
HAL Id: hal-04194226
https://hal.science/hal-04194226

Submitted on 2 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep audio embeddings for vocalisation clustering
Paul Best, Sébastien Paris, Hervé Glotin, Ricard Marxer

To cite this version:
Paul Best, Sébastien Paris, Hervé Glotin, Ricard Marxer. Deep audio embeddings for vocalisation
clustering. PLoS ONE, 2023, 18 (7), pp.e0283396. �10.1371/journal.pone.0283396�. �hal-04194226�

https://hal.science/hal-04194226
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

Deep audio embeddings for vocalisation

clustering
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Abstract

The study of non-human animals’ communication systems generally relies on the transcrip-

tion of vocal sequences using a finite set of discrete units. This set is referred to as a vocal

repertoire, which is specific to a species or a sub-group of a species. When conducted by

human experts, the formal description of vocal repertoires can be laborious and/or biased.

This motivates computerised assistance for this procedure, for which machine learning algo-

rithms represent a good opportunity. Unsupervised clustering algorithms are suited for

grouping close points together, provided a relevant representation. This paper therefore

studies a new method for encoding vocalisations, allowing for automatic clustering to allevi-

ate vocal repertoire characterisation. Borrowing from deep representation learning, we use

a convolutional auto-encoder network to learn an abstract representation of vocalisations.

We report on the quality of the learnt representation, as well as of state of the art methods,

by quantifying their agreement with expert labelled vocalisation types from 8 datasets of

other studies across 6 species (birds and marine mammals). With this benchmark, we dem-

onstrate that using auto-encoders improves the relevance of vocalisation representation

which serves repertoire characterisation using a very limited number of settings. We also

publish a Python package for the bioacoustic community to train their own vocalisation auto-

encoders or use a pretrained encoder to browse vocal repertoires and ease unit wise

annotation.

Introduction

Context

Many animal species use acoustics to communicate. Often in this context, signals take the

form of distinct units (or vocalisations) arranged in sequences, with information potentially

being carried through order and/or rhythm [1]. Like the discrete communication channels for-

malised by Shannon [2], the elements of the sequences often seem to emerge from a finite set

of discrete categories. This finite set of possible units is referred to as the repertoire of a com-

munication system. Vocal repertoires can be specific to groups of individuals (e.g., orca Orci-
nus orca [3]), populations (e.g., beluga whale Delphinapterus leucas [4] or mountain white-

crowned sparrows Zonotrichia leucophrys oriantha [5]), or whole species (e.g., common
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marmosets Callithrix jacchus [6] or swamp sparrows Melospiza georgiana [7]). They can be

learnt or genetically determined [8], and they are central to the study of communication

systems.

Indeed, bioacousticians often encode acoustic signals as sequences of tokens, each associ-

ated with categories of a repertoire [1]. Vocal sequence transcription facilitates processes such

as sequence comparison or pattern extraction, especially as compared to dealing with raw data

(i.e., such as time series of sound pressure levels). This task is analogous to speech transcrip-

tion, with the crucial difference that the operator does not comprehend the signal it

transcribes.

This process, when conducted on non-human animals, is subject to debate for the human

biases it might introduce. A human’s categorisation of vocalisations might not capture the

essential complexity of a communication system [9] and arbitrary decisions might occur

regarding group granularity [10], all potentially leading to inter-annotator disagreements [11].

Nonetheless, to this day, human annotators perform better than machines at classifying vocali-

sations [12, 13], and human categorisations have widely been validated with observations on

the emitter(s) (i.e., at the individual level [13] or the group level [3]) or on the call’s function

[14].

Regardless of accuracy, characterising non-human vocal repertoires manually can be a very

laborious task. A thorough examination of large vocal sequences is needed to decide on reper-

toire categories (stereotype and boundaries), and when dealing with large repertoires (up to

dozens of categories), it can be very demanding if not impossible to consider the totality simul-

taneously and define categories in a systematic way.

The transcription of vocal signals matters for it allows unveiling structure [15] (syntax),

meaning [14] (semantics), social structures [3, 16] and cultural patterns [17] in non-human

animal communication systems. The manual annotation of vocalisations by type is laborious

and could be biased whereas fully unsupervised methods are not yet reliable enough. Submit-

ting clusters of similar vocalisations to a human operator could alleviate these limitations and

contribute to advances in animal communication studies. This paper thus intends to explore

and compare vocalisation representations for the clusters they yield, leading to computer assis-

ted vocal repertoire discovery procedures.

Vocalisations feature extraction and clustering

Automatic clustering of animal vocal repertoires has been studied in the past. Methods vary

but usually revolve around three main steps: feature extraction of signals, dimensionality

reduction, and clustering (Fig 1).

To represent acoustic signals, one can make use of Predefined Acoustic Features (PAFs), i.
e., handcrafted temporal and spectral signal characteristics. For instance, depending on the sig-

nals to be clustered, features can describe the temporal envelope, the frequency contour, or the

response to filterbanks (e.g., Mel or gammatone). Researchers have used PAFs to cluster vocali-

sations of zebra finches (Taeniopygia guttata) [18], baboons (Papio ursinus) [19], bottlenose

dolphins (Tursiops truncatus) [20], gibbons (Hylobates funereus) [21], and mice (Mus muscu-
lus) [22, 23]. For instance, Elie et al. [18] used 22 PAFs extracted using the Biosound package

[24] to cluster zebra finch (Taeniopygia guttata) vocalisations, Sainburg et al. [25] used 18 fea-

tures from the same package to visualise and cluster vocalisations from 20 species, Clink and

