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Abstract

Recently, an intriguing property called coexistent-real-roots-induced-dominancy (CR-
RID) has been set and emphasized for some classes of linear time-invariant dynamical
systems represented by retarded delay-differential equations. In this paper, we extend
such a property to a class of neutral systems, and exploit it in the boundary control
of the standard transport equation. Namely, by using the CRRID property, we show
that one can arbitrarily and robustly prescribe the exponential decay of the closed-loop
transport solution, yielding the prospect of applying the CRRID partial poles placement
methodology to hyperbolic PDE’s.

Keywords: Transport Equation, Boundary control, Time-delay controller, Neutral equations,
PI-controller, Coexistent-real-roots-induced-dominancy, Partial pole placement

1 Introduction

Pole placement is a well-known and classical method for controlling finite-dimensional linear
time-invariant (LTI) systems. Under appropriate controllability conditions, it consists in as-
signing poles of the closed-loop system to specified locations by an appropriate choice of the
controller gains guaranteeing the stability of the closed-loop scheme with a prescribed decay
rate of the corresponding system’s solution, and its construction makes use of the characteristic
polynomial degree and the controllability of the system. Its extension for infinite-dimensional
linear systems is far from being trivial.

To the best of the authors’ knowledge, in the case of systems governed by retarded and/or
neutral delay-differential equations (DDEs), there exist only two effective extensions - continu-
ous pole placement and partial pole placement. If the first method is mainly numeric and based
on the continuity of the roots with respect to the system parameters1, see, e.g., [1], [2], the
second one, which is analytic, can be seen as complementary, and, as in the finite-dimensional
case, makes use of the degree of characteristic function. As shown in [3], the degree of the

1including the controller gains
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quasipolynomial2 is a fundamental property, and it simply represents the maximal admissi-
ble multiplicity (and/or coexisting) characteristic real root(s). With the remarks above, the
question is: Does the assignment of such real roots guarantee the closed-loop stability of the
closed-loop system? Due to the infinite-dimensional nature of the closed-loop system, the prob-
lem is complicated since assigning a finite number of roots should “govern” the location of the
remaining roots. This paper gives an explicit answer to such a question in the particular case
of the transport equation, and opens some perspectives in controlling some classes of systems
represented by PDEs.

It should be noted that in the single delay case, independently of the order of the DDEs, it
was shown3 in [4] that the real characteristic root with the maximal admissible multiplicity is
dominant in the sense that it corresponds to the spectral abscissa of the system. This procedure
simply describes the partial pole placement method mentioned above.

The aim of this paper is to control a dynamical system, represented by the classical linear
transport equation, using a standard PI boundary control law and the partial pole placement
methodology mentioned above. We will explore the cases where the coexistence of real roots
guarantees the dominance for the rightmost one. More precisely, in frequency-domain, our
method consists in assigning a maximal number of simple real roots to the characteristic func-
tion of the closed-loop system. Next, we give necessary and sufficient conditions to show that
the largest characteristic root of the closed-loop system is negative and dominant, so that it
corresponds to the spectral abscissa. Such a property is called Coexisting-Real-Root-Induced-
Dominancy (CRRID). Beyond the generic case, where the number of real roots is equal to
the degree of the corresponding characteristic function (quasipolynomial), we will explore also
the non-generic case, that is when the number of real roots is smaller than the degree, and
such a property is intuitively called intermediate CRRID. Although the first remarks on the
coexistence of real roots for scalar DDEs goes back to the 50s-60s and the works of Hayes [5]
and Wright [6], the systematic analysis of the CRRID began in [7], [8], where the exponential
stability of a dynamical system represented by an nth-order linear differential equation con-
trolled by a delayed proportional-controller is provided. Recent insights on the CRRID can be
found in [9].

This paper provides the first extension of the CRRID property to neutral equations yielding
effective prospects in the control of classes of partial differential equations and, as such, the
proposed results represent a novelty in the open literature.

