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ABSTRACT 

 
Multi-physics simulation techniques provide a platform that is used to gain insights into 
complex biological problems with multiple length scales such as cell electrodeformation (ED) 
and electropermeabilization (EP). However, owing to the large degrees of freedom required to 
compute the electromechanical properties at very different length scales (membrane thickness, 
cell size, and customized tissue scaffold) finite element (FE) simulations can be 
computationally very expensive. Here, we report on a general method of analysis by which 
we can systematically simulate multiscale ED under direct-current electric fields. In the 
context of electromechanical continuum behavior, the key novelty of our work is the 
introduction of a specific Dirichlet boundary condition, i.e. thin-layer approximation (TLA), 
to represent the capacitive elastic cell membrane. To test the robustness of this newly 
proposed procedure, Maxwell stress tensor (MST) and cell displacement arising from ED 
forces obtained with the TLA are compared with a model using a physical thickness of the 
cell membrane. Furthermore, we present our results in terms of benchmark points for vesicle 
deformation induced by an electric field excitation and we confirm our approximate results 
are relevant to predict the aspect ratio characterizing the ellipsoidal deformation of an initially 
spherical vesicle. 
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I. INTRODUCTION AND MOTIVATION 

The inherent complexity of biomaterials is well recognized; they are multi-scale, multi-
science systems, and bridging a wide range of temporal and spatial scales [1-6]. In the context 
of computational analysis of cell membrane, it is known that its heterogeneity and anisotropy 
can substantially impact physical properties such as the permeabilization under various 
exogeneous field excitations [4-17]. This challenge is further elevated for a core-shell 
modelling of cell that undergo large deformations under electromechanical excitation [7,13-
18]. Because of all of these features, finite element (FE) simulations are a method of choice to 
explore how the cell effective properties emerge from local molecular features and how the 
interplay among its numerous components gives rise to function over spatial and time scales 
much larger than the molecular ones. However, a comprehensive understanding of the 
interplay between the electromechanical coupling and membrane deformation-
permeabilization remains incomplete [6-10].  

The core (cytoplasm)-shell(membrane) structure, i.e. a dielectric nanometric membrane 
surrounded by conducting cytoplasm and extracellular medium (ECM), has been quite 
successful, notably for evaluating the transmembrane potential (TMP). An overview of 
models and numerical schemes for the core-shell description is provided in [3]. While this 
model is an important object of study that features various electromechanical properties of 
cell membrane it is likely too simplified to describe real biological cells. Simulations, until 
now, have largely focused on a rather narrow picture of the complexity of the membrane 
(dielectric, elastic continuum object). However, as FE simulations are becoming increasingly 
sophisticated, the most widely used methods used to analyze ED and EP issues exposes 
serious drawbacks in dealing with electromechanical properties at very different length scales 
(membrane thickness, cell size, and customized tissue scaffold) and need to be improved. This 
is especially true for multiscale problems that require frequent remeshing to track large 
structural deformations, i.e. upon application of an electric field energy does redistribute to 
maintain consistency boundary conditions through a perturbation of line fields. Furthermore, 
this feature renders the computation very costly in terms of computation time and memory 
requirements. Correspondingly, many new ways of testing for the properties of membrane ED 
and EP have yet to be explored. 

In addition, there is the added complexity involved in dealing with the study of multiple 
interacting physical properties, i.e. electromechanical coupling [3,11]. Over the years, the 
literature suggests several ways which can be implemented numerically, and a general 
approach is illustrated in Fig. 1(a).  

 
 
 
 
 



3 

 

 
 
Fig. 1: (a) Exact geometry of our composite model with the physical membrane (full model 
(FM)). The stress (force per unit area) is directed from the dielectric with a higher permittivity 
(cytoplasm and ECM) towards the dielectric with a lower permittivity (membrane). 
Components (1), (2), and (3) represent respectively the cytoplasm, membrane, and ECM. In 
the cylindrical coordinate system, any point of the xOy Cartesian plane can be described via a 
single r coordinate as axisymmetric conditions are assumed for the rectangular computational 
domain, where g and h are the dimensions along the z and r directions respectively. The 
electric field is oriented along the z-direction, ψ denotes an angle relative to the electric field 
direction. The application of an electric field is performed using Dirichlet boundary 
conditions on top and bottom horizontal surfaces such as V(z=0)=0 and V(z=h)=E.h, where E 
denotes the applied field modulus; (b) As in (a) for the TLA-based approach: the idea is to 
replace the exact physical conditions by approximate numerical conditions that connect the 
solution on the two sides of the homogeneous thin-layer (physical membrane) boundary, 
therefore avoiding the need to mesh the layer and solve the exact ED problem, t and n denote 
respectively the unit vectors characterizing the local tangential and normal directions. The 
computational box is assumed to be relatively large (h=10R, g=5R) in each configuration, 
where R denotes the cell (vesicle) radius (in the undeformed state). 
 

In the case of discretizations based on FE, the dominant error is due to the mesh 
adaptation scheme used in the simulations. In the context of continuum scale theory, one 
elegant approach consists to solve large heterogeneous structures without scale separation 
assumption by introducing relevant Dirichlet boundary conditions which can be satisfied on 
the capacitive elastic membrane. There have been several attempts to address this question, 
particularly in the context of electric characterization of cell membrane. To perform TMP, Vm, 
calculations on realistic cell shapes, Pucihar and coworkers [19] put forward a model to 
replace the membrane by a boundary condition on the cytoplasm. Since it avoids meshing the 
membrane this approximation permits a significant decrease of the computational time, 
discretization cost and used memory for the calculations. Another more recent variational 
approach for calculating the spatial distribution of electric field without meshing the 
membrane is seen in [20]. In [21], the ED dynamics of lipid vesicles under direct current 
electric field excitation is investigated where the vesicle membrane is represented as a 
massless immersed boundary. In [7,22-24], the immersed boundary method is used to 
simulate the ED and electrohydrodynamics of a vesicle in Navier-Stokes leaky dielectric 
fluids under various electric field excitations. The vesicle membrane is modeled as an 
inextensible elastic interface which is characterized by electric capacitance and conductance. 
Within the leaky dielectric framework and the piecewise constant electric properties in each 
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fluid, the electric stress can be treated as an interfacial force so that both the membrane 
electric and mechanical forces can be formulated within this immersed boundary method. 
Within another context, it was argued in [25] that TLA provides an alternative route to 
modelling dielectric spectra of biological cells. 

