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n . In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted ν p (n). Equivalently, ν p (n) is the exponent to which p appears in the prime factorization of n. We can state the sum-of-divisors function of n as

σ(n) = p|n p νp(n)+1 -1 p -1
with the product extending over all prime numbers p which divide n. In addition, the well-known Euler's totient function φ(n) can be formulated as

φ(n) = n • p|n 1 - 1 p .
The Goldbach's conjecture has been veried for every even number N ≤ 4 • 10 18 [START_REF] Silva | Goldbach conjecture verication[END_REF]. In mathematics, two integers a and b are coprime, if the only positive integer that is a divisor of both of them is 1. Putting all together yields the proof of the main theorem.

Theorem 1 For every even number N ≥ 4 • 10 18 , if there is a prime p and a natural number m such that n < p < N -1, p+m = N , N σ(m) +n 0.889 +1+ m-1 2 ≥ n and p is coprime with m, then m is necessarily a prime number when

N = 2 • n. The previous inequality N σ(m) + n 0.889 + 1 + m-1 2 ≥ n holds whenever N e γ •m•log log m + n 0.889 + 1 + m-1
2 ≥ n also holds and m ≥ 11 is an odd number, where γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. Using this last inequality and the articial intelligence tools of the math library of Lean 4 as a proof assistant, we prove that the Goldbach's conjecture is true.

Proof of Theorem 1

Proof Suppose that there is an even number N ≥ 4 • 10 18 which is not a sum of two distinct prime numbers. We consider all the pairs of positive integers (n -k, n + k) where n = N 2 , k < n -1 is a natural number, n + k and n -k are coprime integers and n + k is prime. By denition of the functions σ(x) and φ(x), we know that

2 • N = σ((n -k) • (n + k)) -φ((n -k) • (n + k))
when n -k is also prime. We notice that

2 • N < σ((n -k) • (n + k)) -φ((n -k) • (n + k))
when n -k is not a prime. Certainly, we see that (n -k) + (n + k) = N and thus, the inequality

2 • ((n -k) + (n + k)) + φ((n -k) • (n + k)) < σ((n -k) • (n + k)) holds when n -k is not a prime. That is equivalent to 2 • ((n -k) + (n + k)) + φ(n -k) • φ(n + k) < σ(n -k) • σ(n + k)
since the functions σ(x) and φ(x) are multiplicative. Let's divide both sides by

(n - k) • (n + k) to obtain that 2 • (n -k) + (n + k) (n -k) • (n + k) + φ(n -k) n -k • φ(n + k) n + k < s(n -k) • s(n + k).
We know that

s(n -k) • s(n + k) > 1
since s(m) > 1 for every natural number m > 1 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Moreover, we could see that

2 • (n -k) + (n + k) (n -k) • (n + k) = 2 n + k + 2 n -k and therefore, 1 > 2 n + k + 2 n -k + φ(n -k) n -k • φ(n + k) n + k .
It is enough to see that

1 > 2 2 • 10 18 + 2 9 + 2 3 ≥ 2 n + k + 2 n -k + φ(n -k) n -k • φ(n + k) n + k
when n + k is prime and n -k is composite for N ≥ 4 • 10 18 . Indeed, when n + k is prime and n -k is composite, then n + k > 2 • 10 18 and n -k ≥ 9 for N ≥ 4 • 10 18 . Under our assumption, all these pairs of positive integers (n -k, n + k) imply that

2 • N < σ((n -k) • (n + k)) -φ((n -k) • (n + k))
holds whenever n = N 2 , k < n -1 is a natural number, n + k and n -k are coprime integers and n + k is prime. Hence, we have

N < 1 2 • (σ(n -k) • σ(n + k) -φ(n -k) • φ(n + k)) .
Since n + k is prime, then

φ(n + k) 1 + n 0.889 = n + k -1 1 + n 0.889 ≥ n 1 + n 0.889 ≥ 2 • e γ • log log(n -1) + 2.5 log log(n -1) 2 ≥ 2 • e γ • log log(n -k) + 2.5 log log(n -k) 2 > 2 • n -k φ(n -k) 2 = n -k φ(n -k) • 2 • q|(n-k) q q -1 > s(n -k) • 2 • q|(n-k) q q -1 = 2 • σ(n -k) (n -k) • q|(n-k) 1 -1 q = 2 • σ(n -k) φ(n -k)
when we know that b φ(b) < e γ • log log(b) +

