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Abstract

Super-resolution microscopy allowed major improvements in our capacity to describe and explain biological
organization at the nanoscale. Single-molecule localization microscopy (SMLM) uses the positions of molecules
to create super-resolved images, but it can also provide new insights into the organization of molecules through
appropriate pointillistic analyses that fully exploit the sparse nature of SMLM data. However, the main drawback
of SMLM is the lack of analytical tools easily applicable to the diverse types of data that can arise from biological
samples. Typically, a cloud of detections may be a cluster of molecules or not depending on the local density of
detections, but also on the size of molecules themselves, the labeling technique, the photo-physics of the
fluorophore, and the imaging conditions. We aimed to set an easy-to-use clustering analysis protocol adaptable
to different types of data. Here, we introduce Diinamic, which combines different density-based analyses and
optional thresholding to facilitate the detection of clusters. On simulated or real SMLM data, Diinamic correctly
identified clusters of different sizes and densities, being performant even in noisy datasets with multiple detections
per fluorophore. It also detected subdomains (“nanodomains”) in clusters with non-homogeneous distribution of
detections.

Impact Statement
Single molecule localization microscopy not only provide images with higher resolution than classical fluores-
cence microscopy, but the pointillistic character of its data opened a new field of biological image analysis. The
possibility to “see” molecules one by one offers the perfect way to analyse the distribution of molecules, and
several analytical tools were proposed to describe the formation of aggregates or clusters. However, clusters in
biological samples can be very variable in size and density and the available analytical tools are, in general,
effective only for a certain type of distribution. Moreover, the characteristics of clusters depend not only on the
molecules themselves, but also on the labelling technique, the photo-physics of the fluorophore and the imaging
conditions.We developed Diinamic, which combines different density-based analyses and optional thresholding
to facilitate the detection of clusters in biological samples. By combining progressive analysis steps, Diinamic
can be easily adapted to a large variety of molecular distributions. In addition, it provides the possibility to
introduce biology-based criteria to describe the clustering behaviour of molecules. To help with its application,
we provide cues about the strategy to follow depending on the characteristics of the dataset.

©TheAuthor(s), 2023. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Biological Imaging (2023), 3: e14
doi:10.1017/S2633903X23000156

https://doi.org/10.1017/S2633903X23000156 Published online by Cambridge University Press

https://orcid.org/0000-0003-2322-7358
mailto:marianne.renner@sorbonne-universite.fr
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/S2633903X23000156
https://doi.org/10.1017/S2633903X23000156


1. Introduction

An indisputable breakthrough in microscopy, the advent of super-resolution microscopy is also a major
improvement in our capacity to describe and explain biological organization at the nanoscale. A
particularly relevant question in cellular biology is to know whether molecules are randomly distributed
or if they form complexes or aggregates (clusters) which may be intimately related to their function.
Super-resolution imaging is being employed to analyze molecular complexes of tens to hundreds of
nanometers and prompted this kind of study in living cells(1,2).

Several methods have been proposed (reviewed in Khater et al.(3)). Among them, single-molecule
localization microscopy (SMLM) is based on the observation of signals produced by individual fluor-
ophores. This approach exploits the intrinsic properties of some fluorophores that allow controlling their
stochastic ‘on/off’ switching or blinking. The most common SMLM methods are photoactivated
localization microscopy (PALM)(4), stochastic optical reconstruction microscopy (STORM)(5–7), and
point accumulation for imaging in nanoscale topology (PAINT)(8). These approaches enable the recon-
struction of an image by pointillism, with a resolution that depends basically on the signal-to-noise ratio(2).
Typically, the achieved resolution is of tens of nanometers, that is, a ~ 10-fold improvement with respect to
the spatial resolution imposed by the diffraction limit in a conventional microscope. Avisual reconstruc-
tion (called rendered image(9)) can be generated by convolving aGaussian distribution of intensity (whose
size is the localization precision) to each localization coordinate obtained.

SMLM offers excellent means to analyze the distribution of molecules in cells, which have been
applied to many different biological systems(1,2). In contrast to the images obtained with optical
microscopy, SMLM techniques generate datasets of molecular coordinates in 2D or 3D. Several
approaches have been proposed to analyze the spatial organization and morphology of molecular clusters
from this kind of data.

Clustering analyses typically employ two different strategies, based on spatial statistics or based on
density analysis. Concerning the methods based on spatial statistics, the most popular ones are the
adaptation to SMLMof pair-correlation analysis(10) and Ripley’s L-function(11,12). As they do not provide
information about the number, spatial position, and morphology of clusters, they serve to detect the
presence of clustered distributions but not to describe them from a mechanistic point of view. An
improvement is the analysis of topological prominence(13) that informs about the shape of the cloud of
points. However, these statistical approaches perform well only in the case of small clusters of relatively
homogeneous size.

Density-based data mining algorithms perform better in detecting clusters in variable biological data
due to their capacity to describe the spatial characteristics of individual clusters. The most extensively
used is DBSCAN(14), which calculates the neighboring density around each detection by counting the
number of surrounding detections in a given radius. Those that are mutually reachable are considered as
belonging to a cluster, and those that do not belong to clusters are considered background. Several
software packages adapted this algorithm to SMLM data such as LAMA(15), Clus-DoC(16), and
FOCAL(17) (a grid-based version of DBSCAN). Unfortunately, DBSCAN performs weakly when the
detections’ density in the clusters is variable among clusters, a limitation that restricts its use to datasets
with homogeneous clustering. The alternatives that have been proposed introducemesh representations to
perform the density analysis. The most common strategy to create the mesh is Voronoi tessellation (SR-
Tesseler(18); ClusterVisu(19)), in which each point is on the face of a Voronoi polygon and edges are the
equidistant bisectors between points. In an SMLM data set, regions with a high density of points have
small polygons, so dense structures can be segmented by setting a threshold for the area of these polygons.
Another improvement that was recently proposed is the application of persistence-based clustering
analysis, which improves the individualization of clusters when they are close to each other(20).