In any event, it would appear that, while the construction of these boundary methods is a 
remarkable result, the fact that only the electric constraints are dealt with somewhat limits 
their potential for ED investigations [9-10]. For this reason, we introduce and validate a 
complementary and generic approach for simulating electromechanical phenomena that 
enables the simulation of models spanning several spatial and temporal scales. In this setting, 
explicit boundary conditions are enforced directly on the capacitive elastic cell membrane 
which is subjected to a direct-current electric field. We must remark that this approximation is 
not limited to direct-current problems but the conclusions reached in this paper apply quite 
generally to time-oscillating electric field with frequency up to 100 MHz. One of the primary 
determinants in describing the ED behavior is the Maxwell stress tensor (MST) driving 
cytoplasmic remodeling under electric field excitation. However, how does such boundary 
conditions correlate with the quadratic variation of the MST as a function of Vm and cell 
displacement arising from ED forces have not seen much light. With this caveat in mind, the 
key novelty of our work is the introduction of an explicit thin-layer approximation (TLA) to 
simultaneously solving the electrical potential and calculating the MST and cell displacement. 
Here, an important advantage is that the geometries can be arbitrarily thin while permitting 
arbitrarily large structural deformations. An additional aim of the present work is to compare 
suitable characteristics of TLA-based models to those using physical thickness, i.e. for which 
one needs to geometrically resolve the thin layer, in terms of accuracy, efficiency, and 
computational time. Normally, we think of two analyses as being equivalent if they make 
identical predictions, all things otherwise being equal. We will argue that, remarkably, the 
computational time (resp. stability) is significantly lower (resp. higher) for the TLA-based 
models investigated. 

The rest of the paper proceeds as follows. Section II is the main part of the study which 
sets forth the governing equations and outlines the numerical architecture of the FM model 
along with the basic computational TLA-based framework in terms of a continuum scale 
problem. Section III then details benchmark simulation test cases and compares results using 
a FM model to those using TLA to test the robustness of our results. Results obtained with the 
current method are compared in terms of accuracy, efficiency, and computational time. In 
Section IV, concluding remarks are stated and an outlook is provided. Finally, appendix A 
contains a technical note where we point out essential details, such as the type of electric 
pulse excitation and the geometry of each model, along with a few comparison cases of low-
resolution quality outputs inherent to FM model versus high-resolution quality outputs of the 
TLA model, when modeling ED for a multi-cell system. 
 
 

II. THIN-LAYER APPROXIMATION OF CAPACITIVE ELASTIC CELL 

MEMBRANE 

 
Here, we outline the physics for readers not familiar with the field and describe our geometric 
configuration, introducing the notation and terminology of the model. We first set the 
theoretical basis of our analysis and then present the numerical procedure which is 
implemented for performing electrically-induced cell deformation calculations based on MST 
computation. 
 

A. The mathematical setup 
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We begin by making some simple observations about the polarizable and deformable 
continuum model. In this paper, we consider the morphology of an initially (undeformed) 
spherically-shaped cell. In particular, we investigate its ellipticity and whether it might be 
prolate or oblate under electric field excitation. In this context, we assume that cells remain 
spheroidal under a slowly varying direct current (or quasistatic time-oscillating) electric field. 
Furthermore, we assume three independent phases (cytoplasm, membrane, and ECM) with 
permittivity, electrical conductivity, elastic modulus and Poisson ratio described by piecewise 
constants on either side of the interface. We should point out that in developing our approach 
we do not address the details of the material behavior, including effects related to the 
molecular structure. The parameter used for the numerical examples are those employed 
earlier [26] and are listed in Table I (appendix A). A convenient way to describe the force 
density on the membrane due to the electrostatic interaction is to use MST calculations [6-
7,19-24,26-28]. The quadratic dependence of the ED force here makes this step essential in 
our simulations since in general it is useful to impose Vm<1 V to avoid EP [12-13,26].  

Our analysis focuses on two different cell configurations comprising either a single cell 
(2D axisymmetric geometry shown in Fig. 1) or two cells (3D geometry displayed in Fig. S2). 
The displacement is modelled by applying an electric field along the z direction. The 
calculation of the electrical part of the simulation is being realized by making use of the 
following set of governing equations  

∑ ����  � - ∂ρ/∂t = 0,       (1) 
 

Ji=σEi+∂Di/∂t,             (2) 
 
Ei=-∂iV,        (3)  
 

���=εε0 (EiEj – 
	

δijEi²),      (4) 

 
where indices i,j = {r,z} for 2D axisymmetric geometry (see Fig. 1) and i,j = {x,y,z} for 3D 
geometry (see Fig. S2). All quantities above are time dependent and defined as follows: T is 
Maxwell stress tensor, E is the electric field, D is the electric displacement, δ is the 
Kronecker’s delta, σ means the electrical conductivity, ε  is the permittivity, V is the electric 
potential, J is the electric current density, ρ is the volume charge density, and t denotes the 
time. At membrane interfaces, one can express any of these quantities as a function of the 
normal and tangential directions by setting i,j = {n,t} for 2D geometry and i,j = {n,t1,t2} in 3D 
geometry. All materials being assumed to be isotropic, conductivities and permittivities are 
represented by scalars. The boundary conditions at the interface between any two adjacent 
regions (noted A and B referring to any pair of domains (1), (2) or (3) shown in Fig. 1(a)) can 
be expressed in vector notation as 
 

�.(JA–JB)=∂ρs/∂t ,       (5) 
 
�.(DA–DB)=ρs ,       (6) 
 
�.(EA–EB)=0.        (7) 
 

Here ρs denotes the electric charge surface density and � and � respectively account for the 
normal and tangential vectors to the boundary which is considered. On the other hand, the set 
of equations previously described is to be supplemented by the mechanical part of the 
simulations, which is based on the outputs of the previous stage 
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∑ �� �� = −�(�²��/��²) � ,      (8) 

 
�� =  ∑ ∑ �����. ����� ,      (9)  

��� = 	

 [�� �� + ��  ��],      (10)  

 
where S is the Cauchy stress tensor, C is the compliance tensor, κ is the strain tensor, ρ is the 
density, and u denotes the displacement vector. An important point is to note that the 
acceleration term ρ(∂²u/∂t²) in the momentum equation can be neglected since the viscous 
relaxation time is smaller than the changes in the applied electric field [14]. Thus, based on 
the problem is treated quasi-statically and Eq.(8) can be approximated as 

∑ �� �� = 0 � .                  (11) 

 
Furthermore, according to the theory of linear elasticity and since the membrane and 
cytoplasm are assumed to be isotropic materials, the compliance tensor ����� can be described 

by three different terms (�����, ����� , �����, whereas other terms are zero) which depend on the 

Young modulus (#) and Poisson ratio ($). These terms can be written as   

����� =  %(	&')
(	(')(	&
')     (12) 

 

����� =  %'
(	(')(	&
')     (13) 

 

����� =  %

(	(')      (14) 

 
Although there has been a good deal of attention directed towards calculating TMP, 

relatively few studies have analyzed the electromechanical coupling. This omission is partly 
due to the fact that only simple geometrical cell shapes were considered and that the 
knowledge of full morphological information is elusive without precise 3D spatial and 
kinematic data for cell assemblies [34-36]. In the following, we develop an analytical 
approach for calculating the components of the electric field from which we subsequently 
evaluate the MST onto the membrane surface. We will provide a comparative analysis 
between FM and TLA models to validate the accuracy of the latter approach. For illustrative 
purpose, we compare in Fig. 1 the geometrical configuration with three distinct domains for 
the FM model with its counterpart for the TLA model characterized by two domains and an 
effective boundary condition that replaces component (2). 