Klinck [21] used Mel Frequency Cepstral Coefficients (MFCCs) to cluster gibbon (Hylobates
funereus) calls by individual, and Van Segbroeck et al. [22] used a gammatone filterbank to

cluster mice (Mus musculus) vocalisations. Alternatively, to capture spectro-temporal varia-

tions, the concatenation of consecutive spectrogram frames can be used [25, 26].
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Often, we do not know a priori which feature will be the most discriminant for vocalisation

types, and high dimensional spaces make similarity measurements difficult (curse of

dimensionality). This motivates using dimensionality reduction algorithms such as Principal

Component Analysis (PCA) [18, 20, 25] or Uniform Manifold Aproximation (UMAP) [25–

27] to emphasise the most ‘relevant’ features for a given dataset. One important limitation of

using PAFs is that there is no generic set that suits all vocal repertoires, and some of the fea-

tures need specific settings depending on vocalisation frequency ranges or signal to noise ratio

(SNR). An opportunity to avoid having to manually choose the right set of features and tune

their settings is to use features learnt using deep representation learning (as opposed to hand-

crafted features like PAFs). Following this approach, auto-encoder artificial neural networks

have been used by Goffinet et al. [28] on mice and zebra finch vocalisations, by Bergler et al.

[29] to cluster orca calls, by Rowe et al. [30] to cluster bird vocalisations by species, and by

Tolkova et al. [31] to discriminate between background noise and bird vocalisations.

Auto-encoders are artificial neural networks self-supervisedly trained (without the need for

labels) to encode data into a lower dimensional space (called bottleneck). To ensure the con-

servation of the information in the bottleneck, the encoder network is optimised jointly with a

decoder network to maximise the resemblance between the decoded encoded data and the

input data (reconstruction loss).

Once we obtain a high level representation of vocalisations, whether with PAFs or with

auto-encoder embeddings, and whether dimensionaly reduced or not, clustering algorithms

allow to group close points (in the high-level feature space) together to form discrete classes.

In the literature of vocal repertoire clustering, chosen algorithms were mostly K-Means and

HDBSCAN [32], HDBSCAN usually used after dimensionality reduction [25, 26].

To follow up on this research, we propose studying vocalisation clustering, especially the

choice of audio representation and its effect on the subsequent clustering. Auto-encoders

trained on vocalisation spectrograms have recently shown promising results [28, 29], we thus

compare the embedding space they yield to that of more traditional methods, especially how it

allows to cluster units by acoustic similarity. Taking detected vocalisations as an input, clusters

of similar vocalisations can thus be presented to an operator, facilitating vocal repertoire char-

acterisation as well as annotation (e.g., to train a classifier model). To quantify the performance

of the varying methods, we use them on 8 datasets of animal vocal repertoires (including birds

and cetaceans) and measure their agreement with expert labels of vocalisation types. Along

with the performance analysis of the system across varying hyper-parameters, we publish a

python interface for biologists to use deep audio embeddings for their own vocal repertoire

discovery procedures.

Fig 1. Main steps involved in vocal repertoire clustering. This paper focuses mainly on the feature extraction step.

https://doi.org/10.1371/journal.pone.0283396.g001
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Materials and methods

Datasets

In this study, we use 8 different datasets that gather large amounts of timestamped and type

labelled vocalisations. These comprise 4 birds and 2 marine mammals species. In most cases,

unit classes are shared across recorded individuals, describing a population or species specific

repertoire. The exceptions are the bengalese finch datasets which contain individual specific

repertoires and the bottlenose dolphin dataset which contains signature whistles [33] (signa-

ture whistles are not a vocal repertoire but still inform on the relevance of representations for

vocalisation categorisation). In these cases, classes are defined as the combination of unit type

and individual identity. Table 1 summarises the characteristics of each dataset.

In the study by Malige et al. [37] for which humpback whale vocalisations were originally

annotated, around 7,500 vocalisations were labelled by an expert, and to assess inter-annotator

disagreements, a second analyst also annotated a sub-set of 1,800 vocalisations, all belonging

to recordings of a single day. Both sets of labels are used in this study separately, with the latter

referred to as ‘humpback whale (small)’.

For some datasets, not all vocalisations were labelled by unit type. Moreover, this paper

studies fully unsupervised methods: labels only serve the final evaluation of the yielded cluster-

ing. Therefore, to stay close to a realistic scenario of having a potentially noisy set of detected

vocalisations, all detections were used in the procedures preceding the evaluation. Addition-

ally, in some cases, classes were highly underrepresented (less than 20 occurrences) or seemed

to result from labelling errors. These vocalisations were considered as unlabelled.

Signal preprocessing and Fourier transform

For the procedure described in this paper, the only parameters that are dataset specific are

related to low-level signal preprocessing, and require only a limited amount of knowledge

about the repertoire of interest to be set properly. They are the sample duration T , the sam-

pling rate fs and the Fast Fourier Transform (FFT) window size NFFT, which Table 2 reports

for each dataset. Note that the maximum frequency for Mel filterbanks was always set to the

nyquist frequency, and so is defined by the sampling rate implicitly. This section describes

how these parameters were set, along with the full procedure that compiles signals into spec-

trograms to feed to the auto-encoder.

A consideration for setting spectrogram parameters is that auto-encoder’s decoders typi-

cally reconstruct images by successive factor two up-sampling. Input spectrograms which will

Table 1. Size of each dataset used in the experiments.

Species and source # Units # Vocalisations % Labelling

bengalese finch [34] 33 179,864 99

bengalese finch [35] 93 215,037 100

california thrasher [36] 12 33,300 4

cassin vireo [36] 102 144,185 46

black-headed grosbeak [36] 37 35,574 18

humpback whale [37] 15 7,495 98

humpback whale (small) [37] 12 1,800 100

bottlenose dolphin [33] 20 400 100

Dataset characteristics include the number of different types, the total number of detected vocalisations, and the proportion of vocalisations that are labelled by type.

https://doi.org/10.1371/journal.pone.0283396.t001
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be matched with auto-encoder reconstructions thus need to be of dimensions that follow (kf 2n

× kt 2n), with kf and kt integers and n the number of factor two up-sampling (in the proposed

architecture n = 5, more details are given in the next section). For all datasets in this study, 128

frequency bins and 128 temporal bins appeared to suffice in containing vocalisation details; all

spectrograms were thus set to be of size 128x128 (kf = kt = 4). Note however that if more spec-

tral or temporal bins were needed for a new species, the same auto-encoder architecture could

allow to manage 256 bins or more.

