 𝐺. We verify that 𝑇− is a tree decomposition of 𝐺−. By definition, every non-special

vertex appears in a bag in 𝑇−. Consider an edge between two non-special vertices. If this edge

was covered by a bag other than 𝑏𝑙 , then it remains covered. Otherwise, since both endpoints

are non-special, they are both in the parent of 𝑏𝑙 . Finally, removing a leaf cannot disconnect the

previously-connected subtree of bags containing any particular vertex. We recursively compute
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in-bag summaries 𝑞(𝐺−,𝑢, 𝑣) for all pairs (𝑢, 𝑣) of non-special vertices that appear in the same bag

in 𝑇− and add the resulting corresponding summary edges in 𝐺− and 𝐺 .
For any such pair (𝑢, 𝑣), we claim 𝑞(𝐺,𝑢, 𝑣) ≡ 𝑞(𝐺−,𝑢, 𝑣). Consider a path 𝜋 from 𝑢 to 𝑣 in

𝐺. If there are no special vertices in 𝜋, then the same path exists in 𝐺−. Otherwise, decompose

𝜋 = 𝜋1 ⋅ 𝑎′ ⋅ 𝑎 ⋅ 𝑎′′ ⋅ 𝜋2, where 𝑎 is the first special vertex in 𝜋 . Since 𝑎 is special, it only appears in

the bag 𝑏𝑙 in 𝑇 . Thus, all neighbors of 𝑎 must also appear in 𝑏𝑙 given that a tree decomposition

has to cover all edges. Therefore, 𝑎′, 𝑎′′ ∈ 𝑉𝑏𝑙 and we have a direct summary edge 𝑒𝑎′,𝑎′′ . Thus,

we can replace 𝜋 with 𝜋 ′ ∶= 𝜋1 ⋅ 𝑎′ ⋅ 𝑎′′ ⋅ 𝜋2 without loss of information. Continually applying

this process, we obtain a path that does not have any special vertices and is included in 𝐺−. So,
𝑞(𝐺,𝑢, 𝑣) ≡ 𝑞(𝐺−,𝑢, 𝑣).

Finally, we have to find in-bag summaries for our special vertices, too. To do this, we simply run

another all-pairs summarization in 𝑏𝑙 . Suppose 𝑢, 𝑣 ∈ 𝑉𝑏𝑙 . After this second all-pairs summarization

in 𝑏𝑙 , we claim there is now a direct (𝑢, 𝑣)-edge that summarizes all paths from 𝑢 to 𝑣 . Consider

one such path 𝜋 and decompose it into 𝜋 = 𝜋1 ⋅ 𝑎 ⋅ 𝜋2 ⋅ 𝑏 ⋅ 𝜋3 in which all vertices in 𝜋1 ⋅ 𝑎 are in 𝑉𝑏𝑙 ,

none of the vertices in 𝜋2 are in𝑉𝑏𝑙 and finally 𝑏 ∈ 𝑉𝑏𝑙 . The vertices 𝑎 and 𝑏 are not special, because

special vertices do not have edges to outside𝑉𝑏𝑙 . Thus, both 𝑎 and 𝑏 appear in the parent bag 𝑝 of 𝑏𝑙 .

The subpath 𝑎 ⋅ 𝜋2 ⋅𝑏 is entirely in𝐺− and 𝑎,𝑏 ∈ 𝑉𝑝 are in the same bag. Thus, there is a direct edge

between 𝑎 and 𝑏 that summarizes not only 𝑎 ⋅ 𝜋2 ⋅𝑏 but also every other path from 𝑎 to 𝑏 in𝐺−. We

can shorten 𝜋 to 𝜋 ′ ∶= 𝜋1 ⋅𝑎 ⋅𝑏 ⋅𝜋3 without losing any information. Repeating the same process leads

to a path that is entirely within 𝑉𝑏𝑙 . This path is summarized by the all-pairs summarization in 𝑏𝑙 .

Fig. 7. Computing In-bag Summaries. Dashed lines denote edges that may
exist and have an endpoint outside 𝑏𝑙 . Every vertex also has a self-loop of
weight 0 which is not shown.

Example. Figure 7 (top) shows

part of a graph 𝐺 and its tree

decomposition𝑇 .Here,𝑏𝑙 is a

leaf bag containing {1, 2, 3, 4}
of which 1 and 2 are spe-

cial vertices that only appear

in 𝑏𝑙 and 3 and 4 are non-

special vertices that appear

in the parent bag 𝑝, too. Sup-

pose that our goal is to per-

form a shortest-path analy-

sis. The initial situation in the

bag 𝑏𝑙 is shown in (i). We

first apply an all-pairs short-

est path in 𝐺(︀𝑉𝑏𝑙 ⌋︀, i.e. only
inside this bag. This uncov-

ers three new edges shown in

(ii). After adding these edges,

we can be sure that there is

a shortest path from 4 to 3 (resp. 3 to 4) that does not have to go through the special vertices 1

and 2. Thus, we can remove 1, 2 and the bag 𝑏𝑙 and recursively perform an in-bag shortest path

summarization in the rest of the graph. Note that even after removing 𝑏𝑙 , 3 and 4 appear in the

same bag 𝑝 . So, this recursive call creates direct edges between them showing their shortest path in

𝐺 (iii). Finally, we perform another all-pairs shortest path computation in 𝐺(︀𝑉𝑏𝑙 ⌋︀. This creates new
edges (iv) that summarize distances for special vertices. We do not need to reconsider the rest of the

graph since all pertinent shortest paths outside 𝑉𝑏𝑙 are already summarized by the red edges in (iii).
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Remark. As in Section 4.1, whenever our algorithm creates multi-edges between the same pair of

vertices, we remove them and add a single edge labeled with the sum of their labels. If it creates

a self-loop 𝑒 on vertex 𝑢, we left-multiply the label of every outgoing edge of 𝑢 by J𝑒K and right-

multiply every incoming edge by J𝑒K. Finally, if there are two self-loops 𝑒1, 𝑒2 on 𝑢 we replace them

with a single self-loop 𝑒 and set J𝑒K ∶= (J𝑒1K ⊕ J𝑒2K)⊛. These simplifications do not change our

runtime complexity and preserve path equivalence. It is also noteworthy that Step 2 is the only

part of our preprocessing that uses the ⊛ operator.

