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Abstract

Given a binary word relation τ onto A∗ and a finite language X ⊆ A∗,
a τ -Gray cycle over X consists in a permutation

(
w[i]
)

0≤i≤|X|−1
of X such

that each word w[i] is an image under τ of the previous word w[i−1]. We
define the complexity measure λA,τ (n), equal to the largest cardinality of
a language X having words of length at most n, and st. some τ -Gray cycle
over X exists. The present paper is concerned with τ = σk, the so-called
k-character substitution, st. (u, v) ∈ σk holds if, and only if, the Hamming
distance of u and v is k. We present loopless (resp., constant amortized
time) algorithms for computing specific maximum length σk-Gray cycles.

1 Introduction

In the framework of combinatorial algorithms, one of the most well-documented
issues concerns the development of methods for generating, once and for all,
each object of a specific class. [23]. Many topics are concerned by such a
problem: suffice it to mention sequence counting [1], signal encoding [25], and
data compression [30].

In the whole paper we fix some alphabet, say A, and we assume that |A|,
the cardinality of A, is not less than 2. The so-called binary Gray codes first
appeared in [13]: given a binary alphabet A and some positive integer n, such
objects referred to sequences with maximum length of pairwise different n-tuples
of characters (that is, words in An), provided that any pair of consecutive items
differ by exactly one character. Shortly after, a similar study was drawn in the
framework of non-binary alphabets [11]. Regarding other famous combinatorial
classes of objects, the term of combinatorial Gray code, for its part, appeared
in [16]: actually, the difference between successive items, although being fixed,
need not to be small [33]. Generating all permutations of a given n-element set
constitutes a noticeable example [2, 10, 38, 41]. The so-called bubble languages
[5, 32] are also involved, as well as cross-bifix-free sets [4], Debruijn sequences
[12], Dyck words [36], Fibonacci words [3], Lyndon words [39], Motzkin words

1



[37], necklaces [31, 39], set partitions [19], subsets of fixed size [9, 15]: the list is
far from exhaustive. For some surveys we suggest the reader report to [26, 33,
40, 42]. From an algorithmic point of view, the ultimate feature is to develop
methods for producing each new object with constant, or at least constant
amortized time delay, that is loopless or constant amortized time algorithms are
desired [10, 24, 35, 38, 41].

The Combinatorial Gray sequences are often required to be cyclic [7], in
the sense that the initial term itself can be retrieved as successor of the last
one. Such a condition justifies the terminology of Gray cycle [20, Sect. 7.2.1.1].
In order to develop a formal framework, we note that each of the sequences we
have mentioned above is concerned with a binary word relation τ ⊆ A∗×A∗ (A∗

stands for the free monoid generated by A). For its part, the combinatorial class
of objects can be modeled by some finite language X ⊆ A∗. Given a sequence
of words we denote in square brackets the corresponding indices: this will allow
us to clearly distinguish the difference with wi, the character in position i in a
given word w. In addition, we set τ(w) = {w′ : (w,w′) ∈ τ}. We define a Gray
cycle over X wrt. τ (for short: τ -Gray cycle over X) as every finite sequence
of words

(
w[i]
)
i∈[0,|X|−1] satisfying each of the three following conditions:

(G1) For every word x ∈ X, some i ∈ [0, |X| − 1] exists st. we have
x = w[i];

(G2) For every i ∈ [1, |X|−1], we have w[i] ∈ τ
(
w[i−1]

)
; in addition, the

cond. w[0] ∈ τ
(
w[|X|−1]

)
holds;

(G3) For every pair i, j ∈ [0, |X| − 1], i 6= j implies w[i] 6= w[j].

With this definition, in the Gray cycle the terms may have a variable length. For
instance, given the alphabet A = {0, 1}, take for τ the binary word relation Λ1
which, with every word w, associates all the strings located within a Levenshtein
distance of 1 from w (see e.g. [28]). Actually the sequence (0, 00, 01, 11, 10, 1) is
a Λ1-Gray cycle over X = A ∪A2.

In addition to the topics we mentioned above, two other fields involved by
those Gray cycles should be mentioned. Firstly, regarding graph theory, a τ -
Gray cycle over X exists iff. there is some Hamiltonian circuit in the graph of
the relation τ (see [33] and for some surveys on such a notion [14, 21, 34, 22]).
Secondly, the existence of a τ -Gray cycle over X implies τ(X) ⊆ X (with
τ(X) = {τ(w) : w ∈ X}): as defined in [28], X is τ -closed. Actually, closed sets
constitute a special subfamily in the famous dependence systems [18]. However,
the fact that X is τ -closed does not guarantees that some τ -Gray cycle may
exist over X. A typical example is provided by τ = idA∗ , the identity over A∗.
Indeed, although every finite set X ⊆ A∗ is τ -closed, non-empty τ -Gray cycle
can only exist over X if |X| = 1.

In the present paper, we consider the family of all sequences that can be a τ -
Gray cycle over some subset X of A≤n (with A≤n = {w ∈ A∗ : |w| ≤ n}). This is
a natural question to focus on those sequences of maximum length: clearly, they
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correspond to subsets X of maximum cardinality. We denote by λA,τ (n) that
maximum length. This actually means introducing some complexity measure for
the binary word relation τ [27]. We focus on the case where τ is σk, the so-called
k-character substitution. With every word with length at least k, say w, this
relation associates all the words w′, with |w′| = |w|, and st. the character w′i
differs from wi in exactly k values of i ∈ [1, |w|]: in other words, the Hamming
distance of w and w′ is k.

Some words on the word binary relation σk: firstly, as commented in [17, 28],
this relation has noticeable inference in the famous framework of error detection.
Secondly, the cond. w′ ∈ σk(w) implies |w′| = |w|, therefore if there is some σk-
Gray cycle over a language X, then all the words in X have a common length:
by definition X is a uniform set. From this point of view, the classical Gray
codes that allow to generate all n-tuples over A, correspond to σ1-Gray cycles
over An. Actually, in the case where A is a binary alphabet, some maximum
length σ2-Gray cycles have also been constructed (we have λA,σ2(n) = 2n−1) [20,
Exercice 8, p. 77]. However, in the most general case, although an exhaustive
description of σk-closed variable-length codes has been provided in [28], the
question of generating some σk-Gray cycle of maximum length has remained
open. The present paper present algorithmic constructions to generate those
sequences of maximum length. More precisely, we establish the following result:

Theorem Given a finite alphabet A, k ≥ 1, and n ≥ k, there is a loopless algo-
rithm that allows to generate some maximum length σk-Gray cycle. In addition
the following equation holds:

λA,σk
(n) =


|An| |A| ≥ 3, n ≥ k

2 |A| = 2, n = k
|A|n |A| = 2, n ≥ k + 1, k is odd
|A|n−1 |A| = 2, n ≥ k + 1, k is even.

Beforehand, the computation of such maximum length σk-Gray cycles is
done thanks to induction-based equations. In addition, in each case we present
an iteration-based method for computing those sequences: it directly allows to
compute the term of index i by starting from the term of index i− 1.

We now shortly describe the contents of the paper:

– Section 2, is devoted to the preliminaries. We fix some complementary
definitions and notations; in addition, we recall the two famous examples of the
binary (resp., |A|-ary) reflected Gray code.

– In Sect. 2, we focus on the case where the alphabet A possesses at least
3 letters. Starting with the |A|-ary reflected Gray code, by establishing some
induction formula we prove that, given a pair of positive integers n, k, there is

a peculiar Gray cycle, namely hn,k =
(
hn,k[i]

)
0≤i≤|A|n−1

: its length is |A|n.

– An iteration-based method for computing the preceding cycle is developed
in Sect. 3.
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– In Sect. 4, in the case where A is a binary alphabet, with k being an odd
integer, we also compute a maximum length σk-Gray cycle. Once more this is
done by establishing some inductive method: practically it relies on two peculiar
k-Gray cycles.

– A corresponding iteration-based method of computation is developed in
Sect. 5.

– At last, in Sect. 6, in the case where A is a binary alphabet, with k being
an even positive integer, we also compute a maximum length Gray cycles : this
leads to complete the proof of the theorem we mentioned above.

In addition, it is common in the literature to define a k-Gray code as the
sequence where two consecutive items have distance at most k [26]. In the
case of the Hamming distance, this notion corresponds to the so-called Σk-Gray
cycles, where the relation Σk st. (w,w′) ∈ Σk iff. the Hamming distance of w
and w′ is not greater than k. We discuss where our results intersect with such
a topic. Some further development is also raised.

2 Preliminaries

Several definitions and notation have already been fixed. In the whole paper,
A stands for a finite alphabet, with |A| ≥ 2. Given a word w ∈ A∗, we denote
by |w| its length; in addition, for every a ∈ A, we denote by |w|a the number
of occurrences of the character a in w. Given a pair of words w,w′ ∈ A∗, w′
is a prefix (resp., suffix) of w if some word u ∈ A∗ exists st. w = w′u (resp.
w = uw′). Given a word w ∈ A∗, m ∈ [0, |w|], we denote by A−mw the unique
suffix of w with length |w| −m.

Historically Gray cycles have been developed in order to generate integers in
|A|-ary numeration system. From this point of view, regarding the position of
the characters in the word w, it is convenient to set w = wn · · ·w1, with wi ∈ A,
for every i ∈ [1, n] (we say that wi is the character with position i in the word
w). In other words, in the |A|-ary numeration system the word w = wn · · ·w1
is the representation of the integer wn|A|n−1 + wn−1|A|n−2 + · · ·+ w1.

The reflected binary Gray cycle
Let A = {0, 1} and n ≥ 1. The most famous example of σ1-Gray cycle over An

is certainly the so-called reflected binary Gray code (see e.g. [20, pp. 5-6] or [26,
Sect. 3.1]): in the present paper we denote it by gn,1. It can be computed in
different ways:

– Firstly, the sequence can be defined recursively by the following rule:

g0,1 = (ε); gn+1,1 =
((

0gn,1
)
,
(

1
(
gn,1

)R))
(1)

In this notation the comma stands for the sequence concatenation. Moreover,
given a finite sequence, say x = (x1, · · ·xn) and a word w ∈ A∗, we set xR =
(xn, · · · , x1) and wx = (wx1, · · · , wxn). Actually Eq. (1) leads to construct the
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whole sequence gn+1,1 by applying a series of one character concatenations on
the left over the words of gn,1.

– Secondly, in the literature there is a famous constant amortized-time it-
erative algorithm (in the paper we denote it by Algorithm (a)) that allows to
compute gn,1. The method starts by setting gn,1[0] = 0n. After that, for every

i ∈ [1, |A|n − 1], the word gn,1[i] is computed from right to left by starting from

gn,1[i−1]. Actually a unique integer j ∈ [1, n] exists st. in both words gn,1[i] and

gn,1[i−1], the corresponding characters in position j differ: with the preceding con-

vention over character positions, j is chosen in order to satisfy the following
condition:

j is the minimum position in gn,1[i] st. gn,1[i] /∈ {gn,1[0] , · · · , g
n,1
[i−1]}. (2)

Example 2.1. Below are column representations of the sequences g2,1 and g3,1:

g2,1︷︸︸︷
00
01
11
10

g3,1︷ ︸︸ ︷
000
001
011
010
110
111
101
100

By construction, for every n ≥ 1, each of the following identities holds:

gn,1[0] = 0n, gn,1[1] = 0n−11, gn,1[2n−2] = 10n−21, gn,1[2n−1] = 10n−1. (3)

The |A|-ary reflected Gray cycle
The preceding constructions can be extended in order to obtain the so-called
|A|-ary reflected Gray code over An, that we denote by hn,1. More precisely we
set A = {0, · · · , p − 1} and we denote by θ the cyclic permutation defined by
0→ 1, . . . , p− 2→ p− 1, p− 1→ 0.

– Firstly, hn,1 can be defined recursively by the following rule [26, Sect. 3.19]:

h0,1 = (ε); hn+1,1 =
(

0hn,1, 1
(
hn,1

)R
, 2hn,1, 3

(
hn,1

)R
, · · · , (p− 1)Γ

)
(4)

with Γ =
{
hn,1 if p is odd(
hn,1

)R otherwise.

