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High Integrity Localization of Intelligent Vehicles
with Student’s t Filtering and Fault Exclusion

Joelle Al Hage, Nicolò Salvatico and Philippe Bonnifait

Abstract—High-integrity localization is a key element for
safety-critical applications like autonomous driving. The naviga-
tion filter plays a crucial role in merging sensor data to estimate
an accurate pose and calculate a confidence interval based on
task requirements. This paper presents an end-to-end Student’s
t information filter for accurate data fusion and non-pessimistic
confidence domain computation. The filter incorporates a Fault
Detection and Exclusion stage based on the Kullback-Leibler
Divergence. The degree of freedom of the t distribution shapes
the heavy tail to make the estimation process more robust against
non detected outliers. We show that the adjustment of the degree
of freedom can be done in real time using measurement residuals
which give an indirect vision of the environment complexity. The
accuracy and integrity of the proposed approach are evaluated
with real data acquired with an experimental vehicle using GPS
and Galileo pseudoranges merged with camera measurements
after a map matching step with a High-Definition map. A
comparative study with other classical methods based on Kalman
filtering is also reported.

I. INTRODUCTION

Localization with high integrity is a major challenge for safe
navigation of intelligent vehicles. This requires the localization
system to issue a safety alert when it should not be used.
Vehicle localization on roads relies on the fusion of data col-
lected from multiple sensors, including Inertial Measurement
Unit (IMU), Global Navigation Satellite Systems (GNSS),
cameras, and Lidars [1]. Furthermore, the incorporation of a
High-Definition (HD) map is crucial to associate perception
measurements with georeferenced features [2]–[4].

Merging data from multiple sensors is usually done using
a Kalman Filter (KF). However, the assumption of Gaussian
distributions is not always justified and can be problematic
when bounding the errors under small probabilities. This
principle is linked to the integrity concept.

The integrity of intelligent vehicles, that originates from the
aviation domain, is today an active research area that aims to
reduce the probability of accidents as much as possible [5],
[6]. It refers to the trust that can be placed in a navigation
solution and is associated with a target integrity risk (TIR)
that represents the maximum probability that the error in
position exceeds a limit without warning the user [5], [7]. The
error bound (or confidence interval) is known as the Protection
Level (PL) and is computed so that the probability of the
position error exceeding it is less than the TIR.

In this paper, the aim is to achieve a high integrity localiza-
tion while maintaining a lane-level accuracy. The PL values
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must be determined in real time without an underestimation
due to biases, non Gaussian distributions or errors resulting
from the linearization of models. The Student’s t filter (StF)
which is a generalization of the KF is well suited to these prob-
lems since it handles heavy tailed distributions [8]. Multiple
adaptation of this filter can be found in the literature [9]–[12].

The heavy tail property is important to bound the errors
in challenging environments. In this paper, an end-to-end ap-
proach based on Bayesian Student’s t filtering is proposed for
data fusion and simultaneous PL computation. Pseudoranges
from different GNSS constellations and measurements from
a smart camera are modeled as Student’s t distribution and
are merged with odometery data through a Tightly Coupled
(TC) architecture [13]. The integration of low-level GNSS
measurements in data fusion allows for improved modeling,
resulting in superior integrity performance compared to a
loosely coupled scheme that relies on the position solution
provided by a GNSS receiver. Although the StF is more robust
than KF, large errors still affect the localization accuracy and
integrity. Therefore, a Fault Detection and Exclusion (FDE)
based on the Kullback-Leibler Divergence (KLD) is proposed
to remove the erroneous measurements from the data fusion.
The Student’s t Information Filter (StIF), proposed in our
previous work, is used to simplify the fault exclusion [14].
Mathematically equivalent to the StF, the key aspect of the
StIF lies in its update step, which is modeled as a summation
of the information contributions. Unlike [14], in this paper,
raw measurements are modeled as Student’s t distributions to
improve the integrity performance.

The StF is based on t-distributions characterized by a Degree
of Freedom (DoF) which influences the tails to be lighter or
heavier. When the DoF approaches infinity, the t-distribution
becomes similar to a Gaussian. The DoF has a large influence
on the filter and on the confidence interval values. An incorrect
setting can lead to suboptimal behavior. In certain studies such
as [8], a choice is made to set the DoF equal to three to
preserve heavy tails. However, this particular choice is not
suitable for our application, considering the dynamic nature of
the environment. For instance, opting for this value in an open
sky environment can lead to a degradation of the filter results.
In [10], the authors deal with this problem through a robust
Multiple Model Adaptive Estimation (MMAE) where a bank
of three StF with different DoF values is used. The MMAE
selects the best filter or combine the outputs of the different
StF. This method limits the number of possible choices on the
DoF. In this paper, we propose to adapt the DoF accordingly
to the residual computed for the fault detection. This residual



includes information about the quality of pseudoranges and
camera measurements.