Preprocessing first consists in extracting the signal surrounding the center of the anno-

tation. The sample duration T was fixed for each dataset. In order to fully contain most

vocalisations while avoiding hiding details for small ones, it was set at the 3rd quartile of all

vocalisation durations. In the case of pre-cut vocalisation files with a smaller duration than

this fixed value, signals were zero-padded. The sampling rate was fixed to the most com-

mon value in the dataset, and vocalisations with a different sampling rate were resampled

to match the common value using the scipy python package [38]. The exception is the

humpback whale dataset, for which the sampling rate was reduced to 11,025 Hz in order to

reduce the nyquist frequency and increase the frequency resolution for the relatively low

frequency vocalisations. Resulting signals are then z-normalised before its frequency

decomposition.

The choice of Fourier transform parameters define the spectro-temporal resolution of spec-

trograms, and need to suit spectro-temporal modulation rates of vocalisations. For this study,

FFT window sizes were manually set by quick spectrogram inspections or by borrowing from

studies publishing the databases. For the short term Fourier transform, we used unpadded

Hann windows and a hop size set to yield spectrograms of 128 time bins

(Hop ¼ ðT � fs � NFFTÞ � 1

128
). The Fourier transform comes with the limitation of having

to choose a fixed spectro-temporal resolution, which wavelet based transforms can help allevi-

ate [39], allowing a better representation especially for transient signals. However, choosing

such approach would imply a significant increase in computation, and additional dataset spe-

cific settings (e.g., choice of wavelet family or hyperparameters). For the sake of simplicity and

usability, and as the studied signals are not transient, we chose the general purpose Fourier

transform in our experiments.

Following the short term Fourier transform, several frequency and dynamic range com-

pressions were tested. Mel filterbanks with 128 filters between 0 and the nyquist frequency

were used, and compared to keeping the spectrogram with a linear frequency layout. In the lat-

ter case, maximum pooling was used to reduce the number of frequency bins down to 128 and

match other spectrograms, independently of the FFT size. As for dynamic range compression

of spectro-temporal magnitudes, we compared no compression against logarithmic and PCEN

Table 2. Dataset specific spectrogram settings.

Species and source fs (kHz) NFFT Hop (ms) T (s)

bengalese finch [34] 32 256 0.7 0.1

bengalese finch [35] 32 256 0.7 0.1

california thrasher [36] 44.1 512 1.8 0.25

cassin vireo [36] 44.1 512 3.8 0.5

black-headed grosbeak [36] 44.1 512 2.6 0.35

humpback whale [37] 11.025 1024 14.9 2

humpback whale (small) [37] 11.025 1024 14.9 2

bottlenose dolphin [33] 96 512 15.6 2

https://doi.org/10.1371/journal.pone.0283396.t002
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[40] compression. In all cases, spectro-temporal magnitudes were z-normalised before apply-

ing the auto-encoder.

Auto-encoder network architecture

Contrary to supervised classifier neural networks for which the bioacoustics community often

uses off-the-shelf architecture [41], there is to our knowledge not yet an architecture of choice

for auto-encoder networks. Bergler et al. [29] use a ResNet-18 architecture, and Goffinet et al.

[28] use a custom architecture consisting in successive blocks of convolution, batch normalisa-

tion and rectifier linear units (ReLU). For the encoder, these successive blocks gradually

increase the number of feature maps while decreasing the spectro-temporal dimensions. This

is a common practice in deep convolutional networks, following the intuition of deeper layers

having a higher level representation of the data and a larger receptive field. Symmetrically, the

decoder network decreases the depth and increases spectro-temporal dimensions.

We followed a similar approach, with our proposed encoder consisting in a succession of 5

convolutional blocks, all with kernels of size 3 by 3 (Fig 2). To increase the depth of the data,

the number of kernels starts at 32 and is multiplied by 2 at each block until the last. To decrease

the spectro-temporal dimensions, convolutions operate with a stride of 2. The output of each

convolution except the last are batch normalised before ReLUs are applied.

The decoder network is also composed of 5 blocks, this time each applying factor 2 up-sam-

pling followed by 2 successive convolution blocks (convolution with kernels of size 3, batch-

normalisation and ReLU). The rationale for having two convolution blocks after each up-sam-

pling is to have a larger receptive field than with a single one.

Fig 2. Architecture of the auto-encoder. During training, VGG embedings are used to compare the reconstruction with the input (perceptual loss).

For evaluation, only the encoder is used, followed by dimensionality reduction and clustering.

https://doi.org/10.1371/journal.pone.0283396.g002
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Training procedure

When training an auto-encoder, the main constraint that we impose on the network is that the

information contained in the input is maintained in the bottleneck. To do so, we ensure that,

from the bottleneck, the decoder network is able to reconstruct something similar to the origi-

nal input. A straightforward approach to quantify this similarity is to compute the Mean

Square Error (MSE) between the input and the reconstruction, i.e., here the average of the

squared difference for each spectro-temporal bin. However, for our use case, we mostly want

the frequency contour of vocalisations to be well reconstructed, which might represent only a

small proportion of the spectro-temporal bins. To have a comparison that emphasizes more

on foreground content than on background noise, we can use the perceptual loss [42], in

which we compute the MSE between embeddings of a third party pre-trained network (Fig 2).

Here we make use of the VGG model trained on ImageNet for image classification [43].

