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Abstract

The goal of this research is to raise technical doubts regarding the usefulness of the repeated
attempts by governments to curb Cryptography (aka the “Crypto Wars”), and argue that they,
in fact, cause more damage than adding effective control. The notion of Anamorphic Encryption
was presented in Eurocrypt’22 for a similar aim. There, despite the presence of a Dictator who
possesses all keys and knows all messages, parties can arrange a hidden “anamorphic” message
in an otherwise indistinguishable from regular ciphertexts (wrt the Dictator).

In this work, we postulate a stronger cryptographic control setting where encryption does not
exist (or is neutralized) since all communication is passed through the Dictator in, essentially,
cleartext mode (or otherwise, when secure channels to and from the Dictator are the only
confidentiality mechanism). Messages are only authenticated to assure recipients of the identity
of the sender. We ask whether security against the Dictator still exists, even under such a strict
regime which allows only authentication (i.e., authenticated/ signed messages) to pass end-to-
end, and where received messages are determined by/ known to the Dictator, and the Dictator
also eventually gets all keys to verify compliance of past signing. To frustrate the Dictator,
this authenticated message setting gives rise to the possible notion of anamorphic channels
inside signature and authentication schemes, where parties attempt to send undetectable secure
messages (or other values) using signature tags which are indistinguishable from regular tags.
We define and present implementation of schemes for anamorphic signature and authentication;
these are applicable to existing and standardized signature and authentication schemes which
were designed independently of the notion of anamorphic messages. Further, some cornerstone
constructions of the foundations of signatures, in fact, introduce anamorphism.
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1 Introduction

The notion of anamorphic encryption [PPY22] was introduced recently to deal with a very restricted
cryptographic setting, where the dictatorial government requests to know all the keys. Yet, the
notion allows parties to exploit the existing (and so severely debilitated) encrypted communication
to exchange secret messages that remain hidden from the dictator while keeping the dictator’s
constraints.

Whereas in the above, parties are authorized to employ encryption, in this paper we consider a
dictator who is much more restrictive with respect to encryption. In fact, in this new setting the
use of encryption is totally prohibited except for private channels to and from the dictator.

The scenario we envision here assumes that all messages that are exchanged are sent via a
central clearing house (i.e., through the dictator itself), which gets the message from the sender
over a secure channel and forwards the message to the receiver on another secure channel. In
this configuration encryption is completely neutralized, and, depending on the implementation of
secure channels, may essentially not exist. Specifically, if the secure channel is physically protected
(e.g., via quantum communication) there is no encryption indeed. If instead the secure channel
is implemented with cryptographic tools, the ciphertext sent by the sender to the dictator is first
decrypted and thus the plaintext is revealed, and the dictator and effectively re-encrypts it and
eventually sends it to the receiver, who recovers the message. The two ciphertexts from the sender
to the dictator and from the dictator to the receiver are completely independent, but for the fact
that they conceal the same plaintext. Note that this configuration kills any steganographic channel
or any anamorphic channel which the sender might have employed; simply, what the receiver
gets is independent of the sender’s ciphertext randomness, and this very restrictive configuration
essentially overcomes the anamorphic encryption of [PPY22].

We note that in many configurations https communication is broken by a middlebox which
inspects plaintext (for various safety purposes) away from the final user, so having intermediate
channels between sender and receiver is not a completely outrageous and unusual configuration
(see, for example, [DMS+17]).

Note, however, that if we simply trust the dictator as a built-in man-in-the-middle, then it has
absolute power to control the messages sent, as he can send any message at anytime to anyone on
behalf of anyone else. Of course, no one and certainly not a dictator can be trusted to not employ
such an unlimited power, hence the above configuration on its own does not make sense. To
minimally make sense, authenticity of the messages (against the dictator) must be assured. Then,
if messages (even those re-encrypted by the dictator) are authenticated (signed) by the sender, then
a message can include a header which includes: “the sender name,” “the receiver name,” “time and
date,” and even the “hash of all prior messages in this exchange.” Using this extended message,
the dictator is forced to send all messages from sender to receiver and the receiver can check the
authenticity of a stream of messages. Now, secrecy (with respect to the dictator) is lost, but the
dictator has to be faithful due to the authenticity assured by signing the stream of messages with
a key they do not possess. So, in case we need to give up privacy, to have a minimal level of trust
we need authenticated enhanced messages as above.

Assume we are then interested in reintroducing anamorphic communication that is hidden for
the dictator, in spite of the loss of privacy in this scenario. Namely, we are interested in people
obeying the dictator’s rules while still interested in having an additional secret channel for com-
munication that remains hidden from the dictator. In the above system, where the dictator is the
clearing house for ciphertexts, signature schemes (or authentication and identification procedures)
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are the only remaining cryptographic tool shared end-to-end between senders and receivers used
to keep the dictator from impersonating users and creating fake messages. This gives rise to the
question we tackle in this work:

• Can we have anamorphic channels inside signature schemes? and

• Can we implement such schemes and employ them in existing established signature and
authentication mechanisms?

Further, when the dictator needs to analyze compliance of the parties with his demands, he gets
to know (or even dictates) the messages, and he gets the signing key to check the validity of the
messages regarding compliance. In fact, view this checking as done after the messaging is over (so
the dictator cannot forge messages, but can eventually check the compliance of signed messages,
say, when a new signing key is certified and the old key is revoked, and in any event these signing
keys are merely for authentication and are not used for signing legally binding documents, etc.). It
goes without saying that non-compliance has dire consequences for users who are caught!

This strict configuration is the subject of this work in which we answer the above in the pos-
itive; we further point at various issues of characterizing the anamorphic channels in this setting;
and we develop methods to build such channels in various existing families of signature, authen-
tication, and identification schemes. Moreover, we show how existing cornerstone method of the
theory of signatures, which allow building signatures from basic simpler components also allow the
introduction of anamorphism!

Obviously, the notion of Anamorphic Cryptography deals with possible abuses, misuses, and
new uses of cryptosystems beyond their primary goals, which is an interesting take of cryptographic
systems, after their primary goals are understood, formalized, and proved. Anamorphism is one way
to view what side uses cryptographic systems enable (directly in the hands of the users themselves).
This is a different way from and requires more than simply having a subliminal channel [Sim83],
and even different from kleptographic abuse of cryptosystems which exploit such channels in a
way hidden from the user [YY96] and also different from countermeasures against them (e.g.,
[RTYZ16]). Such unplanned readily available anamorphic uses constitute a note against controlling
cryptography by governments attempting control of the primary use of cryptography. Next, we can
see that anamorphic systems may further lead to other notions and applications.

An Implication: Watermarking and Anamorphic Signatures. Anamorphic channels ob-
viously demonstrate the futility of direct control over encryption keys. Additionally, anamorphic
methods have applications beyond subverting the dictator’s limitations. In particular, let us con-
centrate on watermarking.

The aim of watermarking is to insert some information, a mark, in a digital object in order to
be able to trace its origin. The marked object should be indistinguishable from an unmarked one
and the mark should be difficult to remove. Hopper et al. [HMW07] first formalized the goal, and
further work has been done on this important concept (for more recent work, see e.g. [GKM+19]).
We note that watermarking can be seen as an anamorphic message to oneself (or to a designated
checker), thus in fact, watermarking can be reduced from anamorphism.

Consider the concept of an anamorphic signatures as proposed in this work, and suppose that
one party signs and wants to distribute a confidential document to a set of users and to guarantee
authenticity of the document which is digitally signed. The signer is also afraid that the document
will be leaked in its signed version as it could not be denied. For this reason the signer decides to
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put in place a mechanism by which it would be possible to trace the leak. Anamorphic signatures
come to help in this case. Indeed the party can sign the document for each receiver and insert
a different anamorphic message in the signature. By extracting the anamorphic message from
the leaked signed document, the signer can trace the leak. The leakage of the document without
the signature is less dangerous as the document cannot be attributed to the signer with certainty
(i.e., the document can be repudiated). As this example shows, watermarking is similar to an
anamorphic message to oneself.

Using this method, one can insert different watermarking scheme (i.e., a different pseudorandom
function to derive the mark and insert it in the anamorphic channel) to each of signing devices
holding the same signing key, so the source of the signature can be determined from the inserted
watermark.

We can employ the watermarking method to also protect the leakage or cryptanalysis of the
signing key (since the one who gets/ cryptanalyzes the key cannot use a proper watermarking),
hence the forgery will be caught.

Chaffing and Winnowing [Riv98] Chaffing and Winnowing is a technique that provides mes-
sage confidentiality without using encryption or steganography. The two parties that want to
establish a confidential channel share a secret authentication key. Each message is authenticated
using the authentication key and then other fake messages (the chaff) are added with an incorrect
authentication tag. In other words, the real messages (the wheat) are carried by correctly authenti-
cated packets that can be winnowed by the legitimate receiver that knows the authentication key.
A third party that sees all the messages flowing between the two parties cannot tell the wheat from
the chaff without the authentication key. It is thus crucial for the confidentiality of the commu-
nication that dictator does not have the authentication key. The author of [Riv98] justifies this
assumption as he considers a dictator seeking “access to all authentication keys as well, a truly
frightening prospect.” In this paper, we consider the frightening prospect in which the dictator has
access to the authentication keys (in our setting, the signing keys) and we show that anamorphic
signatures comes to the rescue.

1.1 Our Contribution

As said, our work is primarily geared toward developing anamorphism as a tool for answering issues
that are raised in the “crypto wars.” In the setting considered, encryption is completely neutralized
and only message authentication through signatures (like TLS signing) is allowed. We show that,
even in this extremely restricted setting, existing digital signature schemes and design techniques
allow for private communication, despite a dictator that has the power to request all signing keys.
In other words, to pursue the futile goal of disallowing private communication, the dictator must
disallow not only encryption but also digital signatures with obvious dire consequences for digital
communication: not only all communication is public, but nobody knows whom they are talking
to, and, in fact, the dictator can impersonate anyone!

Defining anamorphic signatures. In Section 2, we formally define the concept of an anamor-
phic signature scheme. This is a special type of signature scheme that allows the signer to embed
an anamorphic message in a signature. The anamorphic message can only be read by a set of
trusted parties that have received a special double key from the signer. To every other party, a
signature carrying an anamorphic message, an anamorphic signature, is indistinguishable from a
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regular signature. And, this holds also w.r.t. parties, like the dictator, that can demand to see all
secret material (including the signing keys).

Let us contrast anamorphic signatures with regular signatures. In the typical usage of a sig-
nature scheme, a signer Bob runs the key generation algorithm to obtain a verification key svk

and a signing key ssk. Bob publishes the verification key svk in a public directory and keeps the
signing key ssk private. Whenever Bob wants to sign a message msg, he runs the signing algorithm
on input ssk and msg and obtains a signature that can be verified by running the verification
algorithm on input the signature and msg and svk. An anamorphic signature scheme consists of
three anamorphic algorithms: the anamorphic key generation algorithm, the anamorphic signing
algorithm, and the anamorphic decryption algorithm. Their usage is slightly different. More specifi-
cally, the anamorphic key generation algorithm returns (svk, ssk), as in a regular signature scheme,
and, additionally, a double key dkey. As before, svk is published and ssk is kept secret and the
dkey is distributed by Bob to a trusted set of users with which Bob wants to establish an hidden
communication channel. Whenever Bob wishes to secretly send a message amsg, the anamorphic
message, to his trusted circle, Bob picks an innocent looking message msg, the regular message,
and signs msg by running the anamorphic signing algorithm on input the two messages msg and
amsg, the signing key ssk and the double key dkey. The signature sig produced has the following
anamorphic property: it can be successfully verified using the verification key svk and the mes-
sage msg; if instead it is given as input to the anamorphic decryption algorithm along with dkey,
it returns the anamorphic message amsg. In other words, the same signature sig gives different
results depending on the key used to operate on it. The security requirement posits that key pairs
(svk, ssk) and signatures sig returned by the anamorphic algorithms are indistinguishable from
those returned by the regular algorithms. And this holds also not only for parties that have access
to the verification key svk but also for the dictator that has access to the signing key ssk.

Many-to-many vs. One-to-many. We consider two types of anamorphic signatures that im-
plement two different types of communication channel hidden from the dictator: many-to-many
and one-to-many.

By looking ahead, the formal definition of an anamorphic signature scheme (see Def. 2) does
not make any claim about the unforgeability of the signature scheme by the parties that hold the
double key (the circle of trusted users). Indeed, the possibility that that every member of the circle
is able produce an anamorphic signature by relying only on the double key is not ruled-out by
the definition. If this is the case, that is if knowledge of the double key allows to produce valid
signatures, then we call the anamorphic signature symmetric. The name symmetric indicates that
the set of users holding the double key can all produce signatures carrying anamorphic message; in
other words, symmetric anamorphic signatures implement a many-to-many communication channel
hidden from the dictator. As we shall see, this is the case for the anamorphic ElGamal signature
scheme in which the double key contains the signing key. We note that the signer shares his
secret key with the members of the group which is interested in a clandestine many-to-many secret
communication under the mask of non-repudiated authentication (analogous to TLS authentication
keys not serving as contract signing keys!). Interestingly, Davies [Dav83], already in 1983, was the
first to consider giving up non-repudiation for other, more nefarious, reasons.

Another possible option is where the signature scheme remains unforgeable even if the double
key is revealed. Such an anamorphic signature implements a one-to-many communication channel
hidden from the dictator in which only the owner of the signing key can produce an anamorphic
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signature. All other members can read anamorphic messages that come with an implicit origin
authentication as they are part of a signature that can only be produced by the owner of the
signing key. We call this type of anamorphic signatures private because the privacy of the signing
key is preserved.

Constructions. The main message of this paper is that anamorphic signatures do exist, both
symmetric and private, and they do not exist by accident but they systematically emerge from
central design techniques.

To start, in Section 3, we show that two of the oldest and most well known signature schemes, the
ElGamal signature schemes and the Schnorr signature scheme, are indeed symmetric anamorphic.
These two signature schemes exemplify our general technique to obtain anamorphism. Specifically,
we show that some of the randomness used by the signer can be recovered by the verifier and it can
be used to hide the anamorphic message by means of an encryption with pseudorandom ciphertexts.
The encryption key is the double key that is shared by the signer with a restricted group of trusted
users.

However, anamorphism is not simply a special property enjoyed by a sparse group of construc-
tion from the literature. Indeed, in this paper, we make the stronger point of showing that two
cornerstone design techniques for signature schemes give anamorphic signature schemes (for all
their widely used instantiations). In other words, anamorphism seems to be a basic property of
signature schemes that emerges naturally in general design techniques. More specifically, we prove
the following.

1. In Section 4, we introduce the concept of an anamorphic three-message public-coin protocol
and show that several instances of this important class of protocols are anamorphic. In
other words, an anamorphic protocol can be used by the prover to send an hidden message to
whomever has the double key and receives a transcript of the protocol. The message remnains
hidden even with respect to a Dictator that has the secret information of the prover (i.e., the
witness) and the dictator itself plays the role of the verifier.

Having introduced the concept of an anamorphic three-message public-coin protocols, we give
a sufficient condition for a protocol to be anamorphic and show that the most well-known
protocols (e.g., the protocol for proving knowledge of discrete log and for graph isomorphism)
do enjoy this property.

2. Besides being of its own independent interest, the concept of an anamorphic three-message
public-coin protocol is important because it is at the basis of the construction of anamorphic
signature schemes. That is, we look at the Fiat-Shamir heuristics that transforms three-
message public-coin protocols into signature schemes that can be proved unforgeable in the
Random Oracle Model. In Section 4.2, we prove that if the Fiat-Shamir heuristics is applied
to an anamorphic three-message public-coin protocol the resulting signature scheme is sym-
metric anamorphic. In other words, Fiat-Shamir preserves anamorphism. This general result
includes as special cases our warm-up examples, ElGamal and Schnorr, and it is obtained by
using the encrypted anamorphic message as randomness in the signing process.

3. In Section 5, we present the notion of private anamorphism. In a private anamorphic signature
scheme we require that knowledge of the double-key does not give signing capabilities. Private
anamorphism provides a one-to-many channel hidden from the dictator in which there is one
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designated sender, the one holding the signing key, that can send messages to the rest of the
group.