The remaining of the paper is organised as follows: the problem motivating this study is
presented in Section 2. In Section 3 we define more rigorously the CRRID property, introduce
an appropriate normalization of the quasipolynomial and state some of its properties. The main
results are presented in Section 4 and then applied to the boundary control of the transport
equation and illustrated through some numerical simulations in Section 5. Some concluding
remarks end the paper. Finally, the main results use several technical lemmas that are stated
and proved in the Appendix. The notations are standard and/or introduced when first used.

2 Motivating problem

In this paper, we investigate the problem of exponential stabilization of the following scalar
conservation law:

∂φ

∂t
(t, x) + λ

∂φ

∂x
(t, x) = 0, t ∈ [0,+∞[, x ∈]0, L[, (1)

2given by the sum of the degrees of the involved polynomials plus the number of non-zero delays
3in both retarded and neutral cases
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where L > 0, the value λ is a positive constant and denotes the velocity of propagation, and
φ(t, x) stands for the system state in time t ≥ 0 and at position x ∈]0, L[. Following [10], we
control equation (1) by using the boundary condition

φ(t, 0) = kp φ(t, L) + ki

∫ t

0

φ(u, L) du, (2)

which is a “standard” PI controller, where kp and ki are the feedback parameters representing
”proportional” and ”integral” control gains. Applying the Laplace transform to both sides
of the boundary condition (2) and multiplying by s we obtain the closed-loop characteristic
function

∆T(s) = s− e−
L
λ
s (kps+ ki) . (3)

The asymptotic behavior of the solutions of (1) and (2) is dictated by the location of the
rightmost roots of the characteristic quasipolynomial ∆T given in (3) . Notice also that ∆T

corresponds to the characteristic function of the following first-order neutral delay-differential
equation (NDDE)

y′(t)− kp y
′
(
t− L

λ

)
− ki y

(
t− L

λ

)
= 0. (4)

Therefore the systematic study of NDDEs is useful to understand the PI boundary control of
the transport equation. In the seminal work [10], the stability of the solutions of the closed-
loop system given by (1) and (2) is analyzed via the Walton-Marshall stability criterion [11].
However, the analysis of [10], based on the coefficients of kp and ki along with the delay L

λ
, does

not offer information regarding the decay rate of the solutions4. We refer to [12] for further
insights on the study of the transport equation (1) and see [13] for a deeper discussion of the
spectral properties of NDDEs (4), as well as related stability analysis and control approaches.
In [4], the boundary stabilization of the transport equation solutions is conducted by assigning a
root of maximal multiplicity three, which defines the decay rate of the solutions; corresponding
to the generic multiplicity-induced-dominancy (GMID) property. Similarly, the authors of [14]
make use of the intermediate MID property, or IMID for short, achieved by assigning a root
of intermediate multiplicity, to explicitly describe the exponential decay rate of the solutions,
see also [15]. However, it is commonly accepted, such as suggested in [16], that non-semisimple
spectral values are sensitive to small perturbations due to their splitting mechanism, thereby
questioning the design robustness relying on the MID property.

The CRRID proposed in the sequel generalizes the MID property as it also prescribes the
decay rate of the solutions, albeit with the advantage of satisfying some robustness requirements
with respect to parametric uncertainties. This advantage is due to the assignation of simple
spectral values.

3 Preliminaries

To figure out the asymptotic behavior of the solutions of (1) and (2) or equivalently (4), we
study the more general characteristic quasipolynomial function

∆(s) = s+ a0 + e−τs(α1s+ α0), (5)

where (a0, α1, α0) ∈ R3. The degree of ∆, defined by the sum of the degrees of the involved
polynomials plus the number of delays, is three. The following result asserts that the maximal
number of real roots counted with multiplicity is three; see [3], [17].

4the value of the real part of the rightmost root of (3)
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Proposition 1 (Pólya-Szegö bound). Let ∆ be the quasipolynomial given by (5), and α, β ∈ R
be such that α ≤ β. Denote by Mα,β the number of roots of ∆ counted with multiplicities
contained in the set {s ∈ C, α ≤ ℑ(s) ≤ β}. Then,

τ(β − α)

2π
− 3 ≤ Mα,β ≤ τ(β − α)

2π
+ 3. (6)

As a consequence of the last result, when setting α = β = 0, we conclude that the degree
3 of ∆ is a sharp bound for the number of real roots of the quasipolynomial ∆. By inverting
inequality (6), the following corollary follows:

Corollary 2. If ∆ admits three real roots, then any root s = x + iω of ∆ with ω ̸= 0 satisfies
|ω| ≥ 2π/τ .

