
HAL Id: hal-04194225
https://hal.science/hal-04194225

Submitted on 2 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Benefits of Self-supervised Learned Speech
Representations for Predicting Human Phonetic

Misperceptions
Santiago Cuervo, Ricard Marxer

To cite this version:
Santiago Cuervo, Ricard Marxer. On the Benefits of Self-supervised Learned Speech Representations
for Predicting Human Phonetic Misperceptions. INTERSPEECH 2023, Aug 2023, Dublin, Ireland.
pp.1788-1792, �10.21437/Interspeech.2023-1476�. �hal-04194225�

https://hal.science/hal-04194225
https://hal.archives-ouvertes.fr


On the benefits of self-supervised learned speech representations
for predicting human phonetic misperceptions

Santiago Cuervo, Ricard Marxer
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Abstract
Deep neural networks (DNNs) trained by self-supervised learn-
ing (SSL) have recently been shown to produce representations
similar to brain activations for the same speech input. Can SSL
representations help to explain human speech perception errors?
Aiming to shed light on this question, we study their use for
phonetic misperception prediction. We extract representations
from wav2vec 2.0, a recent SSL architecture for speech, and
use them to compute features for a model predicting the pres-
ence of phonetic perception errors in speech-in-noise signals.
We perform our experiments on a corpus of over 3000 consis-
tent word-in-noise confusions in English. We consider multi-
ple SSL-based features and compare them against conventional
acoustic baselines and features obtained from DNNs fine-tuned
through supervised learning for ASR. Our results show the su-
periority of SSL representations when extracted from the proper
layer, further suggesting their potential to model human speech
perception.
Index Terms: speech perception, intelligibility prediction, sub-
lexical intelligibility, self-supervised learning, speech-in-noise

1. Introduction
A prominent theory of the brain frames it as an inference engine
that optimizes for prediction performance based on context [1].
Similarly, the core idea behind self-supervised learning (SSL),
a recently popularized machine learning paradigm, is to extract
useful representations from data by learning to predict it based
on the context in which it occurs. Accordingly, there has been
growing interest in exploring the potential role of SSL in some
brain processes [2, 3].

In [3], the authors exposed significant correlations under
the same speech input between representations obtained from
wav2vec 2.0 [4], a SSL algorithm for speech processing, and
brain activations in response to speech. In this paper, we con-
tinue this line of research connecting SSL and human speech
perception. We investigate the correlations between SSL rep-
resentations and consistent human phonetic misperceptions of
speech-in-noise. Specifically, we build models that use features
computed from wav2vec 2.0 representations to predict the elic-
itation of human misperceptions at each phone in single-word
speech-in-noise recordings.

We consider intrusive (ie. with access to the clean speech
waveform) and non-intrusive features used in the intelligibil-
ity prediction literature, compare SSL representations against
spectrum-based baselines, and analyze the effect of supervised
ASR fine-tuning on the quality of representations for phonetic
misperception prediction. Our main contributions are:
• Empirically demonstrating the superiority of wav2vec 2.0

representations in phonetic misperception prediction relative
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Figure 1: wav2vec 2.0 architecture and its features for speech-
in-noise misperception prediction.

to conventional acoustic features and commonly used repre-
sentations obtained from ASR models.

• Establishing the proper level in wav2vec 2.0 from which to
extract representations for phonetic misperception prediction,
further illustrating its hierarchical distribution of information.

• Proposing the masked language modeling (MLM) loss as a
non-intrusive index for speech intelligibility, and demonstrat-
ing that it is predictive of phonetic misperceptions.

2. Phonetic misperception prediction
For a sequence of uttered phones p1, . . . , pm perceived by a lis-
tener as p̂1, . . . , p̂n, we train a model to predict for each phone
in p, if it was correctly identified in p̂. The prediction is con-
ditioned on a sequence of features extracted from the uttered
waveform. Such predictive model can be useful to provide an
optimization objective for speech enhancement systems [5], and
perhaps to gain insights on human speech perception.

We used self-supervised learned speech representations
from wav2vec 2.0 (Figure 1) to compute features for the pre-
dictive model. Wav2vec 2.0 consists of three main modules:
1) a strided convolutional network transforms the speech wave-
form consisting of K samples x ∈ R1×K into a sequence of
frame encodings y ∈ Rd×T , 2) a vector-quantizer discretizes
each encoding, producing a sequence of codes q ∈ Z1×T , and
3) a stack of transformer blocks with bidirectional attention pro-
duces a sequence of context vectors c ∈ Rd×T .