This paper is organized as follows: section II presents the
proposed multi-sensor data fusion through a tightly coupled
architecture using the student’s t information filter. Section
III presents the fault detection and exclusion step based on
the KLD and the integrity study. Experimental results and
discussions based on real data are given in section IV.

II. MULTI-SENSOR DATA FUSION USING GNSS
PSEUDORANGES AND CAMERA MEASUREMENTS

A. System modeling

Let’s consider a vehicle equipped with wheel-speed sensors,
a yaw-rate gyro, a GNSS receiver and a smart camera for
lane marking detection. The localization problem is defined
as estimating the vehicle pose with respect to a local ENU
(East-North-Up) frame (RO in figure 1). The vehicle pose is
defined at the body frame located at the middle of the rear
axis (RB). For a tightly coupled data fusion scheme, the state
vector at epoch k is defined as:

Xk = [x, y, z, θ, cdt, cḋt]Tk . (1)

The receiver clock offset cdt (multiplied by the speed of light
c) and clock drift cḋt with respect to GPS time are part of the
state vector and are estimated within the filter, along with the
pose (θ is the heading). When dealing with two constellations,
e.g. GPS and Galileo, to avoid adding variables to the state
vector that represent receiver clock bias and drift with respect
to Galileo system time, the estimate of the Galileo to GPS
Time Offset (GGTO) can be used [15].

The evolution model involves odometric data as input:

Xk+1 = f(Xk, uk) + vk, (2)

where uk = [∆k,Ωk] is composed of the elementary displace-
ment and rotation obtained from the wheel-speed sensors and
the gyro respectively. The process noise vk is modeled as
a Student’s t distribution with zero mean, DoF γ and scale
matrix Q:

vk ∼ St(0, Qk, γk). (3)

If a Gaussian distribution is sufficient for modeling vk, a high
value of γ that tends to infinity can be chosen.

Consider m pseudoranges acquired at epoch k, the corrected
pseudorange ρj can be written as:

ρj = Rj + cdt+ ϵ, (4)

where Rj is the Euclidean distance between the receiver and
satellite j and ϵ is the receiver noise.

As pseudoranges link the satellites to the receiver antenna
located at the roof of the vehicle (RG), the transformation
between the antenna and the body frame is used:xy
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Fig. 1: Frames. The camera detects a geo-referenced lane
marking [AB] on the right.

The Euclidean distance is written as:

Rj =

√
(x+ tx cos θ − ty sin θ − xj)

2+
(y + tx sin θ + ty cos θ − yj)

2 + (z + tz − zj)
2

(6)
where (xj , yj , zj) are the coordinates of satellites j in the ENU
frame, (x, y, z)GNSS corresponds to the antenna position and
(tx, ty, tz) is the translation of the antenna with respect to the
body frame.

Given equation 4, the model of ρ is expressed as:

Zk = hk(Xk) + ωk, (7)

where ωk is the noise associated to the pseudorange measure-
ments modeled as a Student’s t distribution with zero mean,
DoF δ and scale matrix R:

ωk ∼ St(0, Rk, δk). (8)

We take advantage of this modeling to improve the integrity
of the state estimation. The details will be shown in the next
section.

Beside GNSS measurements, another observation model is
used for lane measurements from a smart camera. The camera
used is able to detect up to four lane markings at a time (two
at each side) and return lateral distances denoted C0 (figure
1). C0 refers to the signed distance between RM and the
intersecting point L at the map-matched segment [AB] of the
HD map. The camera observation is expressed as [16]:

C0 =
(Px sin θ + y − yA)xAB − (Px cos θ + x− xA)yAB

xAB cos θ + yAB sin θ
.

(9)
Px is the distance between RB and RM . For more details,
the reader can refer to [7]. As in the case of GNSS, the noise
ωk associated to the camera measurements is modeled as a
Student’s t distribution to improve the integrity in presence of
poor perception data.

Given these models, the state filtering is presented in the
following.