A rightmost root s∗ is characterised by the property

∀ s0 ∈ C\{s∗}, ∆(s0) = 0 =⇒ ℜ(s0) ≤ ℜ(s∗)

and is called a dominant root of the quasipolynomial ∆. Let us define the main property that
we use in our control design.

Definition 3 (CRRID property). We say that a general quasipolynomial ∆ of degree N satisfy
the intermediate coexistence-real-root-induced-dominancy (or ICRRID for short) property of
corank K if it admits N − K, for 0 ≤ K ≤ N − 1, distinct real roots s1 ≥ . . . ≥ sN−K and
s1 is a dominant root of ∆. Note that if sk = . . . = sk+ℓ, for some ℓ ≥ 0, then sk should be
understood as a root of multiplicity ℓ+1. The CRRID of corank 0 is called the Generic CRRID
(or GCRRID for short) property.

To study the CRRID property for the quasipolynomial (5), we introduce the following
auxiliary function

Q(z) =
1

s1 − s2
∆
(
(s1 − s2) z + s1

)
, (7)

where s1 and s2 are two distinct real roots of ∆(s) satisfying s1 > s2. Some properties of the
function Q(·) are listed in the proposition below.

Proposition 4 (Normalized quasipolynomial properties). The following statements hold.

1. The auxiliary function Q is a quasipolynomial of degree 3: Q(z) = z+b0+e−qz (β1z + β0),
where the auxiliary delay q > 0 and the real coefficients b0, β1, β0 are related to those of
∆ via {

q = τ(s1 − s2), b0 =
s1+a0
s1−s2

,

β1 = α1e
−τs1 , β0 =

α1s1+α0

s1−s2
e−τs1 .

2. The normalized quasipolynomial Q admits at least two real roots 0 and −1, which implies
that

β1 =
(
e−q − 1

)
b0 − e−q and β0 = −b0. (8)

Moreover, if Q admits a third real root ζ then

β1 =
ζeq + e−qζ − ζ − 1

(−1− ζ) e−q(ζ−1) + e−qζζ + eq
. (9)

If ζ = 0 or ζ = −1, then the above expression should be taken as the limit.
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3. The root z = 0 is a dominant root for Q if, and only if, s1 is a dominant root for ∆.

Proof. The proof of the first item follows from simple computations using definition (7). The
mapping φ : z 7→ (s1−s2)z+s1, used to construct Q, clearly satisfy φ(0) = s1 and φ(−1) = s2.
Hence, Q admits two roots: Q(0) = ∆(s1) = 0 and Q(−1) = ∆(s2) = 0. The expressions (8)
and (9) are thus obtained by solving the set of transcendental equations Q(0) = Q(−1) =
Q(ζ) = 0. When ζ = 0 or −1, then Q has a double root and one solves the equations
Q(0) = Q(−1) = Q′(ζ) = 0, which yields the same value of the coefficient β1 as the one
obtained by taking the corresponding limit in (9). Finally, the mapping φ is the composition of
a positive scaling (since s1 > s2) and a translation. Hence, inequalities between the real parts
of complex numbers are preserved and, since 0 is mapped to s1, the root 0 is dominant for Q
if, and only if, s1 is dominant for ∆.

4 Further results on the CRRID property

In this section we establish our main results, we sketch their proofs and we defer the technical
details to the Appendix. First, Theorem 5 establishes the GCRRID property for first order
neutral equation. As a consequence, if the real roots of the corresponding quasipolynomial are
negative, then we obtain exponential stability with a guaranteed decay rate of the solutions.
Second, Theorem 6 gives necessary and sufficient conditions on the coefficients of the neutral
equation for it to satisfy the ICRRID property of corank 1.