The model is trained using a MLM loss. During self-
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supervised training some encodings in y are masked, and the
model is optimized to predict the codes in q corresponding to
the masked encodings, conditioned on their corresponding con-
text vectors in c. For more details we refer the reader to [4].

After training, the frame encodings and context vectors can
be used as speech representations for downstream tasks. We
compute multiple features based on them:

Raw speech representations z ∈ Rd. An encoding or context
vector learned by wav2vec 2.0. In an intrusive setup, we process
the clean reference waveform to obtain zref and concatenate it
to z: cat(z, zref ) ∈ R2d. In [6] the authors demonstrated that
raw SSL representations are predictive of macroscopic (word
and sentence level) speech intelligibility indices.

Similarity to a clean reference signal sim(z, zref ) ∈ [−1, 1].
It is the cosine similarity between a representation from the cor-
rupted waveform z and a representation from the noise-free
reference signal zref . In [7] it was shown to correlate with
macroscopic speech-in-noise intelligibility for representations
extracted from a DNN trained through supervised learning.

Masked language modeling loss LMLM (ci) ∈ R. It is the
MLM loss obtained when using ci for predicting qi. To compute
LMLM (ci), we mask yi and the 4 closest frames to it (with each
frame lasting 25ms, it is slightly above the mean phone dura-
tion). The brain seems to perform statistical inferences based
on context [2, 8], so we can expect that when faced with uncer-
tainty about a heard phone, it would use contextual information
to predict the most likely phonetic category. We hypothesized
that the MLM loss, which captures the idea of context-based
prediction, correlates with speech-in-noise intelligibility.

3. Experiments and results
3.1. Setup

3.1.1. Data and pre-processing

We performed our experiments on the English Consistent Con-
fusion Corpus [9], a dataset created by gathering perceived re-
sponses from 15 listeners to common English words mixed with
random noise maskers. The corpus is composed of words-in-
noise misperceived in the same way by at least 6 of the 15 lis-
teners. These consistent hearing errors are valuable targets to
test models of speech perception. For each of its 3207 consis-
tent misperceptions, the corpus provides the speech and masker
16 kHz waveforms that produced them, and the responses given
by the listeners. The corpus uses three different types of noise
masker: stationary speech shaped noise, four-speaker speech
babble, and three-speaker babble modulated noise.

We split the dataset in train, validation, and test sets in por-
tions of 80/10/10%, respectively. Considering that the prop-
erties of the produced misperceptions are dependent on the
masker type [10], and that other factors such as speaker gen-
der and identity are roughly balanced across maskers, the splits
were made stratified by masker type.

Our task is to predict misperceptions at individual phones.
To obtain prediction targets, we computed the edit scripts be-
tween the perceived1 and target phonetic transcripts. An edit
operation on a specific phone indicates a phonetic perception er-
ror. To locate phones (hence misperceptions) in time, we used
the Montreal Forced Aligner [11] to generate phonetic align-
ments for the clean speech signal. These alignments are pub-
licly available at https://tinyurl.com/CCalign. We con-

1For all utterances we use the most common misperception.

sidered two prediction resolutions: phone-wise and frame-wise.
As an example, consider the utterance ”bit” (B IH T)2, with
each phone lasting 2, 3 and 1 frames, respectively. If the word
is confused as ”bet” (B EH T), the prediction targets phone-
wise and frame-wise would be 0 1 0 and 0 0 1 1 1 0,
respectively. Frame-wise predictions are made for each speech
representation, according to the sampling rate of the feature ex-
tractor. In phone-wise predictions, we obtain a phone represen-
tation by averaging the frame representations falling within the
time window of a phone according to the alignments.

3.1.2. Self-supervised model

We extract SSL representations from the wav2vec 2.0 LARGE
model trained on 60 k hours of speech [4]. The convolu-
tional encoder contains 7 blocks of temporal convolutions
with 512 channels, strides (5,2,2,2,2,2,2) and kernel widths
(10,3,3,3,3,2,2). This results in an output frequency of 49Hz
with a stride of about 20ms between each sample, and a recep-
tive field of 25ms of audio. The transformer is composed of
24 blocks with model dimension 1024, inner dimension 4096,
and 16 attention heads. The quantizer uses product quantiza-
tion with 2 codebooks of 320 entries each, and embedding di-
mension of 768. The total number of parameters is 317 million.
We applied PCA dimensionality reduction to a 256-dimensional
space to the representations. This was done after observing
overfitting due to the large numbers of input parameters.