Auto-encoders were trained on each dataset independently, with an Adam optimiser [44]

using batches of 128 vocalisations. The training was stopped when the median of the loss for

the last thousand steps did not decrease as compared to the previous thousand steps.

Evaluation

Once the auto-encoder is trained, we can use the bottleneck embedding to represent vocalisa-

tions. The intuition is that this relatively compact representation (spectrograms were initially

encoded in 128x128 dimensions) will help in measuring vocalisation similarity, and thus will

be correlated with expert unit classification. In other words, close points in this embedding

space would be perceived as similar by an expert and categorised as from the same type.

To verify this intuition and measure the agreement between embedding similarity and

experts’ perceptual similarity, we cluster close points in the embedding space and compare the

result with expert unit classification. To mitigate the curse of dimensionality which can

strongly hinder clustering performance, we reduce the dimensionality of our data using the

UMAP algorithm [27].

In the resulting embedding space (Fig 3), we can now group vocalisations that are close

together with a systematic approach, and compare the resulting clusters with expert classes.

Having no prior constraint on linear separability or scale, density based clustering seems

Fig 3. UMAP projection of AE embedding for each dataset. Points are colored by expert labels (not clusters), or in

grey when no annotation is available. The Hopkins statistic is displayed at the bottom left of each scatter plot.

https://doi.org/10.1371/journal.pone.0283396.g003
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appropriate for these distributions of points. We thus chose the HDBSCAN algorithm [45]

using its public python implementation [32].

To evaluate the agreement between clusters that emerges from the learnt representation

and expert labels, we use the Normalised Mutual Information (NMI). It is a common metric

for clustering performance evaluation which is also equivalent to the V-measure that is found

in other vocal repertoire discovery studies [25]. Given a set of clusters C and a set of labels L,

the NMI measures the relative entropy between the product of marginal distributions PL × PC
and the joint distribution PL,C, and normalises it so that a perfect match gives 1 and fully unre-

lated categorisations give 0. Eq 1 formulates the NMI, with H denoting the entropy and DKL

the Kullback–Leibler divergence or relative entropy.

NMIðL;CÞ ¼
DKLðPL;CkPL � PCÞ � 2

HðLÞ þHðCÞ
; ð1Þ

Vocal repertoire discreteness

The learnt representation, besides its potential agreement with experts’ perception of similarity

for categorisation, can help us learn the discreteness of vocal repertoires which varies across

animal species [19]. Indeed, the clusterability of a dataset can be measured using the Hopkins

statistic [46] (Eq 2), which we can apply to vocalisations’ latent distributions [25].

Hopkins ¼
Pm

i¼1
uiPm

i¼1
ui þ

Pm
i¼1

wi
: ð2Þ

This measure compares the sum of distances ui between m points sampled from a random

distribution and their closest neighbour in a dataset, with the sum of distances wi between m
points sampled from the dataset and their closest neighbour. Here, m was set to 100 and a nor-

mal distribution was estimated using the dataset’s moments. The Hopkins statistic computed

on UMAP embeddings is reported for each dataset in Fig 3.

Handcrafted features and deep audio embeddings

To have a baseline of comparison for the clustering performances of learnt features against

handcrafted ones, we ran experiments using two feature sets commonly found in the littera-

ture, i.e., whole spectrograms and PAFs. Following Sainburg et al. [25], we computed 32x32

spectrograms for each vocalisation and used the magnitudes of each spectro-temporal bin as

independent features. For the PAFs, we used the set of 18 features used in the latter study,

extracted using the Biosound package [24]. To allow the comparison between these feature

extraction methods and the auto-encoder’s, for all experiments, sample durations, sampling

rates and Fourier window size remained unchanged.

Additionally, to get a sense of how relevant is the auto-encoder learning framework, we

projected vocalisations using third party neural networks of the Holistic Evaluation of Audio

Representations (HEAR) [47]. We used the 3 baseline models of this challenge that give rela-

tively generic audio embeddings and were evaluated on a wide range of downstream tasks

including speech, music, and environmental sound analysis. These models include Wav2Vec2

[48] (trained on speech), CREPE [49] (trained on synthesised music), and OpenL3 [50]

(trained on audio / video content correspondance).

Focusing here on the feature extraction step, the dimensionality reduction (UMAP) and

clustering (HDBSCAN) were kept identical as for the auto-encoder evaluation procedure.
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Results

Hints on procedure’s optional settings

The focus of this paper is to study the impact of choosing an auto-encoder based representa-

tion for vocalisation clustering. However, to evaluate this approach and compare performances

with other feature extraction methods, we rely on dimensionality reduction and clustering

algorithms. The choice of algorithm (here UMAP and HDBSCAN respectively) along with

their hyper-parameters can have a strong impact on performances. Additionally, settings such

as spectrogram dynamic range compression, frequency layout, or the auto-encoder’s bottle-

neck size also might affect the learnt representation and by extension clusters’ agreement with

expert categorisation. Rather than reporting extensively on performance variations in relation

to this large search space, the main results of this study rely on a fixed set of settings. This sec-

tion presents them along with the rationales and empirical findings behind the different

choices that were made.

Spectrogram configuration. As for spectrogram magnitude normalisation and frequency

layouts, no configuration performs better in all cases. This is due to the diversity of frequency

ranges and signal to noise ratio found across datasets. The Mel frequency layout appears

mostly beneficial, but the effect of dynamic range compression (whether none, PCEN, or loga-

rithmic) is dataset specific (S1 Fig). For its good compromise across datasets and species, we

suggest using the Mel frequency layout with logarithmic compression as a first choice, and

selected it for the following experiments.