Preprocessing Step 3: Computing a Centroid Decomposition. We compute a centroid decom-

position 𝑇 ′ = (ℬ, 𝐸𝑇 ′) of our tree decomposition 𝑇 . This is done using a standard algorithm such

as della Giustina et al. [2019]. Note that 𝑇 ′ is a centroid decomposition of a tree decomposition,

thus every node in 𝑇 ′ is a bag. We also preprocess 𝑇 ′ for lowest common ancestor (LCA) queries

using Gabow and Tarjan [1983] or Bender et al. [2005]. The reason we care about LCA is as follows:

Let 𝑏𝑢, 𝑏𝑣 ∈ ℬ and 𝛽 ∈ ℬ be the LCA of 𝑏𝑢 and 𝑏𝑣 in the centroid decomposition𝑇 ′. There is a unique
path 𝜋𝑇 from 𝑏𝑢 to 𝑏𝑣 in the original tree 𝑇 . This path 𝜋 has to visit 𝛽. In other words, the path in

the original tree has to visit the LCA in the centroid decomposition
‡
. For example, in Figure 3, the

LCA of 9 and 15 in the centroid decomposition 𝑇 ′ is 11. The path between 9 and 15 in the original

tree 𝑇 is 9, 11, 14, 15 which visits 11.

Preprocessing Step 4: Ancestor-Descendant Summaries. In this step, for every bag 𝑏1 ∈ ℬ,
every vertex 𝑢 ∈ 𝑉𝑏1 , every descendant 𝑏2 of 𝑏1 in the centroid decomposition 𝑇 ′, and every 𝑣 ∈ 𝑉𝑏2 ,
we compute and save 𝑞(𝐺,𝑢, 𝑣) and 𝑞(𝐺, 𝑣,𝑢). In other words, if 𝑣 appears in some bag in our

centroid decomposition and 𝑢 appears in an ancestor of that bag in the centroid decomposition,

then we compute and remember both 𝑞(𝐺,𝑢, 𝑣) and 𝑞(𝐺, 𝑣,𝑢).
To find these values, take any bag 𝑏1 ∈ ℬ and let 𝑇𝑏1 be the subtree of 𝑇 whose chosen centroid

was 𝑏1 when creating the centroid decomposition. In Figure 3, such subtrees are shown by dashed

boxes. For example, 𝑇11 consists of 6, 9, 11, 13, 14 and 15. Note that we are considering a subtree

of 𝑇 not 𝑇 ′. By construction of 𝑇 ′, a bag 𝑏2 is a descendant of 𝑏1 in 𝑇 ′ if and only if 𝑏2 appears in

𝑇𝑏1 . In our example, the 𝑇 ′-descendants of 11 are {6, 9, 11, 13, 14, 15}. Thus, we need to compute

𝑞(𝐺,𝑢, 𝑣) and 𝑞(𝐺, 𝑣,𝑢) for every 𝑢 ∈ 𝑉𝑏1 and 𝑣 ∈ 𝑉𝑏2 where 𝑏2 ∈ 𝑇𝑏1 . Take the subtree 𝑇𝑏1 and root

it at 𝑏1. Pick a vertex 𝑢 ∈ 𝑉𝑏1 , a bag 𝑏2 ∈ 𝑇𝑏1 and another vertex 𝑣 ∈ 𝑉𝑏2 . If 𝑏2 = 𝑏1 then 𝑞(𝐺,𝑢, 𝑣) and
𝑞(𝐺, 𝑣,𝑢) are already computed in the previous step (in-bag summaries). Otherwise, let 𝑝 be the

parent of 𝑏2 in 𝑇𝑏1 . Since 𝑝 is on the path from 𝑏2 to 𝑏1 in 𝑇, any path from 𝑢 ∈ 𝑉𝑏1 to 𝑣 ∈ 𝑉𝑏2 in 𝐺
has to intersect 𝑉𝑝 ∩𝑉𝑏2 . This is a rephrasing of the cut property in tree decompositions. We have:

𝑞(𝐺,𝑢, 𝑣) ≡ ⊕
𝑤∈𝑉𝑝∩𝑉𝑏

2

𝑞(𝐺,𝑢,𝑤) ⊗ 𝑞(𝐺,𝑤, 𝑣).

Similarly,

𝑞(𝐺, 𝑣,𝑢) ≡ ⊕
𝑤∈𝑉𝑝∩𝑉𝑏

2

𝑞(𝐺, 𝑣,𝑤) ⊗ 𝑞(𝐺,𝑤,𝑢).