Several remarks are in order. Firstly, in the case of a non-planar membrane, the continuity 
equation, Eq.(1), inside the membrane implies a slight difference in the electric field values at 
its interfaces between domains (1)-(2) and (2)-(3) displayed in Fig. 1(a). The electric field 
vector on the former is noted as E(2)- while the electric field vector on the latter is written as 
E(2)+. Interestingly, FM results show that both ED and membrane compression mostly arise 
from the imbalance of the MST inside the membrane at these two interfaces. Consequently, 
an important and yet complex feature for a rigorously equivalent TLA model lies in the 
accurate computation of the MST on each internal interfaces of the membrane, which 
necessitates an accurate computation of the electric field that relates to MST, i.e. Eq.(4). For 
this purpose, we introduce two quantities in the TLA model, namely E∂(2)+ and E∂(2)- which 
are equivalent respectively to E(2)- and E(2)+ in the FM model. We also define appropriate 
boundary conditions for the normal and tangential components of the electric field vector on 
the membrane   

�.E∂(2)- = �.E(1),     (15) 
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�.E∂(2)+ = �.E(3),     (16) 

 
�.E∂(2)- = Γ1 �.E∂(2)+ = Γ2 Vm/dm.    (17) 
 

In Eq. (14), Γ1 and Γ2 account for the electric field gradient across the membrane, where the 
value of the normal component of the electric field at any point within a spherical membrane 

can be computed from the expression Vm/dm) (*&+),
(*&-./
),/, where x represents the distance to the 

outer surface of the membrane. The two parameters Γ1 and Γ2 in Eq.(14) can be written as Γ1 

=) *,
(*&-.),/  and Γ2 = )(*&-./
),

(*&-.), /. Additionally, from Eq. (14) we observe that the average 

value of the electric field imbalance at any two points of the normal direction on the 
membrane is well approximated by Vm/dm as long as the geometry of the problem satisfies 
R>>dm. The time dependent governing equations are then solved for the TLA model with two 
boundary conditions for the electrical part  

� . 0(	)  = 	
-.

)12 + 3234
5
56/ 78(	) −  8(9):,   (18) 

 

� . 0(9)  = 	
-.

)12 + 3234
5
56/ 78(9) −  8(	):.   (19) 

 
The mechanical part of the TLA model is dealt with the standard shell deformation theory  

��2 =  ∑ ∑ �����. ���2�� ,     (20) 

 

��; =  <=
> ∑ ∑ �����. ���;��  ,     (21) 

 

��? =  @
A ∑ ∑ �����. ��� ? �� ,     (22) 

 

���B&C�DBE =  ��2 + FB  ��; ,    (23) 

 

6
GH
<=

(I × �) + ∑ ��  ���B&C�DBE = 0 ,�    (24) 

 
where the exponents m, b, and s respectively denote the membrane, bending and shear 
associated to either stress or strain, FB represents the space coordinate within the membrane in 
the normal direction, I is the bending moment , � is the normal vector, and × represents the 
vector product operator. In the set of Eqs. (20)-(24), we exclusively consider in-plane strains 
for which the normal component of the strain �BBis assumed to be not relevant, i.e. 
electrostriction is neglected. 
 

B. Numerical procedure 

 
The purpose of this section is to give a detailed overview of the numerical methods used to 
run the FM and TLA models. We start by briefly presenting the FE method used to solve the 
sets of equations presented in the previous subsection before introducing the mathematical 
formalism used to reduce the set of equations down to a 1-variable problem which is 
numerically solved. Then, we comment on the mesh construction procedure. Finally, we offer 
a brief analytical description of the FE method for solving the present multi-physics problem. 
The details of the convergence analysis for each model are relegated to Appendix A. 
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Simulations were performed using the multi-physics COMSOL software [37] and 
were run in a cluster computer (262 GB RAM, Intel® Xeon® 2.2 GHz (48 CPUs) processor). 
As previously mentioned, the cell components displayed in Fig.1(a) are represented by 
continuous media which are meshed in order to solve the continuum physics equations. As 
first step, a mesh of the system created, i.e. each domain is discretized into building-blocks 
subdomains, i.e. FEs. Then, polynomial functions (called shape functions) are introduced to 
approximate the exact solution in each FE. The order of these shape functions is called the 
discretization order. Additionally, in COMSOL, in order to optimize the accuracy of the 
solution for complex geometries, geometric shape functions are used to mesh the system, i.e. 
for any curved surface the geometry is approximated by a polynomial function of the same 
discretization order as the one considered in the physical problem. This is meant to optimize 
the agreement between the exact and computed solution at a sub nodal scale. Since 
discretization for the electrical and mechanical parts of the algorithm is performed 
independently, the geometrical shape functions are set to the lowest defined discretization 
order in multi-physics problems. Two different types of mesh can be constructed depending 
on the geometry of the problem to be solved, either a structured or an unstructured mesh. The 
former requires a relatively simple geometry and is less computationally expensive as 
regularity allows storage arrangements of neighborhood relationships between nodes. The 
former implies explicit storage of neighborhood relationships but at the same time allows 
meshing virtually any type of geometry. The geometry of the simulated system can then be 
meshed using elements of different morphologies: linear elements for 1D geometries, 
triangular or quadrilateral elements for 2D geometries, and either tetrahedral, pyramidal, 
prismatic or hexahedral elements for 3D geometries, each of which being more or less 
adapted depending on the topology of the system. Here, since we consider a multi-scale 
combination of circular and rectangular topologies (respectively, the membrane and the 
simulation box) we chose to use unstructured meshes of triangular elements to discretize the 
2D axisymmetric geometries of FM and TLA models represented in Fig. 1, and tetrahedral 
elements for the 3D geometries of FM and TLA models sketched in Fig. A2. The element 
shape order was set to be quadratic to optimize the balance between accuracy and 
computational time since linear shape order elements would have implied over refining the 
mesh to achieve the same accuracy over the curved geometry of the membrane and higher 
shape order elements would have resulted in larger computational times. The equations are 
then solved using a multifrontal massively parallel sparse direct solver and based on the 
damped Newton's nonlinear method with a constant damping factor set to 1. Time dependence 
was handled using a backward differentiation formula (BDF) time stepping method, where 
free time steps were taken by the solver and maximum and minimum allowed degrees of the 
interpolating polynomial of the BDF method were respectively set to 5 and 1. The order of 
computation of the various quantities is illustrated in Fig. 2 by arrows. The calculation 
consists in solving the partial differential equation which is derived by combining Eqs. (1)-(3) 

