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Abstract

We study a three-compartment system based on the SIR model [1]. From the view of dynamical sys-
tems, the inherent property of SIR and SIRS models is the change of stability. A stable fixed point (healthy
state) turns into an unstable saddle if the infection rate reaches a critical value and the trajectories end
in a newborn (stable) fixed point, the endemic equilibrium.

In our model, noise effects from the environment that allow for a fluctuating infection rate play
a crucial role. This results in multiplicative noise terms and our model turns into a set of stochastic
nonlinear differential equations (SDEs). A periodic behavior of the infection number is observed that
becomes more and more irregular if the noise is increasing. For rather large fluctuations repeated disease
outbreaks in the form of sharp pulses with a variety of frequencies and amplitudes are found. The results
based on SDEs are confirmed by numerical and approximate analytical solutions of the corresponding
Fokker-Planck equation.

1 Introduction

Since the advent of the Covid-19 pandemic in 2020 the interest in the mathematical modulation of
the development of infectious diseases has grown enormously. Nevertheless, the simplest model serving
nowadays as the basic for numerous extensions and specialisations goes back to the work of Kermak and
McKendrick [1] in 1927, nowadays called SIR model. The acronym SIR stands for Suscetible, Infectious,
Recovered and the model consists of three nonlinearly coupled ODEs describing the time behavior of the
three relative concentrations s = S/N, j = I/N, r = r/N where N = S + I + R is the constant total
number of individuals:

ds

dt
= −β0 s j + ν r (1a)

dj

dt
= β0 s j − γ j (1b)

dr

dt
= γ j − ν r . (1c)

Here, β0 denotes the infection rate and 1/γ is the average time of being infectious or the time of recovery.
the time constant 1/ν describes the loss of immunity where ν is zero in the original SIR model.

Numerical solutions [2] of (1) show the instability of the healthy state sh = 1, jh = rh = 0, if β0/γ > 1
and the asymptotic solution

se =
γ

β0

, je =
ν(β0 − γ)

β0(ν + γ)
re =

γ(β0 − γ)

β0(ν + γ)
(2)

is reached for t → ∞. However, looking on real time data of epidemics such as COVID, the infection
comes in pronounced waves and the long time behavior should rather periodic than approaching a fixed
point (fig. 1).



2 M. Bestehorn & T. Michelitsch

Fig. 1. Time series of the absolute number of cases in Kenya during the years 2020-23 [3].

The question we try to explore in the following is how we must extend the SIRS model to account for
the more or less periodic outbreaks of infection waves. Earlier work [4,5,6] considered time delay effects
and showed rather regular oscillations if certain critical delay times were exceeded. Here we shall lay the
emphasis on fluctuations and show that (strong) fluctuations may cause oscillating behavior and also
outbreaks in form of spikes. Even a total suppression of the epidemics and extinction can be observed.

2 The system

In the SIRS model (1) there are three parameters, one of them can be scaled in the time. If we choose
t = τ t̃ with τ = 1/γ, the two parameters R0 = β0/γ and µ = ν/γ are left. R0 is the basic reproduction
number. Since we are interested in fluctuations, we allow for a noisy reproduction number R0+σξ(t) with
the random variable ξ(t) and < ξ >= 0, < ξ2 >= 1. Finally, r can be eliminated with r = 1− s− j and
the system considered further is constituted by two coupled nonlinear stochastic differential equations [7]

ds

dt
= −R0 s j + µ (1− s− j)− σ ξ s j (3a)

dj

dt
= R0 s j − j + σ ξ s j . (3b)

The noise is multiplicative. For σ = 0, the endemic state (2) is a stable node for 1 < R0 < 1+µ/4+O(µ2).
For R0 > 1 + µ/4 +O(µ2) it turns into a stable focus and small perturbations from (2) decay in time in
form of damped oscillations with the frequency

ω =

[

R0je −
1

4
(R0je − µ)2

]1/2

=
√

µ(R0 − 1) +O(µ) , (4)

see fig. 2.

3 Numerical results

Fig. 3 shows a numerical solution of (3) in form of a time series of the infection number j(t). Here, the
parameters are R0 = 1.3, µ = 0.02, σ = 0.1. It can be seen that periodic waves occur. Fig. 4, left frame,
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Fig. 2. SIRS model (3) with σ = 0, trajectories for µ = 0.1 and R0 = 1.1, 1.2, 1.3, 1.4. The unstable fixed
point (saddle) (s = 1, j = 0, healthy state) is connected with the stable ones (foci) laying on the dashed line
(je = µ(1− se)/(µ+ 1), endemic states) by heteroclinic orbits.

Fig. 3. Time series of j computed from the stochastic SIRS model (3) with σ = 0.1, µ = 0.02 and R0 = 1.3.
Infection waves occur with a certain mean frequency which is approximately given from (4).

shows the power spectra
A(ω) = |j̃(ω)|2 (5)

for several values of R0, where j̃(ω) denotes the Fourier transform of j(t).
The average frequency of the waves can be computed from

ω̄ =

∫

dω ω A(ω)
∫

dω A(ω)
(6)

and increases monotonically with R0. It shows a rather good agreement with the values computed in
(4) for the deterministic case. We may conclude that the, for the deterministic case stable, endemic
equilibrium (2) is excited and responses to the fluctuations in its resonance frequency. The agreement of
the mean frequency and the resonance (4) is shown in fig. 4, right frame.
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Fig. 4. Left: power spectra of j for different R0, each averaged over 100 runs. The maxima coincide with the
resonance frequency (4).
Right: mean frequency computed numerically from (6) (black) and resonance frequency from (4) coincide well.
Parameters: µ = 0.02, σ = 0.1.