The equations above lead to a simple top-down dynamic programming algorithm over 𝑇𝑏1 . We

pick the bags 𝑏2 in a top-down order from 𝑇𝑏1 and apply these equations to compute 𝑞(𝐺,𝑢, 𝑣) and
𝑞(𝐺, 𝑣,𝑢) for each 𝑢 ∈ 𝑉𝑏1 and 𝑣 ∈ 𝑉𝑏2 . Note that when we are at 𝑏2, we have already processed

its parent 𝑝. Thus, we have the values 𝑞(𝐺,𝑢,𝑤) and 𝑞(𝐺,𝑤,𝑢) for every𝑤 ∈ 𝑉𝑝 . Moreover, since

𝑤 and 𝑣 appear in the same bag 𝑏2, we already have 𝑞(𝐺,𝑤, 𝑣) and 𝑞(𝐺, 𝑣,𝑤) from our in-bag

summarization step.

‡
This is a direct consequence of the way we defined a centroid decomposition. See della Giustina et al. [2019]; Jordan

[1869] and Carpanese [2018] for further discussion of this point.
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Lemma 4.5. Assuming the treewidth 𝜏 is a constant, the entire APA preprocessing as described above
takes 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘) time.

Proof. Steps 1 and 3 use previously-known methods which take 𝑂(𝑛). Step 2 performs two

all-pairs summarizations in every bag 𝑏 ∈ ℬ. However, the bag size is at most 𝜏 + 1 ∈ 𝑂(1) and thus

each all-pairs summarization in 𝐺(︀𝑉𝑏⌋︀ takes 𝑂(𝑘). Given that we have 𝑂(𝑛) bags, Step 2’s total

runtime is 𝑂(𝑛 ⋅ 𝑘). In Step 4, we consider 𝑂(𝑛 ⋅ log𝑛) pairs of bags (𝑏1, 𝑏2) since 𝑏1 has to be an

ancestor of 𝑏2 in the centroid decomposition 𝑇 ′ which has a depth of 𝑂(log𝑛). Finally, we spend
𝑂(𝑘) time for each pair of considered bags, since the bag sizes are 𝑂(1). □

Lemma 4.6. Let 𝑢, 𝑣 ∈ 𝑉 be two vertices of 𝐺 and 𝑏𝑢, 𝑏𝑣 two arbitrary bags in ℬ such that 𝑢 ∈ 𝑉𝑏𝑢
and 𝑣 ∈ 𝑉𝑏𝑣 . Let 𝛽 be the lowest common ancestor of 𝑏𝑢 and 𝑏𝑣 in the centroid decomposition 𝑇 ′. Then,
every path 𝜋 from 𝑢 to 𝑣 in 𝐺 has to visit 𝛽, i.e. 𝜋 ∩𝑉𝛽 ≠ ∅.

Proof. First, forget that 𝑇 is a tree decomposition and look at it simply as a tree. Since 𝑇 ′ is a
centroid decomposition of𝑇 and 𝛽 is the𝑇 ′-LCA of 𝑏𝑢 and 𝑏𝑣, we know that the path from 𝑏𝑢 to 𝑏𝑣
in 𝑇 has to visit 𝛽. Now, let us remember that 𝑇 is a tree decomposition. Since 𝛽 is a bag on the

path from 𝑏𝑢 to 𝑏𝑣 in 𝑇, based on the cut property of tree decompositions, any path 𝜋 from 𝑢 to 𝑣

in 𝐺 has to intersect 𝑉𝛽 . □

Answering an APAQuery. Given an intraprocedural APA query 𝑞(𝐺,𝑢, 𝑣) we answer it in the

following steps:

● Pick two bags 𝑏𝑢, 𝑏𝑣 ∈ ℬ such that 𝑢 ∈ 𝑏𝑢 and 𝑣 ∈ 𝑏𝑣 . If 𝑏𝑢 = 𝑏𝑣, then 𝑞(𝐺,𝑢, 𝑣) is already
computed as an in-bag summary and is returned.

● Let 𝛽 be the lowest common ancestor of 𝑏𝑢 and 𝑏𝑣 in the centroid decomposition 𝑇 ′ .
● Compute and return

𝑞(𝐺,𝑢, 𝑣) = ⊕
𝑤∈𝑉𝛽

𝑞(𝐺,𝑢,𝑤) ⊗ 𝑞(𝐺,𝑤, 𝑣). (2)

The answer is guaranteed to be correct based on Lemma 4.6.

Lemma 4.7. The algorithm above answers an intraprocedural query 𝑞(𝐺,𝑢, 𝑣) in 𝑂(𝑘).

Proof. We can find 𝑏𝑢 and 𝑏𝑣 in 𝑂(1). For this, it suffices to keep track of just one of the bags

containing each vertex when we compute the tree decomposition 𝑇 . Similarly, the lowest common

ancestor 𝛽 is computed in 𝑂(1) using the algorithm of Gabow and Tarjan [1983] or Bender et al.

[2005]. All expressions on the right-hand side of (2) are precomputed and there are 𝑂(1) of them
since ⋃︀𝑉𝛽 ⋃︀ ≤ 𝜏 + 1 ∈ 𝑂(1). Thus, we perform constantly many operations in the algebra, taking

𝑂(𝑘). □

Our main theorem is a direct consequence of Lemmas 4.5 and 4.7:

Theorem 4.8. Given a (control-flow) graph𝐺 = (𝑉 , 𝐸), an algebra (𝐴,⊕,⊗,⊛, 0, 1), and a semantic
function J.K ∶ 𝐸 → 𝐴 that assigns an element of𝐴 to every edge of𝐺, and assuming that𝐺 has bounded
treewidth 𝜏, our algorithm preprocesses𝐺 in𝑂(𝑛 ⋅ log𝑛 ⋅𝑘) time and then answers each intraprocedural
APA query 𝑞(𝐺,𝑠, 𝑡) in 𝑂(𝑘), where 𝑛 is the size of 𝐺 and 𝑘 is the time needed to perform a single
atomic operation in 𝐴.