Dimensionality reduction. An early intuition of this study was that lower dimensional

bottlenecks would lead to the elimination of unnecessary information (e.g., small vocalisation

variations or background noise) and thus yield better clustering results. Experiments with

varying bottleneck sizes (from 16 to 512) showed a relatively low impact on the system’s final

performances (variations below 5%) with a minor tendency for higher performances with

larger bottlenecks. This observation might be explained by a loss of information when using

small bottlenecks, and the fact that UMAP is sufficient to reduce the dimensionality while pre-

serving local distances. We thus set a bottleneck size of 256 for the following experiments.

Dimensionality reduction such as UMAP is useful for data visualisation (Fig 3), but can

also help in clustering applications [25, 26]. In the latter case, there is no constraint for the

embedding space to be bi-dimensional, making its number of dimension another setting that

could affect the quality of the following clustering. By compressing the data, we reduce the

curse of dimensionality for distance estimations and we potentially lose information, which is

desirable to some extent. We experimented with UMAP compression in 2, 4, 8, 16 and 32

dimensions, and found that this setting has a relatively low impact on the NMI (mostly around

2% of variation), except for some cases like using only 2 dimensions for spectrogram represen-

tations (Fig 4). We thus suggest using more than 2 dimensions for clustering applications,

unless an interactive browsing of embeddings is desired in which case bi-dimensional embed-

dings should not be too detrimental if using auto-encoder based representations. As for the

following experiments, 8-dimensional embeddings were used.

HDBSCAN configuration. Before going for the HDBSCAN algorithms, trials were con-

ducted by applying K-means directly on auto-encoder embeddings. Performances always staid

below those of density based clustering after dimensionality reduction, which motivated to

focus on the latter for following experiments. For the HDBSCAN clustering algorithm [32],

the user can specify several settings: the minimum number of points for a dense region to be

considered a cluster (minimum cluster size); the minimum amount of neighboring points to

form a local dense region (minimum samples); an espilon value to merge clusters that are close

together [51]; and the cluster selection algorithm which chooses whether to split large clusters
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into sub-units or not. The minimum cluster size can be approximated using prior information

such as the total number of vocalisations and the expected number of unit types. Besides, the

examination of vocalisation embeddings can help in getting a sense of dense regions, giving

indications on how to set the three remaining parameters. We used a grid search to systemati-

cally tune these parameters for all datasets and found that the best compromise in perfor-

mances is for a minimum cluster size of 10; minimum samples of 3; epsilon of 0.1; and the leaf

cluster selection algorithm, except for the humpback whale datasets for which the EOM algo-

rithm is beneficial. This exception aside, across all datasets, these ‘generic’ settings do not

reduce the NMI by more than 4% as compared to optimal ones, and thus were kept for the fol-

lowing experiments. For experimenting with new species, we suggest to start of with these

parameters and to inspect clustered embeddings in case some tuning is necessary.

Comparison with other representations

Handcrafted features. Fig 5 summarises the NMI between clusters and expert labels for

each dataset, comparing handcraft feature extractions with the auto-encoder method. The first

Fig 4. Effect of varying UMAP compression levels on the subsequent categorisation. Scores are reported as a ratio of the measured NMI divided by

its maximum value across all compression levels, for the auto-encoder based representations (left) and the spectrogram representations (right).

https://doi.org/10.1371/journal.pone.0283396.g004

Fig 5. Agreement between found clusters and expert labels depending on vocalisation representations. Scores for the auto-encoder (AE) are given

with and without the perceptual loss.

https://doi.org/10.1371/journal.pone.0283396.g005
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insight that Fig 5 reveals is that learning features using an auto-encoder will yield better clus-

tering results (in terms of agreement with expert labels) than using PAFs or whole spectro-

grams. Also, training the network with a perceptual loss instead of a regular pixel loss is almost

systematically beneficial.

Deep audio embeddings. Deep learning models sometimes yield embeddings that are

useful for tasks that they were not specifically trained for. For instance, the OpenL3 model

trained on audio / video correspondence from youtube content can inform on the presence of

a queen in a beehive [47]. Fig 6 reports on the relevance of such audio embeddings for the

vocalisation clustering task studied here. Among the three models of the HEAR baseline,

OpenL3 model gives the best overall performances. Nonetheless, with the exception of the dol-

phin whistle dataset, the auto-encoder gives better results than all third party task models.

In addition to the HEAR challenge baseline models, we give the performance of auto-

encoders when trained on all datasets except the one it is tested on. Doing so, we test the

potential for a generic vocalisation encoder that could inform on their similarity without need-

ing any dataset specific training (note that since the humpback whale datasets share the acous-

tic signal they were treated as one in this experiment). Results in Fig 6 suggest a good potential

for such ‘generic’ encoder, with performances being very close to that of dataset specific auto-

encoders.

Interpretable metrics for repertoire annotation

The most common use case of the procedure studied here is when biologists want to cluster

similar vocalisations together, for instance for vocal sequence transcription. Using pre-clus-

tered vocalisations (Fig 7) can drastically reduce the amount of effort necessary to sort out

vocalisations, especially if the vocal repertoire is large or has not yet been catalogued. In this

sense, the NMI is hardly interpretable in terms of how much time it saves an analyst. To miti-

gate this shortcoming, Table 3 reports on metrics that give insights on the amount of annota-

tion effort spared / still needed after clustering was conducted, and so in the case of auto-

encoder based representations and spectrogram representations.

The first step of an annotation process following a clustering algorithm is to go through the

clusters looking for discriminant ones. A discriminant cluster is a cluster that gathers mostly

similar vocalisations that would be considered as from the same type. Table 3 thus reports on

Fig 6. Agreement between found clusters and expert labels for varying deep audio embeddings. Scores are given for embeddings of the auto-

encoder trained on the dataset it is tested on (AE), for auto-encoders trained on all other datasets (gen. AE), and for models of the HEAR challenge

baseline.

https://doi.org/10.1371/journal.pone.0283396.g006
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Fig 7. Vocalisations as clustered by the proposed algorithm. For each dataset, 4 clusters were randomly sampled (one per

line) from which 8 vocalisations were in turn randomly sampled and plotted.

https://doi.org/10.1371/journal.pone.0283396.g007
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the total number of clusters that the expert can browse into, as well as the proportion of clus-

ters that are discriminant. Here, we consider a cluster to be discriminant if at least 90% of the

labelled vocalisations it contains are from the same type. Note that clusters containing only

unlabelled vocalisations (detections with no expert annotation for its type) were not included

since we cannot estimate if they are discriminant or not.