B. State filtering

Let X be a random variable that follows a multivariate
Student’s t distribution: X ∼ St(µ, P, ν) where µ is the mean
vector, P is the scale matrix and ν is the degree of freedom
(DoF) [17]. The covariance is defined when ν > 2 and is
linked to the scale matrix by Σ = ν

ν−2P .
The development of Student’s t filters is more challenging

than Kalman filters, as careful approximations must be taken
into account to avoid undesired behaviors [8]. In this paper, the
informational form of the Student’s t filter (StIF) developed in
[14] is used. The StIF is equivalent to the StF but its advantage
appears in the update step thanks to the summation of the
information contributions that make it suitable for multi-sensor
data fusion and for fault detection and exclusion.

The distribution of noises are described as Student’s t
distributions as given in equations 3 and 8. The initial state is
also described as a t distribution: St(X0, P0, ν0) where X0,
P0 and ν0 are the initial guesses.

Compared to the StF, the StIF features an information matrix
(up to a constant) and an information vector computed from
the scale matrix and the state vector as [14]:

Yk = P−1
k , (10)

yk = YkXk. (11)

These equations are obtained in a similar manner to the
informational form of the KF, known as the Information Filter
(IF) [18].

The StIF includes two steps: time update and measurement
update.

At time k, suppose that p(Xk|Z1:k) follows a t distribution
St(Xk|k, Pk|k, νk) and p(vk) is given in equation 3. To derive
the prediction step of the StIF, these two distributions must
share a common DoF denoted ν′k [8], [19]. In order to preserve
the heaviest tail between the two distributions, ν′k may be
chosen as [19]:

ν′k = min(νk, γk). (12)

In our case, the heavy tail property is important to ensure the
integrity of the state estimation.

Given this new DoF, the scale matrices Pk|k and Qk

must be adjusted in P ′
k|k and Q′

k. This can be obtained
by moment matching or by minimizing the Kullback-Leibler
divergence [19]. In this work, the matrix adjustment is done by
minimizing a modified upper bound of the KLD as proposed
in [11].

Using a first-order Taylor approximation and given that
linear transformations preserve the DoF of a Student’s t dis-
tribution [17], the predicted distribution can be approximated
as:

p(Xk+1|Z1:k) ∼ St(Xk+1|k, Pk+1|k, ν
′
k), (13)

where

Xk+1|k = f(Xk|k, uk), (14)

Pk+1|k = FkP
′
k|kF

T
k +Q′

k. (15)

which can be written in the informational form:

Yk+1|k = P−1
k+1|k, (16)

yk+1|k = Yk+1|kXk+1|k, (17)

where Fk is the Jacobian matrix.
Likewise, to derive the measurement update, a choice on

the DoF must be made. Keeping the same policy as in the
prediction step, ν′′k may be chosen as:

ν′′k = min(ν′k−1, δk). (18)

Then:

p(Xk, wk|Z1:k−1) =

St

([
Xk|k−1

0

]
,

[
P ′
k|k−1 0

0 R′
k

]
, ν′′k

)
(19)

where P ′
k|k−1 and R′

k are the adjusted matrices of Pk|k−1 and
Rk given ν′′k .

The posterior distribution p(Xk|Z1:k) is then expressed as
a Student’s t distribution St(Xk|k, Pk|k, νk) and the updated
parameters in the informational form are given by [8], [10],
[14]:

νk = ν′′k + dZ , (20)

Yk|k = c−1
k (Yk|k−1 +

N∑
i=1

Ii,k), (21)

yk|k = c−1
k (yk|k−1 +

N∑
i=1

ii,k), (22)

ck =
ν′′k +∆2

k

ν′′k + dZ
, (23)

where dZ is the dimension of the observation vector, N is the
number of observations assumed to be uncorrelated with each
other, ∆2

k = (Zk − h(Xk|k−1))
TS−1

k (Zk − h(Xk|k−1)) is the
Mahalanobis distance and Sk = HkPk|k−1H

T
k + Rk is the

innovation scale matrix.
Ii,k = HT

i,kR
−1
i,kHi,k and ii,k = HT

i,kR
−1
i,kZi,k are the in-

formation contributions of the observation Zi,k. Since the
observation model is non linear, ii,k is expressed as:

ii,k = HT
i,kR

−1
i,k [Zi,k − hi(Xk|k−1) +Hi,kXk|k−1],

where Hi,k = ∂hi

∂X |X=Xk|k−1
is the Jacobian matrix cor-

responding to the measurement model Zi (pseudorange or
camera measurements).