Runtime Dependence on the Treewidth. The dependence on the treewidth 𝜏 was not mentioned

in the complexity analysis above since it is assumed to be a constant. This being said, our algorithm

runs in polynomial time with respect to the treewidth. We can assume we are given a tree decom-

position of width 𝜏 as part of the input, since it can be computed by standard methods [Bodlaender

1996; Thorup 1998]. Given this tree decomposition, the runtime of each step is as follows:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 292. Publication date: October 2023.



292:24 G.K. Conrado, A.K. Goharshady, K. Kochekov, Y.C. Tsai, and A.K. Zaher

● Preprocessing Step 2 runs a variant of the Floyd-Warshall algorithm on each bag, taking

𝑂(𝑛 ⋅ 𝑘 ⋅ 𝜏3) time.

● Preprocessing Step 3 runs a linear algorithm on the number of bags of the tree decompositon,

which is 𝑂(𝑛 ⋅ 𝜏).
● Preprocessing Step 4 considers𝑂(𝑛 ⋅ log𝑛 ⋅ 𝜏3) pairs of bags, per the proof of Lemma 4.5, and

each of these pairs is calculated in 𝑂(𝑘 ⋅ 𝜏) time, therefore the total runtime of this step is

𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘 ⋅ 𝜏3)
● The complexity of answering an APA query follows from Equation (2) and is 𝑂(𝑘 ⋅ 𝜏)

So the overall runtime of our algorithm, considering the dependence on 𝜏, is 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘 ⋅ 𝜏3) for
preprocessing and 𝑂(𝑘 ⋅ 𝜏) for answering an APA query.

5 INTERPROCEDURAL ON-DEMAND APA
In this section, we consider interprocedural APA. Recall that our program consists of𝑚 functions

𝑓1, 𝑓2, . . . , 𝑓𝑚, each modeled by a CFG 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ,⊺𝑖 ,⊥𝑖 ,𝐶𝑖 , 𝑅𝑖 ,Φ𝑖). We also have the augmented

graph
⧹︂𝐺 = (𝑉 , ⧹︂𝐸) as defined in Section 2 and a semantic function J.K ∶ ⧹︂𝐸 → 𝐴. Our goal is to

answer APA queries of the form 𝑞(⧹︂𝐺,𝑠, 𝑡). Unfortunately, we cannot directly apply the algorithms

of Section 4 since
⧹︂𝐺 might not be sparse and its treewidth might be arbitrarily large. Moreover,

nesting depth is not even well-defined for
⧹︂𝐺. Instead, recall that we assume the CG 𝐻 has bounded

treedepth and that every function 𝑓𝑖 contains a constant number of function call nodes.

Overview. There are two main ideas behind our interprocedural algorithm: (i) any execution path

from a function 𝑓1 to a function 𝑓2 can be broken down into a same-context path in 𝑓1, followed

by a path in the call graph, followed by a same-context path in 𝑓2. The first and third part can

be handled by our intraprocedural algorithms over the augmented CFGs; (ii) since the call graph

has small treedepth, it also has small treewidth. Thus, we can apply our previous intraprocedural

algorithm on the call graph, instead of the CFGs. This helps us handle the second part of the path.

Hence, our interprocedural solution in this section essentially extends the algorithm in Section 4.2.

It consists of the following steps:

(1) Computing the Augmented CFG: Our algorithm computes the augmented CFG for each funtion

𝑓𝑖 and preprocesses it using one of the intraprocedural approaches of the previous sections.

(2) Summaries: The algorithm assigns summaries to each edge of the call graph, representing all

paths starting at one endpoint of that edge and ending in the other.

(3) Call-graph Preprocessing: The algorithm preprocesses the call graph, instead of control-flow

graphs, using the algorithm of Section 4.2. Note that the call graph is assumed to have small

treedepth, which entails small treewidth. Thus, we can apply the algorithm designed for

CFGs in Section 4.2 to the call graph.

(4) Answering an interprocedural APA query: The algorithm breaks the query into intraprocedural

parts, covered by the CFGs, and an intraprocedural path in the CG. For the former, it uses

the summaries computed in the first step above and for the latter, it relies on the results of

the call-graph preprocessing.

Augmented CFGs. For every function 𝑓𝑖 , we define the augmented CFG of 𝑓𝑖 as ⧹︂𝐺𝑖 ∶= ⧹︂𝐺(︀𝑉𝑖⌋︀.
Intuitively,

⧹︂𝐺𝑖 contains the call-to-return-site edges that summarize function calls in 𝑓𝑖 , but it

excludes any interprocedural edge between 𝑓𝑖 and other functions. Note that
⧹︂𝐺𝑖 has the same

nesting depth and treewidth as the CFG 𝐺𝑖 . Thus, our algorithms in Section 4 can be applied to

answer APA queries of the form 𝑞(⧹︂𝐺𝑖 , 𝑠, 𝑡).
Preprocessing. The fundamental idea in our algorithm for interprocedural on-demand APA is

to consider the call graph 𝐻 = ({𝑓1, . . . , 𝑓𝑚}, 𝐸𝐻 ) of the program and assign a semantic meaning

J𝑒K ∈ 𝐴 to every interprocedural edge 𝑒 ∈ 𝐸𝐻 . Then, we break down an APA query in
⧹︂𝐺 to a series
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of APA queries on the call graph 𝐻 and augmented control-flow graphs
⧹︂𝐺𝑖 . These subqueries are

then handled by our algorithms of Section 4.