In addition to the estimated effort needed to find discriminant clusters, we report on the

amount of annotations that would result from sorting these out (correcting on the potential

10% of wrongly clustered vocalisations). This is illustrated with the proportion of vocalisations

that belong to discriminant clusters, in other words the proportion of the dataset that would be

annotated using this algorithm. Eventually, the amount of labels that were not discriminantly

clustered is also reported.

Discussion

The results of this study suggest that deep representations self-supervisedly learnt more closely

match experts’ perception of vocalisation similarity than PAFs or whole spectrograms. This

high level representation can be useful when it comes to vocal repertoire exploration and/or

annotation, by using unsupervised clustering algorithms for instance. In general, efficiently

annotating large amounts of vocalisations is useful for the development of automatic transcrip-

tion systems, whether to directly train them or simply to assess their performances. This is

especially true in the era of deep learning based bioacoustic classification systems [41, 52], a

field for which one of the main limitation is the lack of annotated data for niche tasks such as

non-human animal vocal transcription.

A significant challenge that comes along the use of deep-learning (whether in supervised or

self-supervised settings) lies in hyper-parameters tuning and architecture design, in which

there is a great degree of freedom and relatively few rationales to motivate choices. Nonethe-

less, given a fixed configuration (except for spectrogram settings which are driven by ratio-

nales), we show that our proposed method is relatively versatile: it is efficient in a wide range

of species across taxa, despite diverse vocalisation frequency ranges and SNRs. Moreover, we

demonstrate that the results are relatively robust to varying settings in input spectrogram nor-

malisation, dimensionality reduction and clustering.

This versatility comes with one constraint however, spectrograms must come in dimensions

that follow (kf 2n × kt 2n). This is easily achieved by tuning the number of Mel filters and the

Table 3. Results of the clustering procedure.

# clusters % discr. % clustered # missed

Species and source # labels AE Spec AE Spec AE Spec AE Spec

bengalese finch [34] 33 61 94 95 92 93 89 3 3

bengalese finch [35] 93 165 167 96 92 93 94 0 3

california thrasher [36] 12 671 720 97 90 16 20 0 0

cassin vireo [36] 102 585 771 79 67 47 45 2 4

black-headed grosbeak [36] 37 702 748 81 64 43 27 1 1

humpback whale [37] 15 116 153 46 51 51 29 1 3

humpback whale (small) [37] 12 30 37 65 45 52 35 4 3

bottlenose dolphin [33] 20 16 12 47 31 32 15 12 16

Metrics include the total number of clusters, the proportion of discriminant clusters, the proportion of vocalisations that belong to the latter, and the amount of labels

that are not included in the latter). Each are given for the auto-encoder based representation (left) and the spectrogram based representation (right).

https://doi.org/10.1371/journal.pone.0283396.t003
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hop size accordingly, having a limited impact on the resulting spectrogram (k can still vary to

suit specific needs).

PAFs such as pitch estimates typically require expertise for settings to be tuned according to

frequency ranges and SNR. Without such tuning, the yielded representation shows a relatively

poor agreement with expert labels (Fig 5). Using whole spectrograms as proposed in previous

studies [25, 26] mitigates this shortcoming, and yields more relevant representations. How-

ever, resulting performances can still be improved by using embeddings of an auto-encoder

trained on spectrograms, as showed by an increase of 0.15 points of NMI for some species (Fig

5).

In addition to common handcrafted methods for vocalisation representation, we report on

the use of generic deep audio embeddings for this task of vocalisation clustering. While repre-

sentations of the HEAR challenge baseline show good performances when given to a classifica-

tion head for a wide range of tasks [47], our experiments suggest that in most cases, without

fine-tuning, they are less relevant than auto-encoders to measure vocalisation similarity

described by expert labels. Nonetheless, results also suggest that an auto-encoder trained on a

diverse set of vocalisations is useful to cluster a repertoire unseen in training. This strongly

alleviates the effort needed to employ the auto-encoder approach on new repertoires: a

‘generic’ encoder can be used and no dataset specific training is required.

Learning vocalisation representations with auto-encoders has been studied in the past for

zebra finch and mice [28], with an important difference made in the loss function used in

training: a variational auto-encoder loss is used. We suggest to not include the gaussian con-

straint on the bottleneck distribution since it seems counter-productive for samples’ cluster-

ability. Rowe et al. [30] have also studied auto-encoders for bird species clustering. The

authors employed a MSE loss and their approach does not outperform handcrafted features

(MFCC). In this study, the use of the perceptual loss yields equal or better performing embed-

dings across datasets. Presumably, by focusing on the reconstruction error of highly salient

spectrogram components, the perceptual loss reduces the amount of information related to

background noise found in the bottleneck. Despite using the perceptual loss instead of a regu-

lar pixel loss, recordings sometimes contain background noises that create an unwanted vari-

ability in embeddings of vocalisations from the same type. Often, these background noises are

relatively stationnary, and thus can be easily cancelled by substracting the median of each fre-

quency bins of the spectrogram.