∑ ��)1��  +  3 � ��K /8 − 3 �7∑ ��

8� :

��L = 0 ,�    (25)

  

which is solved for V. Then, J, E, D and T can be obtained from Eqs. (1)-(3). As mentioned 
before, solving Eq. (25) is approximated by shape functions, each one being specific to its 
associated element. The shape functions of order k (noted Pk()) are determined in the 
electrical part of the calculation by setting the polynomial coefficients to values that cancel 
the integral of electric power volume density in each element 

    ∭ ∑ 7��  N
(��8�):O8�PQRQ.
 = 0.     (26) 

 
The mechanical part of the calculation is done by solving Eqs.(9)-(10) which satisfy  
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∭ ��PQRQ.
)∑ N
(��) � ���K 7���:� + ∑ N
(����) � �(����)K 7���:� / O8 = 0.  (27) 

 
It is also worth noting that the electromechanical coupling is performed in the TLA model by 
making use of the arbitrary Lagrangian-Eulerian formulation for solving the time variation of 
the electric potential as the cell geometry is deforming. 

Practically, the algorithm which is implemented is displayed in Fig. 2. 
 

 
 
Fig. 2: Algorithm for computing cell deformation in TLA and FM models and calculating the 
ED coupling in the TLA model. Both models follow the same steps. Solving of the electrical 
part is followed by considering the mechanical part. The arrows illustrate the input versus 
output causal relationships of the algorithm. The blue arrow which represents the 
electromechanical mechanical coupling before shape change and electric potential calculation 
is implemented only in the TLA model. 
 
Since we want to provide a comparison between FM and TLA models in terms of precision 
and computational time, a convergence study is performed. Since cell ED comes from MST 
imbalance across the membrane, our convergence criterion is defined with respect to the 
imbalance of the Tnn component of MST. Results are shown in Fig. A3 and discussed in 
Appendix A. Another motivation for defining this criterion as the salient indicator of mesh 
resolution optimization is the quadratic dependence of MST components on the electric field 
whose gradient is extremely sharp at the membrane interface, making this criterion the most 
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ill-conditioned quantity of interest in the presented model, and thus the most relevant for 
investigating convergence.  
 

III. EXAMPLES AND DISCUSSION 

 
We are now in a position to try to put everything together and present several numerical 

examples in order to demonstrate the accuracy and efficiency of the TLA for representing cell 
membrane. The electric stimulus is shown in Fig. A1 of Appendix A. Table II of appendix A 
lists the material properties of actual cells which have been deduced from consolidated 
literature data and includes the electric pulse characteristic times. As previously described, we 
perform our analysis in two ways. The cell membrane was defined with a boundary condition 
in the TLA model or with a physical thickness in the FM model. In the latter case, the mesh 
generator is able to mesh the membrane domain but the number of mesh elements must be 
much larger than in the TLA model to achieve the same precision (Table I). To check the 
agreement between both models we focus on the norm of the electric field, the value of the 
Tnn component of the MST on the membrane of the reference cell, and the transmembrane 
imbalance of these quantities. Considering that it is the transmembrane imbalance in these 
two quantities that determine the magnitude of the net electromechanical stress responsible 
for membrane deformation, we stress the importance of replicating not only the local values 
of electric field and MST, but also the values of their local transmembrane imbalance. In Fig. 
2, we present a quantitative comparison of these quantities calculated by making use of either 
TLA- and FM-based approaches as function of angle ψ for a 1-cell configuration (reference 
cell in Fig. A2 displayed in appendix A).  

It is worth noting that the two models give very similar numerical data in terms of electric 
field and Tnn component of the MST distribution, with TLA allowing much lower values of 
mesh elements and computational time (Table I). The average error is defined as 

S TUV& TWXY-�Z[Q\.]QRR
S  TUV-�Z[Q\.]QRR

 , where S O^_[Q\.]QRR
 represents the integral over the cell contour for a 2D 

geometry or over the reference cell contour taken at ϕ = 0 for the 3D geometry. For the FM 
model, the average error is found to be 0.58 % for the electric field imbalance and 0.2 % for 
the Tnn component imbalance, while the counterparts for the TLA model are respectively 
0.16% for the electric field and 0.2% for the Tnn imbalances. The electric field and MST 
values are obtained with significant gains in computational time, i.e. by a factor of 18 for the 
time-dependent study related to Fig. 3 (for which only the electrical part is computed), a 
factor of 23 for the data related to Figs. 5 and 6 (for which the electrical and mechanical parts 
are simultaneously computed), and a factor of 15 for the results shown in Fig. 7.  
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Fig. 3: (a) (top panel) Comparison between the angular variation in the transmembrane 
imbalance of the norm of the electric field between FM and TLA models for the 1-cell 
configuration at two times; (bottom panel) the same as in (top panel) for the transmembrane 
imbalance of Tnn; (b) (top panel) The same as in (a) in the top panel for the electric field on 
the boundary separating domain (2) from domain (3) of Fig. 1(a); (bottom panel) The same as 
in (b) in the top panel for Tnn on boundary separating domain (2) from domain (3) of Fig. 1(a), 
where exponents “+” and “-“ respectively correspond to quantities related to boundaries 
separating domain (2) from domain (3) and domain (1) from domain (2) of Fig. 1(a).  
 
      To get further insight into the accuracy of the TLA model when one is dealing with cell 
assemblies under electric field excitation, we consider a 2-cell configuration (with reference 
to Fig. A2 of appendix A) since proximity interactions can in principle give important 
contributions. We illustrate these results in Fig. 4. The general features of the results deserve 
comments. These plots compare, as in Fig. 3, calculations of the intensity of the local electric 
field using TLA and FM approaches as function of angles ψ and ϕ for different relative cell 
orientations (characterized by angle θ in Fig. A2) to the electric field direction and inter-
cellular distances (r/R with reference to Fig. A2). One observes that the trend of the curve 
obtained from the FM-based approach is well reproduced with TLA-based calculations for 
each configuration. Again, the main difference between the two models is the modest 
computational time (Table I) required to obtain the results for TLA-based simulations. 
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Table I: A comparison of several computational metrics at grid independence for the data 
shown in Figs. 3 and 4. The element quality is a measure of the good conditioning of the 
discretized problem and has a value comprised between 0 (inverted element) and 1 (perfect 
element). It is defined from the isotropy of the element divided by the condition number 
(Frobenius norm) of the matrix transforming the element to a perfect element. The element 
area (respectively volume) ratio corresponds to the smallest element area (respectively 
volume) divided by the largest. 
 