Preprocessing Step 1: Intraprocedural Preprocessing. We compute every augmented CFG
⧹︂𝐺𝑖

and preprocess it using one of the intraprocedural approaches of Sections 4.1 or 4.2.

Preprocessing Step 2: Assigning Semantics to CG Edges. Let 𝑒 = (𝑓𝑖 , 𝑓𝑗) ∈ 𝐸𝐻 be an edge in our

call graph. We define J𝑒K such that 𝑒 summarizes all paths in
⧹︂𝐺 that start at the beginning of 𝑓𝑖

and end as soon as they reach the beginning of 𝑓𝑗 . By construction of
⧹︂𝐺, these paths correspond to

executions in our program that start at ⊺𝑖 , potentially call some intermediary functions, wait for all

of them to return, and then finally call 𝑓𝑗 . Thus, the last call to 𝑓𝑗 in these paths has to be made

from a call site 𝑐 in 𝑓𝑖 . Therefore, we can compute J𝑒K by a set of queries in
⧹︂𝐺𝑖 instead of

⧹︂𝐺. More

precisely, we compute:

J𝑒K = ⊕
𝑐∈𝐶𝑖 ∶ Φ𝑖(𝑐)=𝑓𝑗

𝑞(⧹︂𝐺𝑖 ,⊺𝑖 , 𝑐) ⊗ J(𝑐,⊺𝑗)K.

Preprocessing Step 3: CG Preprocessing. Using the semantics assigned in the previous step, we

preprocess our CG 𝐻 for intraprocedural APA according to the algorithm of Section 4.2. Note that

we cannot apply the algorithm of Section 4.1 since 𝐻 does not have a well-defined or bounded

nesting depth. However, since we know 𝐻 has small treedepth, we are sure it has small treewidth,

too, and thus Section 4.2 is applicable.

Lemma 5.1. The runtime of the entire preprocessing phase above is 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘) if our treewidth-
based intraprocedural algorithm is used in Step 1 and 𝑂(𝑛 ⋅ log log𝑛 ⋅ 𝑘 +𝑚 ⋅ log𝑚 ⋅ 𝑘) if the nesting
depth-based variant is utilized.

Proof. In Step 2, each call node 𝑐 is used once in the computation of the J𝑒K’s. Thus, we perform
𝑂(𝑛) queries in augmented CFGs

⧹︂𝐺𝑖 plus 𝑂(𝑛) computations in the algebra. □

Answering Interprocedural APA Queries. Suppose we are given a query 𝑞(⧹︂𝐺,𝑠, 𝑡). With a

slight misuse of notation, let 𝑓𝑠 be the function containing 𝑠 and 𝑓𝑡 defined similarly. Let 𝜋 be an

arbitrary path from 𝑠 to 𝑡 in ⧹︂𝐺 and decompose it as 𝜋 = 𝜋1 ⋅ 𝑐1 ⋅ 𝜋2 ⋅ 𝑐2 ⋅ 𝜋3 where 𝑐1 is the first call
node in 𝜋 which is not immediately followed by its corresponding return node 𝑟1 and 𝑐2 is the last

such call node in 𝜋. Intuitively, 𝑐1 corresponds to the first function call that is triggered in 𝜋 but

does not return before reaching 𝑡 and 𝑐2 to the last such call. Since we reach 𝑡 at the end of 𝜋, we

are sure that 𝑐2 is calling 𝑓𝑡 and 𝜋3 is an intraprocedural path in
⧹︂𝐺𝑡 . Similarly, we know that 𝑐1 is

a call vertex in 𝑓𝑠 . Suppose 𝑐1 calls the function 𝑓𝑖 ∶= Φ𝑠(𝑐1). Then the subpath 𝜋2 ⋅ 𝑐2 goes from
⊺𝑖 to ⊺𝑡 . Therefore, it is captured by 𝑞(𝐻, 𝑓𝑖 , 𝑓𝑡). Based on this discussion, we answer 𝑞(⧹︂𝐺,𝑠, 𝑡) by
outputting the result of the following computation:

𝑞(⧹︂𝐺,𝑠, 𝑡) ≡ ⊕
𝑐1∈𝐶𝑠 ∧ Φ𝑠(𝑐1)=𝑓𝑖

𝑞(⧹︂𝐺𝑠 , 𝑠, 𝑐1) ⊗ J(𝑐1,⊺𝑖)K⊗ 𝑞(𝐻, 𝑓𝑖 , 𝑓𝑡) ⊗ 𝑞(⧹︂𝐺𝑡 ,⊺𝑡 , 𝑡). (3)

Lemma 5.2. The algorithm above answers an interprocedural query 𝑞(⧹︂𝐺,𝑠, 𝑡) in 𝑂(𝑘).
Proof. Each of the 𝑞(⋅, ⋅, ⋅) expressions on the right-hand side of (3) can be computed by in-

traprocedural APA queries of Section 4 in𝑂(𝑘). Also, the function 𝑓𝑠 is assumed to have a constant

number of function call nodes in it. Thus, we try constantly many 𝑐1’s. □

Finally, we have the main theorem of this work, which is a direct corollary of Lemmas 5.1 and 5.2:

Theorem 5.3. Given a program 𝑃 with 𝑛 lines of code, consisting of𝑚 functions 𝑓1, . . . , 𝑓𝑚, and
assuming that the call graph and all control-flow graphs of 𝑃 have bounded treewidth, our algorithm
above preprocesses 𝑃 in time 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘) or 𝑂(𝑛 ⋅ log log𝑛 ⋅ 𝑘 +𝑚 ⋅ log𝑚 ⋅ 𝑘) and is then able to
answer each interprocedural APA query in 𝑂(𝑘).
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Runtime Dependence on the Treedepth. In the theorem above, we did not include the runtime

dependence on parameters which were assumed to be small. If our CG has a treedepth of 𝑑 , and

our CFGs have a treewidth of 𝜏 and nesting depth 𝛿, then the runtime of each step of our algorithm

is as follows:

● Analogously to the analysis of Lemma 5.1, the runtime of the entire preprocessing phase is

𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘 ⋅ 𝜏3 +𝑚 ⋅ log𝑚 ⋅ 𝑘 ⋅𝑑3) if our treewidth-based intraprocedural algorithm is used

in Step 1 and𝑂(𝑛 ⋅ log log𝑛 ⋅𝑘 +𝑚 ⋅ log𝑚 ⋅𝑘 ⋅𝑑3) if the nesting depth-based variant is utilized.
● Analogously to the analysis of Lemma 5.2, the complexity of answering APA queries is

𝑂(𝑘 ⋅𝜏+𝑘 ⋅𝑑) if our treewidth-based intraprocedural algorithm is used in Step 1 and𝑂(𝑘 ⋅𝛿+𝑘 ⋅𝑑)
if the nesting depth-based variant is utilized.

Thus, our interprocedural algorithm, in all its variants, has polynomial runtime dependence on

each of the parameters, including the treedepth. We remark that a further optimization provided

in Goharshady and Zaher [2023] decreases the preprocessing dependence on the treedepth from

cubic to linear and can be directly applied in our setting, too.

Space Complexity. In all of our algorithms, as well as the classical method of Tarjan, the memory

complexity is the same as the time complexity except that 𝑘, the time needed to perform one

operation in the algebra, should be replaced by 𝑘 ′, i.e. the space needed to store one element of

the algebra. This is because our runtime is always the number of dynamic programming variables

multiplied by 𝑘 . Since we have to store these variables, each of them will take 𝑘 ′ units of space.
Similarly, Tarjan’s algorithm creates a representation of the regular expressions that takesΘ(𝑛⋅𝛼(𝑛))
space. Reinterpreting this representation requires saving Θ(𝑛 ⋅ 𝛼(𝑛)) elements of the algebra.

6 EXPERIMENTAL RESULTS

Implementation and Machine. We implemented our algorithm of Section 4.2 and those of Tarjan

[1981a,b] in C++ and used tools from Dell et al. [2017] and Kowalik et al. [2020] to compute

decompositions. All results were obtained on an Intel i7-11800H machine (2.30 GHz, 8 cores, 16

threads) with 12 GB of RAM, running Microsoft Windows 11.

Analyses and Benchmarks. We implemented the algorithm of Section 4.2 since it is the only one

that extends to the interprocedural case in Section 5. The algorithm of Section 4.1 can only be

applied intraprocedurally given that the notion of nesting depth is not well-defined in call graphs.

We then considered two different use-cases of APA:

● Data-flow Analysis: Our first experiment applied our approach to algebras modeling standard

interprocedural data-flow analyses following the framework of Reps et al. [1995]. Specifically,

we modeled dead-code elimination, possibly-uninitialized variables, and null-pointer analysis.

In this experiment, each element of our algebra 𝐴 was a data-flow transformer function

mapping the data-flow facts that held before a program fragment to those that might hold

after its execution. We used the exact same transformer functions as in Reps et al. [1995]:

– For dead-code elimination, our transformer functions are always identity, i.e. they only

model reachability without keeping track of any extra data-facts.

– For possibly-uninitialized variables, our set of data-facts is the same as the set of program

variables and each transformer maps variables that were uninitialized before executing the

current transition to those that are uninitialized afterwards. Specifically, the variable on

the LHS of an assignment might become uninitialized if one of the variables on the RHS

was uninitialized before.

– Null-pointer analysis is handled similarly to possibly-uninitialized variables, except that

we only keep track of reference variables. We did not consider pointer aliasing.
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In all three cases above, our⊗ operation is function composition and our⊕ operation is union.

This is following Reps et al. [1995]. As benchmarks, we used 13 real-world Java programs from

the well-known DaCapo benchmark suite [Blackburn et al. 2006]. We also used Soot [Bodden

2012; Vallée-Rai et al. 1999] to obtain CFGs and CGs, as well as the elements of our algebra.

● Predicate Abstraction: In our second experiment, we performed the predicate abstraction

of Reps et al. [2017, Section 5] over boolean programs. In this analysis, every element of

the algebra, and thus the semantics of every edge, is a Binary Decision Diagram (BDD)

mapping valuations of boolean variables before the execution of a program fragment to those

after its execution. We used the BDD library of Lind-Nielsen [1999] in our implementation.

As benchmarks, we took 54 boolean programs generated from Windows device drivers

provided by Ball et al. [2010] and Ball and Rajamani [2000]. We used the exact same predicate

abstraction, BDDs and algebraic operators as in these works. For details of the transformer

functions and BDDs, we refer to Ball and Rajamani [2000, Section 3].

The choice of these benchmarks was due to the presence of ample experiments on these two families

of problems in the literature. Thus, we could directly compare with the previous (non-parameterized)

algorithms for APA.