4. In Section 7, we show that the Naor-Yung paradigm for constructing unforgeable many-time
signature schemes from unforgeable one-time signature scheme gives private anamorphic sig-
nature schemes. More specifically, in Section 6 we introduce the notion of weak anamorphism
for one-time signatures; we show that several well-known one-time signatures schemes, in-
cluding Lamport’s tagging system, enjoy weak anamorphism; and, finally, we prove that the
Naor-Yung paradigm, when instantiated with a weakly anamorphic one-time signatures yields
private anamorphic many-time signature schemes in the standard model. We extend this to
the tree-based extension of the NY paradigm (see Appendix G).

As a corollary, we obtain that private anamorphic signature schemes can be constructed in
the standard model under the sole assumption of the existence of one-way functions. This is
obtained by using Lamport’s tagging systems (that can be proved to be one-time unforgeable
by assuming only one-way functions) and upgrading it to many-time with the NY paradigm
that only requires universal one-way hash functions (which, in turn, can be shown to exist by
assuming one-way functions by using Rompel’s construction).

5. Applications: since signature schemes are used as a component in encryption schemes, we
demonstrate (in Section 8) anamorphic channels in encryption schemes which contain a sig-
nature component.

We have additional results in the appendix. In Appendix I we show private anamorphic schemes
with standardized random-oracle based schemes (PSS RSA in particular). In Appendix J, we
present an anamorphic scheme where the double key is generated jointly with the signing key (as
it contains part of it) but still it cannot be used to forge signatures.

Bandwidth of the anamorphic channel. We stress that all our constructions have polynomial
bandwidth. That is, the size of the anamorphic message is lower bounded by a polynomial in the
size of the signature carrying it. The underlying technique of our construction is to replace the
randomness that is used in the generation of the signing and verification keys (for the case of weak
anamorphism) or in the generation of the signature (for the case of anamorphism) with a pseu-
dorandom ciphertext encrypting the anamorphic message using the double key. The randomness
must be extractable from the signature at verification, and depending on whether the signing key
is needed for extraction or not the scheme gives rise to a different type of anamorphism.

Double-Key Distribution. As we have observed above, and as it will be made clear by our
formal definitions, all security guarantees are void if the dictator obtains the double key. This is
obvious as the double key allows to extract the anamorphic message from an anamorphic signature.
In other words, an anamorphic signature symmetrically encrypts the anamorphic message.

Previous work on anamorphic encryption [PPY22] also considered the setting in which parties
do not share any prior information; that is, the sender and the receiver of an anamorphic ciphertext
do not share any private information. In other words, the anamorphic message is asymmetrically
encrypted. This seems to be a very natural and important setting as it dispenses of the need of
a secure channel for the distribution of the double key. It is thus natural to ask if an equivalent
notion could be considered for anamorphic signatures as well. Note, however, that for anamorphic
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signatures, the receiver of the anamorphic message coincides with the one with only the public
information (the verification key). The fact that no double key is used in signatures would mean
that everybody can read the anamorphic message, which is not what we want (as this will include the
dictator!). In the context of encryption, things are different since the receiver of the anamorphic
message is the owner of the secret information. In this case, having an anamorphic encryption
scheme with no double key means that any user can send an anamorphic message exclussively to
the owner of a public key.

2 Definitions and Models

In this section we introduce the notion of an anamorphic signature scheme and of a symmetric
anamorphic signature scheme. We postpone the formal definition of a private anamorphic signature
scheme to Section 5. In Appendix A, we review the concept of an unforgeable signature scheme.

Informally, an unforgeable signature scheme is anamorphic if there exists an anamorphic triplet
of algorithms that allows to generate a key pair of signing/verification key along with a double key.
The double key is shared by the signer with one or more selected trusted verifiers and it allows the
signer to embed a secret message, called the anamorphic message, into a signature. The correctness
condition is that the anamorphic message is readable by verifiers that have the double key. The
security condition requires that no PPT dictator is able to distinguish whether the keys and the
signatures are produced by the normal triplet of algorithm or by the anamorphic triplet. This
indistinguishability implies that the anamorphic message is indistinguishable from a random field
(hence it has semantic security) and the signature is unforgeable (were it not, it would give a way
to distinguish the anamorphic one from the regular signature which is unforgeable!). We make this
intuition formal in Theorem 1 and Theorem 2 in Section 2.1.

Let us start by defining the concept of an anamorphic triplet which will be used to define the
concept of an anamorphic signature scheme.

Definition 1 (Anamorphic Triplet). An anamorphic triplet T = (aKG, aSig, aDec) consists of three
PPT algorithms such that

1. the anamorphic key generation algorithm aKG on input security parameter 1λ outputs the
triplet (asvk, assk, dkey) composed of the anamorphic verification key asvk, the anamorphic
signing key assk, and the double key dkey;

2. the anamorphic signing algorithm aSig takes as input a regular message msg, an anamorphic
message amsg, an anamorphic signing key assk, and a double key dkey and outputs an
anamorphic signature asig;

3. the anamorphic decryption algorithm aDec takes as input an anamorphic signature asig and
a double key dkey and outputs an anamorphic message amsg;

and that satisfy the following correctness requirement

• For every pair of messages (msg, amsg), the probability that aDec(asig, dkey) 6= amsg is negli-
gible, where (asvk, assk, dkey) ← aKG(1λ) and asig ← aSig(msg, amsg, assk, dkey), and the
probability is taken over the random coin tosses of aKG and aSig.
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The concept of an anamorphic signature is formalized by means of two games: the real game,
in which the adversary receives keys and signatures generated by the signature scheme S, and the
anamorphic game, in which keys and signatures are output by the anamorphic triplet T. The
definition requires the two games to be indistinguishable.

Definition 2 (Anamorphic Signature Scheme). An unforgeable signature scheme S = (KG,Sig,Verify)
is anamorphic if there exists an anamorphic triplet T = (aKG, aSig, aDec) such that for every PPT
dictator D there exists a negligible function negl such that

|Prob [RealGS,D(λ) = 1]− Prob
[
AnamorphicGT,D(λ)

]
| ≤ negl(λ),

where

RealGS,D(λ)

1. (svk, ssk)← KG(1λ);

2. return DOs(·,·,ssk)(svk, ssk), where

Os(msg, amsg, ssk) = Sig(msg, ssk).

AnamorphicGT,D(λ)

1. (asvk, assk, dkey)← aKG(1λ);

2. return DOa(·,·,assk,dkey)(asvk, assk), where

Oa(msg, amsg, assk, dkey) = aSig(msg, amsg, assk, dkey).

In the next section, we consider two consequences of anamorphism. Specifically, the anamorphic
message is IND-CPA secure with respect to a party, like the dictator, that does not have the double
key; and that if the keys are generated anamorphically, the signature scheme is unforgeable with
respect to parties that do not have the signing key and the double key. As we shall see, whether
the signature scheme remains unforgeable with respect to parties that have the double key is
independent from the security guarantee of anamorphism. In Section 2.2, we define the notion of
a symmetric anamorphic signature scheme, an anamorphic signature scheme for which the double
key enables signing. In Section 5, we define the notion of a private anamorphic signature scheme,
an anamorphic signature scheme that remains unforgeable even if the double key is available.

2.1 Security of the associated schemes

An anamorphic signature scheme is naturally associated with two schemes: the signature scheme
in which keys and signatures are anamorphic (that is, computed by the anamorphic triplet); and
the symmetric encryption scheme that hides the anamorphic message by means of the double key.
Quite obviously, one would like the signature to be unforgeable and the anamorphic message to be
IND-CPA secure. Indeed, the purpose of an anamorphic scheme is to hide the anamorphic message.
The formal definition of anamorphic signatures (Definition 2) makes no explicit security guaran-
tee neither about the IND-CPA security of the anamorphic message nor about the security of the
signature scheme when the verification key is anamorphic. Note though that the indistinguisha-
bility of the two games as required by Definition 2 means in particular that the mere existence
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of an anamorphic message is indistinguishable from its non-existence which, intuitively, should be
sufficient for semantic security of the anamorphic message. Also, anamorphism should imply that
forging with respect to an anamorphic verification key is as hard as forging messages in the original
signature (as forging in both cases is without the key(s) and if it becomes easy for the anamorphic
version, due to the indistinguishability it is easy for the original scheme (a contradiction)). We
next give formal proofs for the two intuitions above.

We start by proving that for an anamorphic signature scheme the anamorphic message is hidden
from a party that has access to the signing and verification keys but not, obviously, to the double
key. This is made formal by means of the IND-CPA game for anamorphic messages, that we call
AcpaG. This game is the adaptation of the IND-CPA game (see Appendix B)o the anamorphic
signature setting in which the anamorphic message is “encrypted” by computing a signature of the
regular message. This is reflected in the working of the encryption oracle Oe and of the challenge
oracle Oc. In game AcpaG the adversary A has access to the anamorphic keys, both verification
and signing, and can ask to see anamorphic signatures for pairs (msg, amsg) of regular/anamorphic
messages of their choice; that is, A can ask for “encryptions” of anamorphic messages of their
choice just as in chosen plaintext attack. Once ready, A outputs the regular message msg and the
pair of anamorphic messages (amsg0, amsg1) on which they want to be tested. Finally, one of the
two anamorphic messages is encrypted and A should not be able to distinguish which one has been
used to produce the anamorphic signature. Below we define the anamorphic IND-CPA game AcpaG
for an anamorphic triplet T = (aKG, aSig, aDec), PPT adversary A, and bit β ∈ {0, 1}.

AcpaGβT,A(λ)

1. (asvk, assk, dkey)← aKG(1λ);

2. (msg, amsg0, amsg1, st)← AOe(·,·,assk,dkey)(asvk, assk);

3. asig = Ocβ(msg, amsg0, amsg1, assk, dkey);

4. return AOe(·,·,assk,dkey)(asig, st);

where

• Oe(msg, amsg, assk, dkey) = aSig(msg, amsg, assk, dkey);

• Ocβ(msg, amsg0, amsg1, assk, dkey) = aSig(msg, amsgβ, assk, dkey);

The following theorem holds.

Theorem 1. Let S be anamorphic signature scheme and let T be the associated anamorphic triplet.
Then for all PPT adversaries A we have∣∣Prob

[
AcpaG0

T,A(λ) = 1
]
− Prob

[
AcpaG1

T,A(λ) = 1
]∣∣ ≤ negl(λ).

Proof. Towards a contradiction, suppose there exists a PPT adversary A such that

Prob
[
AcpaG1

T,A(λ) = 1
]
≥ Prob

[
AcpaG0

T,A(λ) = 1
]

+ 1/poly(λ)
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for some polynomial poly(·). We construct the following dictator D that distinguishes games RealG
and AnamorphicG. Dictator D receives a pair of keys (svk, ssk) (that is either regular or anamor-
phic) and has access to an oracle O(·, ·) (that is either Os or Oa) and uses A in the following way.
D runs A on input (svk, ssk) and replies to queries (msg, amsg) by returning O(msg, amsg). When
A return (msg, amsg0, amsg1), D randomly selects β from {0, 1} and sets ct = O(msg, amsgβ). Then
D runs A on input ct and replies to A’s oracle queries as before. Finally, A returns bit η and D
outputs 1 iff β = η.

Let us denote by pα,β the probability that A outputs α in game AcpaGβ. By hypothesis we have
that p11 ≥ p10 + 1/poly(λ). Suppose that D is playing the anamorphic game and thus the pair of
keys received in input is anamorphic (i.e., output by aKG) and O = Oa. Then observe that D is
providing A with a view from AcpaGβ and therefore the probability that D outputs 1 is

1

2

(
p11 + p00

)
=

1

2

(
p11 + 1− p10

)
≥ 1

2
+

1

2 · poly(λ)
.

Suppose instead that D is playing the real game and thus the pair of keys receives in input is
regular (i.e., output by KG) and O = Os. Then in this case, the view of A is independent of β as
Os ignores its second argument. Therefore in this case D outputs 1 with at most probability 1/2.

We can thus conclude that D violates the anamorphism of S. Contradiction.

Next we define the concept of the associated signature scheme. In the associated signature
scheme, the pair of signing and verification keys are anamorphically generated and the regular
signing and verifying algorithms are used for the other operations. Then we show that the associated
signature scheme is unforgeable as well.

Definition 3. Let S = (KG, Sig,Verify) be an anamorphic signature scheme and let (aKG, aSig, aDec)
be the associated anamorphic triplet. The signature scheme associated with S is S? = (aKG?, aSig,Verify),
where aKG?(1λ) is the algorithm that obtains (asvk, assk, dkey)← aKG(1λ) and outputs (asvk, assk).

Theorem 2. Let S = (KG, Sig,Verify) an anamorphic signature scheme and let (aKG, aSig, aDec) be
its anamorphic triplet. Then the associated signature scheme S? = (aKG?, aSig,Verify) is a secure
signature scheme.

Proof. For sake of contradiction, suppose that there exists a PPT adversary A such that game
sigGS? has a non-negligible probability of outputting 1 and consider the following dictator D that
receives as input a pair of keys (svk, ssk) and runs A on input svk. Whenever A issues a query for
message m, D replies by returning the pair (m,Sig(m, ssk)). D outputs 1 if and only if A outputs
a pair (msg, sig) that is accepted by Verify and that was not returned as a reply to one of A’s
queries.

Now observe that if the input pair (svk, ssk) is anamorphic, that is it is output by aKG?,
then D is actually playing game AnamorphicG while simulating game sigGS? for A. Thus, by our
assumption, the probability that D outputs 1 is non-negligible. On the other hand, if the input pair
(svk, ssk) is output by KG, then D is actually playing game RealG while simulating game sigGS for
A. Since S is secure the probability that D outputs 1 is negligible.

Therefore, dictator D described above contradicts the anamorphism of S.
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2.2 Symmetric Anamorphism

We next define the concept of a symmetric anamorphic signature scheme. As we discussed in the
introduction, in a symmetric anamorphic scheme, the double key allows to produce signatures and
not just to extract the anamorphic message from a signature. This implies that every user that has
the double key can send anamorphic messages that will be read by all other members of the trusted
circle, thus implementing a many-to-many communication channel hidden from the dictator. The
definition we present below requires the existence of an extraction algorithm that extracts the
signing key from the double. This is not the most general definition but all symmetric schemes we
present satisfy this definition.

Definition 4 (Symmetric Anamorphic Triplet). An anamorphic triplet T = (aKG, aSig, aDec) is
symmetric if there exists an efficient extraction algorithm Extract such that, for (svk, ssk, dkey)←
aKG(1λ), we have that Extract(svk, dkey) = ssk except with probability negligible in λ, over the
coin tosses of aKG.

Definition 5 (Symmetric Anamorphic Signature Scheme). An anamorphic signature scheme S =
(KG,Sig,Verify) with anamorphic symmetric triplet T = (aKG, aSig, aDec) is symmetric if T is
symmetric.

3 First Examples of Anamorphic Signatures

In this section we give the first concrete examples of anamorphic signature schemes by showing
that some of the most well-known signature schemes, namely the Boneh-Boyen, the ElGamal, and
the Schnorr signature, are symmetric anamorphic.

We start by reviewing the concept of a symmetric encryption scheme with pseudo-random
ciphertexts.

3.1 Pseudorandom Ciphertexts

In this section, we review the notion of a symmetric encryption scheme prE = (prKG, prEnc, prDec)

with pseudorandom ciphertexts by means the following game PRCtGβprE,A, where β ∈ {0, 1}, prE
is a symmetric encryption scheme, and A is a PPT adversary. We assume that prE for security
parameter λ encrypts n(λ)-bit plaintexts into `(λ)-bit ciphertexts.

PRCtGβprE,A(λ)

1. Set K ← prKG(1λ)

2. Return AOPrβ(K,·)(), where, for n(λ)-bit plaintext msg,

OPr0(K, msg) returns a randomly selected `(λ)-bit string;

OPr1(K, msg) = prEnc(K, msg).