 FM TLA 

1-cell (2D) 2-cell (3D) 1-cell (2D) 2-cell (3D) 
Total number of mesh elements 1.49 × 105 9 × 106 1.09 × 103 9.79 × 104 

Number of membrane mesh 
element 

1.37 × 104 7.41 × 105 31 1.09 × 103 

Degrees of freedom solved 3 × 105 1.2 × 107 2.3 × 103 1.8 × 105 
Computational time 3 min 1s 26 min 48s 10 s 40 s 

Mean element quality 0.97 0.77 0.97 0.82 
Mean element quality 

(everywhere but membrane) 
0.97 0.83 0.97 0.83 

Minimum element quality 
(everywhere but membrane) 

0.73 0.3 0.84 0.88 

Mean element quality 
(membrane) 

0.9 0.13 1 0.98 

Minimum element quality 
(membrane) 

0.87 0.0026 1 0.85 

Element area ratio 5 × 10-9 -  1.1 × 10-3 - 
Element volume ratio - 1.2 × 10-10  - 1.1 × 10-3 

 
Thus, the key point to take away is that TLA is a good candidate for exploring how the 
redistribution of field and force is reflected in symmetry breaking characterizing multiple cell 
configurations. 
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Fig. 4: (a)-(c) Comparison between Tnn

± obtained using FM- (solid line) and TLA- (dots) 
based model, where (a), (b) and (c) respectively correspond to values of φ={0, π/4, π/2} for a 
2-cell configuration (with reference to Fig. A2 of appendix A). Green, red and blue curves 
respectively correspond to θ={0, π/4, π/2}, and r/R=0.2. (d)-(f) The same as in (a)-(c) for the 
|E±|. 
 

In the additional Figs. A4 and A5 of appendix A, we present further calculations of the Tnn 

component of the MST and electric field imbalance for the 2-cell configuration and several 
choices of θ and φ, while all other initial conditions remain unchanged. It is interesting to note 
that the disparity in nominal value (shaded regions) of these quantities is much larger in FM-
based calculations than in TLA-based analysis, which is consistent with the resolution 
limitations of the simulations using a FM-based approach for modeling 3D geometries. The 
Tnn component of the MST and electric field imbalances can then be strongly disturbed, and 
the net effect is that these quantities are changed very rapidly at ψ=±π/2. In contrast, the 
angular variation of these quantities are much precise within the TLA approach.  
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This observation immediately suggests that cells in close proximity change the local 
electric field distribution and create local non-uniformity in the electric field which eventually 
becomes more complex with an increase in the number of interacting cells [10]. All these 
"complications" could provide a gold mine of information about the formation of a stable 
biological tissue in space and time if an intuitive exploration of the realm of possibility for 
cell assemblies whose properties mimic those of real tissues is found. However, this 
observation having been made, no thorough investigation of the collective effects of 
neighboring cells on the details of the TMP and MST has been given. Since the physical 
aspects of the cellular environment that are sensed by cells are force and geometry at the 
nano-to micrometer level, these TLA-based simulations should allow us resolve some of the 
recent issues in understanding electromechanical couplings which triggers pore opening [11-
14]. It is of interest that such extension of the single cell model can potentially lead to 
interesting coupling hierarchies of cells, which could also have important applications from 
the perspective of tissue ED modelling [34]. We leave this an open question. 

To complete this analysis, we next turn to examine the impact of the electromechanical 
coupling (with reference to Fig. 2) characterizing the ED force during the deformed state of 
the cell, for which the prolate spheroidal shape of the cell has for effect to increase the 
membrane polarization, and consequently the local value of Vm. Here, we want to outline that 
the simple elasticity based analysis can be exploited to construct a complete picture of the 
local stress state surrounding the membrane. We show in Fig. 5 a comparison between 
selected deformed states of an initially (undeformed) spherically-shaped cell at three different 
times. In Figs. 5(a) and 5(b), Vm and the MST are calculated within a non-deforming mesh (no 
electromechanical coupling), while Fig. 5(c) is obtained with the TLA model by taking into 
account electromechanical coupling, i.e., the mesh deformation impacts the time dependent 
Vm and, in turn, the MST. 

 

 
 

Fig. 5: Total cell displacement at three different times. The applied pulse is shown in Fig. A1 
of Appendix A with intensity set to 1k V/cm: (a) FM results with no electromechanical 
coupling, (b) TLA results with no electromechanical coupling, and (c) TLA results with 
electromechanical coupling. The color bar shows the total displacement and the black arrows 
represent the direction of the displacement. 
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In addition to the challenge of consistently generating low computational time 
simulations, another well-documented test problem in the literature [8,14] can be used for the 
validation of the method outlined above. Besides determining the dependence of the local 
electric field and MST of the deformed cell, current strategies for analyzing ED focus on 
measuring the morphology change which is a generic feature of cell deformation. To confirm 
our approximate results, we show an example of such comparison in the top panel of Fig. 6 
where we display the aspect ratio (defined as the ratio of semi-major axis b to semi-minor-
axis a of the ellipsoid) of the ellipsoidal deformation for a single (initially spherical) reference 
cell configuration as a function of time.  
 
 

 
 
Fig. 6: (top panel) Evolution of the aspect ratio related to the ellipsoidal deformation of the 
initially spherical cell (Fig. 1) as a function of time. (bottom panel) The same as in the top 
panel for the transmembrane potential. Solid lines correspond to the TLA model. The blue 
(resp. red) color corresponds to the case when electromechanical coupling is (resp. is not) 
taken into account. The black dotted line corresponds to the FM model. 
 
Figure 6 reinforces the strong correlation between deformation and the strain dependent 
evolution of Vm as a function of time. One can note that the steady state value of maximal 
deformation is reached in both cases closely after the end of the rise of the electric pulse. 
Moreover, in the coupled case, the steady state value of Vm depends on the on the mechanical 
properties of the cell.  The important point is that as long as the inequality Vm<1 is satisfied, 
the TLA-based analysis implicitly takes into account the global symmetry breaking by cell 
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ED which is under perturbative control. Now comparing the FM and TLA methods when 
electromechanical coupling is not taken into account, one can also notice that the two models 
predict significant differences. These difference range from 7 % when one considers the 
aspect ratio (Fig. 6) to 200% when the time-dependent total cell displacement (Fig. 5) is 
analyzed. One can rationalize this point as due to the normal strains in the FM model and the 
large elastic modulus ratio between the cytoplasm and the membrane. In the FM model, 
electrostriction effects are found to induce a membrane shrinking up to 5% of its initial 
thickness [26]. Therefore, neglecting electrostriction in the TLA formulation of Eqs.(20)-(24), 
while imposing similar electromechanical constraints as in the FM model, should result in an 
excess mechanical energy (mainly stored in the membrane) leading to a larger total strain in 
the TLA method. 

We find another interesting application of TLA. The ED theory predicts the degree of 
deformation b/a induced on the reference cell when applying the trapezoidal electric pulse 
(Fig. A1) and electrical conductivity ratio Λ of the cytoplasm to the extracellular medium 
(ECM). Refs. [8,14] worked out the implication of the more or less conductive ECM 
constraint for the aspect ratio. Their result is that the cell evidences an oblate deformation 
when Λ<1 and prolate when is oblate when Λ>1. This is clearly consistent with the results 
displayed in Fig. 7.  
 