Baseline and Time Limits. We compared our approach with classical APA, i.e. our own imple-

mentation of the algorithms of Tarjan [1981a,b]. For each benchmark, we first obtained function

summaries using a chaotic iteration method converging to a fixed-point. The time for computing

summaries is reported in the S columns of Tables 1 and 2. We then used the programs, function

summaries and edge semantics as the input. Thus, our approach and the baseline received the

exact same inputs. Also, they both used the same libraries for computations in the algebra. In

each experiment, we set a time limit of 1 hour per benchmark and asked 1 million distinct queries
on each benchmark, generated and ordered uniformly at random. In cases where the benchmark

was small and the number of possible queries was less than a million, we asked them all in a

uniformly-chosen random order. For each approach on each benchmark, we calculated its average

runtime (AR) as its total runtime divided by the number of queries it successfully answered. Note

that our preprocessing was counted in our algorithm’s average runtime.

Treewidth and Treedepth Values. The theoretical bounds of the treewidth on the CFGs hold

experimentally. In our experiments, the maximum observed treewidth was 7 and the average was

4.46. The small treedepth assumption also holds in real-world programs with hundreds of thousands

of lines of code. In our experiments on the DaCapo benchmarks and Windows device drivers, the

maximum observed treedepths were 133 and 101, respectively. The average treedepths were 41.77

and 48.94, respectively. Thus, our small treedepth assumption is experimentally justified, though

not theoretically proven. Also, the bound on CG treedepth are much larger than the bound on CFG

treewidth: 133 vs 7. Finally, our algorithms’ runtime dependence on the treedepth is polynomial, so

even a treedepth of 133 leads to huge gains in efficiency.
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Table 1. Our experimental results on data-flow analysis. tw denotes the maximum treewidth among CFGs,
td is the treedepth of the CG, S is the time spent computing function summaries, Prec is the preprocessing
time in seconds, OAR and BAR are our AR and the baseline’s AR, respectively, and are both in microseconds.
Finally, B/O is the ratio of baseline’s AR to ours.

Dead-code Elimination Null-pointer Analysis Possibly Uninitialized Variables

⋃︀ ⧹︂𝐺 ⋃︀ tw td Prec OAR S BAR B/O Prec OAR S BAR B/O Prec OAR S BAR B/O
hsqldb 1881 3 4 0.04 5 0.01 490 105.75 1.25 79 0.19 3116 39.65 2.44 147 0.24 4985 34.00

xalan 2204 3 4 0.05 4 0.01 431 101.68 1.17 67 0.18 2642 39.38 1.83 103 0.20 4021 39.22

avrora 4632 3 13 0.04 7 0.03 552 76.93 0.07 8 0.05 630 75.24 0.08 9 0.03 604 67.94

fop 9473 4 11 0.25 11 0.02 1207 112.82 4.82 76 0.17 4256 56.14 10.33 122 0.27 4725 38.68

luindex 22207 4 15 3.13 67 0.08 1496 22.42 11.99 70 0.21 4615 66.11 526.64 679 1.17 110513 162.74

lusearch 29380 4 14 3.48 65 0.09 2314 35.60 12.37 66 0.24 3962 59.94 579.75 705 1.42 101392 143.73

eclipse 38500 5 27 0.48 9 0.14 8486 975.44 2.94 35 0.39 10401 298.87 45.30 98 6.54 14349 146.87

antlr 43485 4 44 0.55 13 0.12 1128 86.10 1.67 17 0.30 2744 164.30 4.10 18 0.47 2902 164.90

pmd 76578 4 50 2.87 28 0.21 19288 698.85 6.40 30 0.34 23406 793.42 57.15 82 1.10 21609 264.49

sunflow 105510 4 100 1.42 33 0.33 1467 43.92 13.13 44 1.02 4212 95.72 68.74 115 2.79 4573 39.92

jython 110446 6 65 2.68 29 0.24 8948 308.54 14.78 44 1.01 13791 313.43 117.61 144 2.13 14958 103.63

chart 122517 7 63 2.22 34 0.35 1899 56.35 39.06 74 1.05 4163 55.95 92.73 118 1.75 3104 26.35

bloat 128501 7 133 2.12 45 0.42 11777 262.88 33.44 75 1.48 14552 195.33 45.85 77 1.95 14104 182.22

Average 53486 4.46 41.77 1.49 26.92 0.16 4575.62 222.10 11.01 52.69 0.43 7114.62 173.34 119.43 185.92 1.54 23218.38 108.82
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Fig. 8. Average runtimes of our approach (green squares) and the baseline (red triangles) over the data-flow
benchmarks. The 𝑦 axis is in logarithmic scale.
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Fig. 9. AR comparison on predi-
cate abstraction benchmarks.

Experimental Results on Data-flow. Figure 8 and Table 1 show

our experimental results on data-flow. Our approach routinely out-

performs classical APA by two orders of magnitude. The columns

labeled B/O report the ratio of baseline’s average runtime to ours.

Experimental Results on Boolean Programs. Our predicate

abstraction experiment produced even starker improvements in

contrast to the baseline, since they are a much more complicated

family of standard benchmarks that exemplify the wider express-

ibility of APA in comparison to data-flow (Table 2). Indeed, in

these examples each element of the algebra is a full-fledged binary

decision diagram (BDD). Figure 9 shows the AR obtained by our

approach and classical APA over each of the benchmarks. Note

that the 𝑦 axis in this figure is in logarithmic scale.
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Table 2. Our experimental results on boolean programs.

