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Abstract

Concentrated colloidal suspensions and emulsions are amorphous soft solids, widespread in tech-

nological and industrial applications and studied as model systems in physics and material sciences.

They are easily fluidized by applying a mechanical stress, undergoing a yielding transition that still

lacks a unified description. Here, we investigate yielding in three classes of repulsive soft solids,

using analytical and numerical modelling and experiments probing the microscopic dynamics and

mechanical response under oscillatory shear. We find that at the microscopic level yielding consists

in a transition between two distinct dynamical states, which we rationalize by proposing a lattice

model with dynamical coupling between neighboring sites, leading to a unified state diagram for

yielding. Leveraging the analogy with Wan der Waals’s phase diagram for real gases, we show that

distance from a critical point plays a major role in the emergence of first-order-like vs second-order-

like features in yielding, thereby reconciling previously contrasting observations on the nature of

the transition.

The yielding transition of soft glassy systems is of great relevance both in technological

and industrial applications and at a fundamental level [1]. Despite profound differences

in their microscopic structural features, yielding occurs with very similar macroscopic fea-

tures in systems as diverse as colloidal and nanoparticle suspensions [2], emulsions [3–5],

star polymers [6] and microgels [7]. This suggests the presence of an underlying general

framework, which has been addressed in recent experimental, theoretical and numerical

works [8, 9], leading to contrasting results. Measurements of the macroscopic viscoelastic

properties suggest that yielding develops progressively as the system is driven far from the

linear regime [2, 3, 6, 7, 10]. Various models such as the soft glassy rheology [8], the mode

coupling theory [11, 12] and fluidity [13–15] or on-lattice [16] models reproduce the evolu-

tion of viscoelastic parameters across yielding. Recent experiments and simulations probing

microscopic quantities indicate that yielding is associated with an increase of particle mo-

bility [4, 5, 17–23], suggesting that it may be described as a dynamic transition between a

quiescent, solid-like state and a dynamically active, fluid-like state, bearing analogies with

equilibrium phase transitions, an approach similar to that used in the past to describe other

flow-induced transitions [24]. Note, however, that this description does not take into ac-
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count the ultra-slow relaxations that typically occur in soft solids even at rest [25, 26].

These works suggested contrasting scenarios for the yielding transition. Some systems ex-

hibit features typical of a first-order transition, such as a discontinuous jump of the particle

mobility [4, 5, 20–22] or of structural symmetries [27], the coexistence of dynamically distinct

states [20], and hysteresis [28]. By contrast, in other cases yielding is described as a rather

continuous transition [19, 29], with features such as sluggish dynamics [4, 17–19], enhanced

fluctuations [4, 30] and growing length scales [19] typically associated with a second-order

transition. Thus, the nature of the yielding transition remains elusive: there is a dearth

of experiments and modelling addressing the mechanical response and the microscopic dy-

namics of a class of soft materials sufficiently diverse to allow for a general description of

yielding.

Here, we establish a unified view of the yielding transition of repulsive soft colloids by

combining experiments probing both microscopic and macroscopic quantities with theoret-

ical modelling and numerical simulations. We investigate samples of three kinds: concen-

trated suspensions of microgel particles (M) and charged silica nanoparticles (N), and dense

emulsions (E) (see Methods for details). All samples exhibit qualitatively similar behavior

in oscillatory shear tests at frequency ω and at variable strain amplitude γ0, as exemplified

by Fig. 1a for microgels. For small enough γ0, G′ and G′′, the storage and loss moduli, are

independent of γ0, G′ >> G′′ and the stress amplitude σ grows linearly with γ0, indicative

of a predominantly elastic, linear response. As γ0 is increased, a gradual transition to the

nonlinear regime is observed: G′ and G′′ deviate from their low-γ0 behavior, with G′′ go-

ing through a maximum and eventually exceeding G′. Deviations from a purely harmonic

response become non-negligible, as shown by the growth of the normalized third harmonic

amplitude I3/I1 of the stress response. At the largest strain amplitudes, σ grows sublin-

early with γ0 and both moduli decay as power laws: G′ ∝ γ−2ν
0 and G′′ ∝ γ−ν0 , with a

sample-dependent exponent ν in the range 0.6-0.75, see Supplementary Table SI1.

The range of strain amplitudes over which rheological quantities signal the transition from

solid-like to fluid-like behavior is quite broad, making it difficult to determine the nature of

the yielding transition [4, 10]. To gain a deeper insight on yielding, we couple rheometry

to measurements of the microscopic dynamics, using dynamic light scattering or differential

dynamic microscopy (see Methods). Both methods quantify the dynamics via the intensity

correlation function g2(τ)− 1, which decays from 1 to 0 as microscopic displacements grow
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FIG. 1. Viscoelasticity and spontaneous dynamics of a dense microgel suspension.

a): Oscillatory rheology for a microgel suspension at effective volume fraction ϕ = 1.5 (sample

M40s). Left axis: first-harmonic storage (G′, black squares) and loss (G′′, white circles) moduli

vs strain amplitude γ0, at fixed ω = 0.157 rad s−1. Right axis: first-harmonic stress amplitude

(σ, gold crosses) and normalized third harmonic component of the stress signal (I3/I1, brown

pluses). Rheological quantities evolve smoothly from solid-like behavior (small γ0, blue shades) to

fluid-like response (red shades). b): Correlation functions measured for the same system at rest,

for scattering vectors 0.2 µm−1 ≤ q ≤ 4.5 µm−1, increasing from brown to green shades. The

correlation functions are fitted with compressed exponential functions, with compression exponent

β0 = 1.65 > 1 (lines). c): Relaxation rate 1/τ0 vs scattering vector. Same color code as in b). The

line is a fit with slope 1, indicating ballistic dynamics.

beyond a length scale π/q ≈ (0.1− 1) µm set by the scattering vector q.

The spontaneous dynamics measured at rest are similar for all samples, and are well

described by a slow, compressed exponential relaxation: g
(s)
2 (τ) − 1 = exp

[
−2 (τ/τ0)β0

]
,

Fig.1b, with sample-dependent values of the spontaneous relaxation rate 1/τ0 and of the

exponent β0 > 1, see Supplementary Table SI1. These dynamics are ballistic, as indicated,

for the microgels, by the linear dependence of 1/τ0 with q, Fig.1c. Similar spontaneous

dynamics have been reported for many other jammed or glassy soft samples at rest, and are

attributed to the slow relaxation of quenched internal stresses [25]. To investigate the micro-

scopic dynamics under deformation, we apply an oscillatory shear with angular frequency ω

and measure g2 − 1 stroboscopically, for τ values a multiple of the oscillation period 2π/ω.
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The dynamics probed by this echo protocol [31] are only sensitive to irreversible rearrange-

ments, either spontaneous or induced by shear. Figures 2a-c reveal striking similarities of the

overall behavior of the correlation functions across all samples. Under small strain ampli-

tudes, the dynamics are independent of γ0, while they increasingly accelerate with growing

strain at larger γ0. Concomitantly, the shape of g2 − 1 evolves from a steep compressed

exponential decay at low γ0 to a stretched shape at large γ0. Data at all strain amplitudes

are very well fitted by the following expression:

g2(τ)− 1 =
{
χ exp

[
− (Γsωτ)βs

]
+ (1− χ) exp

[
− (Γfωτ)βf

]}2

, (1)

where βf and βs are (sample-dependent) constants, whereas χ, Γs and Γf vary with γ0.