This variety of analytical approaches can be overwhelming for users that usually struggle to find an
algorithmwell adapted to their data.Moreover, SMLM techniques are affected by several technical issues
that may induce various artifacts in clustering analysis; namely background noise, multiple detections of
one single fluorophore over time, stage drift, or dependency on the quality of the manipulation used to
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prepare the sample. Some analysis strategies may be more appropriate than others depending on how the
experiment was conducted and the characteristics of the targeted molecule. Our aimwas to set an easy-to-
use analytical protocol able to detect clusters of different characteristics, in noisy datasets with multiple
detections per fluorophore. Hence, we have developed Diinamic (Density and Image INtensity based
Analysis Method for Identification of Clusters), a modular sequence of cluster analysis that combines
different density-based analyses to simplify the adaptation to different datasets. We analyzed its perform-
ance on simulated datasets and real PALM and STORM data to provide cues of which strategy to use
depending on the characteristics of the dataset.

2. Materials and Methods

2.1. Simulations of SMLM data

Monte-Carlo simulations of SMLMdata consisted of generating x and y coordinates for a given number of
detections andwere produced by a programwritten inMATLAB (MathWorks). Non-overlapping clusters
were created by selecting the position of the first detection randomlywithin the simulation area (100 μm2).
Subsequently, the other detections belonging to the cluster were positioned arbitrarily into a circular or
ovoid area of the desired size. Non-clustered detections (“noise”) were introduced at random positions in
the simulation area. Multiple detections of the same molecule were simulated by adding 1–50 detections
around the position of the molecule. The position of these extra detections was randomly chosen
following a Gaussian distribution with a mean zero and variance similar to the localization precision
of our setup (20–50 nm).

2.2. Neuronal culture and transfection

Primary cultures of hippocampal neurons were prepared as described in Battaglia et al.(21). Procedures
were carried out in compliance with the rules of French and European regulations for the care and
protection of laboratory animals (EC Directive 2010/63, French Law 2013–118, 6 February 2013). In
brief, hippocampal neurons were isolated from embryonic days 18 to 20 from Sprague Dawley rat
embryos of both sexes. Following attachment, cells were incubated in the described culture medium(21)

for up to 3 weeks at 37 °C in a 5%CO2 humidified incubator. Each week, one-third of the culture medium
volume was renewed.

Transfections were carried out at 10 days in vitro (DIV) using TransFectin Lipid Reagent (Bio-Rad),
according to the manufacturer’s instructions. The constructs Kv2.1WT-Dendra2 or Kv2.1WT-GFP
derived from rKv2.1WT-GFPHis, a kind gift of J. R. Martens (University of Florida, USA). Experiments
were conducted 12 days following transfection (22 DIV).

2.3. Immunocytochemistry for STORM

For detection of Kv2.1WT-GFP, live neurons were incubated 10 min at 37 °C with alpaca nanobodies
against GFP coupled toAlexa Fluor 647 (GFP-Booster, 1/200; Proteintech) diluted in the culturemedium,
followed by twowashes in PBS 1X. Neurons were then fixed for 10min at�20 °C in 100%methanol and
washed in PBS 1X.

For detection of Kv2.1WT-Dendra2, neurons were fixed for 15 min at room temperature (RT) in
paraformaldehyde (4% w/v; Thermo Scientific Chemicals) enriched in sucrose (4%w/v; Sigma-Aldrich)
and washed in PBS 1X. Neurons were then incubated for 1 hr at RTwith rabbit primary antibodies against
Dendra2 (1/200; Antibodies Online). After 1 hr incubation at RT in PBS 1X supplemented with goat
serum (PBS-GS; 10% v/v; Invitrogen), neurons were incubated for 30 min at RT with purified donkey
anti-rabbit antibodies coupled to Alexa Fluor 647 (1/250; Jackson Immunoresearch). For both incuba-
tions, antibodies were diluted in PBS-GS 10%.

For detection of GABAA receptors, live neurons were incubated for 20 min at 4 °Cwith rabbit primary
antibodies against the α1 subunit (1/500; Synaptic System) diluted in MEM-R (Minimum Essential
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Medium supplemented with HEPES 20mM,Na+ pyruvate 1mM, glucose 20%w/v, glutamine 2mMand
B27 1X; Invitrogen), followed by several washes in MEM-R. Subsequently, neurons were fixed for
10 min at RT in paraformaldehyde enriched in sucrose and washed in PBS 1X. Neurons were then
incubated for 45 min at RTwith secondary purified donkey anti-rabbit antibodies coupled to Alexa Fluor
647 (1/300; Jackson Immunoresearch) diluted in PBS-GS (3% v/v; Invitrogen) and washed in PBS 1X.

Coverslips were kept in PBS 1X until imaging.

2.4. Super-resolution imaging

Super-resolution imaging on fixed samples was conducted on an inverted N-STORM Nikon Eclipse Ti
microscope with a 100X oil-immersion objective (NA 1.49) and an Andor iXon Ultra 897 EMCCD
camera (image pixel size, 105 nm), using specific lasers for PALM imaging of Dendra2 (405 and 561 nm)
and STORM imaging of Alexa 647 (405 and 640 nm). In the case of PALM and STORM imaging on the
same sample, first was taken the acquisition of Alexa 647 images without reactivation of the fluorophores
with the 405 nm laser and then was acquired the Dendra2 images as usual. For STORM, samples were
imaged in a PBS-based oxygen-scavenging buffer containing imaging buffer (Tris 100mM,NaCl 20mM,
pH 8), glucose 40% (w/v; Sigma-Aldrich), PBS 1X, cysteamine hydrochloride (MEA; Sigma-Aldrich),
catalase 5 mg/mL (Sigma-Aldrich) and pyranose oxidase 200 U/mL (Sigma-Aldrich). Catalase was
diluted in MgCl 4 mM, 2 mMEGTA, and PIPES 24 mM (Sigma-Aldrich, pH 6.8). Pyranose oxidase was
diluted in the same buffer supplemented with glycerol (50% v/v). Videos of 30,000 frames were acquired
at a frame rate of 20 msec. The z position was retained during the acquisition by a Nikon Perfect Focus
System.