The updated equations are similar to the IF, but scaled by
a term ck that depends on the Mahalanobis distance between
the measurement and its prediction. Therefore, it enables the
filter to be aware of the observation quality and to scale the
overall measurement update. Hence, if the measurement differs
significantly from its prediction, an increase in the covariance
matrix appears.

From equation 20 and after the first update step, the DoF
increases to νk. Without the limitation applied in the prediction
step (equation 12), the DoF would tend to infinity and the
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Fig. 2: General architecture of the proposed method. v and w are the process and measurements noises respectively, ν the
DoF, X the state vector and P the scale matrix. C0 the measurements from the camera. St for Student’s t.

StIF would converge to an IF. Regarding the initial values of
γ, δ and ν′0, they are assumed to be equal and this choice is
maintained over time. Therefore, ν′′k is equal to ν′k−1 (equation
18) and no approximation is needed when going from time
update to measurement update. However, a bad value of the
DoF affects the accuracy and integrity of the estimate. In order
to avoid setting a fixed DoF, especially when the environment
changes, a strategy to define it is presented in the next section
by taking advantage of the FDE step.

III. HIGH INTEGRITY FOR MULTI-SENSOR DATA FUSION

A. Fault detection and exclusion

Although the StIF is designed to be more robust than the IF
in the presence of faults, the latter still influence the quality
of the filter estimates. For this purpose a fault detection and
exclusion able to exclude faulty measurements is proposed.

The generation of a residual is the first step of an FDE
where the KLD between the updated and the predicted distri-
butions is used. As discussed before, the predicted distribution
p(Xk|Z1:k−1) follows a t distribution with mean Xk|k−1, DoF
ν′k−1 and scale matrix Pk|k−1 (equation 15). The updated
distribution p(Xk|Z1:k) follows a t distribution with mean
Xk|k, DoF νk and scale matrix Pk|k (inverse of equation 21).

To simplify the equation of the KLD, we propose to approx-
imate the original distributions by Gaussian distributions. Let
q1 and q2 be the approximated Gaussian distributions of the
predicted and updated distributions, respectively. Xk|k−1 and
ν′
k−1

ν′
k−1−2Pk|k−1 are the mean and covariance of q1. Likewise,

Xk|k and νk

νk−2Pk|k are the mean and covariance of q2. This
approximation is sufficient for residual computation.

Given these covariance matrices, the corresponding infor-
mation matrices are:

YΣ,k|k−1 = (
ν′k−1

ν′k−1 − 2
Pk|k−1)

−1, (24)

YΣ,k|k = (
νk

νk − 2
Pk|k)

−1. (25)

The residual rk is defined as the KLD of the predicted dis-
tribution q1 from the updated distribution q2 (KLD(q2||q1))
and is given by [20]:

rk =
1

2
[(Xk|k −Xk|k−1)

TYΣ,k|k−1(Xk|k −Xk|k−1)

+ trace(YΣ,k|k−1Y
−1
Σ,k|k) + log

|YΣ,k|k|
|YΣ,k|k−1|

− d],
(26)

where d is the dimension of the state vector. For this compu-
tation, only [x, y, z, θ] are used, then d = 4.

The residual given in equation 26 acts in the state space
and takes into account two types of information: the Burg
matrix divergence and the Mahalanobis distance [21]. Using
this residual, we are not interested by detecting a fault that has
no direct effect on the pose estimation. Likewise, two types
of tests are taken into account: test on the mean and test on
the covariance matrices.

It should be noted that the KLD is computed with respect
to the updated distribution because the StIF increases the
covariance in the presence of fault. Therefore, the information



lost when the prediction is used to approximate the update is
more important than the opposite case.

Once the residual rk for the current epoch is generated with
a filter (called main filter) that uses all available observations,
it must be compared to a threshold Th in order to complete
the detection phase. The residual follows a distribution related
to Chi-squared and F-distributions as in [21]. The threshold is
then set according to a false alarm probability. If rk > Th,
faults are detected and must be isolated before delivering the
state estimate. For this purpose, a bank of filters is generated
wherein every StIF does the measurement update using only
one observation Zj (camera or GNSS pseudorange):

Yj,k|k = c−1
j,k(Yk|k−1 + Ij,k), (27)

yj,k|k = c−1
j,k(Yk|k−1 + ij,k), (28)

Xj,k|k = Y −1
j,k|kyj,k|k. (29)

The residual rj,k associated to each observation is then
computed in a comparable manner to equation 26.