Definition 6. Let prE = (prKG, prEnc, prDec) be an IND-CPA symmetric encryption scheme. We
say that prE has pseudorandom ciphertexts if for every PPT adversary A we have∣∣Prob

[
PRCtG0

prE,A(λ) = 1
]
− Prob

[
PRCtG1

prE,A(λ) = 1
]∣∣ ≤ negl(λ).
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Symmetric encryption schemes with pseudorandom ciphertexts can be constructed starting
from one-way functions. More specifically, let m(·) and n(·) be two polynomials and let F :
{0, 1}λ × {0, 1}m(λ) → {0, 1}n(λ) be a pseudorandom function with λ-bit seed, m(λ)-bit argument
and n(λ)-bit output. Consider the encryption scheme in which the key generation algorithm, for
security parameter λ, randomly selects a λ-bit key K and the encryption algorithm, on input n(λ)-
bit message msg, randomly selects r ← {0, 1}m(λ) and outputs the pair ct = (r, msg ⊕ F(K, r)) of
length m(λ) + n(λ). It is easy to see that the scheme is IND-CPA secure and that the ciphertext
ct is indistinguishable from a randomly selected string of length m(λ) + n(λ) bits.

Theorem 3. Assuming existence of one-way functions, there exists and IND-CPA secure symmet-
ric encryption scheme with pseudorandom ciphertexts.

3.2 Boneh-Boyen Signatures

In this section we show that the Boneh-Boyen signature scheme [BB08, BB04] is anamorphic. The
proof of anamorphism will also exemplify our main technique for showing anamorphism. Specifi-
cally, we identify randomness in the signature that can be set by the signer and extracted by the
verifier. The anamorphic signing algorithm replaces the randomness with a ciphertext carrying the
anamorphic message. To ensure that the dictator does not detect the existence of the anamorphic
message, an encryption scheme with pseudorandom ciphertexts (see Section 3.1).

We start by defining the concept of a bilinear group generator and then we describe the Boneh-
Boyen signature scheme.

Definition 7. A bilinear group generator G is a Probabilistic Polynomial Time (PPT) algorithm
that, on input 1λ, outputs a λ-bit prime p, the descriptions of cyclic groups G1, G2, GT of order p
and a bilinear map e : G1 ×G2 → GT so that:

• For all u ∈ G1, v ∈ G2 and integers a and b,

e(ua, vb) = e(u, v)a·b.

We assume that the descriptions of a group allows to randomly sample elements of the group
and to efficiently perform the group operation.

The Boneh-Boyen signature scheme BB = (bbKG, bbSig, bbVerify) is described as follows.

1. The key generation algorithm bbKG, on input security parameter 1λ, randomly selects (G1, G2,
GT , e, p)← G(1λ). Then the algorithm randomly selects generators g1 ∈ G1 and g2 ∈ G2 and
random x, y ← Zp and sets z = e(g1, g2), u = gx2 and v = gy2 . The verification key is the tuple
svk = (g1, g2, u, v, z) and the signing key is the triple ssk = (g1, x, y).

2. The signing algorithm bbSig, on input a signing key ssk = (g1, x, y) and a message msg ∈ Zp,
randomly selects r ← Zp. If r = −(x + m)/y then the signing algorithm fails. Otherwise it

sets σ = g
1/(x+m+yr)
1 . The signature is the pair sig = (r, σ). Note that the probability of

failure is negligible in the security parameter λ.

3. The verification algorithm bbVerify on input a signature sig = (r, σ) checks that

e(σ, u · gm2 · vr) = z.
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Definition 8. The Strong Diffie-Hellman assumption for bilinear group generator G posits that for
every PPT algorithm A and every polynomially bounded q = q(λ) the following probability

Prob
[
(G1, G2, GT , e, p)← G(1λ); g1 ← G1; g2 ← G2;x← Zp : A(g1, g

x
1 , . . . , g

xq

1 , g2, g
x
2 ) = (c, g

1/(c+x)
1 )

]
is negligible in λ.

The following theorem holds.

Theorem 4 ([BB08, BB04]). The Boneh-Boyen signature scheme is unforgeable under the Strong
Diffie-Hellman assumption.

To prove that the Boneh-Boyen signature scheme is actually an anamorphic signature scheme
we make the following observation. The r component of a signature is a randomly selected element
of Zp. In an anamorphic signature instead r will be the ciphertext of the anamorphic message amsg

computed using an encryption scheme with pseudorandom ciphertexts. More precisely, let prE =
(prKG, prEnc, prDec) be an encryption scheme, with pseudorandom ciphertexts that for security
parameter λ, encrypts λ/2-bit plaintexts into λ-bit ciphertexts. For example, this can be obtained
by using the scheme described in Section 3.1 with n(λ) = m(λ) = λ/2. Let us consider the following
triplet T = (abbKG, abbSig, aDec).

1. The anamorphic key generation algorithm abbKG, on input security parameter 1λ, computes
(svk, ssk) ← bbKG(1λ) and randomly selectes encryption key K ← prKG(1λ). The anamor-
phic verification key is asvk := svk, the anamorphic signing key is assk := ssk, and the
double key is dkey := K.

2. The anamorphic signing algorithm abbSig on input the regular message msg ∈ Zp, the anamor-
phic message amsg ∈ {0, 1}λ/2, the anamorphic signing key ssk = (g1, x, y) and the double
key dkey = K proceeds as follows. First, it encrypts amsg by running act = prEnc(K, amsg)
until act ∈ Zp. Then, it sets r = act and if r = −(x + m)/y then the algorithm fails.

Otherwise, it computes σ as σ = g
1/(x+m+yr)
1 and it outputs asig = (r, σ).

3. The anamorphic decryption algorithm aDec, on input anamorphic signature asig = (r, σ),
double key dkey = K recovers the anamorphic message amsg as amsg = prDec(K, r).

We are now ready to prove that the Boneh-Boyen signature scheme is anamorphic.

Theorem 5. Under the Strong Diffie-Hellman assumption, the Boneh-Boyen signature scheme is
anamorphic.

Proof. First of all, observe that, under the Strong Diffie-Hellman assumption, the Boneh-Boyen sig-
nature is unforgeable by Theorem 5. Moreover, under the Strong Diffie-Hellman assumption there
exists a one-way function and thus we can construct and encryption scheme with pseudorandom
ciphertexts.

Let us now consider the triplet T = (abbKG, abbSig, aDec) described above. We start by observ-
ing that the pair of verification and signing key output by the anamorphic key generation algorithm
abbKG has the same distribution as the pair output by bbKG.
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Suppose, for sake of contradiction, that there exists a PPT dictator D and a polynomial poly(·)
for which ∣∣Prob [RealGBB,D(λ) = 1]− Prob

[
AnamorphicGT,D(λ) = 1

]∣∣ ≥ 1/poly(λ)

and consider the following PPT adversary A for the pseudorandomness of the ciphertext of prE.
A has access to an oracle O that, on input λ/2 bits returns λ bits. A runs D on input randomly
generated (svk, ssk)← bbKG(1λ). Whenever D issues a query for (msg, amsg), A sets r = O(amsg).

If r = −(x + m)/y then A stops and returns a random bit. Otherwise, A sets σ = g
1/(x+m+yr)
1 .

and returns (r, σ) to D.
Now observe that if A is playing the PRCtG0

prE,A game then r is random and thus A is simulating

the real game to D. On the other hand, if A is playing the PRCtG1
prE,A game then r is a ciphertext

carrying amsg and thus A is simulating the anamorphic game to D. Therefore we have that

∣∣Prob
[
PRCtG0

prE,A(λ) = 1
]
− Prob

[
PRCtG1

prE,A(λ) = 1
]∣∣ =∣∣Prob [RealGBB,D(λ) = 1]− Prob

[
AnamorphicGT,D(λ) = 1

]∣∣ ≥ 1/poly(λ)

Contradiction.

3.3 ElGamal Signatures

In Figure 1, we describe the ElGamal [ElG84] signature scheme ElS = (ElKG,ElSig,ElVerify) as
modified by [PS96]. The signature scheme is proved secure in the Random Oracle Model under the
assumption of hardness of the discrete logarithm problem. A variation of this scheme, called the
DSA, constitutes the Digital Signature Standard [DSS13] and adapting our proof of anamorphism
for ElGamal to DSA is straightforward.

1. The key generation algorithm ElKG, on input security parameter 1λ, randomly selects (the
description of) a cyclic group G of prime order p, for p of length Θ(λ), a generator g for
G, and a hash function H : {0, 1}? × G → Zp. In addition the algorithm randomly selects
x← Z?p and sets y = gx.

Finally, the algorithm outputs the verification key svk := (G, g,H, y) and the signing key
ssk := (G, g,H, x).

2. The signing algorithm ElSig, on input message m and signing key ssk = (G, g,H, x), outputs
sig = (r, s) computed as follows.

Randomly select κ← Zp, set r := gκ and s := (H(m, r)− x · r)/κ mod (p− 1).

3. The verification algorithm ElVerify, on input message m, signature (r, s), and verification
key svk, checks if gH(m,r) = yr · rs.

Figure 1: The ElGamal signature scheme ElS.

To show that the ElGamal signature scheme is anamorphic, we use the technique of hiding the
anamorphic message in the randomness used to produce the signature by means of an encryption
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scheme with pseudorandom ciphertexts. These are special IND-CPA symmetric encryption schemes
whose ciphertexts are pseudorandom; that is, indistinguishable from truly random strings of the
same length. See Appendix 3.1 for formal definitions.pecifically, instead of being selected at random,
κ is set equal to an encryption of the anamorphic message computed using an encryption scheme
with pseudorandom ciphertexts. The encryption key K used to compute the ciphertext constitutes
the double key. To construct a valid signature, we observe that the ElGamal signature scheme
imposes the following relation:

H(m, r) = x · r + s · κ.

Therefore, if κ and, consequently, r = gκ are fixed and x is the secret key, then the above equation
can be solved for s so to produce a legal signature (r, s).

Let us proceed more formally and denote by prE = (prKG, prEnc, prDec) an IND-CPA secure
encryption scheme with pseudorandom ciphertexts. Consider the following anamorphic triplet
ElT = (aKG, aSig, aDec).

1. The anamorphic key-generation algorithm aKG on input 1λ runs ElKG to obtain (asvk :=
(G, g,H, y), assk := (G, g,H, x)). In addition, the algorithm randomly selects K ← prKG(1λ)
and sets dkey := (K,x). Finally, the algorithm outputs (asvk, assk, dkey).

2. The anamorphic signing algorithm aSig, on input messages (msg, amsg), signing key assk =
(p, h,H, x) and double key K, computes ciphertext prct = prEnc(K, amsg), and sets κ :=
prct and r = gκ. Finally, s is computed as s = (H(msg, r)− x · r) · κ−1 and the pair (r, s) is
output.

3. The anamorphic decryption algorithm aDec receives a signature (r, s) for normal message
msg and double key (K,x) and computes act as prct = (H(msg, r)− x · r) · s−1 and amsg as
amsg = prDec(K, prct).

The following theorem follows from the the general proof of the anamorphism of the Fiat-Shamir
heuristics. We provide a proof for this special case as a warm-up to the general proof.

Theorem 6. Given that the ElGamal signature is unforgeable in the Random Oracle Model, the
ElGamal signature scheme is a symmetric anamorphic signature scheme in the Random Oracle
Model.

Proof. Correctness is straightforward and we also observe that the double key contains the signing
key x so the extract algorithm is trivial. To complete the proof, suppose for the sake of contradiction
that there exists a PPT dictator D that breaks the anamorphism of ElS and ElT. That is, there
exists a polynomial poly such that∣∣Prob [RealGElS,D(λ) = 1]− Prob

[
AnamorphicGElT,D(λ) = 1

]∣∣ ≥ 1/poly(λ).

Consider now the following PPT adversary A for the pseudorandomness of the ciphertexts of prE.
According to Definition 6 (see Appendix 3.1), A is provided with access to an oracle O that is either
equal to OPr0, that returns random strings, or equal to OPr1, that returns encryptions of the input
with respect to a randomly selected key of prE. A constructs (svk, ssk) by running ElKG and runs
D on input (svk, ssk). Whenever D makes a query (msg, amsg), A prepares the reply by following
algorithm ElSig with the only exception that κ is obtained by invoking O; that is, κ = O(amsg).
When D stops and outputs a bit, A outputs the same bit.
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Now observe that if O = OPr0 then A is playing game PRCtG0
prE,A and is providing D with a

view of RealG. Indeed the signatures provided have the same distribution of the output of ElSig on
input msg. On the other hand, if O = OPr1 then A is playing game PRCtG1

prE,A and is providing D
with a view of AnamorphicG. Indeed in this case the signatures provided have the same distribution
as the output of aSig on input msg and amsg. Therefore we have that

Prob
[
PRCtG0

prE,A(λ) = 1
]

= Prob [RealGElS,D(λ) = 1]

and
Prob

[
PRCtG1

prE,A(λ) = 1
]

= Prob
[
AnamorphicGElT,D(λ) = 1

]
which, together with our assumptions about D, contradicts the pseudorandomness of prE.

Remark. In the construction of the anamorphic triplet for ElGamal we have made the implicit
assumption that the ciphertexts of prE are randomly distributed in Zp. Indeed, the anamorphic
signing algorithm should sample ciphertexts until one in Zp is obtained and this on average will
require at most 2 trials. Similar considerations apply to other constructions prensented in this
paper.

On using asymmetric encryption schemes with pseudorandom ciphertexts. The acute
reader might wonder why we use a symmetric encryption scheme with pseudorandom ciphertexts
instead of an asymmetric one. Indeed for a symmetric encryption scheme the same key must
be used to encrypt and to decrypt and thus it must be securely shared between two parties.
Asymmetric encryption indeed does not require any secure channel as no key must be securely
shared. Unfortunately, this would not be feasible in our settings. In particular, the dictator has
disallowed encryption and thus there is no public-key directory for public keys. Even though this
were not a problem, the moment a user publishes their public key, the dictator will request to see
the associated secret key. In other words, even if we use an asymmetric encryption scheme the
dictator must be aware of the existence of a public key; therefore it must be shared privately, which
bring us back to the symmetric key setting.

3.4 Schnorr Signatures

The Schnorr signature scheme [Sch90, Sch91] is proved secure in the Random Oracle Model under
the assumption of hardness of the discrete logarithm problem (see [PS96] and [Seu12]). A formal
description of the signature scheme is recalled in Figure 2.

Let us now convince that the Schnorr signature scheme is anamorphic by showing that the
randomness κ used by the signer can be extracted by the verifier. Then as done for ElGamal, the
randomness can be replaced with a ciphertext of a symmetric encryption scheme with pseudorandom
ciphertexts whose key is part of the double key.

Let us proceed more formally and denote by prE = (prKG, prEnc, prDec) an IND-CPA secure
encryption scheme with pseudorandom ciphertexts.

1. The anamorphic key-generation algorithm aScKG on input 1λ runs ScKG to obtain (svk, ssk).
In addition, the algorithm randomly selects K ← prKG(1λ).

Finally, the algorithm outputs (asvk := svk, assk := ssk, dkey := (K, ssk)).
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1. The key generation algorithm ScKG(1λ) randomly selects G, a cyclic group of prime order
q, for q of length Θ(λ), a generator g for G, and a hash function H : {0, 1}? ×G→ Zq.
Then the algorithm randomly selects x← Zq and sets y = gx. The signing key is set equal
to ssk := (G, g,H, x) and the verification key is set equal to svk := (G, g,H, y).

2. To sign message msg, the signing algorithm ScSig, randomly selects κ ← Zq, computes
r = gκ, c = H(msg, r) and s = κ+ c · x.

The signature for msg is the pair (r, s).

3. To verify a signature (r, s) against message msg and verification key svk := (G, g,H, y),
algorithm ScVerify first computes c = H(msg, r) and then checks that r = gs · y−c.

Figure 2: The Schnorr signature scheme.

2. The anamorphic signing algorithm aSig, on input messages (msg, amsg), anamorphic signing
key ssk and double key (K, ssk), computes the ciphertext prct = prEnc(K, amsg) and sets
κ := prct. Then the algorithm proceeds as ScSig; that is, it sets r = gκ, s = κ+ x · c, where
c = H(msg, r) and outputs signature (r, s).

3. The anamorphic decryption algorithm aDec, on input signature (r, s), and K and ssk =
(G, g,H, x), computes c = H(msg, r), and obtains κ as κ = s− x · c. Finally, the anamorphic
message amsg is obtained as amsgprDec(K,κ).

We have the following theorem whose proof is omitted and derives easily from the general
theorem about the anamorphism of the Fiat-Shamir heuristics. See Theorem 9.