– Secondly, the sequence hn,1 can be generated by applying a constant
amortized-time algorithm [8, 11], that we denote by Algorithm (b). The method
starts by setting hn,1[0] = 0n. For every i ∈ [1, |A|n − 1], starting from hn,1[i−1] the

5



word hn,1[i] is computed from right to left. More precisely, there are j ∈ [1, pn0−1],
c, d ∈ A, where c and d are the characters respectively in position j in hn,1[i−1]

and hn,1[i] , st. both the each of following conditions holds:

j is the minimum position in hn,1[i] st. hn,1[i] /∈ {hn,1[0] , · · · , h
n,1
[i−1]}, (5)

d =
{
θ(c) if i÷ pj is even
θ−1(c) otherwise. (6)

Example 2.2. For A = {0, 1, 2} the sequence h3,1 is the concatenation in this
order of the three following subsequences:

h3,1︷ ︸︸ ︷
000
001
002
012
011
010
020
021
022

122
121
120
110
111
112
102
101
100

200
201
202
212
211
210
220
221
222

3 The case where we have |A| ≥ 3
Let n ≥ k ≥ 1, p ≥ 3, and A = {0, 1, · · · , p − 1}. In what follows, we indicate
the construction of a peculiar σk-Gray cycle over An, namely hn,k. This is done
by applying some induction over k ≥ 1: in view of that, we set n0 = n− k + 1.

– The starting point corresponds to hn0,1, the p-ary reflected Gray code over
An0 as reminded in Section 2.

– For the induction stage, by starting with a σk−1-Gray cycle over An−1,
namely hn−1,k−1, we compute the corresponding sequence hn,k as indicated in
the following:
Let i ∈ [0, pn − 1], and let q ∈ [0, p− 1], r ∈ [0, pn−1 − 1] be the unique pair of
non-negative integers st. i = qpn−1 + r. We set:

hn,k[i] = hn,k[qpn−1+r] = θq+r(0)hn−1,k−1
[r] . (7)

As shown in Example 3.1, by construction the resulting sequence hn,k is the
concatenation in this order of p subsequences namely C0, . . . , Cp−1, with Cq =(
hn,k[qpn−1+r]

)
0≤r≤pn−1−1

, for each q ∈ [0, p − 1]. Since θ is one-to-one, given a

pair of different integers q, q′ ∈ [0, p−1], for every r ∈ [0, pn−1−1], in each of the

subsequences Cq, Cq′ , the words hn,k[qpn−1+r] and hn,k[q′pn−1+r] only differ in their

initial characters, which respectively are θq+r(0) and θq
′+r(0). In addition, since

hn−1,k−1 is a σk−1-Gray cycle over An−1, we have
∣∣hn,k∣∣ = p

∣∣hn−1,k−1
∣∣ = pn.

6



Example 3.1. Let A = {0, 1, 2}, n = 3, k = 2, thus p = 3, n0 = 2. By starting
with hn−1,k−1 = h2,1, we construct the sequence hn,k as the concatenation of
C0, C1, and C2:

hn−1,k−1︷︸︸︷
00
01
02
12
11
10
20
21
22

hn,k︷︸︸︷
000
101
202
012
111
210
020
121
222

100
201
002
112
211
010
120
221
022

200
001
102
212
011
110
220
021
122

Proposition 3.2. The sequence hn,k is a σk-Gray cycle over An.

Proof. We argue by induction over k ≥ 1. Regarding the base case, as indicated
above hn0,1 is the |A|-ary reflected Gray sequence. In view of the induction
stage, we assume that the finite sequence hn−1,k−1 is a σk−1-Gray cycle over
An−1, for some k ≥ 2.

(i) We start by proving that hn,k satisfies Condition (G2). This will be done
through the three following steps:

(i.i) Firstly, we prove that, for each q ∈ [0, p − 1], in the subsequence
Cq two consecutive terms are necessarily in correspondence under σk. Given
r ∈ [0, pn−1 − 1], by definition, we have θr+q(0) ∈ σ1

(
θr+q−1(0)

)
. Since

hn−1,k−1 satisfies Condition (G2), we have hn−1,k−1
[r] ∈ σk−1

(
hn−1,k−1

[r−1]

)
. We

obtain θq+r(0)hn−1,k−1
[r] ∈ σk

(
θq+r−1(0)hn−1,k−1

[r−1]

)
, thus according to Eq. (7):

hn,k[qpn−1+r] ∈ σk
(
hn,k[qpn−1+r−1]

)
.

(i.ii) Secondly, we prove that, for each q ∈ [1, p − 1], the last term of
Cq−1 and the initial term of Cq are also connected under σk. At first take

r = 0 in Eq. (7): it follows from θp
n−1 = idA that we have hn,k[qpn−1] =

θq(0)hn−1,k−1
[0] = θp

n−1+q(0)hn−1,k−1
[0] . Now take r = pn−1 − 1 in Eq. (7) ,

moreover substitute q − 1 ∈ [0, p − 2] to q ∈ [1, p − 1]: we obtain hn,k[qpn−1−1] =
θq+p

n−1−2(0)hn−1,k−1
[pn−1−1]. It follows from p = |A| ≥ 3 that θ(0) 6= θ−2(0): since

θ is one-to-one this implies θq+p
n−1(0) 6= θq+p

n−1−2(0), thus θq+p
n−1(0) ∈

σ1

(
θq+p

n−1−2(0)
)

. Since by induction we have hn−1,k−1
[0] = σk−1

(
hn−1,k−1

[pn−1−1]

)
,

we obtain hn,k[qpn−1] ∈ σk
(
θq+p

n−1−2(0)hn−1,k−1
[qpn−1−1]

)
that is, hn,k[qpn−1] ∈ σk

(
hn,k[qpn−1−1]

)
.

(i.iii) At last, we prove that the first term of C0 is connected under σk
with the last term of Cp−1. In Eq. (7), take q = 0 and r = 0: we obtain
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hn,k[0] = 0hn−1,k−1
[0] . Similarly, by setting q = p − 1 and r = pn−1 − 1, we obtain

hn,k[(p−1)pn−1+pn−1−1] = θp
n−1+p−2(0)hn−1,k−1

[pn−1−1], thus hn,k[pn−1] = θ−2(0)hn−1,k−1
[pn−1−1].

Since hn−1,k−1 is a σk−1-Gray cycle overAn−1, we have hn−1,k−1
[0] ∈ σk−1

(
hn−1,k−1

[pn−1−1]

)
.

In addition, it follows from p ≥ 3, that θ−2(0) 6= 0, thus 0 ∈ σ1
(
θ−2(0)

)
. We ob-

tain hn,k[0] ∈ σk
(
θ−2(0)hn−1,k−1

[pn−1−1]

)
, thus hn,k[0] ∈ σk

(
hn,k[pn−1]

)
that is, the required

property.

(ii) Now, we prove that hn,k satisfies Cond. (G2) that is, in its terms are pairwise

different. Let i, i′ ∈ [0, pn−1] st. hn,k[i] = hn,k[i′] and consider the unique 4-tuple of

integers q, q′ ∈ [0, p−1], r, r′ ∈ [0, pn−1−1] st. i = qpn−1+r and i′ = q′pn−1+r′.
According to Eq. (7) we have θq+r(0)hn−1,k−1

[r] = θq
′+r′(0)hn−1,k−1

[r′] : since we

have θq+r(0), θq′+r′(0) ∈ A, this implies θq+r(0) = θq
′+r′(0), whence we have

hn−1,k−1
[r] = hn−1,k−1

[r′] . Since hn−1,k−1 satisfies Cond. (G3), the second equation

implies r = r′, whence the first one implies θq(0) = θq
′(0), thus q = q′ mod p.

Since we have q, q′ ∈ [0, p− 1] we obtain q = q′, thus i = i′.

(iii) At last, since the terms of hn,k are pairwise different, we have:
∣∣∣⋃0≤i≤pn−1{h

n,k
[i] }

∣∣∣ =
pn, thus:

⋃
0≤i≤pn−1{h

n,k
[i] } = An: this completes the proof.

4 An alternative approach for computing the sequence
hn,k

According to Eq. (7), given an integer pair n, k, the sequence hn,k can be
computed by starting with hn−1,k−1. Clearly, in view of the full computation
of hn,k, that type of approach leads to a recursive algorithm. In the present
section we will provide some alternative method: actually we will prove that,
for each i ∈ [0, pn− 1], the word hn,k[i] can be directly computed by starting with

hn,k[i−1]. Beforehand we introduce some complementary definitions and notations:

- Given an integer pair a, b ∈ N, with a ≤ b, and a finite word sequence
x =

(
x[i]
)
a≤i≤b, for convenience we set x = x[a··b].

- With the preceding notation, given a positive integer c, we say that the
sequence x is c-periodic if either we have |x| = b − a + 1 ≤ c, or the equation
x[i+c] = x[i] holds for every i ∈ [a, b − c]. In particular, wrt. finite sequence
concatenation, x = yq with q > 0 implies x being |y|-periodic.

- Given a non-negative integer m with m ≤ max{|xi| : i ∈ [a, b]}, we set
A−mx =

(
A−mx[i]

)
a≤i≤b.

- At last, given a positive integer m, and given w ∈ A∗, with |w| ≥ m, it is
convenient to denote by Pm(w) the unique prefix of w that belongs to Am: this
notation can be extended in a straightforward way to any sequence of words in
AmA∗.
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4.1 A property involving periodicity

Recall that we set n0 = n−k+ 1. With this notation the following prop. holds:

Lemma 4.1. For every j ∈ [n0, n] the sequence Aj−nhn,k is pj-periodic. More

precisely Aj−nhn,k is a concatenation power of hj,k−n+j
[0··pj−1].

Proof. We apply a top-down induction-based argument over j ∈ [n0, n].
– The base case corresponds to j = n. With this condition we haveAj−nhn,k =

hn,k = hj,k−n+j
[0··pj−1], thus trivially the prop. holds.

– For the induction stage, we assume that Aj−nhn,k is a concatenation power
of the sequence hj,k−n+j

[0··pj−1]. With this condition, the sequence Aj−n−1hn,k =
A−1 (Aj−nhn,k) is a concatenation power of A−1hj,k−n+j

[0··pj−1]. Let i be an ar-

bitrary integer in [0, pj − 1] and let q ∈ [0, p − 1], r ∈ [0, pj−1 − 1] be the
unique integer pair st. i = qpj−1 + r. By substituting j to n and k − n + j
to k in Eq. (7), we obtain A−1hj,k−n+j

[qpj−1+r] = hj−1,k−n+j−1
[r] . As a consequence,

we have A−1hj,k−n+j
[qpj−1··(q+1)pj−1−1] = hj−1,k−n+j−1

[0··pj−1−1] therefore, wrt. sequence con-

catenation, we obtain
∏

0≤q≤p−1
A−1hj,k−n+j

[qpj−1··(q+1)pj−1−1] =
(
hj−1,k−n+j−1

[0··pj−1−1]

)p
, thus

A−1hj,k−n+j
[0··pj−1] =

(
hj−1,k−n+j−1

[0··pj−1−1]

)p
. Consequently, the sequence Aj−n−1hn,k,

which is a concatenation power of A−1hj,k−n+j
[0··pj−1], is a concatenation power of

hj−1,k−n+j−1
[0··pj−1−1] .

4.2 Some map of the combinatorial structure of hn,k

For every i ∈ [0, pn − 1] Eq. (7) leads to compute hn,k[i] by applying a series of

one-character left-concatenations. On the other hand, with the convention over
the character positions in words the following equation holds:

hn,k[i] =
(
hn,k[i]

)
n

(
hn,k[i]

)
n−1
· · ·
(
hn,k[i]

)
1
, with

(
hn,k[i]

)
j
∈ A (j ∈ [1, n]). (8)

Our aim is to prove that the word hn,k[i] can be directly computed starting from

hn,k[i−1]. In order to do this, we are going to highlight a combinatorial structure

common to all words hj,k−n+j
[i] (j ∈ [n0, n], i ∈ [0, pj − 1]). In what follows, we

fix the integers n and k. According to Eq. (8), we set:

H
[j]
[i] =


(
hn,k[i]

)
j
∈ A if j ∈ [n0 + 1, n]

hn0,1
[i] =

(
hn,k[i]

)
n0
· · ·
(
hn,k[i]

)
1
∈ An0 if j = n0.

(9)

Let H be the matrix with components H
[j]
[i] . The row index is i ∈ [1, pn − 1],

the column index being j ∈ [n0 + 1, n]. We emphasize on the fact that the row
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of index i is: (
H

[n]
[i] , H

[n−1]
[i] , · · · , H [j+1]

[i] , H
[j]
[i] , · · · , H

[n0+1]
[i] , H

[n0]
[i]

)
=((

hn,k[i]

)
n
,
(
hn,k[i]

)
n−1

, · · · ,
(
hn,k[i]

)
n0+1

,
(
hn,k[i]

)
n0
· · ·
(
hn,k[i]

)
1

)
. (10)

Although at first glance the preceding notation may seem cumbersome, there
are several reasons why we have adopted it:

– Firstly, the notation is naturally connected to the computation process
generated Eq. (7). In particular, it is coherent with the right to left computation
of hn0,1 using Algorithm (b) [20, p.6].