 

 
 

Fig. 7: Evolution of the aspect ratio characterizing the ellipsoidal deformation of an initially 
spherical vesicle as a function of time. We present our results in terms of benchmark points 
for vesicle deformation since we compare experimental results (black dots) [14] and 
numerical results (blue solid line) based on the TLA approach or the FM model (red solid 
line). In [14], a non electroporated vesicle in low conducting aqueous environment is 
subjected to an electric pulse of duration 250 µs and intensity 1 kV/cm [14].  The parameters 
used in the TLA model for producing this figure are summarized in Table I of appendix A. 
 
As can be seen in the TLA-based calculations shown in Fig. 7 are in good agreement with the 
experimental data on giant unilamellar vesicules [8,14], which are representative models of 
cells since they have similar dimension and can be individually observed and followed with 
video microscopy. It should be remarked that for this benchmark model, the experimental 
parameters used in the TLA model for producing this figure are summarized in Table I. Thus 
remarkably, we confirm our approximate results are relevant to describe the large cell 
deformations under electromechanical excitation. In fact, our TLA procedure by integrating 
ED in the analysis gives us a large flexibility since the physical parameters in the model we 
present are linked to scales we know should be associated with deformation, bending rigidity, 
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and elastic stretching mechanisms. The details of this process are currently under 
investigation. 
 
 

IV. CONCLUSIONS 

 
One of the key features of this approach is it allows for addressing the electromechanical 

coupling that can give rise to visible signatures arising from two cells in close proximity, with 
the specific signal depending on the particular nature of this coupling. Since a wild range of 
possible experiments can be proposed, it is very important to ascertain exactly what signals 
may be expected as a function of electric field excitation and ECM characteristics. For all test 
cases, our arguments suggest that the use of TLA offers significant computational advantage 
over solving the FM description of the cell membrane. This claim is substantiated by means 
of several examples showing how this method can be exploited in multiscale simulations of 
biological tissue on cellular and subcellular scale. Furthermore, some well-known benchmark 
tests have been performed to validate the accuracy, efficiency, and computational time of the 
proposed method. It certainly appears that while there are quantitative differences between the 
TLA-based approach and FM, the former simulates the essential trends of realistic or 
observed ED behavior under direct current electric field. The electromechanical strategy was 
demonstrated to be accurate with only moderate computational expense, and it should perhaps 
be emphasized once again that our method showed good agreement with available 
experimental and numerical results in the literature. 

Given this discussion, it is useful to keep in mind several specific challenges that we 
should unravel in the foreseeable future. One of the greatest impacts of continuum simulations 
is that they offer an intuitively simple, yet physically complete model of biological cells. As 
an alternative to finite element simulations the boundary integral equation method offers 
important advantages to solve linear field problems since a surface description of the modeled 
object is sufficient. To solve for the potential, this method has computation cost. However, 
adaptive meshing covering the region of interest combined to the boundary integral method 
makes the method fast as well as accurate [38]. We leave this an open question. Furthermore, 
numerous features such as inhomogeneous thin-layer (membrane) and generalization to either 
high-frequency time harmonic or transient electric field excitations have so far received very 
little attention. The former issue requires combining the actual TLA with homogenization 
problems. The latter issue turns out to be technically more difficult, in particular regarding the 
stability in time. We wish also to notice that a priori, this new strategy can be transferred in a 
straightforward manner to viscoelastic or hyperelastic membrane if the corresponding 
material properties are known [29,31]. It then makes sense to ask if and how the TLA is an 
appropriate approach for all types of eukaryotic cells. Another major milestone for this 
research would be to use this computational method to deal with EP of cell membrane in 
order to extract specific metrics such as pore density and elastic strain energy [12-13,17,35-
37,39]. We leave these questions for future studies.  
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Appendix A: Technical details 
 

The purpose of this appendix is to present the type of electric pulse excitation, the geometry 
of each model for the TLA-based approach and FM analysis, the electric pulse characteristics, 
and additional results. 

Electric field excitation is provided by a unipolar trapezoidal pulse having amplitude 

of 1 kV/cm with rise-and fall-times set to 1.25 µs as shown in Fig. A1. 

 

Fig. A1: The electric pulse excitation applied in this study. The pulse intensity is set to 
1kV/cm. The values of the rise, pulse, and fall times are listed in Table AI. 
 

We show in Fig. A2 the geometry of the 1-cell and 2-cell configurations considered in 
this analysis. 
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Fig. A2: (a) A schematic diagram illustrating the geometry of the problem (not to scale) for 
the TLA and FM of the reference cell for the 2-cell configuration (3D geometry). For the 
latter, the two cells are separated by a distance r. The orientation angle θ refers to the angle of 
the line joining the cell centers of mass relative to the electric field direction. Red dots 
represent the centers of mass of the cells, and regions (1), (2) or ∂(2) and (3) respectively 
correspond to cytoplasm, membrane and external medium. As shown in this figure, by 
considering different values of r and θ we can assign arbitrary electromechanical coupling 
and anisotropies to the pair of cells configuration. We have also defined ψ and ϕ as the angles 
starting from point (x0; y0 + R; z0) and contained in the zOy plane and xOy plane, respectively, 
where (x0; y0; z0) are the coordinates of the center of mass of the reference cell; (b) The same 
as in (a) for the TLA-based approach. 
 

Table II summarizes the parameters used in the FE analysis of biological cells exposed 
to electric fields. It also includes the electric pulse (Fig. A1) characteristic times. 

 
 
 
 
 



20 

 

 
Table II: A summary of the parameters used in the TLA and FM models for producing the 
specified figures. 

 
Parameters Notation Fig. 3 Fig. 4 Figs. 5 and 6 Fig. 7 

Cell (vesicle) 
radius (in the 

undeformed state) 

R (µm) 5  5  5  15 

Membrane 
thickness of the 
undeformed cell 

(vesicle) 

dm0 (nm) 5 5 5 5 

Cytoplasm 
permittivity 

ε0εc (Fm−1) 6.9 × 10−10 6.9 × 10−10 6.9 × 10−10 5.6 × 10−10 

Cytoplasm 
conductivity 

σc (Sm−1) 0.2 0.2 0.2 6 × 10−4 

Membrane 
permittivity 

ε0εm (Fm−1) 4.4 × 10−11 4.4 × 10−11 4.4 × 10−11 4.4 × 10−11 

Membrane 
conductivity 

σm (Sm−1) 10−7 10−7 10−7 10−7 

External medium 
permittivity 

ε0εe (Fm−1) 6.9 × 10−10 6.9 × 10−10 6.9 × 10−10 5.6 × 10−10 

External medium 
conductivity 

σe (Sm−1) 0.2 0.2 0.2 4.5 × 10−4 

Membrane Young 
modulus 

Ym (Pa) 1.9  × 107 1.9  × 107 1.5  × 107 1.5  × 107 

Cytoplasm Young 
modulus 

Yc (Pa) 103 103 102 102 

Rise time  Δtr (s) 1.25 × 10−6 - 4 × 10−5 2.5 × 10−5 

Pulse time  ΔtP (s) 2.5 × 10−5 - 2 × 10−5 2.5 × 10−4 

Fall time  Δtf (s) 1.25 × 10−6 - 4 × 10−5 2.5 × 10−5 

 
To compare the outputs of the FM and TLA models for 2D and 3D configurations, the 

convergence study is based on the analysis of the number of edge elements Nm on each 

membrane interface. The minimum and maximum element size parameters are the only 
required inputs parameters in order to build the mesh from the built-in discretization 
algorithm they were respectively set to R/Nm and 100R/Nm for the 2D geometries and to R/Nm 
and 1000R/Nm for the 3D geometries. The total relative error reads  