The dimensionless relaxation rates for the slow and fast relaxation modes, normalized by

the oscillation frequency ω, are designated by Γs and Γf , respectively.

Figures 2d-f show the strain dependence of the normalized relaxation rates, Γs,f , and

of the slow mode amplitude χ, obtained by fitting Eq. 1 to the correlation functions of

Figs. 2a-c. Three regimes can be distinguished. For small enough strain amplitudes, g2 − 1

relaxes through a single, slow compressed exponential mode (χ = 1), with a stretching

exponent βs ≥ 1 (see Supplementary Table SI1) and a strain-independent relaxation rate

Γs close to that at rest, 1/ωτ0. For the microgels, oscillatory tests at ω = 0.157 rad s−1

and ω = 3.14 rad s−1 indicate no dependence of the slow mode with ω (in physical units),

further confirming that the dynamics observed in this regime are unaffected by shear and

simply correspond to the sample spontaneous relaxation. As γ0 exceeds a threshold value,

correlation functions become strain-dependent. A second, faster mode, characterized by

a stretched exponential relaxation, adds to the spontaneous relaxation mode, whose rel-

ative amplitude χ rapidly decays from 1 to 0 with increasing γ0. Finally, for sufficiently

large γ0, χ ≈ 0: the correlation functions are well fitted by a single stretched exponential

relaxation, with Γf increasing as γn0 , with a sample-dependent exponent 1 < n < 8 (red

symbols in Figs 2d-f). In this regime, we check for microgels that the fast relaxation rate,

in physical units, is proportional to ω, as expected in the case of dynamics fully dominated

by rearrangements induced by strain oscillations. Moreover, we find that for the microgels

and emulsions Γf scales as q2 (see Supplementary Figs. SI8-SI9), the hallmark of diffusive

motion, as also reported recently in simulations [21] and in experiments on other kinds of

microgels under large shear strain [23]. This shear-induced diffusive behavior at large γ0 is
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analogous to the dynamics of equilibrated dense colloidal suspensions at rest [32, 33], and

contrasts with the ballistic behavior at small strain or at rest. Our experiments thus show

that at the microscopic level yielding corresponds to a transition between ultraslow, ballistic

relaxations at small γ0 (unaccounted for in previous works) and fast, diffusive relaxations

beyond yielding. In analogy to the recently reported abrupt change of microscopic quan-

tities such as the particle mean squared displacement or diffusivity [4, 21, 23], the amount

of irreversible rearrangements [5, 17, 20], and the size of avalanches [22], the correlation

functions measured in our experiments exhibit a marked change in a narrow interval of γ0,

indicative of a transition sharper than for rheological quantities, compare the stars and the

vertical lines in Figs. 2d-f.

To rationalize these findings, we introduce a simple model. The sample is coarse-grained

on a lattice; each lattice site is attributed a relaxation rate Γi that depends on both the

spontaneous relaxation at rest 1/ωτ0 and shear-induced rearrangements Γsh,i:

Γi= 1/ωτ0 + Γsh,i (2a)

Γsh,i=
K

γ−n0 +N−1
∑

j
αij

ΓiΓj

, (2b)

where K is a constant whose physical meaning will be discussed later, and where the sum in

the r.h.s. of Eq. 2b runs over the N nearest neighbors of site i, with αi,j coupling constants

between the dynamics of sites i and j. Equation 2a states that the overall relaxation rate

is the sum of two independent contributions: 1/ωτ0, the spontaneous relaxation rate, and

Γsh,i(γ0), the site- and strain amplitude-dependent rate of the additional relaxation induced

by shear. A similar additive rule has been invoked in mode coupling-based models [34–36],

which postulated Γsh,i ∝ γn0 . However, this form of the shear-induced relaxation rate yields

a smooth growth of Γi with γ0, rather than a well-defined transition. Instead, we propose

in Eq. 2b an alternative ansatz for the shear-induced relaxation rate. It is the simplest

expression that accounts for the following physical ingredients: i) Γsh,i should vanish for

small strain amplitudes, implying Γi ≈ 1/ωτ0 in the γ0 → 0 limit; ii) in the opposite limit

of large γ0, the dynamics should be dominated by the externally imposed shear, implying

Γi → Kγn0 , as measured in our experiments for the fast mode; iii) in the intermediate regime,

the shear-induced dynamics should be ruled not only by the external drive, but also by the

interactions between neighboring sites, which we expect to slow down the system relaxation,

as modelled by the sum term in the r.h.s. of Eq. 2b. The latter is chosen in the spirit

6
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FIG. 2. Yielding of soft solids as a dynamic transition. a)-c): Intensity correlation functions

under oscillatory shear, for concentrated microgels (a, M2s), nanoparticles (b, N45%), and emul-

sions (c, E74%), plotted vs the normalized time delay ωτ , with 2π/ω the period of the oscillations.

ω = π rad/s (resp., 2π rad/s) for samples M2s and N45% (resp., E74%). The strain amplitude

γ0 increases from blue to red shades, spanning the rheological yielding transition (see Methods for

sample details and Supplementary Table SI1 for the probed deformation ranges). Symbols: exper-

imental data. Lines: fits using Eq. 1. The compressed exponent βs of the slow mode is 1.3, 1.9, 1.4

for microgels, nanoparticles, and emulsions, respectively. The stretching exponent βf of the fast

mode is a fit parameter shared between all data for a given sample, yielding βf = 0.4, 0.9, and 0.3

for M2s, N45% and E74%, respectively. The fitting parameters for the same samples are shown in

d)-f). Left axes: γ0 dependence of the normalized rates Γs (slow mode, blue squares) and Γf (fast

mode, red circles). Right axes: relative amplitude χ of the slow mode (stars). Lines: numerical

results of the general model for the yielding transition discussed in the text, see Supplementary Ta-

ble SI2 for details on the parameter values. In d)-f), the vertical lines indicate, from left to right,

the onset of the increase of G”, the onset of deviations from linearity of σ(γ0), the maximum of

G”, the crossover between G′ and G”.
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of dynamic facilitation models for the spontaneous relaxation of glassy systems [37], where

sites with a higher-than-average relaxation rate facilitate the relaxation of neighboring sites.

We start by considering the mean-field version of the model, where the coupling constants

and thus the relaxation rates are taken to be identical for all sites, αij ≡ α and Γi ≡ Γ. The

mean field model can be solved analytically by recasting Eqs. 2 as(
Γ− 1

ωτ0

)(
γ−n0 +

α

Γ2

)
= K , (3)

with α an average coupling constant. This equation is formally identical to the Van der Waals

(VdW) equation of state ruling the vapor-liquid transition of real gases, with pressure p

volume V and temperature T in the VdW’s equation replaced by γ−n0 , Γ, and K, respectively.

The spontaneous non-dimensional rate 1/ωτ0 and the coupling constant α play the role of

the molecular volume and molecular interaction parameter in VdW’s law, respectively.