– Secondly, with reference to the origins of Gray code topic, the word

hn,k[i] = H
[n]
[i] · · ·H

[n0]
[i] (or, equivalently, the polynomial in (10)) is actually the

representation in base p = |A| of some non-negative integer.

– Last and not least, regarding our experience concerning the present study,
in adopting some alternative non-reversal representation, the results that we
state below, and their proofs, would become much more difficult to read. In
particular Eq. (7), would be applied to more heavy indices, moreover the period
of the columns in H could not take an expression as simple as pj (see Lemma
4.2).

We introduce an additional notation: given i ∈ [0, pn − 1] and j ∈ [n0, n],
we denote by r(i, j) the unique integer in [0, pj − 1] st. i = r(i, j) mod pj . In
particular, it follows from i ∈ [0, pn − 1] that r(i, n) = i. As a consequence of
Lemma 4.1, we obtain the following statement:

Lemma 4.2. With the preceding notation, each of the following props. holds:

(i) For each j ∈ [n0, n] the sequence of words H
[j]
[0··pn−1] is pj-periodic.

(ii) For each j ∈ [n0 + 1, n], we have H
[j]
[i] = P1

(
hj,k−n+j

[r(i,j)]

)
.

Proof. (i) Firstly assume j ∈ [n0 + 1, n]. According to Eq. (9), in the ma-

trix H the component H
[j]
[i] =

(
hn,k[i]

)
j
∈ A is the initial character of the

word
(

[H [n]
[i] H

[n−1]
[i] · · ·H [j+1]

[i]

)−1
hn,k[i] , thus with the notation introduced above:

H
[j]
[i] = P1

(
Aj−nhn,k[i]

)
. According to Lemma 4.1 the sequence Aj−nhn,k is

pj-periodic, therefore H
[j]
[0··pn−1] itself is pj-periodic.

Now, we assume j = n0. Once more according to Eq. (9), we have:

H
[n0]
[i] = hn0,1

[i] =
(
H

[n]
[i] H

[n−1]
[i] · · ·H [n0+1]

[i]

)−1
hn,k[i] ∈ A

n−n0hn,k[i] .

Once more according to Lemma 4.1, the sequence H
[n0]
[0··pn−1] is pj-periodic. Con-

sequently, for each j ∈ [n0, n] the sequence of words H
[j]
[0··pn−1] is pj-periodic.

(ii) Let j ∈ [n0 + 1, n0]. According to Lemma 4.1, the sequence Aj−nhn,k is a

concatenation power of hj,k−n+j
[0··pj−1], hence we have Aj−nhn,k[i] = hj,k−n−j[r(i,j)] that is,

by construction: H
[j]
[i] = P1

(
Aj−nhn,k[i]

)
= P1

(
hj,k−n−j[r(i,j)]

)
.
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In addition the following prop. holds:

Lemma 4.3. The condition r(i, j) = 0 mod pj−1 is equivalent to i = 0 mod pj−1.

Proof. The cond. i = r(i, j) mod pj implies i = r(i, j) mod pj−1. Consequently,
r(i, j) = 0 mod pj−1 implies i = 0 mod pj−1. Conversely, assume i = mpj−1,
with m ∈ N. From the fact that i = r(i, j) + m′pj , with m′ ∈ N, we obtain
r(i, j) = (m−m′p)pj−1, thus r(i, j) = 0 mod pj−1.

4.3 An algorithmic interpretation

On the basis of the above, an iteration-based method for computing the word
hn,k[i] can be drawn.

– We start by setting H
[n0]
[0] = hn0,1

[0] = 0n0 .

– Next, for i ∈ [0, pn0 − 1], according to Formula (9), the component H
[n0]
[i]

is actually hn0,1
[i] , which can be generated starting from hn0,1

[i−1] by construction.

– In addition, for every i ∈ [0, pn − 1], according to Lemma 4.2, we have

H
[n0]
[i] = hn0,1

[r(i,n0)]. In other words, wrt. sequence concatenation, the column of

index n0 in the matrix H is obtained by applying the following equation:

H [n0] =
(
hn0,1

)pn−n0
. (11)

In what follows we introduce a permutation, namely ω:

ω operates onto the set
{
H

[n0]
[0] , H

[n0]
[1] , · · · , H

[n0]
[pn0−1]

}
as indicated in the fol-

lowing

ω
(
H

[n0]
[i]

)
=
{

H
[n0]
[i+1] if i ∈ [0, pn0 − 2]

H
[n0]
[0] if i = pn0−1.

(12)

Accordingly, for every i ∈ [1, pn0 − 1] we have H
[n0]
[i] = hn0,1

[i] . Note that, thanks

to Algorithm (b) (see the preliminaries), hn0,1
[i] can be generated from hn0,1

[i−1] that

is, H
[n0]
[i] can be generated from H

[n0]
[i−1] . The following result is at the basis of

an iterative algorithm for computing the whole matrix H (recall that θ stands
for the cyclic permutation (0, · · · , p− 1)):

Proposition 4.4. Given i ∈ [1, pn − 1], each of the following equations hold:

(i) H
[n0]
[i] = ω

(
H

[n0]
[i−1]

)
.

(ii) For every j ∈ [n0 + 1, n]:

H
[j]
[i] =


θ2
(
H

[j]
[i−1]

)
if i = 0 mod pj−1

θ
(
H

[j]
[i−1]

)
otherwise.
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Proof. (i) Firstly, assume i 6= 0 mod pn0 . This condition implies r(i, n0) ∈
[1, pn0−1], hence we have r(i−1, n0) = r(i, n0)−1 ∈ [0, pn0−1]. According to the

definition of ω, this implies H
[n0]
[r(i,n0)] = ω

(
H

[n0]
[r(i−1,n0)]

)
. According to the prop.

(i) of Lemma 4.2, we obtain Hn0,1
[i] = H

[n0]
[r(i,n0)] = ω

(
H

[n0]
[r(i−1,n0)]

)
= ω

(
H

[n0]
[i−1]

)
.

Now, we assume i = 0 mod pn0 . Once more according to the prop. (i) of Lemma

4.2 we have H
[n0]
[i] = H

[n0]
[0] and H

[n0]
[i−1] = H

[n0]
[pn0−1] (recall that, according to the

condition of the present proposition we have i ≥ 1). By the definition of ω (see

(12), we have H
[n0]
[0] = ω

(
H

[n0]
[pn0−1]

)
, thus H

[n0]
[i] = H

[n0]
[i−1]. This completes the

proof of the prop. (i) of our proposition.

(ii) Let j ∈ [n0 + 1, n], and let q, s be the unique integer pair st. r(i, j) =
qpj−1 + s, with 0 ≤ s ≤ pj−1 − 1. By substituting r(i, j) to i, j to n, and

k − n + j to k in Eq. (7) ,we obtain hj,k−n+j
[r(i,j)] = θq+s(0)hj−1,k−n+j−1

[s] , whence

θq+s(0) is the initial character of hj,k−n+j
[r(i,j)] . According to the prop. (ii) of Lemma

4.2, we obtain H
[j]
[i] = θq+s(0). Now we examine the component H

[j]
[i−1]. Actually,

according to the value of s exactly one of the two following conds. occurs:

Cond. s = 0
By definition this cond. is equivalent to r(i, j) = qpj−1. It follows from i ≥ 1
that r(i − 1, j) = r(i, j) − 1 = qpj−1 − 1 = (q − 1)pj−1 + (pj−1 − 1). Note
that we have pj−1 − 1 ∈ [0, pj−1 − 1]: by substituting r(i − 1, j) to i, j to n,

and k − n + j to k in Eq. (7), we obtain hj,k+j−n
[r(i−1,j)] = hj,k+j−n

[(q−1)pj−1+(pj−1−1)] =
θ(q−1)+(pj−1−1)(0)hj−1,k+j−n−1

[pj−1−1] , whence θq+p
j−1−2(0) = θq−2(0) is the initial

character of hj,k−n+j
[r(i−1,j)]. According to the prop. (ii) of Lemma 4.2, we have

H
[j]
[i−1] = θq−2(0). As indicated above, we have H

[j]
[i] = θq+s(0): we obtain

H
[j]
[i] = θq(0) = θ2 (θq−2(0)

)
= θ2

(
H

[j]
[i−1]

)
.

Cond. s > 0
With this cond. we have r(i−1, j) = qpj−1 + (s−1), with 0 ≤ s−1 ≤ pj−1−1.
Once more by substituting in Eq. (7) r(i− 1, j) to i, j to n, and k−n+ j to k,

we obtain hj,k−n+j
r[(i−1,j)] = θq+s−1(0)hj−1,k−n+j−1

[s−1] , whence θq+s−1(0) is the initial

character of hj,k−n+j
[r(i−1,j)]. According to the prop. (ii) of Lemma 4.2, this implies

H
[j]
[i−1] = θq+s−1(0) that is, H

[j]
[i] = θq+s(0) = θ

(
θq+s−1(0)

)
= θ

(
H

[j]
[i−1]

)
.

In view of Proposition 4.4, an iterative algorithm to the sequence hn,k, namely
Algorithm 1, can be drawn. This algorithm computes row by row each com-
ponent of the matrix H. Such a computation actually makes use of a unique
generic row, namely:

H =
(
H[n],H[n−1], · · · ,H[j],H[j−1], · · · ,H[n0+1],H[n0]

)
.

From this point of view, each time the counter i is incremented, the generic

row H is updated to
(
H

[n]
[i] , H

[n−1]
[i] , · · · , H [j]

[i] , H
[j−1]
[i] , · · · , H [n+0]

[i] , H
[n0]
[i]

)
. Recall
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that, according to Eq. (11) the following equalities hold:

H
[n0]
[0] = hn0,1

[0] = 0n0 , H
[n0]
[0··pn0−1] = hn0,1, H

[n0]
[0··pn−1] =

(
hn0,1

)pn−n0
(13)

A few comments on Algorithm 1

– The component H[n0] is initialized to H
[n0]
[0] = hn0,1

[0] . This is done by applying

the process described in lines 2–4.
– Each time the counter i is incremented, in the stage described in lines 6–16

Algorithm 1 computes from right to left the row
(
H

[n]
[i] , · · · , H

[n0+1]
[i] , H

[n0]
[i]

)
. The

term hn,k[i] itself is computed as the concatenation H
[n]
[i] · · ·H

[n0+1]
[i] ·H [n0]

[i] . This is

done by updating the generic row H: its components are computed by applying
the formula from Proposition 4.4. In addition, at line 14, after incrementation
of the variable j, pj−1 is memorized in the variable p′, which took the initial
value pn0 (line 7).
– The algorithm stops when the counter i reaches the value max+1= pn (see l.
6).

Questions related to complexity
By construction, applying Algorithm 1 for computing the whole sequence hn,k

that is, computing all the rows of the matrix H, requires at most npn insertions.
In what follows, our goal is to improve such a bound.

Beforehand we note that, in any case, the alphabet A and the permutation
θ should be computed in some preprocessing stage.
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– On the one hand, for each incrementation of the counter i, updating the
generic sequence H =

(
H[n], · · ·H[n0+1]) is done by applying the stage in lines

8–15: there is a positive integer, say `, st. applying that stage requires at most
`(n − n0) ≤ `k insertions. When the counter i reaches the value max, H has
been updated pn times, whence the total amount of corresponding operations
is at most pn`k.

– On the other hand, in order to update the component H[n0], in l. 6. we
need to apply the permutation ω. From this point of view, there are actually
two strategies of implementation:

(a) In the first approach, for each value of i, in order to compute the finite

sequence hn0,1 =
(
H

[n0]
[i]

)
0≤i≤pn0−1

we apply the step (5) from Algorithm (b),

as mentioned in the preliminaries. Actually, the right-most character flips each
time, the second one flips every p time, and so on: classically, that method
requires an amount of pn0 + pn0−1 + · · ·+ p ≤ pn0 one-character substitutions.