Theorem 7. If the Schnorr signature is unforgeable in the ROM, then the Schnorr signature
scheme is a symmetric anamorphic signature scheme in the ROM.

4 Three-Message Public-Coin Protocols

In this section, we study the Fiat-Shamir heuristics [FS87] that constructs signature schemes from
three-message public-coin protocols. If the protocol enjoys a specific security property (see Theo-
rem 8 below), the resulting signature scheme is unforgeable in the Random Oracle Model. We show
that this general technique preserves anamorphism; that is, if the starting protocol is anamorphic
(in a sense that will be formally defined below) then the resulting signature scheme is also anamor-
phic. We then give a simple sufficient condition for anamorphism of a protocol and use it to show
that several well known three-message public-coin protocols are anamorphic and thus so are the
signature schemes obtained from them via Fiat-Shamir heuristics.

Let us set up our terminology (see also Appendix D) Let (P, V ) be two PPT machines playing a
three round protocol for a polynomial relation R. If (x,w) ∈ R we say that x is the instance and w
is the witness. Following the notation used for Sigma protocols [CDS94], we let (a, st)← P (x,w)
be the pair of the first message a of the interaction and P ’s state. Message a is sent to V which
responds with a random string e of length r(λ), for some polynomially bounded function r(·). P
concludes the interaction by computing and sending message z ← P (x,w, st, e). Finally, V outputs
a bit b ← V (x, a, e, z). We denote by [P (x,w) ↔ V (x)] the distribution of the transcripts (a, e, z)
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of interactions between P and V over random coin tosses of P and V . We say that a transcript
(a, e, z)← [P (x,w)↔ V (x)] is accepting for x if V (x, a, e, z).

In the next section, we define the notion of an anamorphic three-message public-coin protocol.
In Appendix E, we discuss a simple two-message anamorphic protocol.

4.1 Anamorphic Three-Message Public-Coin Protocols

Roughly speaking, a prover-to-verifier anamorphic three-message public-coin protocol for relation
R is a protocol in which prover and verifier have access to a private input called the double key
dkey. Like in a regular protocol (P, V ), (x,w) is sampled from R and the prover has (x,w) and
the verifier has x. In addition, both prover and verifier share a double key and the prover has an
anamorphic message amsg that would like to send the verifier in a secure way. At the end of an
execution, in which the anamorphic prover runs on input (x,w, amsg, dkey) and the anamorphic
verifier on input (x, dkey), the verifier extracts amsg from the transcript. The security property
requires that the dictator that has access to (x,w, amsg), but not to dkey, cannot tell whether it is
interacting with a real prover or with an anamorphic prover. Let us proceed more formally.

Definition 9. Let 3Prot = (P, V ) be a three-message public-coin protocol for relation R. We say
that RRT = (dKG, aP, aDec) is an anamorphic triplet for 3Prot if

1. The double-key generation algorithm dKG, on input security parameter 1λ and (x,w) in the
support of R(λ), returns double key dkey.

2. aP is the anamorphic prover algorithm that, on input a pair instance-witness (x,w), an
anamorphic message amsg, and a double key dkey, plays the protocol with a verifier. That is,
aP(x,w, amsg, dkey) outputs (a, st) and aP(x,w, amsg, dkey, a, st, e) outputs z.

and the following correctness condition is satisfied: aDec(x, dkey, tx) = amsg, except with negligible
probability, where (x,w)← R(λ), dkey← dKG(1λ, x, w) and tx← [aP(x,w, amsg, dkey)↔ V (x)].

We are now ready for the definition of a prover-to-verifier anamorphic three-message public-coin
protocol.

Definition 10. We say that three-message public-coin protocol 3Prot = (P, V ) is prover-to-verifier
anamorphic (or simply, anamorphic) if there exists an anamorphic triplet T = (dKG, aP, aDec) such
that, for all PPT dictators D,∣∣Prob

[
ProtG0

3Prot,T,D(λ) = 1
]
− Prob

[
ProtG1

3Prot,T,D(λ) = 1
]∣∣ ≤ negl(λ),

where

ProtGβ3Prot,T,D(λ)

1. Set (x,w)← R(λ) and dkey← dKG(1λ, x, w);

2. return D(x,w)O
β(amsg), where

O0(amsg) samples a transcript from [P (x,w)↔ D(x,w, amsg)]; and

O1(amsg) samples a transcript from [aP(x,w, amsg, dkey)↔ D(x, amsg)].
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Two remarks are in order. First of all, we let the dictator D pick the anamorphic message amsg

and the challenge e, and have access to the witness w for x. This in the spirit of anamorphism
that requires the dictator to have access to any secret information related to a public information
they are aware of. Moreover, we also stress that the double key depends on the pair (x,w) and
thus they must be generated and securely shared for each different pair (x,w). This does not affect
the applicability of the notion. Indeed, we note that in the two main applications to identifications
protocols and to signature schemes, the prover’s input (x,w) is fixed as they constitute the id and
the authentication key in the case of identification protocols, and the verification and the signing
keys in the case of signature schemes.

4.2 Fiat-Shamir gives Symmetric Anamorphic Signatures

The Fiat-Shamir heuristics [FS87] constructs a signature scheme from any three-message public-
coin protocol for a relation R satisfying a specific security condition. See Theorem 8 below.

Before proceeding further, let us fix a three-message public-coin protocols 3Prot = (P, V ) for a
relation R and describe the signature scheme FS = (fsKG, fsSig, fsVerify) obtained by applying the
Fiat-Shamir heuristics to 3Prot. Below, with a slight abuse of notation, we identify the relation
R with the sampling algorithm R that on input 1λ returns a pair (x,w) ∈ R with |x| = λ. The
transform uses hash function H.

1. The key-generation algorithm fsKG(1λ) samples a pair (x,w)← R(1λ). The instance x is the
verification key fsvk = x and the pair (x,w) is the signing key fssk = (x,w).

2. The signing algorithm fsSig, on input message msg and signing key fssk = (x,w), runs the
prover P on input (x,w) and produces the first message a along with state st. Then, it
sets e = H(a, msg) and computes message z = P (x,w, a, st). The signature of msg is the
transcript sig = (a, e, z).

3. The verification algorithm fsVerify on input signature verification key fsvk = x, message msg

and signature sig = (a, e, z) checks if V (x, a, e, z) = 1 and if e = H(a, msg).

There is a long series of results starting from [FS87] that establish the security of the transform.
The minimal conditions for the security of FS were given by [AABN02] and are motivated by the
use of three-message public-coin protocols as identification protocols. Here the prover picks a pair
(x,w) ∈ R and x will be the prover’s identity and w their secret key. The prover successfully
manages to identify themselves if the verifier accepts. A possible security notion for identifica-
tion schemes is security against under passive attacks, where an impersonator tries to convince the
verifier without the knowledge of the secret key. The impersonator is allowed to obtain any (poly-
nomial) number of of transcripts of honest executions of the protocol, after which he can try to
impersonate the legitimate prover. The attack is passive as only honest executions of the protocol
are made available to the impersonator. If any PPT impersonator has only negligible probability
of success, then we say that the protocol is secure against passive attacks (see formal definition in
Section D).

Theorem 8 ([AABN02]). If 3Prot = (P, V ) is secure against passive attacks, then the signature
scheme obtained by applying the Fiat-Shamir heuristics is secure against chosen-message attacks
in the ROM.
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Next, we show that if 3Prot is anamorphic, then the signature resulting from applying Fiat-
Shamir is anamorphic.

Theorem 9. Suppose that 3Prot is anamorphic and secure against passive attacks. Then the
signature scheme FS = (fsKG, fsSig, fsVerify) obtained by applying the Fiat-Shamir transform to
3Prot is symmetric anamorphic.

Proof. First of all observe that if 3Prot is secure against passive attacks then, by Theorem 8, FS
is unforgeable. Consider now the following anamorphic triplet afsT = (afsKG, afsSig, afsDec) that
is, essentially, the Fiat-Shamir transform applied to the anamorphic prover. More precisely, let
T = (dKG, aP, aDec) be the anamorphic triplet associated with 3Prot.

1. The anamorphic key generation algorithm afsKG(1λ) runs fsKG(1λ) to get verification key
svk := x and signing key ssk := (x,w), and it then selects d ← dKG(1λ, x, w) and sets
dkey := (d, x, w).

Note that dkey contains the signing key ssk and thus the scheme is symmetrically anamorphic.

2. The anamorphic signing algorithm afsSig takes as input message msg, anamorphic message
amsg, signing key ssk = (x,w), and double key dkey = (d, x, w) and computes the anamorphic
signature in the following way. Set (a, st) ← aP(x,w, amsg, d), e = H(a, msg), and z ←
aP(x,w, amsg, d, a, st, e). Finally, asig = (a, e, z) is the anamorphic signature produced.

3. The anamorphic decryption algorithm afsDec receives anamorphic signature asig = (a, e, z)
and double key dkey = (d, x, w) and runs algorithm aDec(asig, d) to obtain amsg.

Correctness follows from the correctness property of the anamorphic triplet of (P, V ). Let us now
assume for the sake of contradiction that there exists a dictator D that breaks anamorphism of FS
and consider the following adversary A that breaks the anamorphism of (P, V ) and of the triplet
T.
A receives a pair (x,w) ← R(1λ) and interacts with an oracle O that is either prover P or

anamorphic prover aP. Upon receiving (x,w) as input, A prepares (svk, ssk) = (x, (x,w)) and
runs D on input (svk, ssk). When D issues query (msg, amsg), A interacts with the oracle O on
input (x,w, amsg) and in the interaction A sets e = H(a, msg). Finally, A returns the transcript of
the interaction as a response to D’s query (msg, amsg). When D stops, A returns D’s output has
its own output.

Now observe that if A plays ProtG0, and thus A interacts with prover P , then every query
by D is answered with a regular signature. Therefore, the probability that A returns 1 in game
ProtG0 is equal to the probability that D returns 1 in game RealG. On the other hand, if A plays
ProtG1, and thus A interacts with anamorphic prover aP, then every query by D is answered with
an anamorphic signature. Therefore, the probability that A returns 1 in game ProtG1 is equal to
the probability that D returns 1 in game AnamorphicG. Therefore∣∣∣Prob

[
ProtG0

3Prot,T,A(λ) = 1
]
− Prob

[
ProtG1

3Prot,T,A(λ) = 1
]∣∣∣

=
∣∣∣Prob [RealGFS,D(λ) = 1]− Prob

[
AnamorphicGafsT,D(λ) = 1

]∣∣∣ ≥ 1/poly(λ).

We thus reached a contradiction since we had assumed that 3Prot was anamorphic.
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4.3 A Sufficient Condition for Anamorphism

In this section we give a sufficient condition for a three-message public-coin protocol to be anamor-
phic. Roughly speaking, we say that a prover P is randomness recovering, if there exists a way to
recover the randomness used by P to produce the first message a. As we shall see, randomness
recovering are easily proved to be anamorphic. Let us now proceed more formally.

Definition 11 (Randomness Recovering Protocol.). We say that a prover P of a three-message
public-coin protocol is randomness recovering, if there exists a recovering algorithm RRecov that,
on input (x,w) ∈ R and a transcript (a, e, z) for (x,w), outputs the randomness used to create a.

We next show that a protocol 3Prot = (P, V ) with randomness recovering prover is (prover-to-
verifier) anamorphic by using an encryption scheme prE = (prKG, prEnc, prDec) with pseudorandom
ciphertexts. More precisely, consider the following “randomness-recovering” anamorphic triplet
RRT = (dKG, aP, aDec).

1. The double-key generation algorithm dKG on input (x,w), randomly selects K ← prKG(1λ)
and outputs dkey := (x,w,K).

2. The anamorphic prover aP on input (x,w,K, amsg), computes act equal to prEnc(K, amsg)
and then aP runs the code of P by using act as a random tape.

3. The anamorphic decryption algorithm aDec, on input a transcript tx = (a, e, z) and dkey =
(x,w,K), runs the recovering algorithm RRecov(x,w, tx) to obtain act and gets amsg by
decrypting act using K.

We have the following theorem.

Theorem 10. Any Randomness Recovering protocol is (prover-to-verifier) anamorphic.

Proof. We observe that the only difference between the games AnamorphicG and RealG is in the
randomness used to construct the first message as in the former true randomness is used, whereas
in the latter a pseudorandom ciphertext is employed. Any adversary that distinguishes the two
games can be used to distinguish a ciphertext of prE from true randomness thus breaking the
pseudorandomness property of prE (see Definition 6).

4.4 Examples of Three-message Protocols with Randomness Recovering

Several 3-message protocols can be shown to be randomness recovering (see, for example, [Bet88,
BM91, FS87, Gir91, GQ90, MS90, Oka93, OS91, Poi95, Sch91, Ste94]). In this section, we give two
explicit examples, one from the number theoretic domain that can be used to derive the ElGamal
signature scheme via the Fiat-Shamir transform (see Section 4.2) and one from the graph theoretic
domain.

Discrete Log. Consider the protocol for Discrete Log by Chaum and Pedersen [CP93]. In this
protocol, the common input consists of a group G of a prime order p, a generator g and x ∈ G.
The prover holds a the discrete w such that x = gw. He produces a commitment a by picking r
at random and setting a = gr. After receiving a random challenge e from the verifier, the prover
replies with z = r + ew. Finally, the verifier accepts the proof if gz = a · xe.
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To see that the protocol is randomness extracting, we observe that the randomness r used to
produce first message a can be obtained from z. Indeed, r = z − ew and the value of e is in
the transcript and w is the witness. This is very similar to how we proved that ElGamal and
Schnorr signatures and this is no coincidence as the ElGamal and Schnorr signatures derive from
the protocol above through the Fiat-Shamir transform. In the next section we show that this
general technique that derives signature schemes from three-message public-coin protocols when
applied to protocol with randomness recovery yield anamorphic signature schemes.

Graph Isomorphism. This is a classical proof system by [GMW86] that is not used as part of
the Fiat-Shamir heuristic as the resulting signature scheme would be inefficient. This is mainly due
to the fact that a hard instance would require very large graphs and that the verifier’s challenge
is only 1-bit long and thus several instances must be executed in parallel to achieve a small error
probability. Nonetheless, we give it as an example of a proof system that is not number-theoretic
in nature.

Here the common input is a pair of graphs (G0, G1) and the prover holds as a witness an
isomorphism π such that π(G0) = G1. To produce the first message, the prover picks a random
permutation σ and sends the graph H = σ(G0) to the verifier. The verifier’s challenge is a random
bit e and the final prover’s message is an isomorphism τ : Ge → H.

To see that the protocol is randomness extracting, we observe that the randomness σ used to
produce the first message H is equal to τ if e = 0; otherwise, σ = τ ◦ π. Note that τ is part of the
transcript and π is the witness for the common input.

5 Private Anamorphic Signatures

In this section we introduce the notion of a private anamorphic signature scheme, that captures
the idea that the anamorphic signing key remains private, even if the double key is released. More
precisely, the signature scheme remains unforgeable even by an adversary that has access to the
double key. Whereas symmetric anamorphic signatures can be used to implement a many-to-many
communication channel hidden from the dictator, private anamorphic signatures yield one-to-many
channels in which the owner of the signer key is the designated sender and the parties with the
double key are the receivers. Of course, every private anamorphic signature can be made symmetric
by appending the signing key to the double key.

Requiring that the signature scheme remains unforgeable even if the double key is released is
similar to the requirements studied in Theorem 2 that proved that the anamorphic verification keys
do not weaken the unforgeability of the signature scheme and this latter property is a direct conse-
quence of the anamorphism property. A private anamorphic signature makes the same requirement
with respect to adversaries that have access to the double key but, of course, not to the anamorphic
signing key.

We formally define this concept by strengthening experiment sigG used to formalize unforgeabil-
ity by letting the adversary also receive the double key; then we present a simple condition (that
we call separability) on the anamorphic key generation algorithm that is readily seen to be suffi-
cient for private anamorphism. This will allow us to simplify the proof of private anamorphism for
our constructions. In Section 7, we show that the Naor-Yung paradigm [NY89] that lifts one-time
signatures to many-time signatures gives private anamorphic signature schemes when instantiated
with one-time signature schemes that enjoy a weaker form of anamorphism. As a special case, NY
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instantiated with Lamport’s tagging systems [Lam79] gives private anamorphic signature schemes
under the sole assumption of existence of one-way functions.