2.5. Single-molecule localization

Single-molecule localization and 2D image reconstruction was performed as described in Specht et al. (22)

by fitting the PSF of spatially separated fluorophores to a 2D Gaussian distribution. Poorly localized
peaks (fitting R2 < 0.7) were not included for further analysis. To correct multiple detections coming from
the same Dendra2 molecule, we identified detections occurring in the vicinity of space (2 σ) and time
(15 s) as belonging to the same molecule(21). The drift of the stage was corrected using 100 nmmulticolor
fluorescent beads (TetraSpeck, 1/300; Invitrogen) to follow the movement through the frames; and was
nullified by superimposing the molecular localizations of each frame. Rendered images were obtained by
superimposing the coordinates of single-molecule detections, which were represented with 2D Gaussian
curves of unitary intensity and SDs representing the localization precision(9).

2.6. Clustering analysis

All data analyses were performed using custom routines in MATLAB (MathWorks) and executed
typically in a PC equipped with an IntelCore i7 processor (1.69 GHz) and 16 Gb of RAM. The DBSCAN
program was sourced from Pageon et al. (16) and adapted to be run on MATLAB. The calculation of the
adjusted rand index (ARI) and intersection over union (IoU) scores was implemented in MATLAB
following the algorithms described in Nieves et al.(23). Clustering detection was carried out on regions of
interest (ROIs) drawn on top of pointillistic images constructed from the coordinates of detections. A
packagewith all the tools (ROI selection and clustering analysis) for executingDiinamic-R andDiinamic-
V is freely available at https://github.com/mlrennerfr/Diinamic. This package includes Graphic User
Interfaces (GUIs), a user manual, and a tool helping the optimization of parameters.

2.6.1. DBSCAN
Starting at a random detection of the dataset, this detection is considered as a “core” point of a cluster if a
minimum number of points were found around it, within the distance of the search radius (epsilon). The
detections within the search radius then belonged to the cluster. By iteration, the algorithm proceeds
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similarly for all detections of the dataset. Ultimately, detections that do not belong to any cluster are
considered as non-clustered detections.

2.6.2. Diinamic-R and Diinamic-V
Detections were initially sorted into belonging to candidate clusters or not depending on their localization
with respect to a segmentation mask. This mask was created by either thresholding the pixel intensity of
the corresponding rendered image (Diinamic-R) or by evaluating the size of polygons resulting from a
Voronoi tessellation (Diinamic-V) calculated using the “voronoi” function of MATLAB. The clusters’
borders were defined by the “boundary” function of MATLAB.

Candidate clusters were retained if: (a) their density, calculated in a pixel-wise manner, exceeded a
threshold; (b) their sizes were between given thresholds (minimum and maximum). Thresholds were
chosen considering the expected number of detections per molecule, the size of the molecule and the
expected size of clusters given other microscopy data already published.

2.7. Statistical analysis

All statistical analyses were performed using GraphPad Prism 9 (Dotmatics). Statistical significance was
determined using Kruskal–Wallis tests followed by Dunn’s multiple comparison tests. Differences were
considered not significant for p-values > .05, while significant values were indicated as follows: *: p< .05,
**: p < .01, ***: p < .001 and ****: p < .0001.

3. Results

Wepropose a new cluster identification algorithm, which performs amodular density-based analysis. The
analysis was performed in two (cluster detection) or three phases (cluster and intra-cluster subdomain
detection). The first phase preselected pixels or detections that were likely to belong to clusters, using
density-based criteria (Figure 1a). They were then used to create candidate clusters by coalescence. Phase
two retained the candidate clusters that fulfilled user-defined parameters (minimum density, and min-
imum and maximum size). The density threshold was calculated considering the size of the molecule of
interest and the labeling method (number of expected fluorophores per molecule). The third phase,
optional, sought subdomains with different densities in the selected clusters.

The purpose of the first phase was to eliminate low-density and low-intensity detections, reducing
spurious cluster detection and computational burden by eliminating irrelevant detections. These detec-
tions were considered as noise originating from non-clustered molecules, from autofluorescence or out-
of-focus fluorophores.

There were two options for the first phase: Diinamic-R or Diinamic-V (Figure 1a). The Diinamic-R
algorithm selected candidate pixels by intensity-based segmentation of the rendered image. The pixel size
of this image determined the grid used to calculate density. In addition to the intensity threshold, we
applied a density threshold to each pixel if needed. These two thresholds were chosen to eliminate pixels
with a value of intensity and/or a number of detections too low to be considered part of a cluster. Those
retained were used to create candidate clusters (Figure 1b). Alternatively, Diinamic-V selected candidate
clusters by Voronoi tessellation, using the area of the generated polygons for the selection (Figure 1a).
Voronoi polygons below a size threshold were retained to create candidate clusters.

The second phase verified whether the candidate clusters fulfilled the criteria regarding their minimum
size and internal density (i.e., to remove false clusters due tomultiple detections of one singlemolecule) or
maximum size (i.e., to remove coalescent clusters that could not be correctly defined). Density was
calculated in a pixel-wise manner, using the pixel size of the rendered image (Figure 1a).
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3.1. Performance analysis on point classification and geometric overlap

We first compared the performance of Diinamic-R and Diinamic-V on various sets of simulations of
SMLMdata. In a recent article, Nieves et al.(23) proposed a framework to evaluate SMLMcluster analysis
algorithms, with simulated scenarios representing diverse situations of density of detections and size of
clusters in a squared area of 2 μm × 2 μm. They also proposed two metrics, ARI, which analyzes the
classification of detections into the same clusters as the ground truth; and IoU, which analyzes the overlap
between the cluster areas in the output and the ground truth (here, the correct result). Perfect match
provides values equal to one. We therefore analyzed their scenarios with Diinamic-R and Diinamic-V.