For computing the whole column H [n0] =
(
H

[n0]
[i]

)
0≤i≤pn−1

, the total cost of the

preceding operations is bounded by pn−n0 · pn0 = pn. Consequently, computing
the whole sequence hn,k requires a total amount of operations bounded by pn`k+
pn = pn(`k + 1). Note that in the computation of each term of hn0,1 the
amount of substitutions actually depends of the value of the counter i that
is, the process cannot be loopless. However, the amortized cost per operation
is p−npn (`k + 1) = `k + 1 that is, O(1). In other words, with this strategy
Algorithm 1 runs in constant amortized-time wrt. n, with space linear in n −
n0 + n0 = n.

(b) The second approach consists in implementing in a preprocessing phase
the sequence hn0,1 and the permutation ω: such an implementation requires
space O(n0p

n0) and, as indicated above, a total amount of O(pn0) substitutions.
After that, in the processing phase, updating Hn0 will be performed by applying
the result of lemma 4.2: this leads to a constant number of requests to hn0,1 and
ω (see l. 6). In other words, updating the whole sequence H requires constant
time that is, with such a strategy implementation, Algorithm 1 is loopless and
requires space linear in n0p

n0 + n.

5 The case where A is a binary alphabet, with k odd

Let A = {0, 1} and n ≥ k. With this condition, the cyclic permutation θ, which
was introduced in Section 2, is defined by θ(0) = 1 and θ(1) = 0. Classically,
this permutation can be extended into a one-to-one monoid homomorphism onto
A∗: in view of this, we set θ(ε) = ε and, for any non-empty n-tuple of characters
a1, · · · , an ∈ A, θ(a1 · · · an) = θ(a1) · · · θ(an). Trivially, in the case where we
have n = k, if a non-empty σk-Gray code exists over X ⊆ An, then we have
X = {x, θ(x)}, for some x ∈ An. In the sequel we assume n ≥ k + 1; with this
condition we will construct a pair of peculiar σk-Gray cycles over An, namely
γn,k and ρn,k. This will be done by induction over k′, the unique non-negative
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integer st. k = 2k′+1. Beforehand, we set n0 = n−2k′ = n−k+1: necessarily
we have n0 ≥ 2.

– For the base case, γn0,1 and ρn0,1 are computed by applying some reversal
(resp., shift) over the sequence gn0,1, which was introduced in the cond. (5)
grom Section 2. We set :

γn0,1
[0] = gn0,1

[0] and γn0,1
[i] = gn0,1

[2n0−i] (1 ≤ i ≤ 2n0 − 1). (14)

ρn0,1
[0] = gn0,1

[2n0−1] and ρn0,1
[i] = gn0,1

[i−1] (1 ≤ i ≤ 2n0 − 1). (15)

By construction, γn0,1 and ρn0,1 are σ1-Gray cycles over An0 . Moreover we
have:

γn0,1
[0] = 0n0 and ρn0,1

[0] = 10n0−1. (16)

γn0,1
[2n0−1] = gn0,1

[1] = 0n0−11 and ρn0,1
[2n0−1] = gn0,1

[2n0−2] = 10n−21. (17)

Example 5.1. Taking n0 = 2, according to Eqs. 15, the corresponding sequences
γ2,1 and ρn0,1 are the following ones:

g2,1︷︸︸︷
00
01
11
10

γ2,1︷︸︸︷
00
10
11
01

ρ2,1︷︸︸︷
10
00
01
11

Example 5.2. For n0 = 3 we obtain the following sequences:

g3,1︷︸︸︷
000
001
011
010
110
111
101
100

γ3,1︷︸︸︷
000
100
101
111
110
010
011
001

ρ3,1︷︸︸︷
100
000
001
011
010
110
111
101

– In view of the induction step, we assume that we have computed the
σk-Gray cycles γn,k and ρn,k. Note that we have n + 2 = n0 + 2(k′ + 1) =
n0 + (k + 2) − 1: below we explain the construction of the two corresponding
2n+2-term sequences γn+2,k+2 and ρn+2,k+2. Given i ∈ [0, 2n+2−1], let q ∈ [0, 3],
r ∈ [0, 2n − 1] be the unique integer pair st. i = q2n + r. By assigning to q
the value 0 (resp., 1, 2, 3), we state the corresponding Eq. (18) (resp., Eqs.
(18),(18),(18)):
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γn+2,k+2
[r] = θr(00)γn,k[r] (18a)

γn+2,k+2
[2n+r] = θr(01)ρn,k[r] (18b)

γn+2,k+2
[2·2n+r] = θr(11)γn,k[r] (18c)

γn+2,k+2
[3·2n+r] = θr(10)ρn,k[r] (18d)

Similarly the sequence ρn+2,k+2 is computed by substituting, in the preceding
Eqs., the 4-tuple (10, 11, 01, 00) to (00, 01, 11, 10):

ρn+2,k+2
[r] = θr(10)γn,k[r] (19a)

ρn+2,k+2
[2n+r] = θr(11)ρn,k[r] (19b)

ρn+2,k+2
[2·2n+r] = θr(01)γn,k[r] (19c)

ρn+2,k+2
[3·2n+r] = θr(00)ρn,k[r] · (19d)

Example 5.3. (Example 5.2 continued) γ5,3 is the concatenation, in this order,
of the 4 following subsequences:

γ3,1︷︸︸︷
00 000
11 100
00 101
11 111
00 110
11 010
00 011
11 001

ρ3,1︷︸︸︷
01 100
10 000
01 001
10 011
01 010
10 110
01 111
10 101

γ3,1︷︸︸︷
11 000
00 100
11 101
00 111
11 110
00 010
11 011
00 001

ρ3,1︷︸︸︷
10 100
01 000
10 001
01 011
10 010
01 110
10 111
01 101

Lemma 5.4. Both the sequences γn,k, ρn,k satisfy each of the conditions (G1),
(G3).

Proof. Recall that we set k = 2k′ + 1: we argue by induction over k′ ≥ 0. The
base case corresponds to k′ = 0 that is, k = 1 and n = n0: as indicated above,
γn0,1 and ρn0,1 are σ1-Gray cycles over An. In view of the induction step we
assume that, for some k′ ≥ 0, both the sequences γn,k and ρn,k are σk-Gray
cycles over An.

(i) In order to prove that γn+2,k+2 satisfies Cond. (G3), we consider an integer

pair i, i′ ∈ [0, 2n+2 − 1] st. γn+2,k+2
[i] = γn+2,k+2

[i′] . Let q, q′ ∈ [0, 3], r, r′ ∈
[0, 2n − 1] st. i = q2n + r, i′ = q′2n + r′. According to Eqs. (18)–(18) there are

words x, x′ ∈ A2, w,w′ ∈ An st. γn+2,k+2
[i] = θr(x)w and γn+2,k+2

[i′] = θr
′(x′)w′

that is, θr(x) = θr
′(x′) ∈ A2 and w = w′. By the definition of θ, this implies
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either x, x′ ∈ {00, 11} or x, x′ ∈ {01, 10} that is, by construction, either q, q′ ∈
{0, 2}, x, x′ ∈ {00, 11}, w = γn,k[r] = γn,k[r′] , or q, q′ ∈ {1, 3}, x, x′ ∈ {01, 10},
w = ρn,k[r] = ρn,k[r′] . Since γn,k and ρn,k satisfies Cond. (G3), in any case we have

r = r′. This implies θr(x) = θr(x′), thus x = x′. With regard to Eqs. (18)–(18),
this corresponds to q = q′, thus i = q2n + r = q′2n + r = i′, therefore γn+2,k+2

satisfies Cond. (G3).

(ii) By substituting (10, 11, 01, 00) to (00, 01, 11, 10), according to (19)–(19),

similar arguments lead to prove that ρn+2,k+2
[i] = ρn+2,k+2

[i′] implies i = i′ that is,

the sequence ρn+2,k+2 also satisfies Cond. (G3).

(iii) Since γn+2,k+2 satisfies (G3), we have
⋃

0≤i≤2n+2−1{γ
n+2,k+2
i } = An+2,

hence our sequence satisfies (G1). Similarly, since ρn+2,k+2 satisfies Cond. (G3)
it satisfies Cond. (G1).

In order to prove that both the sequences γn,k and ρn,k satisfy Condition (G2),
beforehand we establish the following prop.:

Lemma 5.5. We have γn,k[0] ∈ σk+1

(
ρn,k[2n−1]

)
and ρn,k[0] ∈ σk+1

(
γn,k[2n−1]

)
.

Proof. We argue by induction over k′ ≥ 0.

– The base case corresponds to k′ = 0, thus k = 1 and n = n0. According to

the identity (16) we have γn0,1
[0] = 0n0 ∈ σ2

(
10n0−21

)
thus γn0,1

[0] ∈ σ2

(
ρn,k[2n−1]

)
.

Similarly, according to (17) we have ρn0,1
[0] = 10n0−1 ∈ σ2

(
0n0−11

)
that is,

ρn0,1
[0] ∈ σ2

(
γn0,1

[2n0−1]

)
.

– For the induction step, we assume that, for some k′ ≥ 0, we have γn,k[0] ∈

σk+1

(
ρn,k[2n−1]

)
and ρn,k[0] ∈ σk+1

(
γn,k[2n−1]

)
.

(i) In Eq. (18), by setting r = 0 we obtain γn+2,k+2
[0] = 00γn,k[0] , hence

by induction: γn+2,k+2
[0] ∈ 00σk+1

(
ρn,k[2n−1]

)
⊆ σk+3

(
11ρn,k[2n−1]

)
. By setting

r = 2n− 1 in Eq. (19), we obtain ρn+2,k+2
[2n+2−1] = 11ρn,k[2n−1]: this implies γn+2,k+2

[0] ∈

σk+3

(
ρn+2,k+2

[2n+2−1]

)
.

(ii) Similarly, by setting r = 0 in Eq. (19), and by induction we have:

ρn+2,k+2
[0] = 10γn,k[0] ∈ σk+3

(
01ρn,k[2n−1]

)
. By taking r = 2n − 1 in Eq. (18) we

obtain γn+2,k+2
[2n+2−1] = 01ρn,k[2n−1], therefore we have ρn+2,k+2

[0] ∈ σk+3

(
γn+2,k+2

[2n+2−1]

)
.

Since Eqs. (18)–(19) look alike, one may be tempted to compress them by
substituting to them some unique generic Formula. Based on our tests, such a
formula needs to introduce at least two additional technical parameters, with
tedious handling. In the proof of the following result, we have opted to report
some case-by-case basis argumentation: this has the advantage of making use
of arguments which, although being similar, are actually easily legible.
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Proposition 5.6. Both the sequences γn,k and ρn,k are σk-Gray cycles over An.

Proof. Once more we argue by induction over k′ ≥ 0. Since γn0,1 and ρn0,1 are
σ1-Gray cycles over An, the prop. holds for k′ = 0. In view of the induction
stage, we assume that, for some k′ ≥ 0 both the sequences γn,k and ρn,k are
σk-Gray cycles over An. According to Lemma 5.4, it remains to establish that
γn+2,k+2 and ρn+2,k+2 satisfy Cond. (G2) that is:

(∀q ∈ {0, 1, 2, 3})(∀r ∈ [1, 2n − 1]) γn+2,k+2
[q2n+r] ∈ σk+2

(
γn+2,k+2

[q2n+r−1]

)
; (20)

(∀q ∈ {1, 2, 3}) γn+2,k+2
[q2n] ∈ σk+2

(
γn+2,k+2

[q2n−1]

)
; (21)

γn+2,k+2
[0] ∈ σk+2

(
γn+2,k+2

[2n+2−1]

)
. (22)

(∀q ∈ {0, 1, 2, 3})(∀r ∈ [1, 2n − 1]) ρn+2,k+2
[q2n+r] ∈ σk+2

(
ρn+2,k+2

[q2n+r−1]

)
; (23)

(∀q ∈ {1, 2, 3}) ρn+2,k+2
[q2n] ∈ σk+2

(
ρn+2,k+2

[q2n−1]

)
; (24)

ρn+2,k+2
[0] ∈ σk+2

(
ρn+2,k+2

[2n+2−1]

)
. (25)

Condition (20)

(i) At first assume q = 0. According to Eq. (18) and since by induction γn,k

satisfies Cond. (G2), we have γn+2,k+2
[r] = θr (00) γn,k[r] ∈ θ

r(00)σk
(
γn,k[r−1]

)
, thus

γn+2,k+2
[r] ∈ σk+2

(
θr−1(00)γn,k[r−1]

)
. In Eq. (18), by substituting r − 1 to r (we

have 0 ≤ r − 1 < 2n − 1): we obtain γn+2,k+2
[r−1] = θr−1(00)γn,k[r−1]: this implies

γn+2,k+2
[r] ∈ σk+2

(
γn+2,k+2

[r−1]

)
.