5.1 Formal Definition of Private Anamorphism

To formalize the concept of a private anamorphic signature, we consider the following game DsigG for
an anamorphic signature scheme S = (KG,Sig,Verify), associated triplet T = (aKG, aSig, aDec) and
PPT adversary A. The game is similar to the game used to define unforgeability (see Definition 18
of Appendix A)nd the goal of the adversary is to produce a new signature that has not been
returned by the signature oracle. However, here we consider a stronger adversary that has access
to the double key dkey.

DsigGAS,T(λ)

1. (asvk, assk, dkey)← aKG(1λ);

2. (msg, sig)← AOs(·,assk)(asvk, dkey),

where Os(m, assk) = (m,Sig(m, assk));

3. if Verify(sig, msg, asvk) = 1 and (msg, sig) has not been
returned by Os then return 1; else return 0.

Definition 12. An anamorphic signature scheme S = (KG,Sig,Verify) with anamorphic triplet
T = (aKG, aSig, aDec) is private anamorphic if, for every PPT adversary A, the probability that
DsigGAS,T(λ) returns 1 is negligible in λ.

5.2 ElGamal and Schnorr Signature Schemes

In this section we want to briefly discuss the ElGamal and Schnorr signature schemes and how to
make them private. It is not difficult to see that the anamorphic triplet presented in Sections 3.3
and 3.4 are not private as they both contain a crucial component of the signing key: the exponent x.
We want to briefly describe how to make them private by using the rejection sampling technique,
that has been used in the context of anamorphic encryption by [PPY22]. As we shall see, this
technique only allows to encrypt messages of size O(log λ) whereas in this section we will show
private signature schemes with polynomial bandwidth. We concentrate on the ElGamal signature
scheme as similar reasoning holds for the Schnorr signature scheme. The double key is the seed K
of a pseudorandom function F with one-bit output. To embed a one-bit anamorphic message, the
signer samples signatures (r, s) until they obtain a signature with F (K, r) = b. On average two
samples suffice. If the signer wants to embed an `-bit message m, they consider a pseudorandom
function F with `-bit outputs and sample signatures until F (K, r) = m. On average, 2` samples
are necessary and thus, to keep signing polynomial, it must be ` = O(log λ).

5.3 A Sufficient Condition for Private Anamorphism

In the definition of anamorphic triplet, we allow the anamorphic key generation algorithm to jointly
generate the anamorphic verification and signing keys, and the double key. This means that the
double key and the signing key could share random coin tosses used in their generation and in
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this case it is not clear whether unforgeability still holds if an adversary has access to the double
key. We consider a special case of anamorphic key generation algorithms that can be seen as
the parallel (and independent) composition of the normal key-generation algorithm KG and of
the double-key generation algorithm dKG that are run on fresh and independent randomness. We
call these algorithms and the anamorphic triplets with such key generation algorithms separable.
Since separable anamorphic key generation algorithms unlink the generation of signing and double
key, the same double key can be used across multiple signing keys. This is crucial for anamorphic
signature schemes that update the signing (and the verification) key as new signatures are produced
(e.g., the Naor-Yung construction discussed in Sect. 7).

Definition 13 (Separable Anamorphic Key Generation.). Let S be an anamorphic signature scheme
with anamorphic triplet T = (aKG, aSig, aDec). We say that the T is separable if aKG is the parallel
and independent composition of algorithm KG, that outputs the signing and verification keys, and
of PPT algorithm dKG that outputs the double key.

We have the following theorem .

Theorem 11. Let S be an anamorphic signature scheme with anamorphic triplet T. If T is sepa-
rable then S is private anamorphic.

Proof. Suppose that there exits a PPT adversaryA for which DsigGAS,T outputs 1 with non-negligible
probability. Now observe that for a separable triplet T the DsigG game can be written as follows:

DsigGAS,T(λ)

1. (svk, ssk)← KG(1λ);

2. dkey← dKG(1λ);

3. (msg, sig)← AOs(·,ssk)(svk, dkey),

where Os(m, ssk) = (m,Sig(m, ssk));

4. if Verify(sig, msg, asvk) = 1 and

(msg, sig) has not been returned by Os

then return 1;

else return 0.

Let us now consider the following adversary B. B receives svk in input and has access to oracle
Os(ssk, ·). B generates dkey by running dKG and runs A on input (svk, dkey) and relays all A’s
queries to Os. It is straightforward to see that B has the same probability as A of returning 1.

6 One-Time Signature Schemes

In this section we look at one-time signature schemes and define the notion of a weakly anamorphic
one-time signature where the anamorphic message must be available at key-generation time and
not at signature time like in anamorphic signatures. From a technical point of view, this is due
to the fact that one-time signature schemes have often deterministic signature algorithms and
randomization is only used in the selection of the signing and verification keys. On the positive
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side, as we shall see below, weak anamorphism allows for a limited decoupling of the generation of
the double key and of the pair of anamorphic signing and verification key and thus the same double
key can be used in conjuction with more than one anamorphic pair of keys.

Clearly, weakly anamorphic signatures have limited interest per se. The reason for studying
this concept is in its applications. We shall see, in Section 7, that weakly anamorphic one-time
signatures give full private anamorphism when lifted to many-time signatures by the Naor-Yung
paradigm. In Appendix G this is extended to its tree-based version. In addition, in Section 8 we
show that weakly anamorphic one-time signature can be used in the context of the CHK [CHK04]
CCA encryption scheme to make the resulting encryption scheme anamorphic. Let us now proceed
in order.

Syntax for One-Time Signature Schemes. We modify slightly the syntax of a one-time signature
OneTSig = (oKG, oSig, oVerify) by having the key-generation algorithm oKG accept as input the
security parameter 1λ as well as the length parameter 1` that determines the length of the one
message that will be signed. Also, the security game sigG is modified to reflect the one-time nature
of the scheme by allowing the adversary A at most one query to the signature oracle Os.

In the next section, we formalize the notion of weak anamorphism

6.1 Weak Anamorphic Signature Schemes

Just as the notion of an anamorphic triplet is crucial for anamorphism, for weak anamorphism we
have the concept of a weakly anamorphic triplet. There are two differences between the concepts.
First of all, since we intend to embed the anamorphic message in the verification key, the signing
algorithm needs not to have knowledge of the anamorphic nature of the signature being produced
and, thus, there is no need for an anamorphic signing algorithm. In addition, however, to model
the limited form of decoupling of double and anamorphic keys we have two algorithms for key gen-
eration: algorithm odKG that selects the double-key odkey and the algorithm oaKG that computes
the anamorphic pair of keys on input the double-key dkey and the anamorphic message amsg. Note
that the decoupling is not complete as the one guaranteed by separability (see Definition 13) but, as
we shall see, it is sufficient to obtain private anamorphism. Our definition is tailored for one-time
signature schemes as all weakly anamorphic schemes that we will consider in this paper will be
one-time signature schemes.

Definition 14 (Weakly Anamorphic Triplet.). A weakly anamorphic triplet T = (odKG, oaKG,
oaDec) for one-time signature scheme OneTSig = (oKG, oSig, oVerify) consists of three PPT algo-
rithms such that

1. the double-key generation algorithm odKG that, on input security parameter 1λ, outputs the
double-key odkey;

2. the anamorphic key-generation algorithm oaKG that, on input security parameter 1λ, length
parameter 1`, double-key odkey, and anamorphic message amsg outputs the pair (asvk, assk)
composed of the anamorphic verification key asvk and the anamorphic signing key assk;

3. the anamorphic decryption algorithm oaDec takes as input a signature asig and a double
key odkey and outputs an anamorphic message amsg;

and that satisfy the following correctness requirement
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• For every pair of `-bit messages (msg, amsg) the probability that oaDec(sig, dkey) 6= amsg is
negligible, where odkey ← odKG(1λ), (asvk, assk) ← oaKG(1λ, 1`, dkey, amsg), and sig =
Sig(msg, assk) and the probability is taken over the random coin tosses of odKG and oaKG.

We next present the definition of a weakly anamorphic signature scheme.

Definition 15. An unforgeable one-time signature scheme OneTSig = (oKG, oSig, oVerify) is weakly
anamorphic with weakly anamorphic triplet T = (odKG, oaKG, oaDec) if for every PPT dictator D,
and for every ` = poly(λ), there exists a negligible function negl such that∣∣Prob

[
WeakG0

S,T,D(λ, `) = 1
]
− Prob

[
WeakG1

S,T,D(λ, `) = 1
]∣∣ ≤ negl(λ)

where

WeakGβS,T,D(λ, `)

1. odkey← odKG(1λ);

2. return DOracleKGβ(1λ,1`,odkey,·)(1λ);

where OracleKG0(1λ, 1`, odkey, amsg) = oKG(1λ, 1`)
and OracleKG1(1λ, 1`, odkey, amsg) = oaKG(1λ, 1`, odkey, amsg).

In the game above the dictator has access to an oracle that returns pairs of verification and
signing keys that are generated either regularly by oKG or anamorphically by oaKG. We note that
if keys are generated anamorphically they are with respect to the same double key odkey. Also
note that the dictator can compute all signatures of their choice since the signing key is provided by
the oracle. At the end the dictator outputs its guess to whether the keys received are anamorphic
or regular.

6.2 Lamport’s Tagging Systems

We describe Lamport’s tagging system L = (LKG, LSig, LVerify), a one-time signature scheme that
uses a one-way function f : {0, 1}? → {0, 1}? (see [Lam79]). For sake of compactness and without
loss of generality, we assume that f is length preserving. The idea behind Lamport’s tagging system
is to select a secret xb,j for each bit position j and for each bit-value b of the message and then
hide it by means of a one-way function f by computing yb,j = f(xb,j). The yb,j ’s constitute the
verification key and to sign a message one reveals the secrets for each bit position j and value mj of
the message m in that position. Verification then just consists in re-applying the function f to the
revealed secrets and checking that the value obtained appears in the verification key. See Figure 3
for a formal description of L.

We have the following theorem.

Theorem 12 ([Lam79]). Assuming existence of one-way functions, Lamport’s tagging system is
an unforgeable one-time signature scheme.

Note that for one-time signatures the PPT adversary A is allowed to make at most one call to
oracle Os in game sigG.

29



1. LKG(1λ, 1`) randomly selects x0,j , x1,j ← {0, 1}λ and sets y0,j = f(x0,j) and y1,j = f(x1,j),
for j = 1, . . . , `. The verification key is the sequence Lvk = ((y0,j , y1,j))

`
j=1 and the signing

key is the sequence Lsk = ((x0,j , x1,j))
`
j=1.

2. LSig on input message msg = m1, . . . ,m` and signing key Lsk = ((x0,j , x1,j))
`
j=1 computes

the signature by setting sig = (xmj ,j)
`
j=1.

3. To verify signature sig = (sj)
`
j=1 of message msg = m1, . . . ,m` against verification key

Lvk = ((y0,j , y1,j))
`
j=1, the LVerify algorithm checks that f(sj) = ymj ,j for j = 1, . . . , `.

Figure 3: Lamport’s tagging system L [Lam79]

How to make Lamport’s tagging system weakly anamorphic? Essentially, instead of picking
x0,1 and x1,1 at random, the anamorphic key generation algorithm picks them as the ciphertext of
the anamorphic message amsg computed with respect to an encryption scheme with pseudorandom
ciphertexts (message randomized and then encrypted, each time randomized differently). Note
that every signature will include exactly one of x0,1 and x1,1. See Definition 6 for the notion of
an encryption scheme with pseudorandom ciphertexts.his embeds the anamorphic message in the
verification and signing key. We also note that the encryption keyK used to encrypt the anamorphic
message in the x0,1 and x1,1 can be chosen prior and independently from the anamorphic keys. On
the other hand the anamorphic keys do depend on K as they contain ciphertexts encrypted with
K.

More formally, let prE = (prKG, prEnc, prDec) be a symmetric encryption scheme with pseu-
dorandom ciphertexts. We assume that prE for security parameter λ encrypts n(λ)-bit plain-
texts into λ-bit ciphertexts and that ` = n(λ). Consider the following weakly anamorphic triplet
T = (LdKG, LaKG, LaDec).

1. Algorithm LdKG(1λ) randomly samples a key K ← prKG(1λ). The key K is the double key.

2. Algorithm LaKG, on input security parameter 1λ, length parameter 1`, double key K, and
anamorphic amsg, constructs the signing and verification key just as LKG(1λ, 1`) with the only
exceptions that x0,1 ← prEnc(K, amsg) and x1,1 ← prEnc(K, amsg). The algorithm returns
(asvk, assk) so computed.

3. Algorithm LaDec receives a signature (x1, . . . , x`) for message msg and double key K and
returns the anamorphic message computed by decrypting x1 with key K. That is, aDec
returns prDec(K,x1).

Theorem 13. Assuming existence of one-way functions, Lamport’s tagging system is weakly anamor-
phic.

Proof. Under the assumption of existence of a one-way function, Theorem 12 guarantees that
Lamport’s tagging system is unforgeable and Theorem 3 guarantees that there exists prE with
pseudorandom ciphertexts.
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To complete the proof, we assume, for the sake of contradiction, that there exists a PPT dictator
D that contradicts the weak anamorphism of L. That is,∣∣Prob

[
WeakG0

L,T,D(λ) = 1
]
− Prob

[
WeakG1

L,T,D(λ) = 1
]∣∣ ≥ 1/poly(λ).

We construct an adversary A that breaks the pseudorandomness of the ciphertexts of prE. A plays
one of two games, PRCtG0 or PRCtG1, and it has access to an oracle O(·). A runs D and answers D’s
queries for pairs of verification and signing keys relative to anamorphic message amsg by running
algorithm LKG with the only difference that x0,1 and x1,1 are computed by querying oracle O twice
on amsg. Finally A returns D’s output.

Let us analyze two cases depending on whether A is playing PRCtG0 or PRCtG1 and thus on
the type of oracle O it has access to. If A is playing PRCtG0, then O returns random strings and
thus A is providing D with a view from game WeakG0

L,T,D. Therefore,

Prob
[
PRCtG0

prE,A(λ) = 1
]

= Prob
[
WeakG0

L,T,D(λ) = 1
]
.

On the other hand, if A is playing PRCtG1, then O returns encryptions of its input with respect to
a randomly chosen key K and thus A is providing D with a view from game WeakG1. Therefore,

Prob
[
PRCtG1

prE,A(λ) = 1
]

= Prob
[
WeakG1

L,T,D(λ) = 1
]
.

By our assumption on D, we contradict the assumed pseudorandomness of the ciphertexts of prE.

In Appendix F, we will discuss other one-time signature schemes that are weakly anamorphic.

7 The Naor-Yung Paradigm for Signatures

The Naor-Yung paradigm [NY89] is a general paradigm to lift one-time signatures to many-time
signatures in the standard model and it relies on the notion of a Universal One-Way Hash functions
(UOWHF). We show that when instantiated with weakly anamorphic one-time signature schemes,
the NY paradigm yields many-time private anamorphic signature schemes. Specifically, the NY
paradigm instantiated with Lamport’s tagging systems [Lam79] and Rompel’s UOWHF based on
one-way functions [Rom90] gives a private anamorphic signature scheme based on the minimal
assumption of one-way functions.

7.1 Universal One-Way Hash functions

We consider H = {Hλ}λ>0 where, for each λ, Hλ is a family of functions such that each function
H ∈ Hλ is H : {0, 1}p1(k) → {0, 1}p2(k), for some polynomials p1 and p2.

Definition 16 (UOWHF [NY89]). H is a family of Universal One-Way Hash functions if

1. each H ∈ Hλ has a description of length h(λ), for some polynomial h, and there is a polyno-
mial time algorithm that on input x and the description of H outputs H(x);

2. for every PPT algorithm A, the probability that A, on input x and a randomly chosen H from
Hλ, outputs y such that H(x) = H(y) is negligible in λ;
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3. it is possible to uniformly select H from family Hλ in polynomial time.

We have the following theorem.

Theorem 14 ([NY89, Rom90]). If one-way functions exist then it is possible to construct a family
of Universal One-Way Hash functions.