            
  S H̀H(a.)& H̀H7a.b a..cd: -�Z[Q\.]QRR

S  H̀H7a.b a..cd : -�Z[Q\.]QRR
=  e.                                          (A1) 

Here, S O^_[Q\.]QRR
 represents the integral over the cell contour in a 2D geometry or over the 

reference cell contour taken at ϕ = 0 in a 3D geometry. The threshold value of the total 
relative error is fixed to 0.5% and Fig. A3 shows the mesh values at which this criterion is 
reached, where f2.cdis chosen to have a sufficient high value so that the mesh quality would 

a priori satisfy the required stability conditions for computing an accurate approximated 
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solution. Here, the results of the FM model for a 3D geometry are not shown since the 
algorithm used to build the mesh cannot discretize the system in order it leads to the required 
level of accuracy in a reasonable amount of time. A value of f2.cd = 50 000 was chosen for 

this illustrative example. 
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Fig. A3: Dependence of the relative error e as a function of the total number of mesh elements 

f2used to discretize the system: (a) FM results in 2D with f2.cd = 4640 , (b) TLA results 

in 2D with f2.cd = 1232, (c) TLA results in 3D with f2.cd = 1232. The grey dotted line 

represents the case e = 0.5 %. The red dotted vertical line represents the critical value of Nm 
beyond which the approximated solution can be considered as mesh-independent. 
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In Figs. A4 and A5, we show additional results which are discussed in the main text. It is 

worth observing the instability of the FM results shown in Figs. A4 and A5. 

 

 

Fig. A4: (a)-(c) Angular variation of the transmembrane imbalance of the MST for the 2-cell 
configuration within the FM model: (a), (b) and (c) respectively correspond to values of φ={0, 
π/4, π/2}. Green, red and blue curves respectively correspond to θ={0, π/4, π/2}, r/R=0.2; (d)-
(f) The same as in (a)-(c) for the TLA model. 
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Fig. A5: The same as in Fig. A4 for the transmembrane imbalance of the norm of the electric 
field. 

 

 
 
  



25 

 

REFERENCES 

 

[1] P. M. A. Sloot and A. G. Hoekstra, “Multi-scale modelling in computational 
biomedicine”, Briefings in Bioinformatics 11, 142–152 (2010). 
[2] S. Schnell, R. Grima, and P.K. Maini, “Multiscale modeling in biology”, American 
Scientist 95, 134-142 (2007). 
[3] C. Brosseau and E. Sabri, “Resistor-capacitor modelling of the cell membrane: a 
multiphysics analysis”, J. Appl. Phys. 129, 011101 (2021). 
[4] J. O. Dada and P. Mendes, “Multi-scale modelling and simulation in systems biology”, 
Integr. Biol 3, 86-9 (2011). 
[5] M. Meier-Schellersheim, I. D. C. Fraser, and F. Klauschen, “Multi-scale modeling in cell 
biology”, Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 4–14 (2009).  
[6] D. Shamoon, S. Lasquellec, and C. Brosseau, “Perspective: Towards understanding the 
multiscale description of cells and tissue by electromechanobiology”, J. Appl. Phys. 123, 
2018, 240902(1)-240902(18). 
[7] N. A. Nodargi, P. Bisegna, and F. Casellin, “Effective computational modeling of 
erythrocyte electro-deformation”, Meccanica 52, 613-631 (2017). 
[8] J. Chen, M. Abdelgawad, L. Yu, N. Shakiba, W.- Y. Chien, Z. Lu, W. R. Geddie, M. A. S. 
Jewett, and Y. Sun, “Electrodeformation for single cell mechanical deformation”, J. 
Micromech. Microeng. 20, 065007 (2010). 
[9] F. Guo, K. Qian, H. Deng, and X. Li, “Multiphysics analysis of nsPEF induced 
electrodeformation in a dispersive cell model”, Appl. Phys. Lett. 118, 083701 (2021). 
[10] D. Shamoon, J. Dermol-Cerne, L. Rems, M. Rebersek, T. Kotnik, S. Lasquellec, C. 
Brosseau, and D. Miklavčič, "Assessing the electro-deformation and electro-permeabilization 
of biological cells using a three dimensional finite element model", Appl. Phys. Lett. 114, 
2019, 063701(1)-063701(5); D. Shamoon, S. Lasquellec, and C. Brosseau, “A muliphysics 
analysis of the strain energy in multicellular environments”, Appl. Phys. Lett. 115, 043701 
(2019). 
[11] A. Barnett and J. C. Weaver, “Electroporation: a unified quantitative theory of reversible 
electrical breakdown and mechanical rupture in artificial planar bilayer membranes”, 
Bioelectrochem. Bioenerg. 25, 163-182 (1991); J. C. Weaver and Y. Chimazdzhev, “Theory 
of electroporation: a review”, Bioelectrochem. Bioenerg. 41, 135-160 (1996). 
[12] L. Rems and D. Miklavčič, “Tutorial: Electroporation of cells in complex materials and 
tissue”, J. Appl. Phys. 119, 201101 (2016). 
[13] J. C. Weaver and Y. A. Chizmadzhev, “Theory of electroporation: A review”, 
Bioelectrochemistry and Bioenergetics 41, 135-160 (1996). 
[14] K. A. Riske and R. Dimova, “Electro-deformation and poration of giant vesicles viewed 
with high temporal resolution,” Biophys. J. 88, 1143–1155 (2005). 
[15] U. Pliquett, R. P. Joshi, V. Sridhara, and K. H. Schoenbach, “High electrical field effects 
on cell membranes,” Bioelectrochemistry 70, 275–282 (2007). 
[16] M. M. Sadik, J. Li, J. W. Shan, D. I. Shreiber, and H. Lin, “Vesicle deformation and 
poration under strong dc electric fields,” Phys. Rev. E 83, 066316 (2011). 
[17] E. Goldberg, C. Suarez, M. Alfonso, J. Marchese, A. Soba, and G. Marshall, “Cell 
membrane electroporation modeling: A multiphysics approach”, Biolectrochemistry 124, 28-
39 (2018). 
[18] E. Fear and M. Stuchly, “Modeling assemblies of biological cells exposed to electric 
fields”, IEEE Trans. Biomed. Eng. 45, 1259–1271 (1998). 
[19] G. Pucihar, T. Kotnik, B. Valic, and D. Miklavcic, “Numerical determination of 
transmembrane voltage induced on irregularly shaped cells”, Ann. Biomed. Eng. 34, 642–652 
(2006). 