Figure 1. Protocol for clustering analysis on SMLM data using Diinamic-R or Diinamic-V. (a) Schematic
representation of the analysis phases on a simulated cluster. Diinamic-R relies on the segmented rendered
image to select candidate clusters whereas Diinamic-Vuses a Voronoi tessellation. Pixels that bear enough
density of detections (Diinamic-R) or Voronoi tesserae (polygons) that are small enough (Diinamic-V) are
used to create candidate clusters by coalescence.Candidate clusters are analyzed on a grid created from the
pixel size of rendered images, and they are retained if they fulfill density and size criteria. (b) Application of

the Diinamic-R protocol on PALM data of Dendra2-tagged Kv2.1 channels in hippocampal neuron
cultures. The pointillistic image (left) represents the coordinates of detections, which are used to create a
rendered image of detections (“Rendered”, see Materials and methods). After segmenting the rendered
image with an intensity threshold, the rendered mask is used to preselect pixels and candidate clusters. The
final result (right panel,“Detected clusters”) shows each retained cluster in a different color (arrows). Note

the variable size of clusters that can be adjacent to other clusters. Scale bar: 300 nm.
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Scenarios comprised different combinations of clustered and randomly distributed detections (23).
They included simulations of sparse data with very small clusters (Scenario 4); clusters of regular size,
well separated, with different densities of homogeneously distributed detections inside and outside
clusters (Scenarios 2, 3, and 8) or clusters surrounded by non-homogeneous distribution of non-clustered
detections (Scenario 10); non-round clusters (Scenario 6) and clusters of different sizes (Scenarios 7, 8,
and 9). Conditions were particularly difficult for clustering analysis in Scenarios 5, 6, 7, and 9, where
clusters could overlap, and sometimes non-clustered detections appeared inside the perimeter of the
cluster (Scenario 7). The nine scenarios were simulated in the absence (ground truth scenarios) or
presence (multiple blinking scenarios) of multiple detections per each original molecule simulated. In
the latter case, each single molecule was replaced by a cloud of ~4–5 detections on average (23).

As the real clusters were known, we optimized parameters to obtain results the closest possible to them.
The execution times for the ground truth scenario with the lowest number of detection (400 detections,
Scenario 4)was 0.26 s forDiinamic-R and 0.98 s forDiinamic-V,whereas for the onewith the largest number
ofmolecules (3000detections, Scenario 9), the analysis took0.35 s forDiinamic-Rand6.02 s forDiinamic-V.

Both Diinamic-R and Diinamic-V performed well in most scenarios (Tables 1 and 2, Supplementary
Figures S1 and S2). Not surprisingly, the worse ARI scores were obtained in Scenarios 5, 6, 7, and
9, where there is an important overlap of clusters; then the attribution of detections to the correct cluster
was less performant. In the case of IoU scores, the worst was Scenario 4. This indicated, as already
reported(23), that the mapping of the borders of the cluster was difficult in sparse data where clusters were
composed of few detections (5 in this case). Multiple blinking increased ARI and reduced IoU scores, as
expected (Tables 1 and 2, Supplementary Figures S1 and S2).

To compare the versatility of Diinamic algorithms with respect to those already tested on the same
scenarios (DBSCAN, ToMATo, KDE, FOCAL, ClusterViSu, CAML, and SR-Tesseler)(23), we con-
sidered the number of scenarios in which each algorithm obtained a score of at least ~0.8 (good), between
~0.6 and ~ 0.8 (acceptable) or below ~0.6 (bad) (Supplementary Table S1). As distributions of ARI and
IoU scores could be large, we chose the category in which most of the distribution of the score was
situated, and we counted the number of scenarios with acceptable or good scores (Table 3)(23). Diinamic
algorithms were overall the most versatile, as they obtained acceptable or good results in more scenarios
than the other algorithms.

To extend testing to situations with high density of detections and larger clusters, as the ones that we
observe in some of our experiments, we created additional simulated scenarios.

Table 1. Performance analysis of Diinamic-R and Diinamic-V against Ground truth scenarios 2–10
from Nieves et al.(23).

ARI (mean ± SD) IoU (mean ± SD)

Ground truth
scenario # Diinamic-R Diinamic-V Diinamic-R Diinamic-V

2 0.88 ± 0.06 0.82 ± 0.10 0.87 ± 0.02 0.72 ± 0.02
3 0.93 ± 0.05 0.93 ± 0.05 0.84 ± 0.04 0.69 ± 0.02
4 0.87 ± 0.08 0.70 ± 0.12 0.58 ± 0.08 0.46 ± 0.06
5 0.51 ± 0.06 0.53 ± 0.06 0.77 ± 0.03 0.67 ± 0.01
6 0.74 ± 0.10 0.65 ± 0.10 0.83 ± 0.03 0.81 ± 0.02
7 0.68 ± 0.10 0.50 ± 0.13 0.71 ± 0.03 0.68 ± 0.03
8 0.87 ± 0.89 0.81 ± 0.10 0.79 ± 0.04 0.64 ± 0.04
9 0.58 ± 0.13 0.59 ± 0.14 0.80 ± 0.02 0.78 ± 0.02
10 0.89 ± 0.06 0.83 ± 0.09 0.82 ± 0.05 0.67 ± 0.03

Note. Results were scored using ARI and IoU scores using the same optimized parameters for all the simulations (n = 50) from each scenario.
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3.2. Diinamic-R and Diinamic-V better defined the contour of clusters even under high noise conditions

We tested systematically the capacity of Diinamic algorithms to define the borders of clusters if they were
surrounded by randomly distributed detections (noise) at different densities. We thus simulated different
combinations of detection densities in and out clusters. The density of detections within clusters was
homogeneous. (Figure 2a).

A first series of simulations was created containing 10 clusters of identical shape with a diameter of
50 nm (Figure 2a1) or 250 nm (Figure 2a2). In each simulation, all clusters had a given density, ranging
from 8000 to 70000 detections/μm2. The density of random detections ranged from 0 to 40000 detections/
μm2 (Figure 2a1,a2). All the parameters of density and size used as thresholds for clustering analysis
corresponded to the ground truth (here, the correct result).