3.1.3. Baselines and metrics

We compare the performance on phonetic misperception pre-
diction of SSL features against two time-frequency spectrum
features: 1) the Short-Time Objective Intelligibility (STOI) [12],
a classic intrusive index for speech-in-noise intelligibility, and
2) Ratemaps, a neurologically-inspired spectrogram used in
intelligibility prediction [13]. When using ratemaps, we use
frequency coefficients as z. To compute the STOI index we
use the pystoi3 package with the default parameters. For
a given phone, we compute its STOI across the audio seg-
ment corresponding to it. To compute the ratemaps we use the
python ratemap package4 using 55 channels.

In all experiments we evaluate the F1 score of the predic-
tive model, and report its mean and standard deviation obtained
across 10 independent runs. Precision and recall were balanced
in all cases, therefore we do not report them separately.

3.1.4. Computing infrastructure and code

All experiments were run on a single node with an AMD
EPYC 7313 16-Core Processor, 95GB of RAM, and an A100
80GB NVIDIA GPU. We make the code available at https:
//github.com/tiagoCuervo/SSLPhoneticConf.

3.2. Choosing the predictive model

Aiming for simplicity, we initially assumed independence from
the rest of the utterance and made phone-wise predictions us-
ing only phone-located features. We used the Support Vector
Classifier [14] implementation from Scikit-learn [15] as a pre-
diction model. The regularization constant and the kernel used
were chosen according to a 5-fold cross validation from the sets
10i∈{−1,0,1,2} and {linear, RBF}, respectively. We used as fea-

2ARPAbet notation.
3https://github.com/mpariente/pystoi
4https://github.com/rikrd/python_ratemap
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Figure 2: Validation F1 scores across layers and feature ex-
tractors using cat(z, zref ) as input features. The same patterns
were observed for z and sim(z, zref ). Wav2vec 2.0 represen-
tations from lower transformers (layers 11 to 14) perform best
in all models. The plot comparing feature extractors (bottom
right) shows the superiority of representations learned through
SSL with respect to the ones fine-tuned for ASR and conven-
tional acoustic features (where applies, it considers only the
scores between layers 11 and 14).

tures sim(z, zref ), with z and zref being SSL representations,
and obtained an F1 score of 0.585 ± 0.010.

The brain however exploits context, therefore our next step
was to test if the prediction model could benefit from it. We
experimented with a neighborhood of radius r centered around
the phone. We used zero padding to handle edges. For r =
1, 2, and 3, we obtained F1 scores of 0.603 ± 0.007, 0.624 ±
0.008, and 0.630 ± 0.007, respectively. This showed that the
elicitation of phone misperceptions is dependent on context, and
therefore on higher level linguistic features (as expected from
[16, 10]), and that the self-attention mechanism in wav2vec 2.0
either does not capture the relevant context for phone percep-
tion error prediction, or this information is lost by phone-wise
averaging and/or the computation of sim(z, zref ).

According to these results, in the following experiments we
used full sequences as inputs and a bidirectional LSTM [17]
sigmoid classifier as predictive model. We used a single hid-
den layer with dropout regularization [18] (p = 0.5). For ex-
periments using scalar features we used 32 hidden units. For
models processing vectors we used 256 units and input dropout
(p = 0.2). The model is trained using the Adam optimizer [19]
with a learning rate of 0.0001 and a batch size of 256 to mini-
mize a binary cross entropy loss. The model is trained until the
validation F1 score does not improve for more than 15 epochs.

LSTM networks can handle long input sequences, therefore
in all the following experiments we used frame-wise predictions
to avoid the dependency on alignments at inference time.