Roughly speaking, the NY paradigm upgrades a one-time signature scheme to many-time sig-
nature by updating the verification key and, consequently, the signing key before each use of the
signing algorithm. The i-th key is used to sign the hash of two new keys: one will be used to sign the
(i+1)-st message and the other is the (i+1)-st key. In this way, a one-time key is only used once. A
positive side effect of this is that, even if the one-time signature scheme is only weakly anamorphic,
NY can be shown to be anamorphic (that is, without the limitation that the anamorphic message
is fixed at key-generation time): key-generation time for the one-time signature coincides with the
signature time of the many-time signature. In Appendix G we will show that the extensions to a
tree-based approach of the NY paradigm can give stateless private anamorphic signature schemes.

Going into more details, let us fix a weakly anamorphic one-time signature OneTSig = (oKG, oSig,
oVerify). The many-time scheme obtained from applying the NY paradigm to OneTSig will have,
at any give time, a public state st = (H, Svk), consisting of (the description of) a UOWHF H and
of a one-time state verification key Svk; and a private state consisting of the state signing key Ssk

associated with Svk. Now let sti−1 = (Hi−1, Svki−1) be the public state after the (i−1)-st message
has been signed and let Sski−1 be the associated signing key. To sign the next message msgi, the
signing algorithm selects a new UOWHF Hi and runs oKG twice to select two pairs of one-time
verification and signing keys: the new state pair (Svki, Sski) ← oKG(1λ) and an ephemeral mes-
sage pair (Mvki, Mski) ← oKG(1λ). The oSig algorithm is then run twice. The first time on input
the message signing key Mski to compute a signature of msgi and the second time on input the
current state signing key Sski−1 to sign a hash computed with respect to Hi−1 of the new state
sti = (Hi, Svki) and of the ephemeral message verification key Mvki. A formal description is found
in Figure 4.

Let T = (odKG, oaKG, oaDec) be the weakly anamorphic triplet associated with OneTSig and
let us describe the separable anamorphic triplet (aNYKG, aNYSig, aNYDec). The anamorphic key-
generation aNYKG consists of the parallel execution of algorithm odKG that returns dkey and of
NYKG that returns the initial public state (H0, Svk0) with initial signing key Ssk0. To encrypt
the i-th anamorphic message amsgi as part of the signature of the i-th regular message msgi, the
anamorphic signing algorithm aNYSig first runs oaKG on input dkey and amsgi and obtains the
ephemeral message pair (Mvki, Mski) and then runs oKG to generate the new state pair (Svki, Sski).
The rest of the signature algorithm stays unchanged; that is, oSig is used with key Mski to sign
msgi and with key Sski−1 to sign Hi−1(Hi, Svki, Mvki). Algorithm aNYDec, on input the signature
of msgi, runs aDec to extract the anamorphic message amsgi. A formal description is found in
Figure 5. The following theorem is due to [NY89].

Theorem 15 ([NY89]). If Universal One-Way Hash functions exist then NYS is an unforgeable
signature scheme.

Let us now convince ourselves that the Naor-Yung paradigm yields a private anamorphic many-
time signature scheme whenever OneTSig is weakly anamorphic. First of all, observe that in the NY
paradigm a new key pair is generated before each signature is produced and this allows to embed the
anamorphic message into the verification key. In other words the signature time for the many-time
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• The key-generation algorithm NYKG(1λ) runs oKG(1λ, 1`) and let Svk0 and Ssk0 be the
verification and the signing key obtained.

NYKG then randomly selects a UOWHF H0 : {0, 1}2`+h(λ) → {0, 1}` from Hλ and outputs
initial st0 = (H0, Svk0) and signing key Ssk0. (Here, h(λ) is the length of the description
of a UOWHF.)

• The signing algorithm NYSig takes as input the i-th `-bit message msgi, the current state
sti−1 = (Hi−1, Svki−1) and the current signing key Sski−1 and proceeds as follows.

1. Randomly select a UOWHF Hi ← Hλ and construct the following pairs of keys

– (Svki, Sski)← oKG(1λ, 1`);

– (Mvki, Mski)← oKG(1λ, 1`);

The new state and signing key are sti = (Hi, Svki) and Sski.

2. Construct the following two signatures:

– signature stSigi of Hi−1(sti, Mvki) by running oSig on input signing key Sski−1;

– signature mSigi of msgi by running oSig on input signing key Mski.

3. Signature sigi = (sti, Mvki, stSigi, mSigi) is output.

• The verification algorithm NYVerify takes as input signature sigi = (sti, Mvki, stSigi, mSigi)
of msgi and the current state sti−1 = (Hi−1, Svki−1).

First it checks stSigi by running oVerify on input message Hi−1(sti, Mvki) and Svki−1. Then
it checks mSigi by running oVerify on input message msgi and Mvki.

Figure 4: The NY signature scheme NYS = (NYKG,NYSig,NYVerify) obtained from one-time
signature OneTSig = (oKG, oSig, oVerify) .

signature scheme produced by NY coincides with the key-generation time of the one-time signature
scheme and this allows us to upgrade from weak anamorphism to anamorphism. Moreover, observe
that the anamorphic key-generation algorithm is indeed separable as the anamorphic keys are
obtained by the regular key-generation algorithm and the double key by an independent execution
of algorithm odKG that is guaranteed to exist by weak anamorphism. This guarantees private
anamorphism.

We have the following theorem.

Theorem 16. If universal one-way hash functions exist, the NY signature scheme NYS = (NYKG,
NYSig,NYVerify) of Figure 4 is private anamorphic whenever OneTSig is weakly anamorphic.

Proof. First of all, note that if universal one-way hash functions exist then, by Theorem 15, NYS is
an unforgeable signature scheme. Next, note that the triplet aNY is separable as aNYKG generates
the double-key and the pair of verification and signing key by independent and parallel execution
of odKG and of NYKG. See Figure 5.

To finish the proof, let us assume, for sake of contradiction, that there exists a PPT dictator D
that breaks the anamorphism of NY = (NYKG,NYSig,NYVerify) and its triplet aNY and we show
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• The anamorphic key-generation algorithm aNYKG(1λ, 1`) runs the normal key-generation
NYKG algorithm and let st0 and Ssk0 be the initial verification and signing key, respectively.
In addition the algorithm runs odKG to obtain double key dkey.

• The anamorphic signing algorithm aNYSig takes as input the i-th `-bit normal message msgi,
the i-th anamorphic message amsgi, the current state sti−1 = (Hi−1, Svki−1), the current
state signing key Sski−1 and the double key dkey and proceeds as follows.

1. Randomly selects a UOWHF Hi;

2. The algorithm selects the following key pairs:

– Message pair (Mvki, Mski) is obtained by running oaKG on input dkey and amsgi;

– State pair (Svki, Sski) is obtained by running oKG.

3. The algorithm constructs the following two signatures:

– signature stSigi of Hi−1(sti, Mvki) by running oSig on input signing key Sski−1;

– signature mSigi of msgi by running oSig on input signing key Mski.

4. return sigi = (sti, Mvki, stSigi, mSigi).

• The anamorphic decryption algorithm aNYDec takes as input the anamorphic signature
sigi = (sti, Mvki, stSigi, mSigi) of msgi and the double key dkey. It extracts the first
component act of mSigi and returns amsg = oaDec(dkey, act).

Figure 5: The anamorphic triplet aNY = (aNYKG, aNYSig, aNYDec) of the NY signature scheme
NYS.

existence of PPT dictator A that breaks the weak anamorphism of OneTSig = (oKG, oSig, oVerify)
and of its weakly anamorphic triplet T = (odKG, oaKG, oaDec)

For clarity, in Figure 6 and 7, we instantiate the real game for NY and the anamorphic game for
aNY by describing NYKG and NYSig in terms of the underlying one-time signature scheme OneTSig
and the algorithms of the anamorphic triplet aNY = (aNYSig,NYVerify, aNYDec) in terms of the
algorithms of the weakly anamorphic triplet T = (odKG, oaKG, oaDec) for the one-time signature
scheme.

Simple inspection of the description of the two games shows that the only difference between the
two games is in the way the message pair of keys (Mvki, Mski) is computed. Now suppose that that
there exists a PPT dictator D that distinguishes the two games. That is, there exists a polynomial
poly such that∣∣Prob [RealGNY,D(λ) = 1]− Prob

[
AnamorphicGaNY,D(λ) = 1

]∣∣ ≥ 1/poly(λ).

We construct an adversary A that contradicts the weak anamorphism of OneTSig and of its
triplet T. A constructs (svk0, ssk0) by running oKG, picks H0 at random and runs D on in-
put ((H0, svk0), ssk0). A has access to an oracle O(·) that takes an anamorphic message amsg and
returns either a regular pair of one-time verification and signing key or an anamorphic pair with
amsg embedded in it. A uses O to compute the reply to D oracle queries for anamorphic message
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RealGDNY(λ)

• (svk0, ssk0)← oKG(1λ) and H0 ← Hλ;

• return DOs(·,·,ssk0)((H0, svk0), ssk0).

where Os(msgi, amsgi, ssk0) computes its reply using NYSig and precisely as follows:

1. Let sti−1 = (Hi−1, Svki−1) be the current state and let Sski−1 be the current signing key.

2. Randomly select a UOWHF Hi ← Hλ and construct the following pairs of keys

• (Svki, Sski)← oKG(1λ, 1`);

• (Mvki, Mski)← oKG(1λ, 1`);

The new state and signing key are sti = (Hi, Svki) and Sski.

3. Construct the following two signatures:

• signature stSigi of Hi−1(sti, Mvki) by running oSig on input signing key Sski−1;

• signature mSigi of msgi by running oSig on input signing key Mski.

4. Signature sigi = (sti, Mvki, stSigi, mSigi) is returned.

Figure 6: The real game
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AnamorphicGDaNY(λ)

• (svk0, ssk0)← oKG(1λ) and H0 ← Hλ;

• dkey← odKG(1λ).

• return DOa(·,·,assk0,dkey)(svk0, ssk0).

where Oa(msgi, amsgi, assk0, dkey) computes its reply using aNYSig and precisely as follows:

1. Randomly select a UOWHF Hi ← Hλ and construct the following pairs of keys

• (Svki, Sski)← oKG(1λ, 1`);

• (Mvki, Mski)← oaKG(1λ, 1`, dkey, amsgi);

The new state and signing key are sti = (Hi, Svki) and Sski.

2. Construct the following two signatures:

• signature stSigi of Hi−1(sti, Mvki) by running oSig on input signing key Sski−1;

• signature mSigi of msgi by running oSig on input signing key Mski.

3. Signature sigi = (sti, Mvki, stSigi, mSigi) is returned.

Figure 7: The anamorphic game
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amsg. Specifically, A computes the reply just as in RealG (or AnamorphicG) with the only exception
that the pair (Mvk, Msk) is computed by querying O on amsg.

Now observe that if A is playing WeakG0
S,T,A then the oracle computes its output by running

oKG and thus A is providing D with a view from RealGNY,D. Therefore we have that

Prob
[
WeakG0

S,T,A(1λ)
]

= Prob
[
RealGNY,D(1λ) = 1

]
.

On the other hand, if A is playing WeakG1
S,T,A then the oracle computes its output by running

oaKG and thus A is providing D with a view from AnamorphicGaNY,D. Therefore we have that

Prob
[
WeakG1

S,T,A(1λ) = 1
]

= Prob
[
AnamorphicGaNY,D(1λ) = 1

]
.

By our assumption on D, we obtain that A breaks the weak anamorphism of OneTSig. Contradic-
tion.

We observe, but do not elaborate further as optimizing efficiency is not a goal of this paper, that
one NY signature can accommodate l anamorphic messages making the anamorphic communication
very efficient. By instantiating the NY paradigm [NY89] with Lamport’s tagging system [Rom90]
and by using Rompel’s construction for UOWHF [Rom90], we obtain the Naor-Yung-Lamport-
Rompel private anamorphic signature scheme, whose security can be based on the existence of
one-way functions.

Theorem 17. If one-way functions exist, then there exists a private anamorphic signature scheme.

8 Applications: From Private Anamorphic Signature to Anamor-
phic CCA Encryption

Signatures are often used as building blocks in more complex constructions and in several cases
ephemeral keys are generated online to be used just once. If a private anamorphic signature is
used to generate the ephemeral keys, then the new primitive becomes anamorphic. In this section,
we exemplify this line of application by showing that it is possible to instantiate the construction
of CCA secure encryption of [CHK04], that employs a different signature verification key per
ciphertext, so to be anamorphic. The same holds for the construction by [DDN91].

The notion of an encryption scheme secure against chosen ciphertext attacks (CCA secure) was
put forth by [RS92] and first implemented by [DDN91]. Roughly speaking, the adversary in a
CCA attack has access to the decryption oracle which can be used to receive the decryption of any
ciphertext of his choice except, obviously, the challenge ciphertext. Resilience to such attacks is
also called non-malleability as it should not be able to efficiently maul a ciphertext into one with
a related plaintext. Following the approach of Naor and Yung [NY90], CCA security (actually, the
lunchtime or CCA-1 flavor of the attack) has been achieved using NIZK to force correctness of the
ciphertext. In this section, we look at the construction of [CHK04] that achieves CCA security
starting from selectively secure Identity Based Encryption (IBE). See Appendix H for a review of
the notion of IBE and of selective security.

The Canetti-Halevi-Katz [CHK04] construction of a CCA secure encryption scheme leverages
on the intrinsic non-malleability of a signature scheme. Roughly speaking, to encrypt a message
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msg using CHK, the sender selects a pair of verification and signing key (svk, ssk) of a signature
scheme, considers svk as the identity of an IBE scheme and encrypts the message with respect to
that identity. The final ciphertext is obtained by concatenating the identity svk, the ciphertext
with respect to svk and a signature of the ciphertext computed using ssk. See Figure 8 for a
formal description. The construction CHK(I, S) = (chkKG, chkEnc, chkDec) is parameterized by an
IBE I = (Setup,Der,Enc,Dec) and by a one-time signature scheme S = (KG, Sig,Verify). We have
the following theorem.

Theorem 18 ([CHK04]). If IBE I is selectively secure and one-time signature scheme S is unforge-
able then CHK(I,S) is CCA secure.

1. The key generation algorithm chkKG(1λ) runs algorithm Setup(1λ, 1`(λ)) to obtain pp and
msk. Here `(λ) is the length of the verification keys of S for security parameter λ.

The algorithm outputs pp as the public key chkpk and msk is the secret key chksk.

2. The encryption algorithm chkEnc, on input pp and msg, computes ephemeral keys by setting
(svk, ssk)← KG(1λ) and encrypts msg w.r.t. identity svk by setting ct = Enc(svk, pp, msg).
Finally, the algorithm computes sig = Sig(ssk, ct) and outputs chkct = (svk, ct, sig).

3. The decryption algorithm chkDec takes a ciphertext chkct = (svk, ct, sig) and master
secret key msk. First it checks that sig is a valid signature by running Verify(svk, ct). If
the test is passed, the algorithm derives the secret key sksvk for identity svk by running
algorithm Der(msk, svk) and decrypts by running Dec(sksvk, ct).

Figure 8: The CHK(I, S) construction.

We next show that if S is weakly anamorphic, then CHK(I, S) is an anamorphic encryption
scheme. See Appendix C for the definition of anamorphic encryption scheme.

Theorem 19. If I is a selectively secure IBE and S = (KG,Sig,Verify) is a weakly anamorphic
unforgeable one-time signature scheme, then CHK(I,S) is an anamorphic encryption scheme.

Proof. Theorem 18 gives that CHK(I,S) is a secure encryption scheme. Now let T = (odKG, oaKG, oaDec)
be the weakly anamorphic triplet for one-time signature scheme S and let us construct an anamor-
phic triplet aCHK = (achkKG, achkEnc, achkDec) for CHK in the following way.

1. The anamorphic key-generation algorithm achkKG(1λ) generates the double key dkey for S by
running algorithm odKG. Moreover, the algorithm executes algorithm chkKG(1λ) to obtain a
pair (chkpk, chksk) of public and secret keys for CHK.