(ii) Now assume q = 1. According to Eq. (18), and since by induction ρn,k

satisfies Cond. (G2), we have γn+2,k+2
[2n+r] = θr(01)ρn,k[r] ∈ σk+2

(
θr−1(01)ρn,k[r−1]

)
.

In Eq. (18), substitute r−1 to r: we obtain γn+2,k+2
[2n+r−1] = θr−1(01)ρn,k[r−1], therefore

we have γn+2,k+2
[2n+r] ∈ σk+2

(
γn+2,k+2

[2n+r−1]

)
.

(iii) For q = 2, we make use of arguments very similar to those applied in (i):
according to Eq. (18) and since by induction γn,k satisfies Cond. (G2), we have

γn+2,k+2
[2·2n+r] = θr(11)γn,k[r] ∈ θr(11)σk

(
γn,k[r−1]

)
⊆ σk+2

(
θr−1(11)γn,k[r−1]

)
. Once

more in Eq. (18), by substituting r−1 to r, we obtain γn+2,k+2
[r−1] = θr−1(11)γn,k[r−1]:

this implies γn+2,k+2
[r] ∈ σk+2

(
γn+2,k+2

[r−1]

)
.

(iv) Finally, with the condition q = 3, according to Eq. (18), and since ρn,k

satisfies Cond. (G2), we have γn+2,k+2
[3·2n+r] = θr(10)ρn,k[r] ∈ σk+2

(
θr−1(10)ρn,k[r−1]

)
.

In Eq. (18), substitute r − 1 to r: we obtain γn+2,k+2
[3·2n+r−1] = θr−1(10)ρn,k[r−1],

therefore we have γn+2,k+2
[3·2n+r] ∈ σk+2

(
γn+2,k+2

[3·2n+r−1]

)
.
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Condition (21)

(i) Assume q = 1 and take r = 0 in Eq. (18): we obtain γn+2,k+2
[2n] = 01ρn,k[0] . It

follows from Lemma 5.5, that γn+2,k+2
[2n] ∈ 01σk+1

(
γn,k[2n−1]

)
, thus γn+2,k+2

[2n] ∈

σk+2

(
11γn,k[2n−1]

)
. By taking r = 2n − 1 in (18), we obtain: γn+2,k+2

[2n−1] =

θ2n−1 (00) γn,k[2n−1] = 11γn,k[2n−1]: this implies γn+2,k+2
[2n] ∈ σk+2

(
γn+2,k+2

[2n−1]

)
.

(ii) Now, assume q = 2, and set r = 0 in Eq. (18): we obtain γn+2,k+2
[2·2n] =

11γn,k[0] . According to Lemma 5.5 we have γn+2,k+2
[2·2n] ∈ 11σk+1

(
ρn,k[2n−1]

)
⊆

σk+2

(
10ρn,k[2n−1]

)
. By taking r = 2n − 1 in (18), we obtain γn+2,k+2

[2n+2n−1)] =

10ρn,k[2n−1], which implies γn+2,k+2
[2·2n] ∈ σk+2

(
γn+2,k+2

[2·2n−1]

)
.

(iii) Finally, for q = 3, we take r = 0 in Eq. (18). Once more according to

Lemma 5.5, we have γn+2,k+2
[3·2n] = 10ρn,k[0] ∈ 10σk+1

(
γn,k[2n−1]

)
⊆ σk+2

(
01γn,k[2n−1]

)
.

On the other hand, by taking r = 2n − 1 in Eq. (18): we obtain γn+2,k+2
[2·2n+2n−1] =

θ2n−1 (10) γn,k[2n−1] = 01γn,k[2n−1] that is, γn+2,k+2
[3·2n] ∈ σk+2

(
γn+2,k+2

[3·2n−1]

)
.

Condition (22)

Take r = 0 in Eq. (18). According to Lemma 5.5, we have γn+2,k+2
[0] = 00γn,k[0] ∈

00σk+1

(
ρn,k[2n−1]

)
⊆ σk+2

(
01ρn,k[2n−1]

)
. By taking r = 2n − 1 in Eq. (18) we

obtain γn,k[3·2n+2n−1] = 01ρn,k[2n−1], thus γn+2,k+2
[0] ∈ σk+2

(
γn,k[2n+2−1]

)
.

Condition (23)– (25)

According to the structures of Eqs. (19)–(19), for proving these conditions

the method consists in substituting the word ρn+2,k+2
[r] to γn+2,k+2

[r] , the 4-tuple

(10, 11, 01, 00) to (00, 01, 11, 10), and Eq. (19) (resp., (19), (19), (19)) to Eq.
(18) (resp., (18), (18), (18)).

6 Condition k odd: a non recursive method for com-
puting γn,k

Recall that we set k = 2k′ + 1, n0 = n − 2k′ = n − k + 1 ≥ 2. Let J =⋃
0≤`≤k′{n0 + 2`} = {n0, n0 + 2, · · ·n − 2, n}. As in Sect. 4, we will establish

an eq. that allows to compute the word γn,k[i] starting from γn,k[i−1], for every

i ∈ [1, 2n − 1]. Beforehand, it is convenient to summarize such an approach.

– At first, some combinatorial study is drawn: for each j ∈ J we describe,
in term of periodicity, the structure of the sequence Aj−nγn,k (Lemma 6.1).
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– In order to provide some map of the whole family of words γn,k[i] (1 ≤ i ≤

2n − 1), a first matrix, namely C =
(
C

[j]
[i]

)
0≤i≤2n−1,j∈J

, is introduced. The

components of C are words that can be computed, on the one hand by applying
Eqs. (30), (31) (such formulas actually come from the preceding eqs. (18)–(19)),
and on the other hand, by applying Lemma 6.1.

– Actually the matrix C cannot be directly computed through an iteration-
based method. To remedy this situation, a second matrix namely Q is intro-
duced. From this point of view, Eqs. (33), (34) provide precision on Eqs. (30),
(31).

–At this stage, we have gathered sufficient material to obtain a first compu-
tation formula, which is presented in Lemma 6.4. Some precision: in the case
where i is not a multiple of 2j−2, our formula allows to compute the matrix(
Q

[j]
[i] , C

[j]
[i]

)
by directly starting from

(
Q

[j]
[i−1], C

[j]
[i−1]

)
. In the case where i is a

multiple of 2j−2, the formula requires to start the computation from the pair(
Q

[j]
[i−2j−2−1], C

[j]
[i−2j−2−1]

)
: we have not yet achieved our goal.

– Furthermore, Proposition 6.6 sets a second formula: in any case, it allows

the computation of
(
Q

[j]
[i] , C

[j]
[i]

)
by directly starting with the pair

(
Q

[j]
[i−1], C

[j]
[i−1]

)
.

– Regarding the implementation of the above method, some pseudo-code is
provided in Algorithm 2.

6.1 A property involving periodicity

We start by establishing the following result:

Lemma 6.1. Wrt. the sequence concatenation, for every j ∈ J the sequence
Aj−nγn,k is 2j+1-periodic. More precisely, given j ∈ J \n, Aj−nγn,k is a power

of the sequences concatenation
(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
.

Proof. With the condition j = n, trivially the sequence Aj−nγn,k = γn,k is 2j+1-
periodic. For j ∈ J\{n}, by making use of a top-down induction-based argument

over j, we prove that Aj−nγn,k is a concatenation power of γj,k−n+j
[0··2j−1]ρ

j,k−n+j
[0··2j−1].

– The base case corresponds to j = n− 2. Let i ∈ [0, 2n − 1], q ∈ [0, 3], and
r ∈ [0, 2n−2 − 1] st. i = q2n−2 + r. By substituting n− 2 to n and k− 2 to k in
Eqs. (18)–(19), we obtain the following identities:

A−2γn,k[r] = γn−2,k−2
[r]

A−2γn,k[2n−2+r] = ρn−2,k−2
[r]

A−2γn,k[2·2n−2+r] = γn−2,k−2
[r]

A−2γn,k[3·2n−2+r] = ρn−2,k−2
[r] .
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As a consequence, regarding sequences of words, each of the following eqs. holds:

A−2γn,k[0··2n−2−1] = γn−2,k−2
[0··2n−2−1]

A−2γn,k[2n−2··2·2n−2−1] = ρn−2,k−2
[0··2n−2−1]

A−2γn,k[2·2n−2··3·2n−2−1] = γn−2,k−2
[0··2n−2−1]

A−2γn,k[3·2n−2··2n−1] = ρn−2,k−2
[0··2n−2−1].

Wrt. sequence concatenation, this implies:

A−2γn,k = A−2γn,k[0··2n−1] =
(
γn−2,k−2

[0··2n−2−1], ρ
n−2,k−2
[0··2n−2−1]

)2
.

Since the length of each of the sequences γn−2,k−2
[0··2n−2−1], ρ

n−2,k−2
[0··2n−2−1] is 2n−2 = 2j ,

the prop. of Lemma 6.1 holds.

– For the induction stage, we assume that, for some j ∈ J \ {n0, n}, the

sequence Aj−nγn,k is a concatenation power of
(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
. With this

condition, the sequence Aj−n−2γn,k = A−2 (Aj−nγn,k), for its part, is a power

of A−2
(
γj,k−n+j

0··2j−1 , ρj,k−n+j
0··2j−1

)
. Let i ∈ [0, 2j − 1], q ∈ [0, 3], and r ∈ [0, 2j−2 − 1]

st. i = q2j−2 + r. By substituting j to n + 2 and k − n + j to k + 2 in Eqs.
(18)–(19), we obtain:

A−2γj,k−n+j
[r] = γj−2,k−n+j−2

[r]

A−2γj,k−n+j
[2j−2+r] = ρj−2,k−n+j−2

[r]

A−2γj,k−n+j
[2·2j−2+r] = γj−2,k−n+j−2

[r]

A−2γj,k−n+j
[3·2j−2+r] = ρj−2,k−n+j−2

[r] .

Therefore, the following equations hold:

A−2γj,k−n+j
[0··2j−2−1] = γj−2,k−n+j−2

[0··2j−2−1]

A−2γj,k−n+j
[2j−2··2·2j−2−1] = ρj−2,k−n+j−2

[0··2j−2−1]

A−2γj,k−n+j
[2·2j−2··3·2j−2−1] = γj−2,k−n+j−2

[0··2j−2−1]

A−2γj,k−n+j
[3·2j−2··2j−1] = ρj−2,k−n+j−2

[0··2j−2−1] .

This implies A−2γj,k−n+j
[0··2j−2−1] =

(
γj−2,k−n+j−2

[0··2j−2−1] , ρj−2,k−n+j−2
[0··2j−2−1]

)2
.

Similarly, we have:

A−2ρj,k−n+j
[0··2j−2−1] = γj−2,k−n+j−2

[0··2j−2−1]

A−2ρj,k−n+j
[2j−2··2·2j−2−1] = ρj−2,k−n+j−2

[0··2j−2−1]

A−2ρj,k−n+j
[2·2j−2··3·2j−2−1] = γj−2,k−n+j−2

[0··2j−2−1]

A−2ρj,k−n+j
[3·2j−2··2j−1] = ρj−2,k−n+j−2

[0··2j−2−1]
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Therefore we have A−2ρj,k−n+j
[0··2j−2−1] =

(
γj−2,k−n+j−2

[0··2j−2−1] , ρj−2,k−n+j−2
[0··2j−2−1]

)2
. We ob-

tain:

A−2
(
γj,k−n+j

[0··2j−1] , ρ
j−n,k−n+j
[0··2j−1]

)
=
(
γj−2,k−n+j−2

[0··2j−2−1] , ρj−2,k−n+j−2
[0··2j−2−1]

)4
.

Consequently, since it is a concatenation power of A−2
(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
, the

sequence Aj−n−2γn,k is a concatenation power of the sequence:(
γj−2,k−n+j−2

[0··2j−2−1] , ρj−2,k−n+j−2
[0··2j−2−1]

)
. Since the length of this last sequence is 2 ·

2j−2 = 2(j−2)+1, the sequence Aj−n−2γn,k itself has period 2(j−2)+1 that is, the
prop. of Lemma 6.1 also holds for j − 2. This completes the proof.