Table 3. Versatility of Diinamic-R and Diinamic-V, evaluated by counting the number of scenarios with
acceptable or good scores (scores above ~0.6).

Number of scenarios with scores > ~0.6

ARI IoU Sum

Algorithm Ground truth scenarios
Multiple blinking

scenarios
Ground truth
scenarios

Multiple blinking
scenarios

Diinamic-R 7 8 8 8 31
Diinamic-V 7 8 8 8 31
DBSCAN 7 5 6 7 25
ToMATo 6 5 6 5 22
KDE 5 4 4 3 17
CAML 5 5 6 0 16
FOCAL 4 1 4 1 10
SRTesseler 4 3 1 2 10
ClusterVISU 4 4 0 0 8

Note. Column “Sum” is the sum for both scores in Ground truth and Multiple blinking scenarios.

Table 2. Performance analysis of Diinamic-R and Diinamic-V against scenarios 2–10 from Nieves et
al.(23), simulating multiple blinking of fluorophores.

ARI (mean ± SD) IoU (mean ± SD)

Multiple blinking
scenario # Diinamic-R Diinamic-V Diinamic-R Diinamic-V

2 0.91 ± 0.07 0.91 ± 0.08 0.75 ± 0.06 0.57 ± 0.09
3 0.92 ± 0.07 0.94 ± 0.06 0.64 ± 0.08 0.61 ± 0.05
4 0.91 ± 0.08 0.91 ± 0.07 0.39 ± 0.07 0.36 ± 0.06
5 0.65 ± 0.07 0.61 ± 0.06 0.70 ± 0.04 0.79 ± 0.02
6 0.71 ± 0.10 0.73 ± 0.11 0.85 ± 0.03 0.82 ± 0.02
7 0.74 ± 0.12 0.67 ± 0.13 0.65 ± 0.07 0.66 ± 0.04
8 0.92 ± 0.07 0.88 ± 0.09 0.65 ± 0.05 0.66 ± 0.04
9 0.60 ± 0.15 0.63 ± 0.15 0.84 ± 0.03 0.79 ± 0.03
10 0.91 ± 0.06 0.92 ± 0.06 0.78 ± 0.06 0.68 ± 0.04

Note. Results were scored using ARI and IoU scores using the same optimized parameters for all the simulations (n = 50) from each scenario.
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For comparison purposes, we calculated the ratio of detection densities in and out of clusters for each
set of simulations and we assessed the quality of cluster detection in relation to this ratio by counting the
number of detections assigned to each cluster.

Given the results obtained above, we compared the results of Diinamic-R and Diinamic-V to those of
DBSCAN, which showed a good level of adaptability to different scenarios (Table 3). DBSCAN and both
Diinamic algorithms were able to detect the correct number of clusters across all ratios (not shown). No
cluster was detected among the randomly distributed detections, even at high density (not shown).

Figure 2. Performance of DBSCAN, Diinamic-R, and Diinamic-V in finding the borders of clusters
depending on the density of background noise. (a) Examples of a simulated cluster of small (50 nm; a1) or

large (250 nm; a2) diameter, surrounded by non-clustered detections (“noise”). The simulations
contained 10 clusters with the same characteristics. The density of detections in and out of clusters was
variable to vary the ratio cluster density/noise density. Scale bar: 100 nm. (b) Quantifications of the
number of detections per detected cluster for small (b1) and large-sized (b2) simulated clusters with

respect to the ratio between the density in and out of clusters (Ratio density in/out clusters) for DBSCAN
(orange circles), Diinamic-R (blue triangles), and Diinamic-V (green squares). The horizontal discon-

tinuous line represents the ground truth. Mean ± SD, n = 3 independent simulations.
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As the number of detections changed from one simulation to the other, we divided the number of
detections in each cluster by the real value to obtain a normalized number of detections (the ground truth is
then equal to 1). Figures 2b1 and b2 show the normalized number of detections for small and large
clusters, respectively. As expected, all methods performed correctly when defining the borders of the
clusters in case of low noise (high ratio), thus they correctly determined the number of detections
belonging to the cluster in these conditions (ratio > 103; Figure 2b1 and b2). In the presence of noise,
however, their performance was affected by the size of clusters, providing results that roughly under-
estimated the number of detections by up to ~10% in the case of small clusters (Figure 2b1).

The result provided by Diinamic-R was overall closer to the ground truth for all ratios, in particular for
the larger clusters (Figure 2b2). DBSCAN performed well for small clusters but over-evaluated the
number of detections in the case of large clusters and low ratios (~5%). As a rule of thumb, we found that
DBSCAN did not perform as well as Diinamic when the difference in density inside and outside clusters
was less than 102.

3.3. Diinamic-V was less affected by multiple detections of the same molecule

An important drawback in SMLM is the presence of multiple detections of the same fluorophore. Each
fluorophore may be randomly detected several times (i.e., in multiple images of the acquisition,
consecutive or not), generating a cloud of detections that could be easily considered as a cluster of
molecules. This artifact is maximal when the labeling strategy results in a high number of fluorophores
attached to the same molecule. We considered as the worst situation the STORM imaging of a large
molecule containing several subunits, that is, potentially having several primary and secondary antibodies
bound to it, together with the use of a secondary antibody bearing several fluorophores.

To assess the robustness of cluster detection in these conditions regarding the parameters used in the
analysis, we simulated randomly distributed detections, and we added a cloud of extra detections around
the original detection (Figure 3a). The position of these extra detections was randomly chosen following a
Gaussian distribution with a mean zero and a variance equivalent to a typical localization precision (20–
50 nm).We varied the number of extra detections (0 to 50) to reach densities that can be observable in real
experiments. We empirically optimized each user-given parameter for the three analyses to sift out as
many false clusters as possible. Results are expressed as % of the maximum number of possible false
clusters (the number of simulated molecules).