Once these computations are performed, the maximum
residual rj is found and is compared to the corresponding
threshold Thj (the false alarm is not necessarily the same for
each type of sensor). If the residual exceeds the threshold, the
considered observation is excluded from the main filter. After
the fault exclusion, the filter estimate is computed again and
the FDE is repeated until no more faults are detected using
the main filter (figure 2).

Concerning the StIF, measurement Zj is excluded from the
fusion procedure by subtracting its information contribution
(Ij,k , ij,k) from the main filter and by updating the c term.

After the FDE step, the fixed DoF given in equation 12 is
replaced by an adaptive DoF that changes according to the
residual values. Indeed, the residual provides an indication
about the environment and the quality of the measurements.
When this residual is large, measurements are likely to be
noisy and tails should be heavier, so the DoF has to decrease.
However, for small residual values, a lighter tail may be
reasonable, so the DoF increases. Therefore, the adaptation
of the DoF makes use of the residual computed by the fault
detection phase, according to a negative exponential model
with a minimum value:{

ν′k = a. exp(b.rk) rk < l
ν′k = 3 rk > l

(30)

where a, b and l are tuning parameters. For numerical stability
and to be able to compute a covariance matrix, the minimum
allowed DoF is chosen equal to 3.

The general architecture of the method is given in figure 2.

B. Protection level computation

One of the objectives of using Student’s t modeling is to
bound in real-time the estimation errors without underestimat-
ing the PL bound. When dealing with localization integrity,
a PL must be able to handle small target integrity risk (e.g.
TIR = α ≤ 10−3). The heavy tail property is fundamental
for such a computation. So far, there is no consensus about

the TIR value which should depend on the level of autonomy
and operational design domain. To bound the errors, the matrix
Pk|k obtained in the measurement update is adjusted to P ′

k|k
according to the minimum between ν′k (equation 30) and νk
(equation 20):

N1 = min(νk, ν
′
k). (31)

Note that if the minimum corresponds to νk, no adaptation is
needed. The PL is then expressed as [22]:

PL(α) = K(α,N1)
√

N1 ×max (eigenvalue(P ′
k|k)), (32)

where K(α,N1) is obtained from a multivariate t distribution
with DoF N1 and according to the confidence level α [7].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the approach is evaluated on data acquired
with an experimental vehicle equipped with a Septentrio
AsteRx SB PRO Connect for Galileo and GPS pseudorange
measurements, wheel-speed sensors, a yaw-rate gyro, a Mo-
bileye camera for lane marking detection, a NovAtel SPAN
CPT for the ground truth and an HD map. Acquisitions were
made at a frequency of 50Hz for dead-reckoning, 35Hz for
the camera (sub-sampled at 3.5Hz to reduce time correlation)
and 1Hz for GNSS measurements. The state estimation is
computed at 50Hz.

Fig. 3: Compiègne suburban test and university campus.

The vehicle was driven within the town of Compiègne
for about 6 km in a suburban (to urban) area with some
challenging GNSS parts as shown in figure 3. During the
acquisition, the lane markings were not of high quality and
mostly the roadsides were detected instead.

The error in the Along Track (AT) and Cross Track (CT)
directions for the StIF before and after the FDE step are
shown in figure 4. For more details about the computation
of these errors, the reader can refer to [7]. It can be noticed
the improvement brought by the FDE step to the localization
accuracy. Regarding the FDE, the residual used for the fault
detection is shown in figure 5 with the associated threshold.
The residuals used for the camera fault exclusion are shown in



figure 6. The camera measurements give rise to multiple issues
that can arise from incorrect measurement association with
the HD map, poor marking quality, or faulty measurements.
As for the GNSS pseudoranges, the number of excluded
measurements is more limited. For instance, at the start of the
trajectory, the low elevated satellite G17 is excluded (figure
7). Similarly, around the university campus (near sample
1.8 × 104), several satellites, such as E25 and G32 , from
Galileo and GPS constellations respectively, are excluded due
to the harsh environment and their low elevations.
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Fig. 4: Errors before (in blue) and after (in red) the FDE step.
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Fig. 5: Residual for fault detection in blue, threshold in red.

Figure 8 illustrates the adaptive DoF computed by the filter.
The parameters for equation 30 are set as a = 20.114, b =
−0.0791 and l = 40. To preserve heavy tails, which contribute
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Fig. 6: Camera residuals in the left and right sides (first
measurement in blue, second in red). Threshold in green.

Fig. 7: GPS (G) and Galileo (E) elevations.

to the enhancement of the filter’s integrity, an upper bound of
20 is imposed on the DoF.