Theorem 5 (GCRRID property for neutral equations). Assume that the quasipolynomial ∆
given by (5) admits three real roots s1 ≥ s2 ≥ s3, then s1 is a dominant root for ∆.

Proof. The case s1 = s2 = s3 corresponds to the GMID property, which is described and proven
for neutral systems in [4]. In this proof, which is based on the continuous dependence of the
spectrum distribution with respect to parameters’ variations, we deal with the case where at
least two real roots are distinct. In this case, using Proposition 4, we consider the normalized
quasipolynomial Q and, assuming that it admits three real zeros, we prove that 0 is a dominant
root. The main arguments of our proof are described hereafter, and all technicalities are given
in the lemmas of the Appendix.

Let us show that the normalized quasipolynomial Q, which admits the real roots z = 0,
z = −1, and ζ ≤ 0, satisfies the GCRRID property. First, we prove that Q satisfies the
GCRRID property when ζ = −2 (refer to Lemma 8). Second, we infer that if ζ ≤ 0, then
the only purely imaginary root is zero (refer to Lemma 9). Therefore, if we let ζ vary around
ζ = −2, the only way that a non-real root passes in the right-half-plane is through the origin.
But the latter fact is impossible since it would imply the existence of four real roots for Q,
contradicting its degree.

Note that the specific instance of roots z = 0,−1,−2 that we assign for Q generates equidis-
tributed roots for ∆. In figure 1, we illustrate the argument made in the proof of Theorem 5 by
displaying the spectrum distribution of the normalized quasipolynomial Q. The equidistributed
scenario is denoted by black squares and, employing a color gradient, we exhibit the spectrum
of Q as ζ spans the domain ζ ∈ [−3, 0].

Remark. In the limiting configuration of Theorem 5, which corresponds to a triple real spectral
value s0 := s1 = s2 = s3, the GMID is proven in [4] and interestingly the remaining spectrum
is completely characterized. Thus, we have

s = s0 +
ω

τ
i, where tan

(ω
2

)
=

ω

2
.

5
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Figure 1: Spectrum distribution of the normalized quasipolynomial Q for q = 1 and ζ ∈ [−3, 0].
The black squares show the spectrum for the case of equidistributed roots z = 0,−1,−2. The
blue color corresponds to ζ → −3 and the red one is for ζ → 0.

In the case of distinct real spectral values, numerical simulations suggest that the remaining
spectrum is also located on a single vertical line; see figure 1. However, its characterization and
the determination of the imaginary parts remain open questions.

Theorem 6 (ICRRID property for neutral equations). Assume that the quasipolynomial ∆
admits two distinct real roots s1 > s2. Then, the root s1 is a dominant root of ∆ if, and only
if,

1− eτ(s1−s2)

eτ(s1−s2)(τ(s1 − s2)− 1) + 1
≤ s1 + a0

s1 − s2
≤ 1.

The above theorem gives a necessary and sufficient condition on the auxiliary delay q (of
the auxiliary quasipolynomial Q) and on the coefficient a0 (of the original quasipolynomial ∆)
that ensures the dominancy of the root s1. If in addition s1 is assumed to be negative, then
the exponential decay rate of the solutions is assigned. The conditions obtained in the above
theorem are expressed in terms of a0 because, for application purposes, it is more natural to
tune α1 and α0 in terms of the dynamics parameter a0 and the delay τ . It is noteworthy that
these conditions may be expressed in terms of other coefficients5.

5Actually, in the proof, we use the version written in terms of α1
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Proof. Since we assume that ∆ has two distinct real roots, we use the normalized quasipolyno-
mial Q(z) and we prove the following equivalent statement. The root z = 0 is a dominant root
of Q if, and only if, 1−eq

eq(q−1)+1
≤ b0 ≤ 1, or equivalently, using the first equation of (8), we have

−1 ≤ β1 ≤
eq − q − 1

eq(q − 1) + 1
. (10)

For neutral equations, a necessary condition for stability, giving the dominancy of 0, is |β1| ≤ 1,
see for instance [13]. To show the dominancy of the root z = 0 when β1 satisfies (10), we
distinguish the cases whether there exists a third real root or not.