In sets with only randomly distributed detections, none of the algorithms detected any cluster (not
shown). However, as soon as simulations included multiple detections, DBSCAN performed poorly,
always detecting 5–10% of false clusters (Figure 3b). Diinamic-R displays a tendency to collect some
false clusters at low densities of detections (non-significant) but performed better than DBSCAN for
higher densities (Figure 3a,b). Diinamic-V always showed more reliable results being able to reject all
false clusters in the range of 0 to 50 detections/μm2 (Figure 3a,b).

Therefore Diinamic-V was overall the best choice to overcome false cluster detection, although
Diinamic-R performed notably well at high density of detections.

4. Diinamic-R and Diinamic-V Performed Better than DBSCAN on Simulations of Mixed
Populations of Clusters

Data obtained on biological samples show clusters of molecules that often have non-homogeneous spatial
characteristics and densities, which complicates the choice of thresholds for their detection. We therefore
simulated images containing clusters of different sizes and densities. Simulations contained 20 round or
ovoid clusters of sizes ranging from 100 to 1,000 nm in diameter, with densities of 4,000 to 60,000
detections/μm2. A moderate quantity of noise (110 detections/μm2) was added to reproduce a typical
background noise. In the same line, 0 to 10 extra detections were added to each detection to simulate
multiple detections (Figure 4a). We used empiric parameters for each analysis, chosen to obtain results
that were the closest to the ground truth.
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As before, we evaluated the number of clusters that were detected, their number of detections, and their
area. In the case of DBSCAN, it was impossible to find a set of parameters that correctly picked up all the
true clusters: either the analysis missed small and low-density clusters, or it detected false clusters arising
from multiple detections. It often included detections out of high-density clusters (Figure 4a, inset).
Figure 4b shows the results obtained with the parameters needed to detect at least all the real clusters.
DBSCAN systematically identified more clusters than what was expected (Figure 4b1). Diinamic-R and
Diinamic-V were both able to detect the right number of clusters (Figure 4b1). Regarding the area of
clusters and the number of detections per cluster, DBSCAN results were again significantly different from
the ground truth, whereas Diinamic-R and Diinamic-V provided distributions that were not significantly
different from the ground truth (Figure 4b2 and b3).

Overall, we observed that DBSCAN had the tendency to fragment large and less dense clusters or
identify false clusters distribution arising from multiple detections. In that regard, Diinamic-R and
Diinamic-Vefficiently bypassed background noise, size, and shape differences to identify a reliable
number of clusters with area and number of detections not significantly different from the ground
truth.

4.1. Example of application on PALM and STORM data

We wondered how the different labeling strategies of SMLM might affect cluster detection. PALM may
under-sample structures such as clusters if not all the molecules present in the structure bear a mature
fluorescent protein. On the other hand, STORMmay over-sample because antibodies can carry more than
one fluorophore, and there could be more than one antibody per molecule.

Figure 3. Performance of DBSCAN, Diinamic-R, and Diinamic-V in avoiding the detection of false
clusters arising frommultiple detections of randomly distributedmolecules. (a) The positions of randomly
distributed molecules at low (top panel) or high (bottom panel) density were overlaid by a cloud of

detections to simulate multiple detections of eachmolecule. Each group (initial detection plus the cloud of
multiple detections) is depicted in a different color. Scale bar: 100 nm. (b) Proportion of false clusters
detected (as% of the maximum possible, which is the number of molecules) by the three analysis methods,
for simulations with the indicated density of molecules. Mean ± SD, n = 3 independent simulations, KW

test, and Dunn post-hoc with respect to the ground truth, * p < .05.
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To compare properly the clustering detection on PALM and STORM acquisitions, we transfected
neurons with a Dendra2-tagged Kv2.1 chimera (Kv2.1WT-Dendra2). Kv2.1 is a tetrameric potassium
channel known to form large clusters in neurons(24). Before the imaging session, we immunolabeled
Dendra2 with Alexa647 fluorophores so we could perform PALM and STORM to obtain two sets of
SMLM data of the same molecule on the same sample (see Materials and Methods section).

Figure 5a–c shows an example of the data obtained. Some clusters of PALM detections overlap as
expected with those of STORM detections, while some others were present only in one set of data, due to
the different labeling strategies (Figure 5a–c). STORMdata showed amultitude of small clusters that were
not observable in PALM data. Thus, we considered them as being multiple detections of the same
molecule (i.e., multiple fluorophores/antibodies on the same molecule). Some of the clusters observed

Figure 4. Performance of DBSCAN, Diinamic-R, and Diinamic-V in detecting clusters in a mixed
population of clusters of different sizes and densities, in the presence of multiple detections. Simulated
data contained 20 clusters of different sizes and densities, surrounded by randomly distributed detections.
(a) Pointillistic images of an example of simulation and the clusters detected by the three analyses (in red).
Blue rectangle: area shownwith higher magnification in the lower panels. Note the detection of small and
false clusters by DBSCAN (black arrows). Scale bar: 1 μm. (b) Quantifications of the detected clusters.
(b1) Number of clusters (the horizontal line shows the ground truth). Mean ± SD. (b2) Area. Median and
5%–95% IQR. (b3) Number of detections. Median and 5%–95% IQR. n = 10 independent simulations.

KW test and Dunn post-hoc, ns, not significant; **, p < .01; ****, p < .0001.

e14-12 Anne-Lise Paupiah et al.

https://doi.org/10.1017/S2633903X23000156 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X23000156


with STORM seemed to be larger than in PALM data: this could be a consequence of placing the
fluorophore on the secondary antibody, thus at a longer distance from the molecule of Kv2.1.

Both Diinamic-R and Diinamic-V (not shown) succeeded in identifying the same clusters in these
datasets. However, as the execution time could be 20 times longer for Diinamic-V in the case of large
datasets, we privileged Diinamic-R to run this test.