In experiments, the strain amplitude is the control parameter, typically plotted on the

x axis. In Fig. 3a, we rather choose Γ as the abscissa, to emphasize the analogy of ‘iso-K’

solutions of Eq. 3 with VdW isotherms in a pV diagram. We find that in the mean field model

K plays a key role in differentiating samples that exhibit a yield transition from samples

that are predominantly fluid-like at all γ0, as illustrated by the three curves of Fig. 3a. For

K larger than a critical value Kc, solid line in Fig. 3a, γ−n0 decreases monotonically with

increasing Γ. This corresponds to the smooth growth — with no yielding transition— of the

relaxation rate of concentrated yet equilibrated colloidal fluids upon applying a mechanical

drive [38] . For K < Kc, by contrast, γ−n0 (Γ) becomes non-monotonic (dashed line in

Fig. 3a): within a finite range of strain amplitudes, a unique value of γ0 is now associated

with multiple values of Γ. In a VdW fluid, this feature is associated with the vapor-liquid

phase transition: upon compression, the system jumps from the vapor branch to the fluid

branch of the isotherm line at a pressure set by the minimization of the free energy and

corresponding to Maxwell’s equal area rule. In our model, non-monotonic iso-K curves are

associated with yielding. Starting from a solid at rest and increasing progressively γ0, the

system descends the solid-like (left) branch of the equation of state, corresponding to small

and nearly constant Γ. In the representation of Fig. 3a, portions of the equation of state with

positive slope are nonphysical, because they correspond to faster relaxation rates attained

at lower strain amplitudes. Thus, the system has to jump from the left branch to the right,

fluid branch, which constitutes yielding in our model. We find that in the mean field limit
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of the model, the jump occurs at the minimum of the iso-K line, from point 1 to point 2

in Fig. 3a. Introducing disorder smears the transition and, in the limit of small disorder,

the yield strain is shifted to smaller values, approaching a value set by the equivalent of

Maxwell’s equal area rule [39] (points 1’ and 2’ ). Finally, the dotted line of Fig. 3a

represents the critical iso-K: in analogy to the VdW’s critical isotherm, it has an inflection

point but no local minimum. Here, it separates systems that are fluid-like at all γ0 from

systems that are solid-like at small enough γ0.

The mean field model, Eq. 3, describes yielding as a first-order transition between two

dynamically distinct states, accounting for both the linear and the fully fluidized regimes.

However, it fails to properly capture the gradual onset of the fast-relaxation mode and the

regime of intermediate strain amplitudes where both modes coexist. Quenched disorder is

known to smear out first-order transitions [40, 41]. To explore the role of disorder in our case,

we solve numerically the full model, Eq. 2, using model parameters that fit the microgels

data of Fig. 2d (details in Methods). In the presence of disorder, Γi varies from site to

site: representative probability distributions ρ(Γi) are reported for three strain amplitudes

in Fig. 3b. In agreement with experiments, three different regimes are seen: (1) under

small strain amplitudes, ρ(Γi) is unimodal, peaked around a small value comparable to the

relaxation rate at rest; (2) under intermediate strain amplitudes, ρ(Γi) becomes bimodal

as a consequence of the appearance of a second, faster mode characterized by a rate Γf ,

typically well separated from Γs and growing with γ0; (3) under large strain amplitudes, the

slow mode vanishes and ρ(Γi) is again unimodal, but is now sharply peaked around Γf ∝ γn0 .

We associate the bimodal nature of ρ(Γi) at intermediate γ0 with the coexistence of slow

and fast relaxation modes observed experimentally, which smears the transition with respect

to the mean field prediction (compare the dashed line and the distribution of Γi indicated by

the color shades in Fig. 3a). A spatial map of the local relaxation rates reveals that slow and

fast relaxing sites form a coarse structure (Fig. 3c), consistent with the spatial localization

of highly mobile regions observed in the single-cycle dynamics of sheared emulsions [4]. The

separation between the two modes allows one to extract from ρ(Γi) two well-defined values

of Γs and Γf , as well as the relative weight χ of the slow mode. A suitable choice of the

model parameters K, n, and of a log-normal distribution of α (see Supplementary Table SI2)

reproduces the experimental strain dependence of Γs, Γf and χ (lines in Fig. 2d-f). The

good agreement between experimental data and numerical results over up to two decades in
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FIG. 3. Theoretical and numerical modelling of the yielding transition. a) Lines: mean

field model, Eq. 3, for three K values: K = 4 10−3 (sub-critical, dashed line), K = Kc = 4.2 10−3

(critical iso-K, dotted line) and K = 5.9 10−3 (super-critical, continuous line). The circled num-

bers, arrows and horizontal lines indicate the yielding transition, see text for details. Color shades

and color bar: probability distribution of the local relaxation rates Γi in simulations of the model

with disorder and parameters chosen to reproduce the data for the microgels M2s shown in Fig. 2d:

K = 4 10−3, 1/τ0 = 2 10−5 s−1, ᾱ = 9 10−8, variance of αi,j = 8.9 10−16, n = 3, ω = π rad s−1. b):

Probability distribution of the local relaxation rate for strain amplitudes corresponding to the fluid

(blue), coexistence (gray) and solid-like (red) regimes, same colors as the corresponding horizontal

lines in a). c): Snapshot of the simulated system corresponding to the bimodal distribution in b),

showing the coexistence of regions with low (dark shades) and high (light shades) relaxation rates.

In b) and c), the parameters are the same as for the model with disorder in a).

applied strain supports the model and highlights that disorder is indeed at the origin of the

dynamic coexistence spanning a finite range of γ0.

One of the most powerful consequences of VdW’s theory is the law of corresponding

states, predicting identical properties for distinct fluids, provided that they all have the same

pressure, volume, and temperature relative to the corresponding values at the critical point.
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Inspired by the law of corresponding states, we re-express Eq. 3 using reduced variables:(
Γr −

1

3

)(
γr
−n +

3

Γr
2

)
=

8

3
Kr , (4)

where Γr = Γ/Γc, γr = γ0/γ0,c, Kr = K/Kc, and where the values of the various parameters

at the critical point, designated by the subscript c, are given in Table I. For the mean-field

model, the coordinates of the critical point are derived by imposing that both the first and

the second derivative of γ0(Γ) vanish, in analogy to VdW’s equation of state. For the model

with disorder, we use reduced variables obtained from Table I with the mean-field α replaced

by the average value ᾱ of the site-dependent αi,j.

γ0,c Γc Kc(
27

αω2τ20

)1/n
3
ωτ0

8αωτ0
27

TABLE I. Values of the strain amplitude γ0, relaxation rate Γ and K parameter at the critical

point as predicted by the mean field model for the yielding transition.