4 Fokker-Planck equation

It is straightforward to write down the Fokker-Planck equation [8] to the stochastic system (3):

∂P

∂t
= −

∂

∂s

[

(−R0sj + µ(1− s− j))P
]

−
∂

∂j

[

(R0sj − j)P
]

+
σ2

2

( ∂2

∂s2
− 2

∂2

∂s∂j
+

∂2

∂j2

)[

s2j2 P
]

. (7)

Here, P (s, j, t) denotes the probability density function (PDF) to find the state s, j at time t.
Before discussing some analytical aspects we solve Eq. (7) numerically, applying a finite difference

method on a 100×100 or 200×200 grid with a fixed time step ∆t = 0.001, see [2]. Gaussian distributions
for both s and j around the endemic equilibrium (2) serve as initial condition:

P (t = 0) = N exp

(

−
(s− se)

2

b21
−

(j − je)
2

b22

)

with width b1 = 5∆s, b2 = 5∆j and ∆s,∆j as the distance between two neighbored grid points. Eq. (7)
is a partial differential equation of 2nd order and needs boundary conditions for a unique solution. For
simplicity, we assume absorbing boundary conditions P = 0 along all boundaries. The solutions for
R0 = 1.3, µ = 0.02 and three different σ are shown as time series in fig. 5. After t ≈ 500 the distribution
is stationary. It can be seen that the distributions collapse along the s-axis for increasing σ while their
maxima are shifted towards larger s. This reflects the fact that the time series of j resembles more and
more a rather flat line close to zero interrupted by a sequence of high and short outbreaks, fig. 6 left
frame.

To estimate this shift for the probability distribution we may expand the stationary solution of (7)
for small j according to

P (s, j) = jn P1(s) + jn+1 P2(s) + ... (8)

and find in lowest order from (7)

(

µ+ (n+ 1)(1−R0s) +
1

2
(n+ 1)(n+ 2)σ2s2

)

P1 = µ(1− s)
dP1

ds
. (9)

At the maximum of P1 the bracket on the l.h.s. must vanish. To estimate the value of the power n in (8),
we assume that the maximum is located at s = 1. In fact it is smaller (see fig.5) but s = 1 may serve as
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Fig. 5. Numerical solutions of the Fokker-Planck equation (7) for R0 = 1.3, µ = 0.02 and three different σ.
The last stages (t = 1000) are stationary. The dashed lines mark the location of the endemic equilibrium without
flutuations, cmp. fig. 2.

an upper limit. Then we find from (9)

µ+ (n+ 1)(1−R0) +
1

2
σ2(n+ 1)(n+ 2) = 0

and solving for n yields

n =
2(R0 − 1)

σ2
− 2 +O(µ) .

It is interesting to see that n may become negative if

σ > σc =
√

R0 − 1 . (10)

But for n < 0, the PDF (8) is singular at j = 0 leading to the observed accumulation at j = 0. Thus, σc

can be considered as a critical point from where the PDF collapses to the s-axis. Note that for negative
n, the PDF is still normable as long as n > −1.

Taking R0 = 1.3 the critical point is at σc ≈ 0.55. For collapsing P the numerical code applied for
(7) diverges. Alternatively one can compute a histogram solving (3) numerically. Fig. 7 shows the result
of 1010 iterations with a time step of 0.01. Clearly, P is only significantly different on a narrow stripe
around j = 0.

5 Conclusion

We showed that fluctuations added to the simple SIRS model may show irregular oscillations with the
characteristic frequency of the endemic equilibrium. For large fluctuations, the solutions turn into spikes
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Fig. 6. Time series of j and s computed from the stochastic SIRS model (3) with σ = 1, µ = 0.02 and R0 = 1.3.
Infection waves occur now in form of short and high outbreaks. Note that s is still varying on a broad region, j
is more or less zero except for very short times.
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Fig. 7. PDF for large σ = 0.6, R0 = 1.3 above threshold (10). The PDF is zero almost everywhere except on a
narrow stripe around j = 0.

with almost zero infection rate interrupted by short outbreaks. This is confirmed by solutions of the
corresponding Fokker-Planck equation that shows a collapsing PDF if a certain critical fluctuation is
exceeded.

If j becomes smaller than 1/N (N = total size of population) the number of infected individuals j×N
would be smaller than one. Therefore, a period of very small values of j can lead to extinction of the
pandemic.

References

1. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. Roy.
Soc. A 115, 700–721, 1927.

2. M. Bestehorn, Computational Physics, De Gruyter Berlin/Boston, 2nd edition 2023.
3. https://worldhealthorg.shinyapps.io/covid/

Downloaded on April 7 2023, reprint by courtesy of WHO.
4. M. Bestehorn, A.P. Riascos, T.M. Michelitsch, T. M., B.A. Collet, A Markovian random walk model

of epidemic spreading, Continuum Mech. Thermodyn. 33, 1207, 2021.
5. M. Bestehorn, T.M. Michelitsch, B.A. Collet, A.P. Riascos,A.F. Nowakowski, Simple model of

epidemic dynamics with memory effects, Phys. Rev.f E105, 024205, 2022.
6. M. Bestehorn, T.M. Michelitsch, Oscillating behavior of a compartmental model with retarded noisy

dynamic infection rate, Int. J. Bifurc. Chaos Appl. Sci. Eng. 33, 2350056, 2023.
7. Y. Cai, Y. Kang, M. Banerjee, W. Wanga, A stochastic SIRS epidemic model with infectious force under

intervention strategies, J. Diff. Eqs. 295, 7463, 2015.
8. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer, 4th ed., 2009.