To set the minimum thresholds for Diinamic-R, we considered the structure of Kv2.1, the labeling
method, and the expected size of clusters. As we could not know how many chimeric subunits were
present per cluster (tetramers could contain both endogenous and chimeric subunits), we chose to use a

Figure 5. Clustering analysis in PALM vs STORM data. Pointillistic images (a1, b1); rendered images
(a2, b2) and cluster detection (a3, b3) of a PALM (a) and STORM (b) dataset obtained on the same

molecules (Kv2.1WT-Dendra2, labeled with Alexa 647-coupled antibodies anti-Dendra2) of the sample.
In a3, b3, each detected cluster is depicted with a different color; all the other detections appear in grey.
Scale bar: 2 μm. (c) Overlay of pointillistic images in a1, b1. Scale bar: 2 μm. (d) Cluster detection results

(number of detections per cluster, d1; area of clusters, (d2) of the data in a3, b3.
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low threshold for the number of detections (150). We calculated this number using the strategy described
in Patrizio et al.(25) to assess the number of detections expected for one molecule.

Given the worst localization precision in this experiment (~30 nm for Dendra2 detection), and the
possible enlargement of clusters due to the use of antibodies, the minimum size of the cluster was 50 grid
units (5000 nm2, a square of ~70 nm in side) for PALM data and 70 grid units for STORM data. Given all
the above considerations, the minimum density inside clusters was set to 2 detections/grid unit.

The most important difference between the parameters for PALM and STORM data was the intensity
threshold to segment the rendered image (PALM: 0.5% of themaximum intensity; STORM: 15%) and the
use of aminimum density per pixel (2) in case of STORMdata. These differences were due to the different
detection density ratios in and out clusters (Figure 5a,b).

The number of clusters detected was different (PALM: 17; STORM: 15), in agreement with the fact
that some clusters were not observable in both datasets. However, we obtained a distribution of the
number of detections per cluster and cluster surfaces that were not significantly different (Figure 5d).
Therefore, even if the labeling method had a strong influence on the characteristics of the dataset, it is
possible to set parameters that provide concordant results for the same molecule.

4.2. Improving cluster detection by combining Diinamic with DBSCAN

In the case of dense datasets with variable density of detections, applying the same thresholds to different
regions of the cell may provide results that are not satisfactory. Figure 6a shows an example of dense
labeling of Kv2.1WT-Dendra2. Clusters recognizable by eye were merged by the analysis (dark blue in
Figure 6a2). To improve the analysis in these conditions, we performed two rounds of selection. In the first
round, we selected clusters as described before (Figure 6a2) and in the second round, we looked inside
these clusters to identify areas with higher density (subdomains). We obtained the best results using
DBSCAN for the second round. To cope with variable density from one cluster to the other, we calculated
the search distance epsilon from the mean distance between detections in the cluster. As shown in
Figure 6a3, this strategy identifiedwell the regionswith higher densities that were observable by the eye in
the pointillistic image (Figure 6a1).

Indeed, this double-detection strategy was also able to detect sub-synaptic domains (nanodomains) of
GABAA receptors in synapses. Super-resolution microscopy revealed that neurotransmitter receptors,
including the GABAA receptors(26–28), can form sub-synaptic domains in synapses whose existence can
tune the efficacy of synaptic transmission (reviewed in Yang and Specht(29), Maynard et al.(30)). We
analyzed a STORM dataset of the α1-subunit of GABAA receptor, which displayed a non-homogeneous
clustered distribution in synapses(26), and a mixed clustered and non-clustered distribution outside
synapses. Figures 6b1 and b2 show respectively the pointillistic and rendered images of an ROI on a
dendrite of a hippocampal neuron. Figure 6c shows the detail of one of the detected clusters using
Diinamic-R (Diinamic-V provided the same results, not shown) before (Figure 6c1) and after (Figure 6c2)
the detection of subdomains with DBSCAN.

5. Discussion

Over the last decades, super-resolution microscopy has remarkably evolved, enabling the study of the
organization of molecules with a resolution of a few tens of nm. SMLM revealed sub-diffractive protein
structures in diverse situations, such as T-cell signaling, the molecular architecture of the nuclear pore
complex, sub-synaptic domains (“nanodomains”) of receptors, actin structures in axons and the arrange-
ment of nucleosomes on chromatin fibers (14,31,32). Besides the possibility to generate rendered images
that are better resolved than regular optical fluorescent images, the pointillistic character of SMLM data
opens a new field of biological image analysis. Indeed, rendered images hinder important information
about the quality of labeling and the real density of detections, which may mislead comparisons between
different experimental conditions(14). The analysis of detection coordinates is preferable as it provides
information not only about the distribution of molecules but also about the quality of the data, helping to
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choose the right clustering algorithm and providing a quantitative imaging tool at the nanoscale applicable
to living cells.

Despite the power of SMLM, which theoretically provides the position of every single molecule, its
application to biological samples is not straightforward. Typically, the difficulty to decide whether a cloud
of detections is a cluster of molecules resides in the fact that the characteristics of these clusters depend not
only on the molecules themselves (their size and their local concentration) but also on the labeling
technique (number of fluorophores attached to the molecule, distance between the fluorophore and the
molecule of interest, the proportion of molecules that bear a fluorophore), the photo-physics of the
fluorophore (blinking) and the imaging conditions (laser power and acquisition protocol). In addition to
this, spurious detections are coming from autofluorescence and out-of-focus signals.

Figure 6. Detection of clusters and subdomains within clusters on SMLM data. (a) SMLM detections
(pointillistic image, a1) and cluster detection in an example of dense PALM data for Kv2.1 in a cultured
hippocampal neuron. (a2) Clusters found by Diinamic-R, depicted in different colors. (a3) Second

detection of clusters byDBSCAN (subdomains), inside the clusters detected byDiinamic. Scale bar: 1 μm.
(b) Pointillistic (b1) and rendered (b2, false colors) STORM images of the α1 subunit of GABAAR at the
surface of a cultured hippocampal neuron. The blue rectangle indicates the region zoomed in C. Scale
bar: 200 nm. (c) Higher magnification of a cluster detected in b1 (c1) and the subdomains found (c2). In
c2, each subdomain appears in a different color. Detections in the cluster but not in subdomains appear in

grey. The contour indicates the border of the cluster. Scale bar: 100 nm.
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5.1. Diinamic, a modular method for cluster analysis on SMLM data

Diinamic is a modular sequence of cluster detection steps that couples a space fragmentation method
using an intensity-thresholded rendered image or Voronoi tessellation, with a local density calculation.
The space fragmentation phase helped to reduce the relative importance of low-intensity signals arising
from out-of-focus fluorophores or autofluorescence. Consequently, it also reduced the amount of
irrelevant data. The use of a grid-based selection, with a grid size based on the pixel size of rendered
images, introduces a density criterion that also considers the localization precision. The use of the smallest
possible grid size alsomade the choice of the size unambiguous, and the analysis independent of the shape
and size of clusters.