Figure 4a shows the unified yielding state diagram for soft colloids obtained using reduced

variables. For each sample, we tune ᾱ and the variance σ2
α of the coupling constants distri-

bution, the spontaneous relaxation rate 1/τ0 and the exponent n in order to reproduce the

strain dependence of Γs,f and χ, as exemplified in Fig. 2d-f. Using these fitting parameters,

we re-express the experimental variables in terms of the reduced variables of Fig. 4a. In this

representation, all samples fall on nearly the same solid and fluid branches, characterized

respectively by a single, compressed exponential slow mode (small Γr, blue solid symbols in

Fig. 4a) and a single, fast stretched exponential mode (large Γr, red open symbols). This

collapse is remarkable, given the diversity of the microscopic structure of the investigated

samples, which in turn results in marked differences in the sensitivity to shear, compare

e.g. the steep growth of Γs with applied strain for the emulsions to the gentler increase

for microgels and nanoparticles (Figs. 2d-f). Furthermore, by analyzing data at various q

vectors for E samples, we find that the collapse is robust with respect to the choice of the

probed length scale, see Supplementary. At intermediate Γr, within the region inaccessible

to the mean field model, a fast mode and a slow mode coexist (gray half-filled symbols in

Fig. 4a), as predicted by the model with disorder; the abscissa used for these points is the

weighted average of the fast and slow relaxation rates (see Methods).
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In the coexisting region, samples’ properties vary markedly and systematically with Kr,

which suggests classifying all systems according to this parameter. Since Kr < 1 corresponds

to glassy samples and Kr > 1 to equilibrated fluids, we quantify ‘glassiness’ of samples with

Kr < 1 by g = 1 −Kr, which increases as the iso-Kr curves move downward (see arrow in

Fig. 4a) away from the critical curve (g = 0, Kr = 1). For samples of the same kind, the

trend in g (see Fig. 4b and Table SI2 in Supplementary) agrees with the behavior intuitively

associated with a lesser or greater glassiness. For emulsions and microgels, we find that

in general the higher ϕ the more glassy the sample. Consistent with the notion that with

age systems evolve towards deeper states in the glassy phase, we find that g increases with

age for sample N41%. Finally, one expects g to increase with ω, because glassy samples

fall increasingly out of equilibrium as the time scale of the driving becomes shorter. This

is indeed what is seen in our experiments, compare samples M40s and M2s. Beyond these

comparisons, the notion of glassiness paves the way for a quantitative comparison between

samples of different nature (e.g. emulsions vs microgels) or probed according to different

protocols. Keeping in mind that each iso-Kr curve –and thus each g value– is characterized

by a different disorder parameter of the coupling constants d = σ2
α/ᾱ

2, we find a remarkable

negative correlation between the glassiness and d, which, as shown in Fig. 4b, is characterized

by a simple master curve.

The correlation between glassiness and disorder has also deep implications on the nature

of the yielding transition. We find that the most glassy samples, for which d approaches

the d = 0 mean field limit, exhibit features typical of a first-order transition, as predicted

by the mean field model (Fig. 5a-c). Figure 5a shows w, the relative width of the γ0 range

where fast and slow modes coexists in experiments, demonstrating a dramatic increase of the

transition sharpness as d decreases. Figures 5b-c demonstrate hysteresis, another distinctive

feature of first-order transitions (data from simulations). As seen in Fig. 5c, hysteresis is

largest for the smallest disorder and vanishes when departing from the mean field limit.

Conversely, systems close to the critical K and hence with large d (small g) exhibit

features usually associated with second order transitions, illustrated in Fig. 5d-f. Figure 5d

shows for sample M2s that temporal fluctuations of the relaxation rate are strongly enhanced

at the transition. Figures 5e-f demonstrate sluggishness, another feature of second-order

transitions: in both experiments (Fig. 5e) and simulations (Fig. 5f) on systems with large d

(small g), the time to attain a stationary state dramatically increases around the transition.
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FIG. 4. Unified state diagram for the yielding transition. a): Yielding state diagram for

all samples, using reduced variables (see text). Blue, solid (resp., red, open) symbols: samples

with a single slow (resp., fast) relaxation mode. Gray half-filled symbols: coexistence of the slow

and fast modes. The symbol shape is the same as in b), where the samples are identified by labels,

see Methods. The continuous, dotted and dash-dotted lines indicate the solid, fluid and coexistence

branches of the iso-K lines obtained from simulations of the model with disorder (same color codes

as in b)). Area shaded in light blue below the black line: region inaccessible to the mean field

model, corresponding to the coexistence of fast and slow relaxation modes in experiments and

simulations of the model with disorder. b): Disorder d = σ2
α/ᾱ

2 of the coupling constants αi,j

(see Eq. 2) as a function of ‘glassiness’, defined as the reduced distance form the critical point,

g = 1−Kr (see also the arrow in a)).

The unified yielding state diagram established here demonstrates the universal nature of

the solid-fluid transition in soft glassy systems under oscillatory shear. Our model differs

from previous approaches by introducing a direct link between the macroscopic drive and

the microscopic dynamics, and by including in the latter the contribution of ultra-slow,
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FIG. 5. Distance from a critical point governs the nature of the yielding transition. Top

row: features typical of a first order transition are enhanced as glassiness increases (d decreases).

a): Relative width w of the transition in experiments probing the microscopic dynamics across

yielding (see Methods for details). b): Hysteresis at yielding, data from simulations with d = 0

(dashed lines, blue shades) and d = 0.02 (solid lines, red shades). c): Area H of the hysteresis loop

in simulations with disorder, normalized by that in the d = 0 limit. Bottom row: features typical

of a second order transition emerge close to the critical point (small g, large d). d): Fluctuations

of the dynamics, quantified by the temporal variance σ2
τr of the relaxation time of the intensity

correlation functions, are strongly enhanced at the transition. Data for sample M2s. e): Normalized

time teqω to attain stationary dynamics for sample N41%. The lines are a guide to the eye. f):

Number of iterations required for numerical solutions of the model with disorder to converge. Data

are normalized by their corresponding value at d = 0. Black symbols and line: d = 0.1; blue

line: d = 10−4. In d)-f), the gray shaded area indicates the range of the dynamical transition

(see Methods for details). Panels b, c, f: same mean field parameters as in Figs. 2b,e.

spontaneous relaxations; as a result, slow and fast relaxation modes may coexist. These two

modes might be associated with the formation of shear bands organized in the shear gradi-

ent direction [42, 43]. Our light scattering experiments cannot test directly this hypothesis;
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however, our numerical data, microscopy experiments on emulsions, and photon correlation

imaging measurements on sample N45% are inconsistent with shear banding (Supplemen-

tary Sec. IV), rather pointing to the formation of fast-relaxing domains similar to those of

Fig. 3c. This suggests that the coexistence of slow- and fast-relaxing regions is a generic

feature, not necessarily implying the structuration in shear bands. A key result of our work

is the emergence of different features in the transition depending on the distance from the

critical point. This indicates a promising way to reconcile apparently conflicting reports in

previous studies of yielding.

Finally, the model proposed here does not depend on the details of the interaction between

the microscopic constituents of the system: we thus expect it to provide a general framework

for the yielding transition, possibly including in systems with attractive interactions [44, 45].

METHODS

Samples

Table II summarizes the main sample and experimental parameters. PNIPAM microgels

(M) were synthesized by emulsion polymerization as described in [46], and were suspended

in a 2 mM NaN3 aqueous solution to prevent bacterial growth. The microgel radius at

T = 23 ◦C is 294 nm, as measured by dynamic light scattering (DLS) in a diluted suspen-

sion. Sample preparation and characterization, including the determination of the effective

volume fraction ϕ, are described in [47]. Note that the effective volume fraction is larger

than one, due to the particle softness. Charged nanoparticle systems (N) were prepared by

concentrating an acqueous suspension of silica particles (Ludox TM50, from Sigma Aldrich),

as described in [47]. The particles have a hydrodynamic radius of 23 nm, as measured by

DLS in the dilute limit. To improve the scattering signal, the samples were seeded with

200 nm-diameter polystyrene particles at extremely low volume fraction, φPS < 10−6. We

check that this seeding has no measurable impact on the rheological properties microscopic

dynamics of the samples. Concentrated emulsions (E) were prepared by dispersing poly-

dimethylsiloxane droplets into a water/glycerol matrix, as described in [4]. The resulting

droplets have an average size of 2.4 µm and 20% polydispersity. All samples were initialized
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by applying a preshear, see Sec. IIa of the Supplementary for details. Rheology and micro-

scopic dynamics started immediately after applying the preshear for all samples, except for

sample N41%Aged, which was left at rest for 12h prior to measurements.