Predicate Abstraction

Benchmark ⋃︀ ⧹︂𝐺 ⋃︀ tw td Prec OAR S BAR B/O
...hw__IrqlReturn 34433 4 38 62.69 280 5.92 12825 45.73

...hw__IrqlExPassive 34506 4 38 12.42 81 1.84 12185 149.97

...Miniport_Driver_Function 34538 3 25 17.17 84 0.08 12181 145.13

...HW__WdfInterruptLockRelease 34612 4 30 0.55 7 0.07 11002 1546.14

...HW__SpinlockRelease 34629 4 30 0.64 7 0.13 11127 1581.61

...HW__WdfWaitlockRelease 34631 4 30 0.63 8 0.81 10699 1398.9

...hw__IrqlDispatch 34876 4 38 4.74 36 0.68 11294 316.46

...HW__InvalidReqAccess 34877 4 28 0.85 9 0.23 11043 1240.6

...hw__CheckAddDevice 34947 4 40 0.71 11 0.07 11483 1012.09

...hw__CheckDriverUnload 34947 4 40 0.7 11 0.09 11192 1004.86

...hw__CheckIrpMjPnp 34947 4 40 0.67 11 0.11 11206 1011.64

...hw__IrqlKeDispatchLte 34980 4 39 1.03 13 70.05 10972 875.2

...hw__MarkingQueuedIrps 35048 4 39 141.75 236 0.24 12703 53.88

...HW__WdfSpinlockRelease 35140 4 29 2.85 27 0.39 11126 406.52

...hw__CancelSpinlockRelease 35186 4 40 0.65 10 0.39 11147 1063.16

...hw__IrqlExAllocatePool 35194 4 38 20.52 123 2.71 12565 101.94

...hw__AddDeviceBus 35227 4 40 0.69 11 0.09 11162 1007.71

...sys__KmdfIrql 35395 3 12 21.66 213 8.87 8620 40.44

...ndis6__SpinLock 35462 3 26 4.66 18 0.06 11447 625.21

...ndis6__SpinLockDpr 35462 3 26 4.47 19 5.27 11212 604.9

..._hw__CancelSpinLock 35546 4 40 0.89 12 0.12 13209 1111.13

...NetBuffer_Function 35842 3 25 18.56 87 0.09 12089 139.76

...classpnp__WmiComplete 36662 4 31 0.84 11 0.16 11421 1072.69

...sys__KmdfIrql 36742 3 21 21.07 114 0.07 9484 83.44

...sfloppy__WmiComplete 36775 4 31 0.77 16 13.4 11384 691.11

...sfloppy__WmiForward 36810 4 31 0.78 11 0.13 16927 1488.24

...__WmiForward 37011 4 31 0.7 18 1.82 16961 969.07

...sys__KmdfIrql 37271 3 18 5.85 48 0.12 8823 185.43

..._hw__QueuedSpinLockRelease 37429 4 42 0.57 10 0.12 11343 1095.63

...hw__ExclusiveResourceAccessRelease 37573 4 42 0.7 10 0.17 11302 1129.87

...HW__WdfSpinlock 37656 4 32 2.15 16 0.1 11759 758.2

...hw__SpinlockRelease 37896 4 42 1.59 18 1.22 11675 662.62

...sys__KmdfIrql 38511 3 15 3.43 57 0.19 8654 151.68

...hw__SpinLock 38980 4 42 2.73 25 0.26 11800 480.69

...disk__MarkIrpPending2 39620 4 32 0.87 23 0.1 31858 1399.62

...cdrom__PagedCodeAtD0 41308 4 33 0.75 14 0.08 36009 2597.11

...sfloppy__DispatchRoutine 43203 4 32 1 17 0.1 33180 1963.1

...classpnp__StartIoRoutine 43298 4 32 0.95 18 0.12 12169 675.25

...classpnp__IrpCancelField 44979 4 33 1.19 17 0.94 12317 723.7

...cdrom__KmdfIrql 106339 6 61 15.08 53 5.36 8352 156.56

...cdrom__InvalidReqAccessLocal 107022 6 72 35.45 109 1.18 10035 92.25

...PeriodicTimer 116788 6 91 20.9 77 0.23 34463 446.86

...NdisStallExecution_Delay 118573 6 97 3.58 21 0.43 34732 1673.65

...NdisAllocateMemoryWithTagPriority 118595 6 93 3.04 19 1 34251 1844.83

...IrqlSetting_Function 120461 7 97 15.93 54 0.63 18231 337.28

...Irql_Timer_Function 120746 6 93 16.04 53 7.34 16714 313.17

...Irql_SendRcv_Function 120834 7 93 17.07 55 6.8 18137 329.06

...Irql_StatusIndication_Function 121440 6 95 57.09 185 1.17 24058 129.75

...Irql_Miniport_Driver_Function 122115 6 95 17.89 55 1.85 17515 319.73

...Irql_Synch_Function 123241 6 95 79.99 236 4.51 18505 78.27

...Irql_NetBuffer_Function 124106 6 97 23.84 77 1.29 45635 592.09

...Irql_Miscellaneous_Function 126513 6 95 35.61 112 1.83 23152 206.02

...atheros__SpinLockDpr 130062 6 97 26.03 67 1.22 40997 608.34

...atheros__SpinLock 130710 7 101 62.26 151 3.31 59090 391.06

Average 59994.33 4.46 48.94 14.73 57.06 2.88 17100.41 724.62
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7 CONCLUSION
We provided novel scalable algorithms for on-demand interprocedural APA. Our algorithms exploit

the fact that CFGs of real-world programs have small treewidth and their CGs have small treedepth.

After a preprocessing that takes 𝑂(𝑛 ⋅ log𝑛 ⋅ 𝑘), where 𝑛 is the size of the program and 𝑘 is the

time needed for an operation in the underlying algebra, our approach answers each APA query

instantly, i.e. in 𝑂(𝑘). We also provided experimental results on real-world programs showing that

our method outperforms classical APA by several orders of magnitude.
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