In the variety of situations that we tested here, Diinamic-R and Diinamic-V managed to detect the
proper number of clusters and to provide trustable distributions of area and number of detections per
cluster showing a remarkable versatility.

The strategy of space fragmentation using a grid has been already implemented by FOCAL(17).
However, the use that Diinamic-R and FOCALmake of this grid is different. Whereas FOCAL enhances
the density difference in and out clusters by convolving the number of detections of each element of the
grid (SMLMpixel) with a 3x3 sum filter, Diinamic-R does not modify the number of detections per pixel,
as the enhancement is performed by the intensity threshold applied to the rendered image. Thus, FOCAL
blurs the borders whereas Diinamic-R sharpens them.

Indeed, Diinamic algorithmsmapped the borders better thanDBSCAN even in difficult situations with
clusters whose internal density was only 10 to 100 times higher than the density of detections in the
surroundings. Therefore, Diinamic-R and Diinamic-V proved to be more robust to artifacts arising from
the uneven distribution of non-clustered detections or the uneven distribution of background noise within
a sample or between samples. They also performed verywell for clusters of different sizes and densities, as
is commonly the case for biological SMLM data. However, in SMLM data, DBSCAN improved the
analysis when applied to data from previously defined clusters. In this case, the use of a second round of
analysis amended a poor cluster detection, or detected intra-cluster inhomogeneities that arise from
subdomains in the distribution of clustered molecules.

As already reported(19), Voronoi tessellation (Diinamic-V) was robust to multiple detections and
different background densities, but for this, the polygon size threshold has to be correctly determined. The
existing software relies on the calculation of the mean density outside clusters (SR-Tesseler(18)) or on the
simulation of random distributions (ClusterViSu(19)) to set this value. We preferred to introduce a user-
defined threshold that considers the labeling method, which heavily affects the expected density of
detections. This threshold was then calculated considering the size of the labeled molecule, the expected
number of fluorophores and detections per molecule, and the maximum possible distance between the
fluorophore and the labeled molecule. An important difference with respect to previously proposed
algorithms, Diinamic-V introduced a second density-based selection, using a grid defined by the expected
resolution of the data. Our analysis thus pondered the result of Voronoi tessellation with the localization
precision. A drawback could be the increase in computational time, therefore a piece of advice could be to
systematically compare both on a small subset of data. Nevertheless, Diinamic-V is a good choice when
there is an important risk of detection of false clusters due tomultiple blinking, and also when the intensity
threshold for Diinamic-R is difficult to find, that is, when the density of non-clustered detections is not
homogeneous.

One criticism that can be made is the use of multiple user-defined thresholds. Most of the analytical
algorithms proposed in the literature need the setting of user-defined thresholds and parameters that can
be annoyingly variable from one laboratory to the other or even from one user to the other. Therefore,
some strategies were developed, such as the use of Bayesian analysis, to avoid user-defined values(33).
However, biological data are by nature noisy, heterogeneous, and variable, making this blind strategy
not easy to apply to all kinds of datasets. Moreover, as reported by Nieves et al.(23), algorithms that rely
on more thresholds were more performant. Consequently, we decided to keep the possibility to use
thresholds that must be determined for each type of sample that is imaged to assure biological
plausibility.
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5.2. Proposed pipeline to analyze clustering on SMLM data

Even if SMLM techniques may induce various artifacts in clustering analysis, it is possible to minimize
these artifacts by carefully preparing the experiment and by managing data correctly. An important point
is to decide whether to use parameters to exclude candidate clusters and which parameters to use. The first
issue to consider is whether the molecule under study is already known to form clusters. If clusters were
already described (i.e., receptors in synapses) then the parameters could be set considering the size of
these clusters. Otherwise, the advice would be to keep all the candidate clusters in a first approximation
and to compare the results obtained with different labeling strategies to evaluate the artifacts due to the
technique itself. The points to consider would be:

– Which labeling method can be used? Which is the expected proportion of molecules that could be
detected? Which is the probability of observing multiple detections of the same fluorophore? How
do you define a cluster?

– Can the distribution of the molecule be predicted?
○ If no: choose parameters that do not exclude any cluster (setting minimum thresholds to zero and

maximum to the largest possible).
○ If yes: calculate the expected density of detections in and out of clusters, given the size of the

molecule, whether it is composed or not of labeled subunits, and the expected number of
observable fluorophores. Set exclusion parameters given the expected size of clusters.

– Whenever possible, use different labeling strategies and fluorophores to image the same molecule.
Compare the results to evaluate artifacts and improve the choice of parameters.

Regarding the choice of analysis strategy, we found that:

– If the density of detections was low, the best results were obtained by relying mainly on the pre-
selection by intensity segmentation (Diinamic-R).

– If the density of non-clustered detections was variable (i.e., multiple blinking or non-homogeneous
distribution of non-clustered molecules), Diinamic-V was a better choice.

– If the ratio of detections densities in and out clusters was low, the detection of subdomains within
clusters could improve the results.

In conclusion, by combining multiple and progressive analysis steps, Diinamic algorithms offer the
flexibility needed to adapt the analysis protocol to a large variety of molecular distributions and SMLM
data. In addition, they provide the possibility to introduce biology-based criteria (the expected charac-
teristics of clusters) to describe the clustering behavior of molecules.
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