Sample ID ϕ T (s) ω [rad/s] q [ µm−1] setup q orientation

M2s 1.5 2 3.14 5 PCI vorticity

M40s 1.5 40 0.157 0.1-5 SALS vorticity

N41% 0.41 2 3.14 30 PCI shear gradient

N41%Aged 0.41 2 3.14 30 PCI shear gradient

N45% 0.45 2 3.14 30 PCI shear gradient

E65% 0.65 1 6.28 1-20 ff-DDM vorticity

E70% 0.70 1 6.28 1-20 ff-DDM vorticity

E74% 0.74 1 6.28 1-20 ff-DDM vorticity

E88% 0.88 1 6.28 1-20 ff-DDM vorticity

TABLE II. Main features of the samples used in this study. M, N, and E refer to microgels,

nanoparticles and emulsions, respectively. ϕ designates the volume fraction for N and E, and

the effective volume fraction for M, as defined in [47]. T is the period of the oscillatory strain.

PCI, SALS, and ff-DDM are photon correlation imaging, small angle light scattering and far field

differential dynamic microscopy, respectively. The last column shows the orientation of the largest

component of q with respect to the shear field, see Experimental setups for details.

Experimental setups

With the only exception of E samples, all experiments are performed with a home-made

shear cell equipped with sliding parallel plates [48], sketched in Supplementary Fig. SI2.

One plate is driven by a piezoelectric strain actuator (P602, from Physik Instrumente) and a

force sensor (LC601, from Omega Engineering) measures the force applied by the actuator,

enabling strain-controlled rheology experiments. The sample has a cross-sectional area of

about 4 cm2 and a thickness between 300 and 700 µm. For most experiments, shear rheol-

ogy was coupled to a spatially-resolved Photon Correlation Imaging (PCI) apparatus [49],

collecting light scattered in a direction orthogonal to the shear and forming a scattering
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angle θ with the incoming beam. For samples N, we choose θ = 141◦, yielding a scattering

vector q = 4πnrλ
−1 sin(θ/2) = 30 µm−1, where nr = 1.33 is the solvent refractive index

and λ = 532.5 nm the wavelength of laser light. In this case, q is predominantly oriented

along the shear gradient direction, with a minor component qx = 3 µm−1 along the vorticity

direction. For M2s, we choose θ = 20◦ such that q = 5 µm−1 is predominantly oriented

along the vorticity direction, with a minor component qz = 0.9 µm−1 along the shear gradi-

ent. For M40s, experiments are performed using a different scattering geometry: a far-field

small angle light scattering apparatus (SALS) enabling multiple scattering vectors to be

probed simultaneously, oriented along both the velocity and the vorticity direction, with

0.1 µm−1 ≤ q ≤ 5 µm−1 . Data shown in the main text correspond to q = 4.8 µm−1,

oriented along the vorticity direction. See Supplementary Figs SI1-SI3 for the schemes of

the setups.

For samples E, a different home-made shear cell with parallel, counter-translating plates

displaced by a piezoelectric actuator is coupled to an inverted microscope with differential

interference contrast (DIC) optics [4] , see Supplementary Fig. SI3. The acquired imaged re-

gion has a depth of field of 0.5 µm, much smaller than the droplet size, and the imaged plane

corresponds to the stagnation plane of the shear deformation. We analyze microscopy videos

using far-field Differential Dynamic Microscopy (ff-DDM) [50], which yields an intensity cor-

relation function equivalent to DLS, with scattering vectors 1 µm−1 ≤ q ≤ 20 µm−1 in the

velocity-vorticity plane. Data presented in the main text correspond to q = 9 µm−1 along

the vorticity direction. Data for more scattering vectors are included in Supplementary Fig.

SI6-SI9.

Characterization of the microscopic dynamics

We quantify the microscopic dynamics via the two-time intensity correlation g2(t, τ)−1 =

β〈Ip(t)Ip(t+ τ)〉/[〈Ip(t)〉〈Ip(t+ τ)〉], with β a constant such that g2(t, τ)− 1→ 1 for τ → 0.

Ip is the scattered intensity collected by the p − th pixel of the detector (for the PCI and

SALS setups), or a component of the Fourier transform of the microscope images for sample

E. 〈. . . 〉 indicates the average over a set of pixels corresponding nearly to the same scattering

vector or Fourier component.

In the stationary regime, we average g2 − 1 over time t to reduce noise before fitting
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Eq. 1 to the data. In Fig. 4a, the abscissa of the state points belonging to the coexistence

region is calculated as the weighted average of the slow and fast relaxation rates, normalized

by the relaxation rate at the critical point: Γr = [χΓs + (χ− 1)Γf ]/Γc. The slow and fast

relaxation rates are obtained by fitting Eq. 1 to the experimental g2 − 1.

To quantify the temporal fluctuations of the dynamics, we inspect the t-dependence of

the two-time correlation functions, with no t averaging performed on g2(t, τ)− 1. For each

t, a relaxation time τr(t) is obtained from τr =
∫∞

0
[g2(t, τ)− 1]dτ , a procedure more robust

than fitting to Eq. 1 when dealing with correlation functions that are not averaged over t

and are thus more noisy. In Fig. 5d we show σ2
τr , the temporal variance of τr(t).

We locate the range of the dynamic transition by determining the two strain amplitudes

γ0,s and γ0,e such that 0.05 ≤ χ ≤ 0.95 for γ0,s ≤ γ0 ≤ γ0,e. The gray shaded regions in

Figs. 5d-f highlight the strain range γ0,s ≤ γ0 ≤ γ0,e. The normalized width of the transition

shown in Fig. 5a is defined as w = (γ0,e − γ0,s)/(γ0,e + γ0,s).

Numerical solution of the model with disorder

To study the effect of disorder on yielding, we implement our model (Eq. 2) on a D-

dimensional cubic lattice with periodic boundary conditions. Each site, i, is assigned a local

relaxation rate, Γi, and each pair of neighbor sites is attributed a coupling constant, αij,

randomly drawn from a probability distribution, P (α). For a given strain amplitude γ0

and starting from an initial configuration of local rates Γ
(init)
i , we seek a configuration of

local rates Γ
(sol)
i that satisfies Eq. 2 for all sites. In our implementation, Γ

(sol)
i is approached

iteratively: at each step, a set of target site rates Γ
(t)
i is computed through Eq. 2 using

the current site rates Γ
(c)
i . Γ

(t)
i then replaces Γ

(c)
i for the following iteration, yielding a new

set of target site rates. The convergence criterion is expressed in terms of a loss function

L =
∑

i

[(
log Γ

(c)
i − log Γ

(t)
i

)
/ log Γ

(t)
i

]2

, which tends to 0 as Γ
(c)
i approaches Γ

(sol)
i .