6.2 Mapping the structure of γn,k

Eqs. (18)–(19) leads to compute γn,k by recursively applying a series of left-
concatenation by words in A2. As previously announced, in the spirit of Sect.
4 we introduce a matrix, namely C. The row index is i ∈ [0, 2n−1], the column
index being j ∈ J = {n, n−2, · · · , n0+2, n0}. More precisely, given i ∈ [0, 2n−1]
we set:

γn,k[i] = C
[n]
[i] C

[n−2]
[i] · · ·C [j+2]

[i] C
[j]
[i] · · ·C

[n0+2]
[i] C

[n0]
[i] , (26)

with C
[n0]
[i] ∈ A

n0 , and C
[j]
[i] ∈ A

2 for every j ∈ J \ {n0}.

The reasons that can be invoked for adopting such a reverse-order notation are
the same that for the matrix H from Sect. 4. The row of index is i ∈ [0, 2n− 1]
is: (

C
[n]
[i] , C

[n−2]
[i] , · · ·C [j+2]

[i] , C
[j]
[i] , · · · , C

[n0+2]
[i] , C

[n0]
[i]

)
(27)

In addition, we denote by µ(i, j) the unique integer in [0, 2j+1 − 1] st. i =
µ(i, j) mod 2j+1. As a consequence of Lemma 6.1, we obtain the following
result, which is the counterpart of Lemma 4.2 from Sect. 4:

Lemma 6.2. With the preceding notation each of the following props. holds:

(i) For every j ∈ J\{n0, n}, we have C
[j]
[0··2n−1] = P2

(
Aj−nγn,k

)
. In addition

the sequence C
[j]
[0··2n−1] is a concatenation power of C

[j]
[0··2j+1−1].

(ii) For every i ∈ [0, 2n − 1] we have:

C
[n0]
[i] =

{
C

[n0]
[i] = γn0,1

[µ(i,n0)] if µ(i, n0) ∈ [0, 2n0 − 1]
C

[n0]
[i] = ρn0,1

[µ(i,n0)−2n0 ] if µ(i, n0) ∈ [2n0 , 2n0+1 − 1].
(iii) For every index pair i ∈ [0, 2n − 1], j ∈ J \ {n0}, we have:

C
[j]
[i] =

P2

(
γj,n−j+k[µ(i,j)]

)
if µ(i, j) ∈ [0, 2j − 1]

P2

(
ρj,n−j+k[µ(i,j)]−2j

)
if µ(i, j) ∈ [2j , 2j+1 − 1].
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Proof. (i) Let j ∈ J \ {n0, n} and i ∈ [0, 2n−1]. According to Eq. (26) we have

C
[j]
[i] = P2

((
C

[n]
[i] · · ·C

[j+2)]
[i]

)−1
γn,k[i]

)
.

Since the sequence
(
C

[n]
[i] , C

[n−2]
[i] , · · · , C [n−(n−j−2])

[i]

)
has length n−j−2

2 + 1, we

have
∣∣∣C [n]

[i] · · ·C
[j+2])
[i]

∣∣∣ = 2
(
n−j−2

2 + 1
)

= n− j, thus C
[j]
[i] = P2

(
Aj−nγn,k[i]

)
. As

a consequence, we obtain C
[j]
[0··2n−1] = P2

(
Aj−nγn,k

)
.

As a direct consequence, we have C
[j]
[0···2j+1−1] = P2

(
Aj−nγn,k[0··2j+1−1]

)
. Accord-

ing to Lemma 6.1, the sequence Aj−nγn,k is a power of
(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
,

whence C
[j]
[0··2n−1] = P2

(
Aj−nγn,k

)
is a power of P2

(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
. In ad-

dition, since the sequenceAj−nγn,k[0··2j+1−1] has length 2j+1, we haveAj−nγn,k[0··2j+1−1] =(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
.

This implies C
[j]
[0···2j+1−1] = P2

(
Aj−nγn,k[0··2j+1−1]

)
= P2

(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
.

Consequently, P2
(
Aj−nγn,k

)
is a power of P2

(
γj,k−n+j

[0··2j−1] , ρ
j,k−n+j
[0··2j−1]

)
that is, C

[j]
[0··2n−1]

is a concatenation power of C
[j]
[0··2j+1−1]. This completes the proof of prop. (i).

(ii) According to Eq. (26), we have C
[n0]
[0···2n0+1−1] =

(
γn0,1

[0···2n0−1], ρ
n0,1
[0···2n0−1]

)
. By

taking j = n0 ∈ J in the statement of Lemma 6.1, we observe that the sequence

An0−nγn,k is a power of
(
γn0,1

[0··2n0−1], ρ
n0,1
[0··2n0−1]

)
(we have k − n + n0 = 1).

Consequently, the condition µ(i, n0) ∈ [0, 2n0 − 1], implies C
[n0]
[i] = γn0,1

[µ(i,n0)].

Similarly, the condition µ(i, n0) ∈ [2n0 , 2n0+1−1], implies C
[n0]
[i] = ρn0,1

[µ(i,n0)−2n0 ].

This establishes the prop. (ii) of Lemma 6.2.

(iii) Let i ∈ [0, 2n−1]. According to the prop. (i) of our lemma, C
[j]
[0··2n−1] is 2j+1-

periodic. By the definition of µ(i, j) this implies C
[j]
[i] = C

[j]
[µ(i,j)]. In addition,

C
[j]
[µ(i,j)] is the term of index µ(i, j) in the sequence P2

(
γj,k−n+j

[0··2j−1]ρ
j,k−n+j
[0··2j−1]

)
, hence

the prop. (iii) holds.

According to Lemma 6.2, given i ∈ [0, 2n0+1 − 1] the following equations hold :

C
[n0]
[i] =

{
γn0,1

[i] if i ∈ [0, 2n0 − 1]
ρn0,1

[i] if i ∈ [2n0 , 2n0+1 − 1] (28)

In particular, we have C
[n0]
[0] = γn0,1

[0] .

Let i ∈ [0, 2n − 1], j ∈ J \ {n, n0}, and let q′, r′ be the unique integer pair st.
µ(i, j) = q′2j−2 + r′, with r′ ∈ [0, 2j−2−1]. It follows from µ(i, j) ∈ [0, 2j+1−1]
that we have q′ ∈ [0, 7], furthermore according to Eqs. (18)–(19) each of the
following identities holds:
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γj,k−n+j
[r′] = θr

′(00)γj−2,k−n+j−2
[r′]

γj,k−n+j
[2j−2+r′] = θr

′(01)ρj−2,k−n+j−2
[r′]

γj,k−n+j
[2.2j−2+r′] = θr

′(11)γj−2,k−n+j−2
[r′]

γj,k−n+j
[3.2j−2+r′] = θr

′(10)ρj−2,k−n+j−2
[r′]

ρj,k−n+j
[4·2j−2+r′] = θr

′(10)γj−2,k−n+j−2
[r′]

ρj,k−n+j
[5·2j−2+r′] = θr

′(11)ρj−2,k−n+j−2
[r′]

ρj,k−n+j
[6.2j−2+r′] = θr

′(01)γj−2,k−n+j−2
[r′]

ρj,k−n+j
[7.2j−2+r′] = θr

′(00)ρj−2,k−n+j−2
[r′] .

(29)

According to the prop. (iii) of Lemma 6.2, we obtain the following equations:

C
[j]
[r′] = θr

′(00);
C

[j]
[2j−2+r′] = θr

′(01);
C

[j]
[2·2j−2+r′] = θr

′(11);
C

[j]
[3·2j−2+r′] = θr

′(10);
C

[j]
[4·2j−2+r′] = θr

′(10);
C

[j]
[5·2j−2+r′] = θr

′(11);
C

[j]
[6·2j−2+r′] = θr

′(01);
C

[j]
[7·2j−2+r′] = θr

′(00).

(30)

In addition, for j = n, the following identities holds:

C
[n]
[r′] = θr

′(00);
C

[n]
[2n−2+r′] = θr

′(01);
C

[n]
[2·2n−2+r′] = θr

′(11);
C

[n]
[3·2n−2+r′] = θr

′(10).

(31)

Thanks to the prop. (i) of Lemma 6.2, the eqs. (30), (31) directly provide

the value of the component C
[j]
[i] , for every i ∈ [0, 2n−1]. However, from an

algorithmic point of view, in order to compute the whole matrix C, all the

words C
[j]
[i] should be memorized, for all the integer pairs i ∈ [0, 2j+1−1], j ∈ J .

In other words we are still a long way from our goal. In view of that, in what
follows we shall deepen the structure of Eqs. (30), (31). First of all we note
that, given some index i ∈ [1, 2n−1], exactly one of the two following conds.
occurs:

Condition i 6= 0 mod 2j+1

With the preceding notation, this condition corresponds to µ(i, j) ≥ 1, thus r′ ≥
1. According to Eqs. (30), (31), for every j ∈ J \ {n0} and for each integer pair

q′ ∈ [0, 7], r′ ∈ [0, 2j−2− 1], a unique word x ∈ A2 exists st. C
[j]
[q′j−2+r′] = θr

′(x)
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and C
[j]
[q′j−2+(r′−1)] = θr

′−1(x), therefore the following equation holds:

C
[j]
[q′2j−2+r′] = θ

(
C

[j]
[q′2j−2+(r′−1)]

)
(1 ≤ r′ ≤ 2j−2 − 1). (32)

Condition i = 0 mod 2j+1

Actually, with this condition, which is equivalent to r′ = 0, i.e. µ(i, j) =
0, we are not able to directly establish a formula similar to Eq. (32). For

instance in Eqs. (30), on the first hand, by taking q′ = 3, we have C
[j]
[3·2j−2−1] =

C
[j]
[2·2j−2+(2j−2−1)] = θ2j−2−1(11) = 00 and C

[j]
[q′3·2j−2] = 10. On the other hand,

by taking q′ = 6, although still we have C
[j]
[6·2j−2−1] = C

[j]
[5·2j−2+(2j−2−1)] =

θ5j−2−1(11) = 00, we have in fact C
[j]
[q′6j−2] = 01. In other words, under current

conditions, the formulas (30) and (31) cannot provide sufficient information to

express C
[j]
[q′2j−2] directly, starting with C

[j]
[q′2j−2−1].

6.3 Some breakthrough thanks to a new matrix

In order to gather the missing information, we introduce a second matrix,
namely Q. With the above notation, given an index pair i ∈ [0, 2n − 1], j ∈ J ,

we set Q
[j]
[i] = q′ that is, µ(i, j) = Q

[j]
[i] 2

j−2 + r′. The following equations come

from Eqs. (30): (
Q

[j]
[r′], C

[j]
[r′]

)
=
(

0, θr′(00)
)(

Q
[j]
[2j−2+r′], C

[j]
[2j−2+r′]

)
=
(

1, θr′(01)
)(

Q
[j]
[2·2j−2+r′], C

[j]
[2·2j−1+r′]

)
=
(

2, θr′(11)
)(

Q
[j]
[3·2j−2+r′], C

[j]
[3·j−2+r′]

)
=
(

3, θr′(10)
)(

Q
[j]
[2j+r′], C

[j]
[2j+r′]

)
=
(

4, θr′(10)
)(

Q
[j]
[5·2j−2+r′], C

[j]
[5·2j−2+r′]

)
=
(

5, θr′(11)
)(

Q
[j]
[6·2j−2+r′], C

[j]
[6·2j−2+r′]

)
=
(

6, θr′(01)
)(

Q
[j]
[7·2j−2+r′], C

[j]
[7·2j−2+r′]

)
=
(

7, θr′(00)
)
.

(33)

In addition, for j = n, the following equations come from Eqs. (31):(
Q

[n]
[r′], C

[n]
[r′]

)
=
(

0, θr′(00)
)(

Q
[n]
[2n−2+r′], C

[n]
[2n−2+r′]

)
=
(

1, θr′(01)
)(

Q
[n]
[2n−1+r′], C

[n]
[2n−1+r′]

)
=
(

2, θr′(10)
)(

Q
[n]
[3·2n−2+r′], C

[n]
[3·2n−2+r′]

)
=
(

3, θr′(11)
)
.

(34)

Regarding periodicity of the sequences, the following prop. comes from Lemma
6.2:
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Lemma 6.3. For every j ∈ J \ {n0} the sequence
(
Q

[j]
[i] , C

[j]
[i]

)
0≤i≤2n−1

is 2j+1-

periodic.

Proof. Let i1, i2 ∈ [0, 2n−1] st. i1− i2 = 0 mod 2j+1. By definition the integers

µ(i1, j), µ(i2, j) ∈ [0, 2j+1−1] are equal, whence Q
[j]
[i1], Q

[j]
[i2], their corresponding

euclidian quotients by 2j−2 are equal. In addition, according to prop. (i) of

Lemma 6.2, the sequence C
[j]
[0··2n−1] is 2j+1-periodic, therefore we have C

[j]
[i1] =

C
[j]
[i2].