For the humpback whale complete dataset (as opposed to its ‘small’ counter part) the

NMI between clusters and expert labels remains around 0.5. This might be explained by the

graded nature of humpback whale unit types, which have been shown to evolve both within

and across songs [53] (songs are are transmitted culturally, changing at every reproductive

season [17]). To challenge this hypothesis, we ran the repertoire discovery algorithm on

annotations of the secondary analyst of the study that provided the dataset [37], which

gather 1,800 vocalisations recorded on a single day. The resulting agreement between clus-

ters and expert labels rises around 0.7 of NMI, suggesting that the intra-type vocalisation

variability (lowered when working with a limited time span) is responsible for poorer clus-

tering results.

Vocalisation clustering is an important building block for the modelling of non-human ani-

mal communication systems. For this study, we chose to use discrete expert labels of vocalisa-

tion types as a proxy to measure the relevance of learnt representations. Being aware of the

potential limitations of such ground truths, they were necessary to asses the applicability of the

method until more data is collected specifically on animal perception [54]. We suggest that

learnt representations and systematic clustering might be an opportunity to emancipate from

the potential subjectivity of human labels, especially with soft cluster assignments helping with
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graded repertoires and difficult boundary decisions [19] (it is also available for HDBSCAN

[32]).

A potential shortcoming of this work is the omission of sequential context. Context has a

significant impact on birds vocal perception [55], and was shown to improve the classification

of humpback whale vocalisations [56]. We believe that jointly learning local categories with

sequential organisation might be the next opportunity to advance unsupervised vocal sequence

transcription, following the path led by speech applications [57].

Conclusion

This paper proposes a framework to assist vocal repertoire discovery using deep representation

learning with auto-encoders. It takes as input a set of detected vocalisations and automatically

suggests categories by acoustic similarity. This demands only three compulsory manual set-

tings that can be defined with very limited knowledge of vocalisation characteristics: the sam-

ple rate, the size of the Fourier transform window, and the signal duration suitable to describe

each vocalisation. These settings are used to compute vocalisation spectrograms, which an

auto-encoder is then trained to compress. The resulting high-level representation is projected

with UMAP and clustered with HDBSCAN. This paper gives hints on how to choose settings

for the two latter algorithms depending on dataset characteristics.

We experiment this auto-encoder framework on 8 different datasets with varying amounts

of vocalisations, repertoire sizes, SNRs, and frequency ranges. Despite these variations, we

demonstrate a relatively good agreement between the unsupervised categorisation and expert

labels of vocalisation types, consistently superior to the baseline approach of using whole spec-

trograms. The two methods are compared both with a metric of information theory (NMI)

and with indicators of the effort needed to manually annotate the dataset given clusters.

Indeed, the method is not trustworthy for the direct transcription of vocal sequences, but can

significantly reduce the human effort needed in characterising and annotating unknown vocal

repertoires.

The procedure is made available as an open source Python package for the community to

use it on animal vocal repertoire studies, including functionalities such as auto-encoder train-

ing, interactive browsing of embeddings, clustering, and plotting for efficient annotation. Also,

we publish the pretrained weights of a ‘generic’ vocalisation encoder trained on all datasets of

this paper, which is in most cases as good as a dataset specific auto-encoder in clustering voca-

lisations of a new repertoire.

Supporting information

S1 Fig. Impact of varying spectrogram frequency layouts and dynamic range compression

for the subsequent vocalisation categorisation.

(TIF)
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1. Kershenbaum A, Blumstein DT, Roch MA, Akçay Ç, Backus G, Bee MA, et al. Acoustic sequences in

non-human animals: a tutorial review and prospectus. Biological Reviews. 2016; 91(1):13–52. https://

doi.org/10.1111/brv.12160 PMID: 25428267

2. Shannon CE. A mathematical theory of communication. The Bell system technical journal. 1948; 27

(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

3. Ford JKB. Call traditions and dialects of killer whales (Orcinus orca) in British Columbia [PhD Thesis].

University of British Columbia; 1984.

4. Garland EC, Castellote M, Berchok CL. Beluga whale (Delphinapterus leucas) vocalizations and call

classification from the eastern Beaufort Sea population. The Journal of the Acoustical Society of Amer-

ica. 2015; 137(6):3054–3067. https://doi.org/10.1121/1.4919338 PMID: 26093397

5. MacDougall-Shackleton EA, MacDougall-Shackleton SA. Cultural and genetic evolution in mountain

white-crowned sparrows: song dialects are associated with population structure. Evolution. 2001; 55

(12):2568–2575. https://doi.org/10.1554/0014-3820(2001)055%5B2568:CAGEIM%5D2.0.CO;2 PMID:

11831670

6. Bezerra BM, Souto A. Structure and usage of the vocal repertoire of Callithrix jacchus. International

Journal of Primatology. 2008; 29(3):671–701. https://doi.org/10.1007/s10764-008-9250-0

7. Marler P, Pickert R. Species-universal microstructure in the learned song of the swamp sparrow (Melos-

piza georgiana). Animal Behaviour. 1984; 32(3):673–689. https://doi.org/10.1016/S0003-3472(84)

80143-8

8. Winter P, Schott D, Ploog D, Handley P. Ontogeny of squirrel monkey calls under normal conditions

and under acoustic isolation. Behaviour. 1973; 47(3-4):230–239. https://doi.org/10.1163/

156853973X00085 PMID: 4203637

9. Lameira AR, Hardus ME, Mielke A, Wich SA, Shumaker RW. Vocal fold control beyond the species-

specific repertoire in an orang-utan. Scientific reports. 2016; 6(1):1–10. https://doi.org/10.1038/

srep30315

10. Collias NE. The vocal repertoire of the red junglefowl: a spectrographic classification and the code of

communication. The Condor. 1987; 89(3):510–524. https://doi.org/10.2307/1368641

11. Duc PNH, Torterotot M, Samaran F, White PR, Gérard O, Adam O, et al. Assessing inter-annotator

agreement from collaborative annotation campaign in marine bioacoustics. Ecological Informatics.