1. If 0 < β1 ≤ eq−q−1
eq(q−1)+1

, then owing to Lemma 7, there exists a third real root ζ ≤ 0. Hence,
the conclusion of Theorem 5 holds and the root z = 0 is dominant for Q.

2. If −1 < β1 ≤ 0, then according to Lemma 9 any root crossing the imaginary axis does so
via the origin. In this case, it would imply the existence of a third real root, contradicting
Lemma 7.

3. If β1 = −1, then Q(z) = −(z + 1) (e−qz − 1), and its roots are analytically given by
z = −1 and z = 2kπ

q
i, for k ∈ Z, and therefore z = 0 is a dominant root of Q.

Conversely, if β1 does not fulfill (10), then 0 is not a dominant root. Indeed, if β1 < −1, then
Q admits an infinite number of roots in the right-half-plane; see [13]. If β1 > eq−q−1

eq(q−1)+1
, then

owing to Lemma 7, there exists a third real root ζ > 0 and 0 is not dominant.

Figure 2 displays the assignability region (10) for the coefficient β1 and the auxiliary delay
q of Q such that the dominancy of z = 0 is guaranteed.

Remark. In Theorem 6 it is assumed that the quasipolynomial ∆ admits at least two distinct
real roots s1 > s2. The limiting case where s1 = s2 corresponds to the IMID property and has
been studied in [14]. It has been shown that a quasipolynomial satisfying the IMID, necessarily
shares its remaining zeros with an appropriate linear combination of Kummer hypergeometric
functions, see [18].

5 Boundary Control of the Transport Equation

We illustrate the GCRRID property in the tuning of the parameters gains of the transport
equation (1) with the PI boundary controller (2). To simplify the analysis, consider the case
of three equidistributed roots: s1, s1 − δ, s1 − 2δ, with the distance δ > 0. By solving the set of
transcendental equations ∆ (s1 − (k − 1)δ) = 0, for 1 ≤ k ≤ 3, we obtain

τ =
σ

δ
, kp = − s1

s1 − 2δ
e

s1
δ
σ, ki =

2s1(s1 − δ)

(s1 − 2δ)
e

s1
δ
σ,

where σ = ln
(

s1−2δ
s1

)
. Notice that the delay τ is fixed by the system parameters λ and L, and

thus it imposes a relation between s1 and δ:

s1 =
2δ

1− eτδ
. (11)

Observe that the condition δ > 0 implies,that − 2
τ
< s1 < 0. Setting τ = L

λ
= 1 and s1 = −1

yields

δ ≈ 1.2564, kp ≈ −0.1047, ki ≈ −0.4726. (12)

7



−1

1

q

β1
Existence of a third real root ζ ≤ 0

Region with dominancy of 0.

Loss of dominancy

Figure 2: Assignability region (10) for the coefficient β1 of the normalized quasipolynomial
Q(z) to guarantee the dominancy of the root z = 0, when it admits at least two real zeros.
The red area shows the region where the dominancy of z = 0 fails, the red lines at −1 and 1
corresponds to the necessary condition β1 < 1, the dashed areas display the region with the
dominancy of z = 0 due to either the existence of a third negative real root (delimited by blue
curves) or to the nonexistence of a root crossing the imaginary axis.

To perform numerical simulations, we adopt the same initial condition φ(0, x) = sin(2πx) as
the one considered in [4], where the PI boundary control has been considered with the use of the
GMID property, since it is worthwhile to compare these two approaches. In the context of the
GMID property, the assigned triple root s0 is uniquely determined by the system parameters,
namely s0 = − 2

τ
. Similarly, the controller gains are explicitly given by

kp = −e−2 and ki = −4e−2

τ
. (13)

On the one hand, the decay rate associated with the GMID is always better than the decay rate
derived via the equidistributed GCRRID, since (11) implies that s1 > − 2

τ
. Figure 3 illustrates

this fact, in the logarithmic scale, by exhibiting the decay rate of the solution φ(t, x) at x = L
of (1) with the GCRRID parameters (12) and the GMID parameters (13). After the transitory
regime, we observe an order 2, resp. 1, convergence rate for the GMID, resp. for the GCRRID.