3.3. Predictive power across layers

The features learned by wav2vec 2.0 are hierarchical, with inter-
mediate transformer blocks capturing more phonetic informa-
tion [20]. We evaluated representations extracted at each block
l ∈ {7, 8, 9, . . . , 31} (ie. output of the convolutional encoder
and all transformer blocks) in phonetic misperception predic-
tion. Figure 2 and Figure 3 illustrate the obtained results using
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Figure 3: Validation F1 scores across layers using LMLM (c)
as input features. Contrary to other features (Figure 2), the best
performance occurs around layer 27, a high transformer layer.
Table 1: Phone misperception prediction performance using a
bidirectional LSTM with various features and feature extrac-
tors. Best performing layer according to validation F1 shown
in parenthesis, where applicable. Scores reported on test set.
Representations learned purely through self-supervised learn-
ing are better predictors of human phonetic misperceptions.

Feature Feature extractor Test F1

In
tr

us
iv

e

STOI DFT 0.595 ± 0.008

sim(z, zref )

Ratemap 0.661 ± 0.008
w2v (l = 12) 0.709 ± 0.006
w2v + LS960 (l = 18) 0.685 ± 0.001
w2v + LS960 + Conf.(l = 23) 0.619 ± 0.026

cat(z, zref )
Ratemap 0.710 ± 0.010
w2v (l = 12) 0.795 ± 0.004
w2v + LS960 (l = 19) 0.780 ± 0.004
w2v + LS960 + Conf.(l = 17) 0.766 ± 0.002

N
on

-i
nt

ru
si

ve LMLM (z) w2v (l = 27) 0.674 ± 0.004

z

Ratemap 0.672 ± 0.002
w2v (l = 14) 0.756 ± 0.008
w2v + LS960 (l = 10) 0.739 ± 0.006
w2v + LS960 + Conf. (l = 19) 0.689 ± 0.005

as features cat(z, zref ) and LMLM (z), respectively.
In Figure 2 (top-left), representations from the lower trans-

former blocks perform best, consistently outperforming the rep-
resentations from the convolutional encoder. The prediction
score drops sharply for l > 28. The highest transformer block
is trained to directly predict quantized representations from the
convolutional encoder, and therefore the top blocks might be
encouraged to encode lower-level, less phonetically-relevant
information. Similar results are reported in [20] in terms of
phonemic categorization performance. The same trends were
observed when using sim(zref , z) and z (not shown).

The scores obtained when using LMLM (z) (Figure 3) ini-
tially tend to decrease, but rise after l = 24 and have a peak
around l = 27. As before, performance drops to its lowest for
l > 28. When computing LMLM (z), the phone at which the
misperception is predicted is mostly masked, and therefore the
feature is computed from context. In this case, we hypothesize
that patterns between phones given by lexical features could be
most relevant, eg. in a phone bigram with the first phone masked
and the second phone being ’Z’, it could be predicted that the
occluded phone is ’IH’, in order to form the common word ”is”.
Layer l = 27, being the highest before the performance drop,
could be the one capturing these higher level patterns.

3.4. The effect of supervised fine-tuning

To determine if self-supervised learning is important for the
prediction of phonetic perception errors, we compare the per-
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formance of wav2vec 2.0 representations against models fine-
tuned through supervised learning for ASR. We considered two
of such models. The first used wav2vec 2.0 as backbone, and
was fine-tuned to predict letter transcriptions using a Connec-
tionist Temporal Classification (CTC) [21] loss on 960 hours
of the LibriSpeech [22] (LS960) dataset. The second used the
model fine-tuned on LS960 as backbone, and was fine-tuned to
predict phonetic transcriptions using a CTC loss on the noisy
utterances from the English Confusion Corpus.

For the model fine-tuned on LS960 we used the checkpoint
provided in https://github.com/facebookresearch/
fairseq/tree/main/examples/wav2vec. To fine-tune the
model on the Confusion Corpus we followed the recipe avail-
able under the same link for fine-tuning on 1 h of labeled data
(roughly the length of the Confusion Corpus).

The results presented in Figure 2 and Table 1 show that su-
pervised fine-tuning does not bring any improvement upon the
best performing SSL representations. On the contrary, across
most layers ASR fine-tuning degrades predictive performance.
ASR fine-tuned representations only outperform SSL represen-
tations consistently on the highest transformer blocks (the worst
performing SSL features). Contrary to MLM, the CTC loss
forces last blocks to focus on phonetic information, which re-
sults useful for predicting phonetic misperceptions.

The model fine-tuned on both LS960 and the Confusion
Corpus performed the worst. This indicates that more fine-
tuning and/or fine-tuning on speech-in-noise data results in fur-
ther degradation of prediction performance. ASR training could
make models more robust to noise by forcing them to focus on
discrete (phonetic) properties. This robustness might harm their
ability to detect confusing regions in the speech signal, which
could be useful to predict the likelihood of a misperception.