In view of Eqs. (33), (34), and Lemma 6.3, we introduce the following 8-element
cycle:

π = ((0, 00) , (1, 01) , (2, 11) , (3, 10) , (4, 10) , (5, 11) , (6, 01) , (7, 00))

that is, π((0, 00) = (1, 01) , π (1, 01) = (2, 11) , · · · , π (6, 01) = (7, 00) , π (7, 00) =
((0, 00).

Recall that we have µ(i, j) = Q
[j]
[i] 2

j−2 + r′.

Lemma 6.4. With the preceding notation, for every integer pair i ∈ [1, 2n − 1],
j ∈ J \ {n0}, the following equation holds:

(
Q

[j]
[i] , C

[j]
[i]

)
=


(
Q

[j]
[i−1], θ

(
C

[j]
[i−1]

))
if r′ 6= 0,

π
(
Q

[j]
[i−2j−2], C

[j]
[i−2j−2]

)
otherwise.

Proof. Let j ∈ J \ {n0}. According to the value of r′ ∈ [0, 2j − 1] exactly one of
the two following conditions occurs:

(i) Condition r′ 6= 0
According to Eqs. (33), (34), we obtain

(
Q

[j]
[µ(i,j)], C

[j]
[µ(i,j)]

)
=
(
Q

[j]
[µ(i,j)−1], θ

(
C

[j]
[µ(i,j)−1]

))
=(

Q
[j]
[µ(i−1,j)]θ

(
C

[j]
[µ(i−1,j)]

))
. According to Lemma 6.3, we have C

[j]
[i] = C

[j]
[µ(i,j)]

and C
[j]
[i−1] = C

[j]
[µ(i−1,j)]: this implies

(
Q

[j]
[i] , C

[j]
[i]

)
=
(
Q

[j]
[i−1], θ

(
C

[j]
[i−1]

))
.

(ii) Condition r′ = 0
According to the value of the index i, exactly one of the three following cases
occurs:

(ii.i) The case where we have i ∈ [1, 2j+1 − 1]
According to Eqs. (33) each of the following identities hold (in the case
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where we have j = n, only the first four hold):(
Q

[j]
[2j−2], C

[j]
[2j−2]

)
= (1, 01)(

Q
[j]
[2·2j−2], C

[j]
[2·2j−1]

)
= (2, 11)(

Q
[j]
[3·2j−2], C

[j]
[3·j−2]

)
= (3, 10)(

Q
[j]
[2j ], C

[j]
[2j ]

)
= (4, 10)(

Q
[j]
[5·2j−2], C

[j]
[5·2j−2]

)
= (5, 11)(

Q
[j]
[6·2j−2], C

[j]
[6·2j−2]

)
= (6, 01)(

Q
[j]
[7·2j−2], C

[j]
[7·2j−2]

)
= (7, 00) .

(35)

According to Eqs. (35), for every q′ ∈ [1, 7] we have:(
Q

[j]
[q′·2j−2], C

[j]
[q′·2j−2]

)
= π

(
Q

[j]
[(q′−1)·2j−2], C

[j]
[(q′−1)·2j−2]

)
.

On the other hand, by definition i ∈ [1, 2j+1 − 1] implies i = µ(i, j) = Q
[j]
[i] ·

2j−2 + r′ = q′ · 2j−2 + r′ = q′ · 2j−2, thus i− 2j−2 = (q′ − 1)2j−2. We obtain:(
Q

[j]
[i] , C

[j]
[i]

)
=
(
Q

[j]
[q′·2j−2], C

[j]
[q′·2j−2]

)
= π

(
Q

[j]
[i−2j−2], C

[j]
[i−2j−2]

)
.

(ii.ii) The case where i = 0 mod 2j+1

On the one hand, according to Lemma 6.3, we have
(
Q

[j]
[i] , C

[j]
[i]

)
=
(
Q

[j]
[0], C

[j]
[0]

)
=

(0, 00). On the other hand, we have i − 2j−2 = −2j−2 mod 2j+1 = 2j+1 −
2j−2 mod 2j+1, thus i−2j−2 = 8 ·2j−2−2j−2 mod 2j+1 = 7 mod 2j+1. Accord-

ing to Lemma 6.3 and Eqs. (35), we obtain
(
Q

[j]
[i−2j−2], C

[j]
[i−2j−2]

)
=
(
Q

[j]
[7·2j−2], C

[j]
[7·2j−2]

)
=

(7, 00): once more we have
(
Q

[j]
[i] , C

[j]
[i]

)
= π

(
Q

[j]
[i−2j−2], C

[j]
[i−2j−2]

)
.

(ii.iii) The case where i ∈ [2j+1 + 1, 2n − 1], with i 6= 0 mod 2j+1

By definition we have µ(i, j) ∈ [1, 2j+1 − 1]. On the one hand, by substi-

tuting µ(i, j) to i in the preceding case (ii.i), we obtain:
(
Q

[j]
[µ(i,j)], C

[j]
[µ(i,j)]

)
=(

Q
[j]
[µ(i,j)−2j−2], C

[j]
[µ(i,j)−2j−2]

)
. On the other hand, by the definition of µ we have

i = q·2j+1+µ(i, j), thus i−2j−2 = q·2j+1+
(
µ(i, j)− 2j−2). Since we have r′ = 0

and µ(i, j) ≥ 1 a positive integer q′ ≥ 1 exists st. µ(i, j) = q′ · 2j−2. It follows
from µ(i, j)−2j−2 = (q′−1)2j−2 ≥ 0 and µ(i, j)−2j−2 ≤ 2j+1−1 that µ(i, j)−
2j−2 ∈ [0, 2j+1 − 1]. By the definition of µ we obtain µ(i− 2j−2, j) = µ(i, j)−
2j−2, thus

(
Q

[j]
[µ(i,j)−2j−2], C

[j]
[µ(i,j)−2j−2]

)
=
(
Q

[j]
[µ(i−2j−2,j)], C

[j]
[µ(i−2j−2,j)]

)
. Ac-

cording to Lemma 6.3, we obtain:(
Q

[j]
[i] , C

[j]
[i]

)
=
(
Q

[j]
[µ(i,j)], C

[j]
[µ(i,j)]

)
=
(
Q

[j]
[µ(i−2j−2,j)], C

[j]
[µ(i−2j−2,j)]

)
= π

(
Q

[j]
[i−2j−2], C

[j]
[i−2j−2]

)
.

This completes the proof of Lemma 6.4.
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Lemma 6.4 shows that the condition r′ = 0 plays a prominent part in the

computation of
(
Q

[j]
[i] , C

[j]
[i]

)
. The following result provides some precision:

Lemma 6.5. With the preceding notation, the three following conditions are
equivalent:

(i) r′ = 0;
(ii) µ(i, j) = 0 mod 2j−2;
(iii) i = 0 mod 2j−2.

Proof. It follows from µ(i, j) = Q
[j]
[i] 2

j−2 + r′, with r′ ∈ [0, 2j−2 − 1], that the

two conditions µ(i, j) = 0 mod 2j−2 and r′ = 0 are equivalent. According to
the definition of µ, some integer m ∈ N exists st. i = µ(i, j) + m2j+1. As a
consequence, if we have i = 0 mod 2j−2, some integer m′ ∈ N exists st. µ(i, j) +
m2j+1 = m′2j−2, thus µ(i, j) = (m′ − 8m)2j−2 that is, µ(i, j) = 0 mod 2j−2.
Conversely if m′ ∈ N exists st. µ(i, j) = m′2j−2, we obtain i = m′2j−2 +m2j+1

that is, i = (m′ + 8m)2j−2, thus i = 0 mod 2j−2.

6.4 The loopless algorithm

Nevertheless, we have not fully achieved our objective: indeed, in the statement

of Lemma 6.4, in order to compute
(
Q

[j]
[i] , C

[j]
[i]

)
, the condition i = 0 mod 2j−2

imposes to memorize the component
(
Q

[j]
[i−2j−2], C

[j]
[i−2j−2]

)
. Our goal is to prove

that such a computation can be actually done by only referring to the pair(
Q

[j]
[i−1], C

[j]
[i−1]

)
. In order to do so we need to introduce some additional concept:

we denote by φ be the partial mapping onto [0, 7]×A2 defined by φ
(
q′, θ−1(c)

)
=

π (q′, c), for each pair (q′, c) in the cycle π. By definition φ takes the following
values:

(q′, c) (0, 11) (1, 10) (2, 00) (3, 01) (4, 01) (5, 00) (6, 10) (7, 11)
φ(q′, c) (1, 01) (2, 11) (3, 10) (4, 10) (5, 11) (6, 01) (7, 00) (0, 00)

(36)

The following property is the basis to an iterative algorithm to compute the
whole sequence γn,k:

Proposition 6.6. With the preceding notation, for every i ∈ [1, 2n − 1], j ∈
J \ {n0}, the following identity holds:

(
Q

[j]
[i] , C

[j]
[i]

)
=


(
Q

[j]
[i−1], θ

(
C

[j]
[i−1]

))
if i 6= 0 mod 2j−2

φ
(
Q

[j]
[i−1], C

[j]
[i−1]

)
otherwise.

Proof. According to Lemmas 6.4, 6.5 we restrain to the case where we have
i = 0 mod 2j−2 that is, with the preceding notation, r′ = 0 and µ(i, j) = q′ ·2j−2.
As in proof of Lemma 6.3 exactly one of the three following conditions holds:
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(i) The case where we have i ∈ [1, 2j+1 − 1]
With this condition we have i = µ(i, j) ≥ 1. Firstly, we assume j < n. Ac-
cording to Eqs. (35), and by the definition of φ each of the following identities
holds: (

Q
[j]
[2j−2], C

[j]
[2j−2]

)
= (1, 01) = π(0, 00) = φ (0, 11)(

Q
[j]
[2·2j−2], C

[j]
[2·2j−1]

)
= (2, 11) = π(1, 01) = φ (1, 10)(

Q
[j]
[3·2j−2 ], C [j]

[3·2j−2]

)
= (3, 10) = π(1, 11) = φ (2, 00)(

Q
[j]
[4·2j−2], C

[j]
[4·2j−2]

)
= (4, 10) = π(3, 10) = φ (3, 01)(

Q
[j]
[5·2j−2], C

[j]
[5·2j−2]

)
= (5, 11) = π(4, 10) = φ (4, 01)(

Q
[j]
[6·2j−2], C

[j]
[6·2j−2]

)
= (6, 01) = π(5, 11) = φ (5, 00)(

Q
[j]
[7·2j−2], C

[j]
[7·2j−2]

)
= (7, 00) = π(6, 01) = φ (6, 10) .

(37)

In the case where we have j = n, only the first four equations hold. It is straight-

forward to verify that , for each q′ ∈ [1, 7], we have,
(
Q

[j]
[q′2j−2], C

[j]
[q′2j−2]

)
=

φ
(
Q

[j]
[q′2j−2−1)], C

[j]
[q′2j−2−1)]

)
that is,

(
Q

[j]
i , C

[j]
[i]

)
= φ

(
Q

[j]
[i−1], (Q

[j]
[i−1]

)
.

(ii) The case where i = 0 mod 2j+1

Let q be the unique positive integer st. i = q ·2j+1. On the one hand, according

to Lemma 6.3, we have
(
Q

[j]
[i] , C

[j]
[i]

)
=
(
Q

[j]
[0], C

[j]
[0]

)
= (0, 00) = φ(7, 11). On the

other hand, we have i − 1 = q · 2j+1 − 1 = (q − 1)2j+1 + (2j+1 − 1). It follows
from j ≥ 1 that 2j+1 − 1 ∈ [0, 2j+1 − 1], whence we have µ(i− 1, j) = 2j+1 − 1.

This implies
(
Q

[j]
[i−1], C

[j]
[i−1]

)
=
(
Q

[j]
[2j+1−1], C

[j]
[2j+1−1]

)
: we are in the condition

of Eqs. (33) with q′ = 7 and r′ = 2j−2 − 1. We obtain
(
Q

[j]
[2j+1−1], C

[j]
[2j+1−1]

)
=(

Q
[j]
7·2j−2+(2j−2−1)], C

[j]
[7·2j−2+(2j−2−1)]

)
=
(

7, θ2j−2−1(00)
)

= (7, 11). As a conse-

quence, once more we have
(
Q

[j]
[i] , C

[j]
[i]

)
= φ

(
Q

[j]
[i−1], C

[j]
[i−1]

)
.