On the other hand, due to the fact that the GMID-assigned spectral abscissa s0 is triple, the
GMID property is sensitive to small parametric variation [16]. The GCRRID property is less
sensitive since the assigned roots are simple. Figure 4 shows the migration of the spectrum of
the characteristic function ∆T when the propagation velocity λ is assumed to be uncertain and
thus the delay τ increases from its nominal value 1. In this case, we observe (displayed as hollow
diamonds) that the triple root s0 immediately splits in one real root and two complex conjugate

8
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Figure 3: Comparison of the decay rate of the solutions of (1) with the GCRRID and GMID
methods.

roots. However, in the GCRRID case (displayed with circles) the perturbation of the delay
yields a fusion of the two dominant roots s1 and s2 into a double zero, which itself splits in two
conjugate complex roots. Moreover, the critical delay (i.e., the delay for which the roots meet
the imaginary axis) is larger, hence less sensitive (more robust), in the GCRRID case compared
with the GMID case. Indeed, we numerically obtain τ cGMID ≈ 3.12 and τ cGCRRID ≈ 3.53.

6 Concluding remarks

In this paper, we prove the CRRID property for first-order neutral delay-differential-equation
and apply it to the boundary control of the transport equation. We show the GCRRID: the
coexistence of three real roots (not necessarily distinct) implies that the rightmost of them is
necessarily the spectral abscissa of the characteristic function and if it is negative it defines the
exponential decay rate of the solutions of the closed-loop system. We also state and prove the
ICRRID property in the case where only two real roots exist. It is shown that our method-
ology explicitly sets the exponential decay rate of the solutions and is robust with respect to
parametric variations.

Acknowledgement. The authors are grateful to their colleagues Guilherme Mazanti (Inria
Saclay) and Karim L. Trabelsi (IPSA) for careful reading and insightful discussions.

The following technical lemmas are useful in the proofs of Theorems 5 and 6.
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Figure 4: Migration of the spectrum of the characteristic function (3) with parameters given
in (12) in the GCRRID case and in (13) in the GMID case with respect to the perturbation
of the delay τ ∈ [1, 4]. The perturbed GMID, resp. GCRRID, case are displayed with hollow
diamonds, resp. circles.

Lemma 7 (Properties of β1). Suppose that the normalized quasipolynomial Q admits three real
roots 0,−1, ζ. Then, the map ζ 7→ β1(ζ) is strictly increasing and defines a bijection from R
onto R∗

+. In particular, for ζ ≤ 0, we have 0 < β1 ≤ eq−q−1
1+eq(q−1)

< 1.

Proof. The normalized quasipolynomial Q admits three real roots, thus we use the expression
of β1 given by (9). One can show that the denominator of β1 vanishes only at ζ = 0 and
ζ = −1. Recall that at these points β1 can be defined by taking the limit (see Proposition 4).
To show that β1(ζ) is strictly increasing, we set the function f(ζ) = n′(ζ)d(ζ) − n(ζ)d′(ζ),
where n and d are the numerator and denominator of β1, and we prove that f(ζ) > 0 for
ζ ∈ R\{−1, 0}. We consider the auxiliary function h(ζ) = f ′(ζ)eqζ , which admits h′′(ζ) =
2q2