2.5 log log(b) holds for every odd number b ≥ 3 [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF]. Moreover, we have

n 1 + n 0.889 ≥ 2 • e γ • log log(n -1) + 2.5 log log(n -1)
2 for every natural number n ≥ 2 • 10 18 under the supposition that N ≥ 4 • 10 18 . Certainly, the function

f (x) = x 1 + x 0.889 -2 • e γ • log log(x -1) + 2.5 log log(x -1)
2 is strictly increasing and positive for every real number x ≥ 2 • 10 18 because of its derivative is greater than 0 for all x ≥ 2•10 18 and it is positive in the value of 2•10 18 . Furthermore, it is known that q|b

q q-1 = b φ(b) > s(b) = σ(b)
b for every natural number b ≥ 2 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Finally, we would have that

- 1 2 • φ(n -k) • φ(n + k) < -σ(n -k) • (1 + n 0.889 )
and so,

N < 1 2 • σ(n -k) • σ(n + k) -σ(n -k) • (1 + n 0.889 ).
We would have

N σ(n -k) + n 0.889 + 1 < σ(n + k) 2 which is N σ(n -k) + n 0.889 + 1 + n -k -1 2 < n.
In this way, we obtain a contradiction when we assume that N σ(n-k) + n 0.889 + 1 + n-k-1 2

≥ n. By reductio ad absurdum, the natural number n -k is necessarily prime when N σ(n-k) + n 0.889 + 1 + n-k-1 2 ≥ n. Moreover, we know that σ(b) < e γ • b • log log b holds for every odd number b ≥ 11 [START_REF] Choie | On Robin's criterion for the Riemann hypothesis[END_REF]. Consequently, the inequality

N σ(n-k) + n 0.889 + 1 + n-k-1 2 ≥ n holds whenever N e γ •(n-k)•log log(n-k) + n 0.889 + 1 + n-k-1 2
≥ n also holds and (n -k) ≥ 11 is an odd number. We use the following Lean Programming Language Code to show that this last inequality always holds for some natural number m ≥ 11 and every even number N > 4 • 10 18 . Certainly, we only need to check using the constant 2 e γ > 1.1229 and starting for the variable bound = 2 • 10 18 = 2000000000000000000 whether the proposition ∀n ∈ N, ∃k ∈ N :

(n > bound) → (n -k ≥ 11 ∧ H(n, k) >= 0 ∧ (n + k) is Prime) is true when H(n, k) = 1.1229 • n (n -k) • log log(n -k) + n 0.889 + 1 + n -k -1 2 -n.
It is fact that if H(n, k) >= 0 holds and n + k is a prime, then we obtain that necessarily n -k is also prime when n -k ≥ 11. #check Goldbach_Proof

In this way, we prove that the Goldbach's conjecture is true using the articial intelligence tools of the math library of Lean 4 as a proof assistant [START_REF] Moura | Automated DeductionCADE 28: 28th International Conference on Automated Deduction, Virtual Event[END_REF].
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 1 Introduction As usual σ(n) is the sum-of-divisors function of n d|n d, where d | n means the integer d divides n. Dene s(n) as σ(n)

  R): R := let m: R := n -k let myexp: R := n^0.889 let myconst: R := 1.1229 let mylog: R := Real.log m let myloglog: R := Real.log mylog let mydivisor: R := myloglog/myconst let myfraction: R := n/m let value: R := myfraction/mydivisor + myexp + (m -1)/2 + 1.0 -n value /--Goldbach conjecture. -/ theorem Goldbach_Proof: Type := let bound: N := 2000000000000000000 Proof (∀ n: N, ∃ k: N, (n > bound) → (n -k >= 11 && (H n k) >= 0 && Nat.Prime (n + k)))