(iii) The case where i ∈ [2j+1 + 1, 2n − 1] and i 6= 0 mod 2j+1

On the one hand, with this condition we have µ(i, j) ∈ [1, 2j+1 − 1]. By substi-
tuting µ(i, j) to i in the preceding case (i) we obtain:(

Q
[j]
[µ(i,j)], C

[j]
[µ(i,j)]

)
= φ

(
Q

[j]
[µ(i,j)−1], C

[j]
[µ(i,j)−1]

)
.

On the other hand, by the definition of µ we have i = q · 2j+1 + µ(i, j):
this implies i − 1 = q · 2j+1 + (µ(i, j)− 1). It follows from i 6= 0 mod 2j+1

that µ(i, j) − 1 ∈ [0, 2j+1 − 1], therefore we have µ(i, j) − 1 = µ(i − 1, j).
As a consequence, we obtain

(
Q

[j]
[µ(i,j)], C

[j]
[µ(i,j)]

)
= φ

(
Q

[j]
[µ(i−1,j)], C

[j]
[µ(i−1,j)]

)
.

According to Lemma 6.3, this implies
(
Q

[j]
[i] , C

[j]
[i]

)
= φ

(
Q

[j]
[i−1], C

[j]
[i−1]

)
: this

completes the proof.

According to the result of Proposition 6.6 we obtain an iteration-based method

for computing the sequence γn,k (see Algorithm 2). Recall that we set C
[n0]
[0] =
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γn0,1. From the point of view of implementation, in the spirit of Algorithm 1,
for every i ∈ [0, 2n − 1] the two following objects:

– The component C
[n0]
[i]

– the row
((
Q

[n]
[i] , C

[n]
[i]

)
,
(
Q

[n−2]
[i] , C

[n−2]
[i]

)
, · · · ,

(
Q

[n0+2]
[i] , C

[n0+2]
[i]

))
,

are memorized in the corresponding generic components:
– C[n0]

–
((
Q[n], C[n]) , (Q[n−2], C[n−2]) , · · · , (Q[n0+2], C[n0+2])).

Each time the counter i is incremented these generic components are up-
dated. According to Eqs. 28, the column C [n0] takes the following expression:

C
[n0]
[0··2n0+1−1] =

(
γn0,1, ρn0,1

)
, C [n0] =

(
γn0,1, ρn0,1

)2n−n0−1

. (38)

From this point of view, we start the computation by setting: Cn0 = C
[n0]
[0] =

γn0,1
[0] .

Some comments about Algorithm 2
The variable b takes values in the two-symbol set {γ, ρ}: its role is to determine
which of Eqs. (33), (34) should be applied in order to compute the value of

the pair
(
Q

[n0
[i] , C

[n0]
[i]

)
(lines 7–11). According to the prop. (ii) of Lemma

6.2, the variable b, which is initialized to γ, is actualized each time the integer
µ0 = µ(i, 2n0+2) meets some element of {2n0 , 2n0+1} (lines 12–17). The result
of Proposition 6.6, for its part, is applied at lines 19–26.

Questions related to complexity
The study is similar to the one of Sect. 4, and it leads to similar conclusions.
Beforehand we note that, in any case, the alphabet A and the permutation θ
should be computed in a preprocessing phase.

– Regarding the generic row
((
Q[n], C[n]) , · · · , (Q[n0+1], C[n0+1])), there is a

positive integer, say ` (the maximum cost of each operation over every compo-
nent), st. updating the sequence requires at most `(n− n0− 1) = `k insertions.
Consequently, when the counter i reaches the value imax + 1, the total amount
of operations is at most 2n`k.

– In order to compute the component C[n0], as for Algorithm 1 there are two
possible approaches:

(a) Firstly, for each value of i ∈ [1, 2n0−1] we apply the instruction (2) from
Algorithm (b) (see the preliminaries). Computing each of the finite sequences
γn0,1, ρn0,1, classically requires an amount of 2n0 + 2n0−1 + · · · + 2 ≤ 2n0 one-
character substitutions, therefore for computing the whole column C [n0], the
total cost of the preceding operations is bounded by 2n−n0 · 2 · 2n0 = 2n+1.
Consequently the total amount of operations is bounded by 2n+1`k + 2n+1 =
2n+1(`k+1). This leads to a computation in amortized time of 2−n2n+1(`k+1) =
O(1), with space linear in n.

(b) The second approach consists in implementing in a preprocessing phase
the sequences γn0,1, ρn0,1 and the mappings π, φ : such an implementation
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requires space O(n02n0) and, as indicated above, a total amount of O(2n0) sub-
stitutions, with space O(n02n0). After that, in the processing phase, updating
Cn0 will be performed by a constant number of requests to γn0,1, γn0,1, π and
φ, say `1 (see lines 19-23). Consequently, in the processing phase updating the
matrices C[n..n0+1] , Q[n..n0+1] requires at most ` + `1k operations: with this
second strategy of implementation Algorithm 2 is loopless and requires space
linear in n+ n02n0 .
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7 The case where we have |A| = 2 and k even

Let k be a positive even integer. Beforehand, we remind some classical algebraic
interpretation of the substitution σk in the framework of the binary alphabet
A = {0, 1}. Denote by ⊕ the addition in the group Z/2Z with identity 0. Given
a positive integer n, and w,w′ ∈ An, define w ⊕ w′ as the unique word of An

st. (w ⊕ w′)i = wi ⊕ w′i, for each i ∈ [1, n]. With this notation the sets An

and (Z/2Z)n are in one-to-one correspondence. Moreover we have w′ ∈ σk(w)
iff. some word u ∈ An exists st. |u|1 = k and w = w′⊕u: since k is even, we
obtain |w|1 = |w′|1 mod 2. Consequently, given a σk-Gray cycle

(
α[i]
)

0≤i≤m, for

each i ∈ [0,m] the equation
∣∣α[i]

∣∣
1 =

∣∣α[0]
∣∣
1 mod 2 holds. As a corollary, setting

Evenn1 = {w ∈ A∗ : |w|1 = 0 mod 2} and Oddn1 = {w ∈ A∗ : |w|1 = 1 mod 2},
we obtain the following property:

Lemma 7.1. With the condition of Section 7, given a σk-Gray cycle α over X,
either we have X ⊆ Evenn1 , or we have X ⊆ Oddn1 .

Given an even integer n, we define the sequences γn,k and γn,k as indicated
in the following:

(∀i ∈ [0, 2n−1 − 1]) γn,k[i] = θi(0)γn−1,k−1
[i] and γn,k[i] = θi(1)γn−1,k−1

[i] . (39)

According to Proposition 5.6, since k−1 is an odd integer the sequence γn−1,k−1

is a σk−1-Gray cycle over An−1.
For instance, we have γ6,4

[0] = 000000, γ6,4
[0] = 100000, γ6,4

[1] = 111100, and

γ6,4
[1] = 011100.
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Proposition 7.2. The sequence γn,k (resp., γn,k) is a σk-Gray cycle over Evenn1
(resp., Oddn1 ).

Proof. (i) According to Eqs. (39), since γn−1,k−1 satisfies Cond. (G3), by
construction both the sequences γn,k and γn,k also satisfy (G3).

(ii) By Lemma 7.1, we have
⋃

0≤i≤2n−1
{
γn,k

}
⊆ Evenn1 and

⋃
0≤i≤2n−1

{
γn,k

}
⊆

Oddn1 . In addition, according to Eqs. (39), we have
∣∣γn,k∣∣ =

∣∣γn,k∣∣ =
∣∣γn−1,k−1

∣∣ =
2n−1 = |Evenn1 |. This implies

⋃
0≤i≤2n−1

{
γn,k

}
= Evenn1 and

⋃
0≤i≤2n−1

{
γn,k

}
=

Oddn1 that is, both the sequences γn,k and γn,k satisfy Cond. (G1).

(iii) Let i ∈ [1, 2n−1 − 1]. Since γn−1,k−1 satisfies (G2), we have γn−1,k−1
[i] ∈

σk−1

(
γn−1,k−1

[i−1]

)
. According to Eqs. (39), the initial characters of γn,k[i] and

γn,k[i−1] (resp., γn,k[i] and γn,k[i−1]) are different, hence we have γn,k[i] ∈ σk
(
γn,k[i−1]

)
and

γn,k[i] ∈ σk

(
γn,k[i−1]

)
. In addition, once more according to Eqs. (39) it follows

from γn−1,k−1
[0] ∈ σk−1

(
γn−1,k−1

[2n−1−1]

)
that γn,k[0] = 0γn−1,k−1

[0] ∈ σk
(

1γn−1,k−1
[2n−1−1]

)
⊆

σk

(
γn,k[2n−1−1]

)
, hence γn,k satisfies Cond. (G2). Similarly, γn−1,k−1

[0] ∈ σk−1

(
γn−1,k−1

[2n−1−1]

)
implies γn,k[0] ∈ σk

(
γn,k[2n−1−1]

)
, hence γn,k satisfies Cond. (G2).

We have now examined each of the different possibilities. The following state-
ment summarizes the results.

Theorem 7.3. Given a finite alphabet A, k ≥ 1, and n ≥ k, there is a loopless
algorithm that allows to compute some specific maximum length σk-Gray cycle.
In addition exactly one the following conditions holds:

λA,σk
(n) =


|An| |A| ≥ 3, n ≥ k

2 |A| = 2, n = k
|A|n |A| = 2, n ≥ k + 1, k is odd
|A|n−1 |A| = 2, n ≥ k + 1, k is even.

Proof. Notice that, in the case where we have |A| = 2, with n being an even
integer, according to Eqs. (39), and Proposition 5.6, Algorithm 2 can be easily

extended in a method computing γn,k[i] by starting with γn,k[i−1]. As a consequence,

according to the studies in Sects. 4, 6, in any case there is an iterated-basis al-
gorithms generating some specific maximum length σk-Gray cycle. As indicated
above, according to the implementation of hn0,1, γn0,1, and ρn0,1, that algorithm
can run in constant amortized-time or in constant time.

In what follows, we examine the length of the corresponding σk-Gray cycles.
Recall that if some σk-Gray cycle exists over X ⊆ A≤n, necessarily X is a
uniform set that is, the inclusion X ⊆ Am holds for some m ≤ n, whence in any
case we have λA,σk

(n) ≤ |A|n.
– According to Proposition 7.3, if we have |A| ≥ 3 and n ≥ k, a σk-Gray

cycle exists over An, whence we have λA,σk
(n) = [A|n.
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– Similarly, according to Proposition 5.6, the cond. |A| = 2, n ≥ k + 1, k is
odd implies that a σk-Gray cycle exists over An, hence we have λA,σk

(n) = [A|n.
– As indicated in the preamble of Sect. 5, the cond. |A| = 2 with n = k

trivially implies λA,σk
(n) = 2.

– Finally, according to Lemma 7.1, given a binary alphabet A, if k is even
we have λA,σk

(n) ≤ 2n−1 therefore, according to Proposition 7.2 the cond.
|A| = 2, n ≥ k+ 1, k is even implies that a σk-Gray cycle exists in An−1 that is
we have λA,σk

(n) = |A|n−1.

Algorithms (c) and (d) allow to construct maximum length Gray sequences st.
the Hamming distance of two consecutive terms is exactly k. We close the study
by examining the case where Gray cycles are defined with a weaker constraint.

k-Gray codes
These sequences are commonly defined as Gray sequences where two consecutive
terms have distance at most k. In the context of our study, k-Gray cycles are
actually Σk-Gray cycles, where we set (w,w′) ∈ Σk iff. the Hamming distance
of w and w′ is not greater than k.

Note that we have Σk = idA∗∪σ1∪· · ·∪σk, thus σ1 ⊆ Σk. As a consequence,
the two notions of σ1-Gray cycle and k-Gray cycle are identical. In particular,
we have |An| = λA,Σk

(n) = λA,σ1(n). Furthermore, according to Theorem 7.3,
each of Algorithms (c), (d) generates a k-Gray cycle of length |A|n iff. exactly
one of the two following conds. holds:

|A| ≥ 3, n ≥ k
|A| = 2, n ≥ k + 1, k is odd.

In the case where we have |A| = 2, n ≥ k+1, k is even or A = 2, n = k, once
more according to Theorem 7.3, our algorithms cannot compute any k-Gray
cycle.

Further development

The present investigations could be done in the framework of other word binary
relations τ , such as other edit relations, as defined in [28], or relations connected
to the so-called prefix or factor distances [6, 29]. One could also characterize
maximum length Gray cycles over X, with X describing some noticeable families
of sets such as variable-length codes.
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