Table I presents the performance evaluation of the StIF in
terms of accuracy and integrity, along with a comparison to
an extended information filter (EIF). The results are provided
for both cases, with and without camera fusion, while always
incorporating the fusion of pseudorange measurements. The
proposed StIF and EIF exhibit comparable accuracy perfor-
mance. In terms of consistency and computed integrity risk,
the StIF demonstrates superior performance for a TIR of
10−3. Without the FDE step and camera fusion, the StIF
ensures integrity in the CT direction, while the EIF fails. After
integrating camera measurements, both filters fail to meet the
integrity requirement before the FDE step (P (error > PL) =
IR > 10−3). However, the StIF shows significantly better
values. After the FDE step, the StIF verifies the integrity
requirement in the CT direction, while the EIF does not. The
importance of the FDE step for integrity and accuracy can be
highlighted.

It should be noted that the improved integrity of the StIF
compared to the EIF should not come at the expense of an
increased uncertainty values that could diminish the availabil-



Without FDE With FDE based on the KLD

GNSS GNSS-camera GNSS GNSS-camera
StIF EIF StIF EIF StIF EIF StIF EIF DoF=3

absolute AT error [m] 0.69 0.68 0.63 0.62 0.68 0.68 0.61 0.6 0.78
absolute CT error [m] 0.68 0.67 0.28 0.28 0.61 0.66 0.24 0.27 0.24

mean absolute error [m] 1.07 1.05 0.76 0.74 1 1.04 0.71 0.72 0.86

IRAT × 10−3 1.3 1.6 1.1 3.9 1.3 1.6 1.5 1.8 0.02
IRCT × 10−3 0 10 6.8 22 0 10 0.9 15 0

TABLE I: Errors and computed integrity risk (IR) (per sample) for EIF and StIF in the AT and CT directions (TIR = 10−3).
”StIF” refers to the proposed filter with adaptive DoF. ”DoF=3” refers to StIF with fixed DoF.
The best values are in bold. In dark blue, the integrity requirement is verified.

ity of autonomous systems. Figure 9 shows the calculated
PL in the AT and CT directions (TIR of 10−3). Results are
presented for the StIF with adapted DoF and the EIF, with
camera fusion and FDE step. The StIF, while ameliorating
integrity compared to the EIF, provides non-pessimistic PL
with a mean values of 2.1m in the AT direction and 1.2m in the
CT direction. These value are close to that of the EIF. The StIF
has the advantage of increasing PL values in challenging areas.
The results of a StIF with a fixed DoF=3 are also presented
in table I and figure 9. This filter guarantees integrity in the
AT and CT directions at the expense of reduced accuracy and
increased PL values. In this case, the PL mean values are
approximately 5.7m in the AT direction and 4.1m in the CT
direction which shows that this filter is much more pessimistic.

The camera demonstrates a notable impact on reducing
errors and PL in the CT direction. However, as this sensor
is not use to detect markings in the AT direction, it does not
have a great effect in that particular direction.

Based on the obtained results, it can be concluded that the
end-to-end StIF with adaptive DoF is a promising approach for
consistent multi-sensor data fusion using raw data. However,
several points must be taken into account. Firstly, the parame-
ters for the adaptive DoF must be carefully tuned as they have
a significant impact on the performance of the filter. In our
case, these values are selected based on the desired relationship
between the residual and DoF. Likewise, the tuning of scale
matrices of the measurements and process noises presents a
similar challenge. These values are determined based on the
covariances tuned for the Gaussian filter (EIF). These tuning
processes require certain expertise and domain knowledge.

V. CONCLUSION

An end-to-end Student’s t filter with adaptive DoF for data
fusion and PL computation was proposed. To enhance local-
ization accuracy and integrity, an FDE was added to exclude
outliers. This step uses residuals based on the Kullback-Leibler
divergence. The DoF is dynamically adjusted based on the
quality of the observations. Experimental results demonstrate
the superiority of the proposed method in achieving consistent
and accurate localization using raw sensors data. Notably,
the proposed method outperforms the traditional KF while
maintaining non pessimistic uncertainty values.

0 0.5 1 1.5 2 2.5 3 3.5 4

sampling time 10 4

4

6

8

10

12

14

16

18

20

D
oF

Fig. 8: Adaptation of the DoF.
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Fig. 9: Errors and PLs for the StIF with adapted DoF and for
the EIF. PLs for the StIF with DoF=3.

In future research, the scale matrices of measurements
and process noises will be determined through a data driven
approach. Additionally, the impact of non-linearity and its
influence on the filter will be addressed.
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