Results shown in this paper are obtained for D = 2 and a Log-Normal distribution of

the coupling constants: P (α;µ, σ) = (ασ
√

2π)−1 exp[−(lnα−µ)2/(2σ2)], where the average

ᾱ and variance σ2
α of the coupling constants are related to the parameters µ, σ of the Log-

Normal distribution by ᾱ = exp(µ + σ2/2) and σ2
α = ᾱ2(expσ2 − 1). We quantify disorder

by the dimensionless parameter d = σ2
α/ᾱ

2. Representative results for different choices of

P (α) are shown in Supplementary Fig. SI13, and exhibit no qualitative differences.
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To mimic the effect of preshear in experiments, the iterative solution of the numerical

model is typically initiated with a uniform distribution of local rates Γ
(init)
i = Γ(0). The effect

of hysteresis shown in Figs. 5b,c is studied by simulating an amplitude sweep experiment:

γ0 is first increased from low to high amplitudes and then decreased from high to low

amplitudes, every time initiating the iterative calculation from the model solution for the

previous amplitude.
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I. EXPERIMENTAL SETUPS 

 

Figure SI1: Sketch of dynamic light scattering (DLS [1]) setups. 

a) Far-field light scattering setup used for sample M40s: the detector is in the focal plane of the lens. b) 

Small-angle Photon Correlation Imaging (PCI) setup used for sample M2s: the lens images the sample S 

onto the detector; only light scattered at angles near to the scattering angle  contributes to the image 

formation. c) Wide-angle PCI setup used for N samples: same imaging geometry as in b), but for a larger 

scattering angle. In all sketches, 𝒖𝒙⃗⃗ ⃗⃗  , 𝒖𝒚⃗⃗ ⃗⃗  , 𝒖𝒛⃗⃗⃗⃗  denote velocity, vorticity and gradient directions, respectively. 

𝒌𝒊
⃗⃗  ⃗, 𝒌𝒔

⃗⃗⃗⃗  and 𝒒⃗⃗  denote the incoming and scattered wave vectors and the scattering vector, respectively. The 

shear cell is not shown for clarity. 
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Figure SI2: Sketch of the custom shear cell for the DLS setups. 

A) Sample, confined between two transparent parallel plates; B) shear cell, mounted on an air bearing stage 

[2] C) stress sensor (Model LC601, from Omega Engineering) D) strain piezoelectric actuator (P602, from 

Physik Instrumente). 𝒖𝒙⃗⃗ ⃗⃗  , 𝒖𝒚⃗⃗ ⃗⃗  , 𝒖𝒛⃗⃗⃗⃗  denote velocity, vorticity and gradient directions, respectively. 
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Figure SI3: Sketch of the custom shear cell for the emulsion samples. 

The sample is imaged in the stagnation plane (indicated by the red line), which is at rest in the laboratory 

frame.  𝒖𝒙⃗⃗ ⃗⃗  , 𝒖𝒚⃗⃗ ⃗⃗  , 𝒖𝒛⃗⃗⃗⃗  denote velocity, vorticity and gradient directions, respectively. Adapted from [3]. Data 

collected with this setup are analyzed using Digital Fourier Microscopy [4]. 
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II. ADDITIONAL EXPERIMENTAL DATA AND FIT PARAMETERS 
 

II.a Experimental and fit parameters 
 

Sample min max  0 (1/0)/ s
-1 s f s/s

-1 

M2s 0.1% 62% 0.6 1.5 2.5 x 10-5 1.3 0.33 2 x 10-5 

M40s 2.8% 69% 0.6 1.5 2.5 x 10-5 1.6 0.44 2 x 10-5 

N41% 0.01% 72% 0.75 1.2 1.4 x 10-4 1.4 0.36 1 x 10-4 

N41%Aged 0.01% 8.6% 0.75 1.2 1.4 x 10-4 1.2 0.90 1 x 10-4 

N45% 1% 25% 0.7 1.9 1.2 x 10-4 1.9 0.88 1.1 x 10-4 

E65% 0.4% 6.4% 0.6   1.5 0.34 1.6 x 10-3 

E70% 1.2% 6.4% 0.65   1.0 0.40 1.3 x 10-4 

E74% 4.8% 12% 0.65   1.4 0.32 6.1 x 10-4 

E88% 5.4% 20% 0.7   1.7 0.29 6.6 x 10-4 

 

Table SI1: Experimental and fit parameters for the probed samples.  

Minimum (min) and maximum (max) applied strain deformations, terminal slopes  of G”(0) defined in Fig. 

1a of the main text, spontaneous relaxation rate 1/0 and stretching exponents 0, s, f  of the fits to 

correlation functions (see main text for the definitions). The relaxation rates shown here are measured at 

representative scattering vectors q=5 m-1, 30 m-1 and 9 m-1 for M, N and E samples, respectively. For 

the M and N samples, 0 and 0 are measured at rest. For the E samples, no correlation functions at rest are 

available, but s and s are obtained, as for the other samples shown in the table, in the low strain regime, 

where these parameters are essentially strain-independent and representative of the behavior at rest. For 

sample E70%, the decay of the correlation functions in the 𝛾0 →  0 limit is modest, making it difficult to 

determine unambiguously s, whose value was thus set to unity. 

 

Shear protocol: All samples were presheared before each measurement at a given 0, using oscillatory shear 

at the same  as for the subsequent measurement. Samples E were presheared for several minutes at a high 

strain, typically 250–300%. The strain amplitude was then reduced to the target value and at least 300 cycles 

were imposed at the target 0 before starting the image acquisition, which lasted 1000 cycles or more. 

Samples M and N were presheared at the largest 0 to be tested. The preshear lasted 500 oscillations for 

sample M40s, 5000 for all other M and N samples. After presehar, shear at each amplitude had 2500 

oscillations (sample M40s) or 50000 oscillations (all other M and N samples). We changed the order at 

which the various 0 values were tested (including by varying 0 non-monotonically), finding that our results 

did not depend on the specific sequence of tested strain amplitudes. 
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II.b Strain amplitude dependence of the viscoelastic moduli 
 

 

 

Figure SI4: Rheology data for all samples.  

Dependence of the viscoelastic moduli G’ and G” and of the shear stress  on shear strain. a: microgels 

(same data as in Fig. 1 of the main text); b: nanoparticle samples,  = 43.5% (solid symbols and crosses) 

and 46% (open symbols and pluses); c: emulsions [3]. In panels a and b, squares, circles and crosses or 

pluses correspond to G’, G”, and , respectively. Data in a were collected in the custom shear cell of Fig. 

SI2. All other data were obtained using a commercial rheometer. For the N and E samples, the volume 

fraction is slightly different from that of the corresponding samples used for light scattering and microscopy, 

which entails no significant difference in the rheological properties with respect to those shown here.  

c 
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II.c Dynamics at rest or in the 0 →  0 limit 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure SI5: Dynamics at rest or in the 0 → 0 limit for N and E samples. 