26 

 

[20] C. Poignard, P. Dular, R. Perrussel, L. Krähenbühl, L. Nicolas, and M. Schatzman, 
“Approximate conditions replacing thin layers”, IEEE Trans Magn. 44, 1154-1157 (2008). 
[21] A. Morshed, P. Dutta, M. R. Hossan, and R. Dillon, “Electrodeformation of vesicles 
suspended in a liquid medium”, Phys. Rev. Fluids 3, 103702 (2018)  
[22] W. F. Hu, M. C. Lai MC, Y. Seol, and Y. N. Young, “Vesicle electrohydrodynamic 
simulations by coupling immersed boundary and immersed interface method”, J. Comput. 
Phys. 317, 66 (2016). 
[23] J. Chen, M. Abdelgawad, L. Yu, N. Shakiba, W.-Y. Chien, Z. Lu, W. R Geddie, M. A. S. 
Jewett, and Y. Sun, “Electrodeformation for single cell mechanical characterizations”, J. 
Micromech. Microeng. 21, 054012 (2011).  
[24] H. Nganguia and Y.-N. Young, “Equilibrium electrodeformation of a spheroidal vesicle 
in an AC electric field”, Phys. Rev. E 88, 052718 (2013). 
[25] K. Asami, “Effectiveness of thin-layer and effective medium approximations in 
numerical simulation of dielectric spectra of biological cell suspensions”, Jpn. J. Appl. Phys. 
49, 127001 (2010). 
[26] E. Sabri, S. Lasquellec, and C. Brosseau, “Electromechanical modeling of the 
transmembrane potential-dependent cell membrane capacitance”, Appl. Phys. Lett.  117, 
043701 (2020). 
[27] E. Sabri and C. Brosseau, “Proximity-induced electrodeformation and membrane 
capacitance coupling between cells”, Eur. Biophys. J. 50, 713-720 (2021). 
[28] E. Sabri and C. Brosseau, “Modelling cell membrane electrodeformation by alternating 
electric fields”, Phys. Rev. E (2021). 
[29] P.- Y. Chen, A. Lin, and Y. Seki, “Biological materials: Structure and mechanical 
properties”, Prog. Mater. Sci. 53, 1-206 (2008).  
[30] I. G. Abidor, V. B. Arakelyan, L.V. Chernomordik, Y. A. Chizmadzhev, V. F. 
Pastushenko, and M. R. Tarasevich, “Electric breakdown of bilayer lipid membranes. I. The 
main experimental facts and their qualitative discussion”, Bioelectrochem. Bioenerg. 6, 37-52 
(1979); M. Tarek, “Membrane electroporation: a molecular dynamics simulation”, Biophys. J. 

88, 4045-4053 (2005); Z. Q. Levine and P. T. Vernier, “Life cycle of an electropore: Field-
dependent and field-independent steps in pore creation and annihilation”, J. Memb. Biol. 226, 
27-36 (2010); E. Gongadze, A. Velikonja, S. Perutkova, P. Kramar, A. Maček-Lebar, V. 
Krajl-Iglič, and A. Iglič, “Ions and water molecules in an electrolyte solution in contact with 
charged and dipolar surfaces”, Electrochimica Acta 126, 42-60 (2014). 

[31] C. J. Cyron, K. W. Müller, A. R. Bausch, and W. A. Wall, “Micromechanical simulations 
of biopolymer networks with finite elements”, J. Comput. Phys. 244, 236-251 (2013) ; D. 
Barthès-Biesel, A. Diaz, and E. Dhenin, “Effect of constitutive laws for two-dimensional 
membranes on flow-induced capsule deformation”, J. Fluid Mech. 460, 211-222 (2002). 
[32] J. Vodman, “Electric forces for microscale cell manipulation”, Annu. Rev. Biomed. Eng. 
8, 425-454 (2006). 
[33] V. Sukhorukov, H. Mussauer, and U. Zimmermann, “The effect of electrical deformation 
forces on the electropermeabilization of erythrocyte membranes in low- and high-conductivity 
media”, J. Membr. Biol. 163, 235-245 (1998). 
[34] T. Murovec, D. C. Sweeney, E. Latouche, R. V. Davalos, and C. Brosseau, “Modeling of 
transmembrane potential in realistic multicellular structures before electroporation”, Biophys. 
J. 111, 2286-2295 (2016); T. Murovec and C. Brosseau, “Spectral fingerprint of electrostatic 
forces between biological cells”, Phys. Rev. E, 92, 2015, 042717. 
[35] K. Ravikumar, V. Kumaran, and B. Basu, “Biophysical implications of Maxwell stress in 
electric field stimulated cellular microenvironment on biomaterial substrates”, Biomaterials 
209, 54-66 (2019). 



27 

 

[36] J. Gimsa, “A comprehensive approach to electro-orientation, electrodeformation, 
dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells”, 
Bioelectrochemistry 54, 23–31 (2001). 
[37] COMSOL Multiphysics version 5.5. 
[38] W. Ying  and J. T. Beale, “A fast accurate boundary integral method for potentials on 
closely packed cells”, Commun. Comput. Phys. 14, 1073-1093 (2013); L. C. McConnell, M. 
J. Miksis, and P. M. Vlahovska, “Continuum modeling of the electric-field-induced tension in 
deforming lipid vesicles”, J. Chem. Phys. 143, 243132 (2015); C. Sorgentone, A.-K. 
Tornberg, and P. M. Vlahovska, “A 3D boundary integral method for the 
electrohydrodynamics of surfactant-covered drops”, J. Comp. Physics, 389, 111-127 (2019) ; 
S. A. Sauter, C. Schwab, Boundary Element Methods (Springer, 2011) ; C. Pozrikidis, 
Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge 
University Press, 1992). 
[39] A. G. Pakhomov, J. F. Kolb, J. A. White, R. P. Joshi, S. Ziao, and K. H. Schoenbach, 
“Long-lasting membrane permeabilization in mammalian cells by nanosecond pulsed electric 
field (nsPEF)”, Bioelectromagnetics 28, 655-663 (2007); A. G. Pakomov, E. Gianulis, P. T. 
Vernier, I. Semenov, S. Xiao, and O. Pakhomova, “Multiple nanosecond electric pulses 
increase the number but not the size of long-lived nanopores in the cell membrane”, Biochim. 
Biophys. Acta 1848, 958-966 (2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