(
qe−qζ − eq + 1

)
(1− eq). The second derivative h′′(ζ) vanishes only for ζ̄ = 1

q
ln
(

q
eq−1

)
∈

] − 1, 0[ and, since limζ→−∞ h′′(ζ) = −∞ and limζ→+∞ h′′(ζ) = 2q2 (eq − 1)2 > 0, we deduce
that h′(ζ) is decreasing on ] − ∞, ζ̄[ and increasing on ]ζ̄ ,+∞[. In addition, due to h′(ζ̄) =
(eq − 1)2 (q + 2 ln(q)− 2 ln(eq − 1)) q < 0, we deduce that h′(ζ) admits two roots −1 < ζ̄1 <
ζ̄2 < 0. Furthermore, using that limζ→±∞ h′(ζ) = +∞, it follows that h(ζ) is increasing on
] − ∞, ζ̄1[, decreasing on ]ζ̄1, ζ̄2[, and increasing on ]ζ̄2,+∞[. Therefore, h(ζ) admits a zero
ζ̄3 ∈]ζ̄1, ζ̄2[⊂] − 1, 0[. Next, we infer that f(ζ) decreases on ] − ∞,−1[∪]ζ̄3, 0[, increases on
] − 1, ζ̄3[∪]0,+∞[, and is bounded by below by zero (which is achieved at ζ = −1 and 0).
So f(ζ) is strictly positive on R\{−1, 0} and β1(ζ) is a strictly increasing function. Since
limζ→−∞ β1 = 0 and limζ→+∞ β1 = +∞, we conclude that β1 defines a bijection from R to R+∗.
Finally, if ζ ≤ 0, then β1(ζ) ≤ β1(0) =

eq−q−1
1+(q−1)eq

< 1.

Lemma 8. If the normalized quasipolynomial Q admits three real roots z = 0, z = −1 and
z = −2, then it satisfies the GCRRID property.
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Proof. To prove thatQ does not admit a root in the right half plane, we proceed by contradiction
assuming that z = x + iω, with x > 0, is a root of Q. By extracting the real and imaginary
parts of Q(x+ iω) = 0 we obtain a system of equations, which owing to (8) yields

cos(ωq) = −eqx ((ω2 + x2 − xβ0) β1 + β0 (x− β0))

(ω2 + x2) β2
1 + 2xβ0β1 + β2

0

,

sin(ωq) =
eqxωβ0 (β1 + 1)

(ω2 + x2) β2
1 + 2xβ0β1 + β2

0

.

Using the relation cos(ωq)2 + sin(ωq)2 = 1, we deduce that ω is necessarily given by

ω = ±
√(

(xβ1 + β0)
2 − (x− β0)

2 e2qx
)
/ (e2qx − β2

1).

We set Ω = ω2 and prove that Ω < 1
q2

for all x > 0 and q > 0. To this end, we define

fq(x) = n(x) − 1
q2
d(x), with n and d the numerator and denominator of Ω, and show that

fq(x) < 0. We have fq(0) = (e−2q − 1)q−2,

f ′
q(0) =

−4e−qq − 2e2q + (4q + 4) eq − 8q2 − 2

(eq − 1)2 q
,

f ′′
q (0) = − 2e−2q

(eq − 1)2

(
8

(
q +

1

2

)2

e2q − 8

(
q +

3

4

)
e3q

+ 3e4q + 2eq − 1
)
,

and f ′′′
q (x) = −8e2qxq

(
(x− β0)

2 q2 + 3 (x− β0) q +
5
2

)
, which is strictly negative for all x (since

the discriminant of the quadratic polynomial in the right factor is −q2 and the coefficient in
front of x2 is positive). Hence, f ′′

q (x) is decreasing with respect to x. Moreover, as f ′′
q (0) < 0

holds6 for all q > 0, it follows that f ′
q is also decreasing with respect to x. Since f ′

q(0) < 06,
thus fq is a decreasing function for x > 0. Combining this with the fact that fq(0) < 0, we
conclude that fq(x) < 0 for all x > 0 and q > 0.

Finally, we have demonstrated that if x + iω is a root of Q with x > 0, then necessarily
|ω| < 1

q
. However, this contradicts corollary 2, thus establishing that Q has no roots in the

right half-plane.

Lemma 9 (Purely imaginary roots of Q(z)). If |β1| < 1, then Q(iω) = 0 if, and only if, ω = 0.

Proof. Suppose that Q(iω) = 0, then we obtain

(iω + b0) + e−qiω (β1iω + β0) = 0,

|iω + b0|2 = |β1iω + β0|2 ,
ω2

(
1− β2

1

)
+ b20 − β2

0 = 0.

By assumption, β2
1 < 1 and, using equation (8), we have b0 + β0 = 0. Thus, we conclude that

Q(iω) = 0 is satisfied only by ω = 0.
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