Intensity correlation functions for various N and E samples. For N samples, data are taken at rest. For E 

samples, data are taken in the low-strain regime where the dynamics are essentially independent of the 

applied strain: 0 = 1.18%, 0.36% and 3.85% for E65, E70, and E74, respectively. For the E samples, in the 

insets the line shows that the relaxation rate scales as q, indicative of ballistic dynamics. Deviations from 

ballistic behavior are observed only at very low q, most likely because the decay of g2-1 is too small for the 

fit to capture reliably the relaxation time.   
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II.d Scattering vector dependence of the dynamics and of the model parameters 
 

 

 
 

Figure SI6: Scattering vector dependence of correlation functions, sample E64. 

Intensity correlation functions for sample E64%, for various imposed strain amplitudes as shown by the 

labels. Values of the scattering vector q: 0.7 µm-1 (a), 1.3 µm-1 (b), 2.5 µm-1 (c), 4.8 µm-1 (d), 9 µm-1 (e), 14 

µm-1 (f). 
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Figure SI7: Scattering vector dependence of correlation functions, sample E74. 

Intensity correlation functions for sample E74% (same sample and color code as in Fig. 2c of the main text, 

which shows data at q = 9 µm-1). Values of the scattering vector q: 1.3 µm-1 (a), 2.5 µm-1 (b), 4.8 µm-1 (c), 

14 µm-1 (d). 
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Figure SI8: Scattering vector dependence of various model and fit parameters. 

Scattering vector dependence of various model and fit parameters for representative E samples. a-g: sample 

E74%; h: sample E64%.  

a): q dependence of the stretching exponent f for the fast decay and compressing exponent s for the slow 

decay. f depends only mildly on q. At low q, s approaches unity, most likely because the limited decay of 

g2-1 prevents the shape of the correlation function to be characterized precisely (see Fig. SI7a-c).  

b): q and strain amplitude dependence of the relaxation rates of the fast and slow modes. In the large strain 

regime, f grows as a power-law of 0, with an exponent n independent of q, as indicated by the parallel 

lines in the double logarithmic plot.  

h 
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c): state diagram in the spirit of Fig. 4 of the main text, but obtained from data at different q vectors. All 

data collapse on the same curve, demonstrating that the model is robust with respect to the choice of q.  

d): relaxation rate of the spontaneous dynamics, obtained by extrapolating data under shear to the 0 → 0 

limit. The relaxation rate increases as q, indicative of ballistic dynamics.  

e): the model parameter K (akin to temperature T in Van der Waal’s equation of state for real gases) grows 

as q². At large strain, Eqs. 2a-2b of the main text show that  ~ f ~ K/ 0
-n. Thus, the K ~ q² scaling shown 

here implies  ~ f  ~ q², i.e. that the dynamics at large strain are diffusive (see also Fig SI9). 

f): the yield strain 0,c extracted by fitting the model to the microscopic dynamics exhibits only a mild 

dependence on the scattering vector q. 

g): the model parameter K expressed in reduced units (i.e. K normalized by its value Kc at the critical point) 

is nearly independent of the q vector. 

h): The normalized amplitude of the slow mode, , depends only very weakly on the q vector at which the 

microscopic dynamics are measured. This is consistent with the notion that the yield strain inferred from 

the microscopic dynamics is nearly insensitive to q, as shown in f. Furthermore, the data in h show that the 

width of the coexistence region is nearly independent of q. Because in the model the width of the coexistence 

region is mainly controlled by the amount of disorder, these data indicate that the latter is essentially 

insensitive to the choice of q. 

 

  

35



 

Figure SI9: Diffusive dynamics in the fluidized regime. 

 

Symbols: relaxation rates measured in the fully fluidized regime (strain amplitudes: 0=5% for E65% and 

E70%,  0=7% for E74%,  0=16% for E88%,  0=50% for M40s). Datasets have been rescaled vertically by 

multiplying them by a constant c, to highlight the overall 𝚪𝒇 ∝ 𝒒𝟐 behavior indicative of diffusive dynamics 

(solid line). 
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II.e Impact of the oscillatory frequency (samples M2s and M40s) 
 

 

Figure SI10: Impact of oscillatory frequency. 

Relaxation rate (a) and normalized relaxation rate (b) as a function of strain amplitude, for dense microgel 

suspensions measured at two different oscillatory frequencies, corresponding to a period of 2s (full symbols, 

sample M2s), and 40s (empty symbols, sample M40s), respectively. Blue, red and gray symbols refer to 

compressed (solid-like), stretched (fluid-like), and two-step (coexistence) relaxations, respectively. Arrows 

highlight the collapse of solid-like relaxations when using physical units (panel a)), and of liquid-like 

relaxations when using relaxation rates normalized by the angular frequency of the imposed oscillatory 

shear (panel b)). Lines: numerical solutions reproducing the observed behavior with shared model 

parameters 0 = 2 10-5s-1 and K = 4 10-3. The average coupling constants are 𝜶̿ = 9 10-8 for M2s (solid line) 

and  𝜶̅ = 1.6 10-6 for M40s (dashed line). 
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III. NUMERICAL MODEL 
 

 Unit M2s M40s N41% N41%Aged N45% E65% E70% E74% E88% 

 1/s 2 10-5 2 10-5 10-4 10-4 1.1 10-4 1.6 10-3 1.3 10-4 6.1 10-4 6.6 10-4 

1/𝜔𝜏0 - 6.4 10-6 1.3 10-4 3 10-5 3 10-5 3.5 10-5 3 10-4 2 10-5 10-4 1.1 10-4 

 rad/s 3.14 0.157 3.14 3.14 3.14 6.28 6.28 6.28 6.28 

𝜶̅ - 9 10-8 1.6 10-6 1.4 10-6 8 10-3 1.1 10-3 8.8 105 2 104 7 103 4.9 102 

𝝈𝜶
𝟐  - 8.9 10-16 1.28 10-12 4.9 10-13 3.2 10-6 9.68 10-8 2.71 1011 8 105 2.94 

105 

48 

n - 3 3 1 3 3 8 8 8 8 

K - 4 10-3 4 10-3 1.3 10-2 62 8 109 2.4 108 1.8 107 1.1 106 

c rad/s 6 10-5 6 10-5 3 10-4 3 10-4 3 10-4 5 10-3 4 10-4 1.8 10-3 2 10-3 

c - 1.9 10-5 4 10-4 9 10-5 9 10-5 1.1 10-4 8 10-4 6 10-6 3 10-4 3 10-4 

Kc - 4.2 10-3 4 10-3 1.3 10-2 72 9.3 109 2.9 10-3 2.1 107 1.4 106 

0,c - 0.23 0.65 0.027 0.015 0.031 0.035 0.03 0.05 0.07 

Kr - 0.89 0.98 0.97 0.85 0.86 0.99 0.84 0.85 0.84 

g - 0.11 0.02 0.03 0.15 0.14 0.01 0.16 0.15 0.16 

𝑑 - 0.11 0.5 0.25 0.05 0.08 0.35 0.002 0.006 0.0002 

 

Table SI2: Model parameters used to reproduce the experiments. The fitting parameters are in red bold 

font, parameters fixed by the experiments are in plain black font, and parameters obtained by combining the 

formers are in blue font. The fitting parameters are obtained by fitting simultaneously, for each sample, s, 

f, and  as a function of 0, over the whole range of probed strain amplitudes, see e.g. Figs. 2d-2f of the 

main text.  