2021; 61:101185. https://doi.org/10.1016/j.ecoinf.2020.101185

PLOS ONE Deep audio embeddings for vocalisation clustering

PLOS ONE | https://doi.org/10.1371/journal.pone.0283396 July 10, 2023 16 / 18

https://doi.org/10.1111/brv.12160
https://doi.org/10.1111/brv.12160
http://www.ncbi.nlm.nih.gov/pubmed/25428267
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1121/1.4919338
http://www.ncbi.nlm.nih.gov/pubmed/26093397
https://doi.org/10.1554/0014-3820(2001)055%5B2568:CAGEIM%5D2.0.CO;2
http://www.ncbi.nlm.nih.gov/pubmed/11831670
https://doi.org/10.1007/s10764-008-9250-0
https://doi.org/10.1016/S0003-3472(84)80143-8
https://doi.org/10.1016/S0003-3472(84)80143-8
https://doi.org/10.1163/156853973X00085
https://doi.org/10.1163/156853973X00085
http://www.ncbi.nlm.nih.gov/pubmed/4203637
https://doi.org/10.1038/srep30315
https://doi.org/10.1038/srep30315
https://doi.org/10.2307/1368641
https://doi.org/10.1016/j.ecoinf.2020.101185
https://doi.org/10.1371/journal.pone.0283396


12. Janik VM. Pitfalls in the categorization of behaviour: a comparison of dolphin whistle classification meth-

ods. Animal Behaviour. 1999; 57(1):133–143. https://doi.org/10.1006/anbe.1998.0923 PMID:

10053080

13. Sayigh LS, Esch HC, Wells RS, Janik VM. Facts about signature whistles of bottlenose dolphins, Tur-

siops truncatus. Animal Behaviour. 2007; 74(6):1631–1642. https://doi.org/10.1016/j.anbehav.2007.02.

018

14. Arnold K, Zuberbühler K. Semantic combinations in primate calls. Nature. 2006; 441(7091):303–303.

https://doi.org/10.1038/441303a PMID: 16710411

15. Berwick RC, Okanoya K, Beckers GJ, Bolhuis JJ. Songs to syntax: the linguistics of birdsong. Trends

in cognitive sciences. 2011; 15(3):113–121. https://doi.org/10.1016/j.tics.2011.01.002 PMID:

21296608

16. Kudo H. The study of vocal communication of wild mandrills in Cameroon in relation to their social struc-

ture. Primates. 1987; 28:289–308. https://doi.org/10.1007/BF02381013

17. Garland EC, Goldizen AW, Rekdahl ML, Constantine R, Garrigue C, Hauser ND, et al. Dynamic hori-

zontal cultural transmission of humpback whale song at the ocean basin scale. Current biology. 2011;

21(8):687–691. https://doi.org/10.1016/j.cub.2011.03.019 PMID: 21497089

18. Elie JE, Theunissen FE. The vocal repertoire of the domesticated zebra finch: a data-driven approach

to decipher the information-bearing acoustic features of communication signals. Animal Cognition.

2016; 19(2):285–315. https://doi.org/10.1007/s10071-015-0933-6 PMID: 26581377

19. Wadewitz P, Hammerschmidt K, Battaglia D, Witt A, Wolf F, Fischer J. Characterizing Vocal Reper-

toires—Hard vs. Soft Classification Approaches. PLOS ONE. 2015; 10(4):e0125785. https://doi.org/10.

1371/journal.pone.0125785 PMID: 25915039

20. Kershenbaum A, Sayigh LS, Janik VM. The encoding of individual identity in dolphin signature whistles:

How much information is needed? PloS one. 2013; 8(10):e77671. https://doi.org/10.1371/journal.pone.

0077671 PMID: 24194893

21. Clink DJ, Klinck H. Unsupervised acoustic classification of individual gibbon females and the implica-

tions for passive acoustic monitoring. Methods in Ecology and Evolution. 2021; 12(2):328–341. https://

doi.org/10.1111/2041-210X.13520

22. Van Segbroeck M, Knoll AT, Levitt P, Narayanan S. MUPET—mouse ultrasonic profile extraction: a sig-

nal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron. 2017; 94

(3):465–485. https://doi.org/10.1016/j.neuron.2017.04.005 PMID: 28472651

23. Sangiamo DT, Warren MR, Neunuebel JP. Ultrasonic signals associated with different types of social

behavior of mice. Nature neuroscience. 2020; 23(3):411–422. https://doi.org/10.1038/s41593-020-

0584-z PMID: 32066980

24. Elie JE, Theunissen FE. Zebra finches identify individuals using vocal signatures unique to each call

type. Nature communications. 2018; 9(1):1–11. https://doi.org/10.1038/s41467-018-06394-9 PMID:

30279497

25. Sainburg T, Thielk M, Gentner TQ. Finding, visualizing, and quantifying latent structure across diverse

animal vocal repertoires. PLOS Computational Biology. 2020; 16(10):e1008228. https://doi.org/10.

1371/journal.pcbi.1008228 PMID: 33057332

26. Thomas M, Jensen FH, Averly B, Demartsev V, Manser MB, Sainburg T, et al. A practical guide for gen-

erating unsupervised, spectrogram-based latent space representations of animal vocalizations. Journal

of Animal Ecology. 2022; 91(8):1567–1581. https://doi.org/10.1111/1365-2656.13754 PMID: 35657634

27. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for dimension

reduction. arXiv preprint arXiv:180203426. 2018;.

28. Goffinet J, Brudner S, Mooney R, Pearson J. Low-dimensional learned feature spaces quantify individ-

ual and group differences in vocal repertoires. Elife. 2021; 10:e67855. https://doi.org/10.7554/eLife.

67855 PMID: 33988503

29. Bergler C, Schmitt M, Cheng RX, Maier A, Barth V, Nöth E. Deep Learning for Orca Call Type Identifica-
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