2. The anamorphic encryption algorithm achkEnc takes as input the public key chkpk, the
double key dkey and the two messages msg and amsg. The algorithm executes the encryption
algorithm chkEnc with the following exception

• pair (svk, ssk) is generated by running oaKG on input dkey and amsg;

Note that it is crucial that the signature scheme S is weakly anamorphic as we use the limited
decoupling of dkey and anamorphic verification key. For otherwise the double key dkey
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generated at the key-generation time might be incompatible with the ephemeral anamorphic
signing key generated at encryption time.

3. The anamorphic decryption algorithm achkDec takes an anamorphic ciphertext chkct =
(svk, ct, sig) and extracts the anamorphic message by running the anamorphic decryption
algorithm oaDec of S on input the double key dkey and the anamorphic signature sig.

For the sake of contradiction, suppose that there exists a PPT dictator D that breaks the anamor-
phism of CHK and aCHK. That is, we assume that∣∣Prob [RealGCHK,D(λ) = 1]− Prob

[
AnamorphicGaCHK,D(λ) = 1

]∣∣ ≥ 1/poly(λ),

for some polynomial poly. We use D to build a dictator A that breaks the weak anamorphism of
one-time signature S.
A has access to an oracle O that takes an anamorphic message amsg and returns a pair of

one-time signature keys (svk, ssk) that are either output by the key generation algorithm KG of S
or by the anamorphic key generation algorithm oaKG of T on input amsg.
A starts by constructing a pair (chkpk, chksk) of public and secret keys for CHK and runs D

on input the pair. We remind the reader that the public and secret key of CHK are, respectively,
the public parameters pp and the master secret key msk of I. When D issues a query (msg, amsg), A
prepares the reply as follows. A queries O on input amsg and obtains (svk, ssk). Then A constructs
the ciphertext chkct = (svk, ct, sig) as specified by algorithm chkEnc and returns it to D. Finally,
A outputs D’s output.

Now, we observe that if O computes its output by running algorithm KG, then A is playing
WeakG0

S,T,A while simulating RealGCHK,D. Therefore, we have

Prob
[
WeakG0

S,T,A(λ) = 1
]

= Prob [RealGCHK,D(λ) = 1] .

On the other hand, if O computes its output by running algorithm oaKG, then A is playing
WeakG1

S,T,A while simulating AnamorphicGaCHK,D. Therefore, we have

Prob
[
WeakG1

S,T,A(λ) = 1
]

= Prob [RealGCHK,D(λ) = 1] .

Therefore by our hypothesis, A breaks the weak anamorphism of S. Contradiction.

The DDN and Sahai constructions. The DDN construction [DDN91] of CCA2 encryption is
parameterized by a signature scheme and generates a new verification key per ciphertext. The bits of
the verification key are used to select the random strings for which NIZKs will be produced. By the
same argument used for the CHK construction above, we can prove that the DDN construction is
anamorphic, if instantiated with a weakly anamorphic one-time signature scheme. Same argument
holds for the CCA2 by Sahai [Sah99].

9 Conclusions

Naturally, when the primary reason(s) for designing a cryptosystem are well motivated, formalized,
and understood, the next issues to think about are abuse and misuse of such systems in the overall
systems security ecosystem. Anamorphic Cryptography is one concrete tool (in the user hand) to
review such steps.
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We demonstrated that even in scenarios where only authentication/ signatures are allowed and
encryption is neutralized, there is a direct way to implement anamorphic channels between a signer
and a receiver of the signed message (while employing already designed, existing, or standardized
methods and systems). We formulated the conditions under which hidden anamorphic channels are
possible, primarily to demonstrate some of the futility of restrictions imposed by governments on
cryptographic systems, and we hope others will build on this initial study. However, we also noted
that anamorphic signature schemes have other uses, and we showed that they can contribute to
other cryptosystems being anamorphic, and be used to design watermarking of signature schemes
in order to serve various protective purposes. More applications of the notion are expected to be
discovered in future work.
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A Unforgeable Signature Schemes

In this section, we review the concept of an unforgeable signature scheme.

Definition 17 (Signature Scheme). A Signature Scheme S is a triplet of algorithms (KG, Sig,Verify)
with the following syntax:

1. the key-generation algorithm KG takes as input the security parameter 1λ and outputs the pair
(svk, ssk) consisting of a public verification key and of a secret signing key;

2. the signing algorithm Sig takes as input a message msg and the signing key ssk and outputs
a signature sig;

3. the verification algorithm Verify takes as input a signature sig, a message msg and a verifi-
cation key svk and accepts or rejects sig as a signature of msg.

and that satisfies the following correctness requirement: for every msg, it holds that

Verify(Sig(msg, ssk), msg, svk) = Accept

except with probability negl(λ), where (svk, ssk) ← KG(1λ) and the probability is taken over the
coin tosses of KG and Sig.

We next formally define the security of a signature scheme with respect to a chosen-message
attacks. In this type of attack a PPT adversary A is given as input a randomly selected verification
key svk and has access to an oracle Os that returns the signature of messages of A’s choice. A is
considered successful if it has a non-negligible probability of producing a pair (msg, sig) that was
never output by the oracle. In particular, we consider A successful even if they manage to produce
a new signature of a message for which he had seen a signature output by Os.

Definition 18. A signature scheme S is secure against chosen-message attacks if for every PPT
adversary A the probability that the following experiment sigGAS (λ) returns 1 is negligible in λ.

sigGAS (λ)

1. (svk, ssk)← KG(1λ);

2. (msg, sig)← AOs(·,ssk)(svk),

where Os(m, ssk) = (m,Sig(m, ssk));

3. if Verify(sig, msg, svk) = 1 and

(msg, sig) has not been returned by Os

then return 1;

else return 0.

In the rest of the paper, whenever we say that a signature scheme is secure or unforgeable, we
mean that the scheme is secure against chosen-message attacks as defined in Definition 18.
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B Symmetric Encryption schemes

We start by reviewing the syntax of a symmetric encryption scheme.

Definition 19. A symmetric encryption scheme E is a triplet E = (KG,Enc,Dec) of PPT algorithms
with the following syntax

1. the key-generator algorithm KG takes as input the security parameter 1λ and returns the
secret key sk← KG(1λ);

2. the encryption algorithm Enc takes as input the secret key sk and a message msg and returns
a ciphertext ct← Enc(sk, msg);

3. the decryption algorithm Dec takes as input the secret key sk and a ciphertext ct and returns
a message msg← Dec(sk, ct);

that enjoys the following correctness property:

• for every msg

Prob
[
sk← KG(1λ); ct← Enc(sk, msg) : Dec(sk, ct) 6= msg

]
≤ negl(λ).

When we wish to stress the random coin tosses R used by the encryption algorithm we will
write ct← Enc(sk, msg;R).

Let us now review the notion of security against chosen plaintext attacks (IND-CPA security)
for symmetric encryption schemes by means of the following game cpaG. More precisely, for an
encryption scheme E = (KG,Enc,Dec), bit β ∈ {0, 1}, and PPT adversary A, we consider the

following security game cpaGβE,A in which the adversary is given access to the encryption oracle Oe
from which it can obtain the encryptions of messages of its choice. The adversary A works in two
phases: in the first, it outputs the two messages on which it wants to be tested; in the second, it
receives a ciphertext carrying one of the two messages and outputs a bit. Essentially, IND-CPA
security requires the output of A to be independent from the message encrypted.

cpaGβE,A(λ)

1. sk← KG(1λ);

2. (msg0, msg1, st)← AOe(sk,·)(1λ);

3. ct = Ocβ(sk, msg0, msg1);

4. Return AOe(sk,·)(ct, st).

where

• Ocβ(sk, msg0, msg1) = Enc(sk, msgβ);

• Oe(sk,m) = Enc(sk,m).

We are ready for the formal definition of IND-CPA security.

Definition 20. Symmetric encryption schem E is IND-CPA secure if for all PPT adversaries A
we have ∣∣Prob

[
cpaG0

E,A(λ) = 1
]
− Prob

[
cpaG1

E,A(λ) = 1
]∣∣ ≤ negl(λ).
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C Anamorphic Encryption Schemes

We review the concept of a Anamorphic Encryption scheme introduced in [PPY22].

C.1 Anamorphic Triplets

We start with the syntactic definition of an anamorphic triplet of algorithms.

Definition 21 (Anamorphic Triplet). We say that a triplet AME = (aKG, aEnc, aDec) of PPT
algorithms is an anamorphic triplet if

• aKG takes as input the security parameter 1λ and returns a pair (apk, ask) of anamorphic
keys and a double key dkey;

• aEnc takes as input the public key apk, the double key dkey, and two messages, the regular
plaintext msg and the anamorphic plaintext amsg, and returns an anamorphic ciphertext act;

• aDec takes as input the secret key ask, the double key dkey, and an anamorphic ciphertext
act and returns a message m;

and, in addition, the following correctness requirement is satisfied

• for every regular message msg and anamorphic message amsg, it holds that

aDec(ask, dkey, act) = amsg

except with negligible in λ probability, where ((apk, ask), dkey) ← aKG(1λ) and act ←
aEnc(apk, dkey, msg, amsg).

C.2 Anamorphic Encryption Schemes

We are now ready to define the notion of an Anamorphic Encryption scheme (or, simply, an
AM Encryption scheme). Roughly speaking, we will say that a secure encryption scheme E =
(KG,Enc,Dec) is an Anamorphic Encryption scheme if there exists an anamorphic triplet AME =
(aKG, aEnc, aDec) such that no PPT dictator can distinguish whether E or AME is being used, even
if given access to the secret key. We formalize the notion by means of the following two games
involving a dictator D.

RealGE,D(λ)

1. Set (pk, sk)← KG(1λ)

2. Return DOe(pk,·,·)(pk, sk), where
Oe(pk,m, amsg) = Enc(pk,m).

AnamorphicGAME,D(λ)

1. Set ((apk, ask), dkey)← aKG(1λ)

2. Return DOa(apk,dkey,·,·)(apk, ask), where
Oa(pk, dkey,m, amsg) =
aEnc(apk, dkey,m, amsg).

We have the following definition.

Definition 22. We say that an encryption scheme E is an Anamorphic Encryption scheme if it is
IND-CPA secure and there exists an anamorphic triplet AME such that for every PPT dictator D
there exists a negligible function negl such that∣∣Prob [RealGE,D(λ) = 1]− Prob

[
AnamorphicGAME,D(λ) = 1

]∣∣ ≤ negl(λ).
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D Three-message public-coin protocols

In this section we are going to review the concept of a three-message public-coin protocol and set
up our notation and give definitions for it.

We consider protocols for two PPT parties, the prover P and the verifier V for a NP relation
R. With a slight abuse of notation, we identify R with the distribution (x,w) of instances and
witnesses for which the relation is considered.

Once (x,w) ← R(1λ) is sampled, both P and V receive in input the instance x and the
prover P also received the witness w. The protocol is a three-message protocol with P going first.
Specifically, following the notation used for Sigma protocols [CDS94], we let (a, st) ← P (x,w) be
the pair of the first message a of the interaction and P ’s state. Message a is sent to V which
responds with a random string e of length r(λ), for some polynomially bounded function r(·). P
concludes the interaction by computing and sending message z ← P (x,w, st, e). Finally, V outputs
a bit b ← V (x, a, e, z). We denote by [P (x,w) ↔ V (x)] the distribution of the transcripts (a, e, z)
of interactions between P and V over random coin tosses of P and V . We say that a transcript
(a, e, z) ← [P (x,w) ↔ V (x)] is accepting for x if V (x, a, e, z). We are interested in protocols that
are complete.

Definition 23 (Completeness). We say that (P, V ) is complete for R if for every (x,w) in the
support of R and for every (a, e, z) in the support of [P (x,w)↔ V (x)], we have that V (w, a, e, z) =
1.

Next we define the security property for three-message public-coin protocols that essentially
says that, for (x,w) ∈ R(1λ), all PPT adversaries A that have only access to x have negligible
probability of making V accept, even if they have oracle access to distribution [P (x,w)↔ V (x)].

Definition 24 (Security). We say that (P, V ) is secure under passive attacks for relation R if,
for every PPT adversary A, the probability that the following games 3RoundGA(λ) outputs 1 is
negligible in λ.

3RoundGA(λ)

1. (x,w)← R(λ);

2. (a, st)← AO(x,w)(x);

3. e← {0, 1}r(λ);

4. z ← A(x, a, st, e);

5. return V (x, a, e, z);

where O(x,w) returns a transcript sampled according to [P (x,w)↔ V (x)].

Note that in definition above, A has instance x but not the associated witness w. However, A
can get any polynomial number of transcript between P and V on (x,w) through oracle O(x,w).
The attack is passive as A is not allowed to actively engage with P running on (x,w) but can only
observe its interaction with V .
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E An Anamorphic Two-message Protocol

In this appendix, we look at a two-message protocol that is an interesting example of an iden-
tification protocol that is provably non-anamorphic in the prover-to-verifier direction and it is
anamorphic in the opposite direction. Exactly as in the three-move protocols described in the
previous sections, the verifier must have access to the prover’s private input. Let us proceed more
formally.

In the Stinson-Wu identification protocol [WS09], the prover holds a private key x and the
public key X = gx (these operations are in an appropriate group G). First, the verifier performs
the following steps:

1. choose r at random, set y1 := gr, y2 := Xr, and h := H(y2),

2. send (y1, h) to the prover.

Then the prover runs the following steps:

1. y′2 := yx1 ,

2. abort if h 6= H(y′2),

3. send y′2 to verifier.

Finally, the verifier accepts iff y′2 = y2.
Note that the response y′2 of the prover is deterministic: y′2 must satisfy the equation h = H(y′2)

and as long as the hash function H is collision resistant it is infeasible to find y′2 different from y2.
Note that the response of the prover can be checked by an external observer since h and y′2 are
sent in clear. The only possibility for the prover to deviate from the protocol so that it will not be
detected by the observer is to abort, even if h and y1 are correct.

To obtain an anamorphic channel, we observe that since r is random, so is y1 and it can be
substituted with the ciphertext prct of an encryption scheme with pseudorandom ciphertexts prE.
We assume that the double key dkey consists of (x,K), where x is the prover’s secret and K
is a randomly selected encryption key for symmetric encryption scheme prE with psedurandom
ciphertexts.

The anamorphic verifier aVerifier on input the anamorphic message amsg and the double key
dkey = (x,K) proceeds as follows:

1. y2 := prEnc(K, amsg),

2. y1 := y
1/x
2 , h := H(y2),

3. send (y1, h) to the prover.

The anamorphic decryption algorithm aDec simply calculates y2 := yx1 and returns prDec(K, y2) We
note that, by the pseudorandomness of ciphertexts of prE, the view of the dictator (that has access
to the prover’s secret x) is indistinguishable from the one in which no anamorphic communication
is taking place.

F More One-Time Signature Schemes

In this section we describe more one-time signature schemes that can be proved weakly anamorphic.
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F.1 The BC one-time signature

Bos and Chaum [BC93] proposed a variation on the Lamport scheme that improved efficiency. They
observed that the tagging system revealed a subset Sm of the secrets that depended on the message
m being signed and that one-time forgeability is guaranteed as long as no set Sm is contained in
Sm′ for some m′ 6= m. Based on this they proposed to pick t secrets and for each `-bit message m
to open a subset of size k = t/2 identified by the message m through some injective function. For
this to work, it is enough that the number of k-subsets of set of size t is larger than the number of
all `-bit messages; that is,

(
t
k

)
≥ 2`.

It is straightforward to see that the BC one-time signature can be made weakly anamorphic
using the same technique used for Lamport’s tagging system. The only difference that there we
were guaranteed that, independently from the message, one of x0,1 and x1,1 would appear in the
signature (as the first bit of the message is either 0 or 1) and thus we made both an encryption of
the anamorphic message. Here, to be sure that at least one secret revealed by the signature is an
encryption of the anamorphic message it is sufficient to select a set of k/2+1 secret and make them
ciphertexts of the anamorphic message. Moreover, as for Lamport’s tagging system, the double key
consists of the encryption key of a symmetric encryption scheme with pseudorandom ciphertexts.
We have thus the following theorem.

Theorem 20 ([BC93]). Assuming existence of one-way functions, the BC one-time signature
scheme is weakly anamorphic.