The parameters listed in the table above have the following meaning: 

 
 Spontaneous relaxation rate (in physical units) 

 Normalized spontaneous relaxation rate. 

 Angular frequency of the imposed oscillatory strain. 

𝛼̅,𝜎𝛼
2 Average value and variance of the distribution of coupling constant for the dynamics of neighboring sites. 

n Exponent ruling the strain dependence of the fast mode at large strain amplitude, where Γ𝑓 ∼ 𝛾0
𝑛. 

K Model parameter in Eq. (3) of the main text, analogous to temperature T in Van der Waals’ gas equation. 

c Relaxation rate (in physical units) at the critical point in the mean field model, see the discussion of Eq. (4) in the main text. 

c Normalized critical relaxation rate. 

Kc Value of the model parameter K at the critical point in the mean field model, see the discussion of Eq. (4) in the main text. 

0,c Value of the applied strain at the critical point in the mean field model, see the discussion of Eq. (4) in the main text. 

Kr Model parameter K normalized by its critical value: Kr = K/Kc. 

g ‘Glassiness’ of a sample, defined by g = 1 - Kr 

d Disorder of the coupling constants for the dynamics:  𝑑 =  𝜎𝛼
2 𝛼2⁄ , with 𝜎𝛼

2 the variance of the distribution of the coupling constants 
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Figure SI11: Convergence of numerical model: equilibration time. 

Number of iterations needed for the iterative calculation scheme to converge as a function of the strain 

amplitude, 0, for a model with and without disorder (red circles, teq, and black squares, teq,0, respectively). 

Blue triangles: teq/ teq,0 (also shown in Fig. 5f of the main text). The model is implemented on a 2D lattice 

with 512 x 512 sites. The model parameters correspond to the fit to sample N45% (see Table SI2). 
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Figure SI12: Dependence on disorder. 

Changing the nature of the probability distribution function (PDF) of the coupling constants does not change 

the main features of the transition. Panels a) and b): Order parameter  (a) and normalized average relaxation 

rate  (b) extracted from the numerical model as a function of strain amplitude, 0, for various PDFs. The 

model parameters are issued from the fit to N45 (see Table SI2). The coupling constants 𝛼𝑖,𝑗 are drawn from 

a Log-Normal PDF (LN, black dashed line), as in the main text, or from Gaussian PDFs, with increasing 

disorder 𝑑 = 𝜎𝛼
2 𝛼̅2⁄  from yellow to purple shades, as specified in the legend. The left tails of the Gaussian 

PDFs are truncated to insure 𝛼𝑖,𝑗 ≥ 0.  Panel c): representative PDFs used to generate the data in a) and b) 

(for the sake of clarity, not all the PDFs are shown). 
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Figure SI13: Changing the PDF of the coupling constants does not modify the model predictions. 

Left panel: shape of three probability distribution functions (PDF) used to test numerically the impact of the 

PDF of the coupling constant  on the predictions of the model. Black, red and blue points refer to a 

rectangular, Gaussian and log-normal PDF, respectively. The left tail of the Gaussian PDF is truncated to 

insure 𝜶𝒊,𝒋 ≥ 𝟎.  The right panels show that the shape of the PDF has no impact on the strain amplitude 

dependence of the relaxation rate (top) or the relative amplitude of the fast mode -1 (bottom). 

 

IV. SPATIAL HETEROGENEITY OF THE DYNAMICS AND SHEAR BANDS 
 

We test in a few samples the spatial heterogeneity of the dynamics and the existence of shear bands. 

In the geometry of our experiments, shear bands would develop most likely as layers with different shear 

deformation organized perpendicularly to the shear gradient direction (the 𝒖𝒛⃗⃗⃗⃗  direction in the schemes of 

Figs. SI1- SI3) and parallel to the shear direction. In the light scattering setups used in this work, the scattered 

light is collected from the whole thickness of the illuminated sample, with no spatial resolution along the 

shear gradient direction. It is therefore very difficult to test directly the existence of shear bands. However, 

we note that if shear bands parallel to the shear direction would exist, the dynamics detected in our space-

resolved setup (e.g. the PCI setup of Fig. SI1c) would be spatially homogeneous. Indeed, scattered light 

exiting from the shear cell and forming the image on the detector would have equally probed all bands, 

irrespective of the positions in the (x,y) plane that is imaged. 
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Figure SI14 shows that this is not the case: instead, in the coexistence region the sample partitions in 

localized domains of fast and slow dynamics, incompatible with shear bands parallel to the shear direction. 

 

 

 

Figure SI14: Coexistence of fast and slow domains as probed by light scattering. 

Stroboscopic correlation maps for sample N45% in the coexistence region (strain amplitude 0 = 5.7%), for 

different time delays /T = 32 (a), 128 (b), 512 (c), 1024 (d)). The amount of correlation is represented by a 

gray scale from black (g2-1=0) to white (g2-1=1). Scale bars: 1mm. 

 

Experiments on emulsions are consistent with this scenario. They probe a thin sample slab (thickness ~ 0.5 

µm, smaller than the drop size), parallel to the shear direction. The observation of the coexistence of two 

relaxation modes under these conditions (see sample E65%, Fig. SI15) rules out the hypothesis that the 
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observed bimodal relaxation stems from distinct shear bands organized perpendicularly to the shear gradient 

direction. 

 

Figure SI15: Dynamic coexistence in emulsions (sample E65%) 

a) Intensity correlation functions for sample E65%, plotted vs the normalized time delay , as in Fig. 2 of 

the main text. Symbols: experimental data. Lines: fits using Eq. 1 of the main text. b) Symbols: fitting 

parameters. Left axis: normalized relaxation rates for slow and fast modes (blue squares and red circles, 

respectively). Right axis: relative amplitude  of the slow mode (stars). Lines: result of numerical model 

with parameters reported in Table SI2. 

 

Furthermore, a direct visualization of the regions undergoing fast rearrangements may be obtained by taking 

the difference between the intensity of microscopy images taken at different times, as shown in Fig. SI16. 

In this representation, quiescent regions appear uniformly gray, whereas features on the drop size length 

scale emerge in the rearranged regions. One clearly sees the emergence of localized domains of fast-moving 

drops, once again incompatible with shear bands parallel to the shear direction. 
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Figure SI16: Coexistence of fast and slow domains as probed by microscopy. 

Images obtained by taking the intensity difference between two sample snapshots separated by time delays 

/T = 1 (a), 10 (b), 100 (c), 1000 (d). Data for sample E65%, in the coexistence region (strain amplitude 0 

= 3.9%). Scale bar: 10 µm. 

 

Finally, in simulations, we find that the system always segregates in mesoscopic domains similar to those 

shown in Fig. 3c of the main text, with no formation of macroscopic shear bands. An example for various 

imposed shear amplitudes spanning the coexistence region is shown in Fig. SI17. 

 

 

Figure SI17: Coexistence of slow and fast relaxation rates at yielding. 

Snapshots of local normalized relaxation rates, i, at various applied strain amplitudes 0 indicated above 

each panel from lattice simulations. The model parameters are issued from the fit to sample N45% (see 

Table SI2). i increases logarithmically from blue to red, as shown by the color bar. Each lattice is composed 

of 512 x 512 sites, with periodic boundary conditions along both directions. 
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