4. Discussion
4.1. On the meaning of our results

In [3], the authors identified similarities between different
wav2vec 2.0 layers and different regions of the brain associated
to speech perception. Our results in Section 3.3 could be con-
nected to their findings on the hierarchy of speech processing.
Lower transformer blocks performing best in phonetic percep-
tion prediction could be connected to their reports on higher
correlations between low transformers and activations in the
Heschl’s and Superior Temporal gyruses, regions of the cortex
believed to play a role in phonetic categorization [23, 24]. [3]
also showed that mid-high transformer blocks are more strongly
correlated with activations in the Superior Temporal sulcus,
a region of the cortex related to high level linguistic features
[25, 26]. This could support our hypothesis on the peak perfor-
mance in l = 27 with LMLM (z) (Figure 3, Section 3.3) being
due to exploiting linguistic patterns above the acoustic level.

The practical implications for intelligibility prediction re-
search are evident from the study. Firstly, the results suggest
that SSL representations should be chosen over supervised-
learned ones, contrary to what has been done in [7, 27] for
instance. Secondly, cat(z, zref ) consistently and significantly
outperforming sim(z, zref ) as a feature for intelligibility pre-
diction, indicates that learned non-linear functions over raw fea-
tures should be preferred over linear similarity measures. This
could improve the results reported by [7]. It is left to be seen if
raw non-intrusive features also outperform non-intrusive meth-
ods based on ASR systems’ uncertainty, such as [28, 29].

The hypothesis that the MLM loss correlates with intelli-

gibility was also validated by our results. The MLM loss is a
promising candidate for non-intrusive intelligibility prediction,
as it does not require any speech transcriptions at any point of
the pipeline used for its computation. In contrast, other cur-
rently proposed non-intrusive methods require ASR systems
trained on transcribed speech [28, 29], which prevents them
from being applied to low-resource languages. Unsupervised
ASR [20] holds potential for improving such methods.

4.2. On limitations and future work

We would have liked to perform evaluations on more data, but
we are limited by the scarcity of corpora for speech perception
[27]. We consider extending our analyses to the Clarity Chal-
lenge corpus [5] of responses from hearing impaired listeners.

In Section 3.4 there should be an additional comparison
with a model only fine-tuned on the Confusion Corpus in order
to disentangle the effects of further fine-tuning, and fine-tuning
on noisy data. However, we had issues to successfully fine-tune
the base wav2vec 2.0 LARGE checkpoint trained on 60k hours
of speech. This problem has been reported by other users5.

More experiments should be done using other feature ex-
tractors to further validate the benefits of SSL. In this study we
focused on wav2vec 2.0, motivated by its demonstrated similar-
ities with human speech processing [3]. In the future, we plan
to analyze representations from w2v-BERT [30] and Whisper
[31], state-of-the-art SSL and ASR models, respectively.

5. Related work
This study shares similar goals with [3], which aimed to corre-
late wav2vec 2.0 representations with brain activations recorded
using fMRI. Similarly, we correlate wav2vec 2.0 representa-
tions and human phonetic perception errors, another signal re-
lated to the human speech processing system. We arrive to sim-
ilar conclusions on the benefits of SSL representations and the
hierarchical distribution of information in wav2vec 2.0.

Our work also shares connections with the literature on in-
telligibility prediction based on DNN representations [27, 7, 28,
6, 32]. More relevantly, in [6], SSL representations were used
and optimized to predict multiple speech intelligibility indices.
However, in contrast to our phonetic sublexical focus, all these
methods are aimed for intelligibility over words and sentences.

6. Conclusions
We have empirically demonstrated that SSL representations ob-
tained from the lower transformer blocks in wav2vec 2.0 are
better predictors of human phonetic perception errors, rela-
tive to conventional acoustic features, and representations from
DNNs fine-tuned through supervised learning for ASR. Overall,
our results reinforce the candidacy of self-supervised learning
as a mechanism for speech perceptual learning in the brain. Ad-
ditionally, we have proposed the MLM loss as a non-intrusive
method for intelligibility prediction. This method does not re-
quire speech transcriptions for its computation, and could be
useful on low-resource languages. Finally, we have analyzed
our findings and outlined possible research directions.
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