F.2 The HORS one-time signature

In this section we describe the HORS one time signature of [RR02]. HORS departs from the original
idea of [Lam79, BC93] of associating one subset Sm of the secrets to each message so that for no
two messages m′ 6= m we have Sm ⊆ Sm′ but it requires only that it is difficult to find two such
messages. The construction is parametrized by t, the number of secrets, and by k, an upper bound
on the size of Sm. The signing key of HORS consists thus of t randomly selected λ-bit values
ssk = (x1, . . . , xt) and the verification key svk = (y1, . . . , yt) where, yi = f(xi), for i = 1, . . . , t
and one-way function f . To sign message m, we compute H(m) and we split the output into of k
values h1, . . . , hk each of log2 t bits. This natural identifies the at most k integers that constituted
the set Sm associated with m that is used to produce a signature of m.

We have the following theorem.

Theorem 21 ([RR02]). If H is chosen at random from a family of collision resistant hash functions
and f is a one-way function, then HORS is a one-message unforgeable signature scheme.

To make HORS weakly anamorphic it is sufficient to make all secrets xi ciphertexts of the
anamorphic message amsg w.r.t. an encryption scheme with pseudorandom ciphertexts.

Theorem 22. Under the assumption of existence of a family of collision resistant hash functions
and of a one-way function, HORS is weakly anamorphic.

The verification key of the HORS signature scheme contains t values, which is usually picked to
be a power of two. HORST [BHH+15] reduces the size of the verification key of HORS by using a
binary hash-tree in which the t leaves contain each one value from HORS’ verification key. HORST
verification key includes only the root of the tree. A signature contains the paths from the root
to each of the leaf that are opened as part of the signature. It is easy to see that HORST can be
made weakly anamorphic as well.
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G Tree-Based Hash-Based signatures

In this section we look at signatures based on trees; namely, using the NY recursive idea of signing
the root of next tree to be used for signing. The idea of using the NY paradigm to lift one-time
to many-time in the context of a tree (instead of using it along a line) was suggested in [NY89] for
added efficiency (shorter root-to-signature paths) and for making the signature scheme memory-
less. This idea is at the base of modern efficient signature schemes like SPHINCS [BHH+15] and
SPHINCS+ [BHK+19], the current NIST choice for hash based signature.

We start by reviewing how to adapt NY to a tree structure and then we will show how to
make it private anamorphic. A similar construction was proposed by Goldreich [Gol87] to make
the RSA-based signature scheme [GMR84] memoryless.

G.1 Tree-Based Signatures

We now review treeS a tree-based signature scheme. The signing algorithm of a tree-based signature
schemes implicitly defines a binary tree of depth λ in which each node contains a verification key of
one-time signature scheme OneTSig that, except for the root, is signed along with the verification
key of the sibling node by means of the key of the parent node. The root’s verification key is the
verification key of the whole system. More precisely, the key of a non-leaf node is used two sign
the hash of the verification keys of the two children. To sign message msg, the algorithm picks a
random leaf and uses its key to sign msg. The signature then consists of the signatures of all the
keys on the path from the root to the selected leaf along with the actual signature of the message.
To avoid having to store all exponentially many keys, the tree is built as keys are needed so that
its size is polynomially bounded in the number of signatures produced.

Let us now give a more detailed description of the treeS = (tKG, tSig, tVerify) signature scheme.
The construction is parametrized by a one-time signature scheme OneTSig and by a family of One-
Way Hash Functions (OWHF) H. We denote by d(λ) the length of a verification key of OneTSig
for security parameter λ and by `(λ) the length of the messages that can be signed by OneTSig.
We assume that, for security parameter λ, hash functions H maps 2 · d(λ) bits to `(λ) bits.

1. The key generation algorithm tKG of treeS randomly selects OWFH H ← Hλ. Moreover, it
selects verification and signing key for OneTSig by setting (oVK, oSK)← oKG(1λ). Finally, the
verification key is tVK = (oVK, H) and the signing key is tSK = (oSK, H).

2. The signing algorithm tSig, on input message msg and signing key tSK = (oSK, H), randomly
selects λ-bit string B = b1, . . . , bλ bits. Then, for i = 1, . . . , λ − 1, let Bi denote the prefix
Bi = b1 · · · bi−1 and performs the following steps.

First, randomly select two pairs (oVKBi0, oSKBi0)← oKG(1λ) and (oVKBi1, oSKBi1)← oKG(1λ)
of verification and signing for the one-time signature scheme. Then, sign the hashH(oVKBi0, oVKBi1)
of the verification by using the parent signing key oSKBi . We let the root signing key oSK

from tSK be the signing key corresponding to the empty string B1. Finally, message amsg

is signed using signing key oSKB. The algorithm returns as signature the string B, and the
sequence of signatures of all the one-time verification keys and their sibling keys found along
the path from root to leaf, as described by the string B.

3. The verification algorithm tVerify verifies all one-time signatures along the path from root to
leaf.
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How to avoid key re-use. There are two observations that concern the one-time nature of the
keys generated. We first observe that the probability that two invocations of tSig for two different
messages select the same random string B, and thus the same leaf, is negligible in λ. This does not
hold however for non-leaf nodes that are close to the root as they might be selected more than once
with non-negligible probability. Note that if the same key of a node is used to sign two different
pairs of child keys, we lose the unforgeability of OneTSig. To avoid this, the signing algorithm will
store the tree as it is built by successive invocations and will generate keys for a node only upon the
first visit. If a stateless signing algorithm is desidered, then keys can be generated pseudo-randomly
so that successive visits to the same node will generate the same pair of child pairs. It is sufficient to
pseudo-randomly generate keys only for the first, say, λ/2 levels as for deeper levels the probability
that a node is visited more than once is negligible. We thus modify the key-generation and signing
algorithm as follows to obtain the memory-less tree-based signature scheme mltreeS.

1. The mltKG key-generation algorithm, on input 1λ, sets (tVK, tSK)← tKG(1λ). Then it selects
seed s← {0, 1}λ for a PRF Fs : {0, 1}d(λ) → {0, 1}2r(λ), where d(λ) is the length on verification
key of OneTSig for security parameter λ and r(λ) is the number of random bits used by oKG
for for security parameter λ. Seed s is added to the signing key tSK.

2. The mltSig signing algorithm, on input 1λ, executes algorithm tSig with the only difference
being that, for every i ≤ λ/2, (oVKBi0, oSKBi0) and (oVKBi1, oSKBi1) are obtained by running
oKG(1λ) using Fs(oVKBi) as randon tape.

3. The mltVerify algorithm coincides with the tVerify algorithm.

The proof of the following theorem is similar to the the proof of Theorem 16.

Theorem 23. If OneTSig is a one-time unforgeable signature, then mltreeS is a memory-less
unforgeable many-time signature.

G.2 Tree-Based Private Anamorphism

We use the same approach that we employed for the NY paradigm to obtain private anamorphism.
Specifically, we instantiate the tree-based approach with a weakly anamorphic one-time signature
and we notice that we need to anamorphically generate only the keys that belong to leaves because
these are the only ones used to actually sign the messages. Contrast this with the NY transform
in which every level of the linear structure has keys that sign messages.

Theorem 24. mltreeS is a private anamorphic signature scheme whenever OneTSig is weakly
anamorphic.

By instantiating the mltreeS construction with Lamport’s tagging system we obtain the follow-
ing.

Theorem 25. If one-way functions exist, there exists a private anamorphic signature scheme.
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H Identity Based Encryption

An Identity Based Encryption (IBE) is a special type of encryption scheme in which every string
of a given length (also, called an identity) is a public key and the associated secret key is derived
from the identity itself by means of a master secret key.

An IBE I = (Setup,Der,Enc,Dec) consists of four algorithms with the following syntax.

1. The setup algorithm Setup that takes as input security parameter 1λ and the identity length
1` and outputs a set of public parameters pp and the master secret key msk.

2. The key derivation algorithm Der that takes as input an `-bit ID id, public parameters pp,
and the master secret key msk and returns the identity secret key skid.

3. The encryption algorithm Enc that takes public parameters pp, identity id, and a message
msg and produces a ciphertext ct.

4. The decryption algorithm Dec that takes a ciphertext ct, an identity id and the associated
secret key sk and outputs the message msg.

It is required that for all (pp, msk) outputs by Setup, all id, all sk output by Der on input id, all
messages msg and all ciphertexts ct output by Enc(msg, id), it holds that Dec(id, skid, ct) = msg.

The notion of selective security for an IBE considers an experiment in which the adversary A
starts by outputting the identity id? that they intend to attack. Then A receives in input public
parameters pp and can adaptively ask the identity secret key for identities of their choice. Finally,
A outputs two messages m0,m1, receives the encryption of one of them under id?, and gives their
final output. The notion of security requires that A’s output in the game above is independent from
the message encrypted. Let us proceed more formally and define the following game SelectGβI,A, for
IBE I, PPT adversary A and β ∈ {0, 1}.

SelectGβI,A(λ)

1. (id?, st)← A(1λ);

2. (pp, msk)← Setup(1λ, 1`);

3. (m0,m1)← A(pp, st)O(id?,msk,·);

4. ct← Enc(pp, id,mβ);

5. return A(pp)O(id,msk,·);

where O(id?, msk, id) = Der(id, pp, msk) if id 6= id? and ⊥ otherwise.

Definition 25. Identiy based encryption I = (Setup,Der,Enc,Dec) is selectively secure if for all
PPT adversaries A,∣∣Prob

[
SelectG0

I,A(λ) = 1
]
− Prob

[
SelectG1

I,A(λ) = 1
]∣∣ ≤ negl(λ).
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I Private Anamorphic Signatures secure in the ROM (RSA-PSS
and more)

In this section, we discuss the Probabilistic Signature Scheme (PSS) [BR96], a signature scheme
based on RSA signatures [RSA78] and proved secure in the Random Oracle model. In Figure 9, we
recall the PSS signature scheme in order to be able to discuss its anamorphic properties. The PSS
signature scheme uses two hash functions that are modeled as Random Oracles in the security proof.
Given parameters λ0 and λ1, the hash functions are: H : {0, 1}? → {0, 1}λ1 and G : {0, 1}λ1 →
{0, 1}λ−λ1−1. Also, we denote by G0 a function that on input w returns the first λ0 bits of G(w)
and by G1 a function that returns the remaining λ− λ0 − λ1 − 1 bits.

1. The key generation algorithm pssKG(1λ) runs the RSA key generation algorithm to obtain
(N, e, d) and outputs svk = (N, e) and ssk = (N, d).

2. The signing algorithm pssSig, on input (N, e) and message msg, randomly selects r ←
{0, 1}λ0 and sets w = H(msg||r). Then it sets r? = G1(w) ⊕ r and y = 0||w||r?||G2(w).
Finally, the algorithm returns signature sig = yd (mod N).

3. The verification algorithm pssVerify, on input signature sig for message msg and verification
key (N, e), computes y as y = sige, parses it as y = b||w||r?||z and it sets r = r? ⊕G1(w).
Finally, the verification is successful iff H(msg||r) = w, G2(w) = z and b = 0.

Figure 9: The RSA-PSS signature scheme. The parameters λ0 and λ1 have to satisfy λ0+λ1 ≤ λ−1.

We use signature randomness r to achieve anamorphism and employ a symmetric encryption
key prE = (prKG, prEnc, prDec) with pseudorandom ciphertexts. Indeed, observe that the value r
is randomly chosen by the signer while signing and it is fully recovered as part of the verification
process. There, once again, the anamorphic key generation algorithm apssKG generates a pair
((N, d), (N, e)) of signing and verification keys, and randomly selectsK ← prKG and sets dkey := K.
On input msg and amsg, the anamorphic signing algorithm apssSig sets r = prEnc(K, amsg) and
then executes signing algorithm pssSig. Finally, the anamorphic decryption algorithm aDec, on
input sig, follows the code of pssVerify and obtains the value of r. The anamorphic message is
obtained by decrypting r using double key K. We have thus the following theorem.

Theorem 26. If RSA-PSS is secure and prE is a symmetric encryption scheme with pseudorandom
ciphertexts, then RSA-PSS is private anamorphic encryption scheme.

The proof relies on the PSS randomness being indistinguishable from ciphertext of prE. Es-
sentially, the same reasoning applies to PSS-R, the version of PSS with message recovery and we
can thus claim that PSS-R is also private anamorphic signature scheme. In addition, we also note
that the same applies to PRab, a version of provably secure Rabin signature, and to its message
recovery version PRab-R. See [BR96] for further details.

Comment: Nonce based protocols, random values, randomized messages, etc.: We
note that r in the above signatures scheme is a nonce which is recovered in signature verification.
There are many protocols in which one party sends a nonce (random value) to the other party as a
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challenge (which is typical in identification protocols). A random value which is otherwise structure-
less is an easy anamorphic channel as above to allow that party to send a hidden message with.
The next section shows that even with more complicated protocols where the random value sent
is not as readily available as a nonce, we can have a methodology to create anamorphic channels.
Furthermore, note that if messages signed in a protocol are not fully deterministic (it is typical that
participants have some freedom in choosing messages), anamorphic channel can be inserted in the
message (in the rest of the paper we assume messages are adversarially chosen by the dictator, as
a model even though messages can be chosen by users). In fact, partially randomized messages is
the needed chosen method for embedding a nonce when we employ determinsitic signatures (even
as they have a less tight security proofs), such as EdDSA and Full-Domain-Hash-RSA.

J Pseudonymous Signature

In this section we present an anamorphic scheme where the double key is generated jointly with the
signing key (as it contains part of it) but still it cannot be used to forge signatures. Our example
is Pseudonymous Signature scheme (PS for short) introduced in [BSI16]. The PS scheme provides
an opportunity to create signatures using a single private key stored on a secure cryptographic
device, but corresponding to multiple public keys - each key corresponding to a different domain.
Moreover, the public keys and the signatures from different domains are unlinkable – there is no
way to check whether they correspond to the same private key. Let us note that constructions of
this type may become very important in the near future, providing technical means for realization
of the idea of European Privacy Wallet from the new eIDAS Regulation [Eur].

In Figure 10, we recall the procedures of PS.

Anamorphic signing. As we can see, the system can be roughly described as a “double Schnorr”
in which both keys are needed to sign and possession of only one allows to link signatures. Anal-
ogously to what we have done for Schnorr authentication scheme (see Theorem 7), the double key
consists of K, a randomly selected encryption key of a ciphertext with pseudorandom ciphertexts,
and of the second signing key sk2. The anamorphic signing algorithm for anamorphic message amsg
sets k2 := prEnc(K, amsg) and then proceeds as the normal signing algorithm. The anamorphic
decryption algorithm solves the equation s2 = k2 − c · sk2 mod p for k2 and uses K to decrypt k2
thus obtaining amsg.
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1. At the setup time, a group G of a prime order p and a generator g are selected. System private
keys skM , skICC < p are chosen at random. The corresponding public keys PKM = gskM and
PKICC = gskICC are published together with a description of G and the hash function H to be
used.

2. The key generation algorithm PSKG chooses sk2 < p at random and calculates sk2 < p that
satisfies the equality skM = sk1 + sk2 · skICC mod p. The keys sk1, sk2 are installed on the
user’s secure device.

3. The pseudonym generation algorithm PSPG, on input the sector public key PKsector and
user’s private keys sk1, sk2, generates user’s pseudonyms for this sector: I1 := PKsk1sector and
I2 := PKsk2sector.

4. To sign message msg for sector with public key PKsector, the signing algorithm PSSig, chooses
k1, k2 < p at random and calculates the following values:

Q := gk1 · PKk2M , A1 := PKk1sector, A2 := PKk2sector,
c := H(Q, I1, A1, I2, A2, PKsector, params,m)
s1 := k1−c·sk1 mod p, s2 := k2−c·sk2 mod p.

( I1, A1 and I2, A2 are optional, params are additional parameters)

The signature for msg, the sector given by PKsector, and user’s pseudonym (I1, I2) is the
tuple (c, s1, s2).

5. To verify a signature (c, s1, s2) against message msg, sector given by PKsector and pseudonym
I1, I2 and verification algorithm PSVerify calculates:

Q′ := PKcICC · gs1 · PK
s2
M , A′1 := Ic1 · PK

s1
sector, A′2 := Ic2 · PK

s2
sector,

c′ := H(Q′, I1, A
′
1, I2, A

′
2, PKsector, params,m)

and accepts if c′ = c.

Figure 10: The Pseudonymous Signature scheme.
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