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With the aim of characterizing and gaining insight into the frequency response of cells suspended in a fluid
medium and deformed with a controlled alternating electric field, a continuum-based analysis is presented for
modeling electrodeformation (ED) via Maxwell stress tensor (MST) calculation. Our purpose here is to apply
this approach to explain the fact that the electric field anisotropy and electrical conductivity ratio � of the
cytoplasm and the extracellular medium significantly impact the MST exerted on the cytoplasm-membrane
interface. One important finding is that the modulation of electrical cues and MST force by the frequency of the
applied electric field provides an extremely rich tool kit for manipulating cells. We show the extreme sensitivity
of proximity-induced capacitive coupling arising concomitantly when the magnitude of the MST increases as
the distance between cells is decreased and the spatial anisotropy becomes important. Moreover, our model
highlights the strongly localized character of the electrostatic field effect emanating from neighboring cells and
suggests the possibility of exploiting cell distribution as a powerful tool to engineer the functional performance of
cell assemblies by controlling ED and capacitive coupling. We furthermore show that frequency has a significant
impact on the attenuation-amplification transition of MST, suggesting that shape anisotropy has a much weaker
influence on ED of the cell membrane compared to the anisotropy induced by the orientation angle itself.

DOI: 10.1103/PhysRevE.104.034413

I. INTRODUCTION AND MOTIVATION

Growing interest in exploring electrodeformation (ED) of
various soft material structures (including biological cells,
liposomes, and giant unilamellar vesicules) derives, in part,
from the potential to exploit advanced three-dimensional (3D)
designs in emergent technologies, from biomedical devices
to microfluidics and electromechanical soft components [1].
However, due to fragility and ultrasmall dimensions (of
around 5 nm thickness for cell membrane), biological cells
are highly susceptible to undergoing irreversible mechanical
deformation that severely limits their biological and chemical
functions under extreme conditions involving electrical and
mechanical force. Equally important, these general physical
principles based on classical electrodynamics and mechanics,
in conjunction with numerical methods, can be of consider-
able value in the interpretation of experimental results.

When an exogenous electric field with frequency ν is ap-
plied to a biological cell a redistribution of internal charges
with respect to the field lines takes place, i.e., relaxation.
Models of the causal interaction between AC electric fields
and ions or biomolecules of the cell show that there are dif-
ferent types of relaxation, which define material properties.
In the range of frequencies which is of interest in this study,
the changes in permittivity along the relaxation spectrum are
divided into two main relaxation regions, namely, α and β.
The slow α relaxation is associated with tangential flow of
ions across membrane surfaces (100 Hz to a few kHz) which
causes a surface electrical current. The β relaxation accounts
for the relaxation of large biomolecules and for the accumula-
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tion of electrical charge at cell membrane interfaces due to the
Maxwell-Wagner-Sillars effect (a few kHz to several MHz),
i.e., polarization due to the mismatch of the electrical prop-
erties at the cell membrane-external medium interfaces [2–4].
While ED models of cells under various electric field exci-
tations were explored in [5–8] and more recently considered
in [9–16], there are few, if any, reports of the electric field
anisotropy and electrical conductivity ratio � = σc/σe of the
cytoplasm σc and the extracellular medium (ECM) σe on the
ED force distribution induced by the local transmembrane
potential (TMP).

For present purposes, we start with a brief discussion of
the basic concepts by considering the TMP and constraints
associated with the core-shell geometry of cell and scales
in theory, i.e., a dielectric nanometric membrane surrounded
by conducting cytoplasm and ECM. Here, we consider a
TMP smaller than the critical membrane breakdown voltage
at which electroporation (a distinct problem of the current
analysis) occurs, i.e., 1 V which is usually regarded as a
phenomenological estimate for the electroporation thresh-
old [17–19]. Furthermore, we refer to να and νβ as the
characteristic modes related to membrane surface currents
and Maxwell-Wagner-Sillars polarization, respectively. If we
instead consider that ν > νβ the membrane is permeable to
the electric field lines. Therefore, if � > 1, the cell is more
polarizable than the ECM. The opposite limit, ν < να , occurs
when the cell behaves as a dielectric having low losses (low
conductivity), thus limiting the polarization of the intracel-
lular medium. Since membrane charging occurs very rapidly
compared to the oscillation timescale of the electric field [1,4],
the electric field consequently remains confined in the ECM.
On the contrary, if the cell is less polarizable than the medium,
the electric field will essentially remain confined. The ECM
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becomes more polarizable than the cell. Furthermore, in [9]
the analysis of the excess ED force for a pair of cells and its
counterpart for a single reference cell allows us to determine
a separation distance-orientation angle diagram providing ev-
idence of a separation distance beyond which the electrostatic
interactions between a pair of biological cells become incon-
sequential for the ED.

In this study we seek to improve our theoretical under-
standing of the elastic membrane ED of a reference cell in
close proximity of a neighboring cell under alternating electric
field excitation by exploiting the anisotropic perturbation of
the local electric field distribution. We also seek to unravel the
role of frequency in modulating the attenuation-amplification
transition of ED force which has not been fully considered
in the literature. It is important to explore such possibilities
and possible means to distinguish among these and other
models so we can eventually learn the true nature of ED in
cell assemblies. The Supplemental Material [20] contains the
material properties of actual cells which have been deduced
from consolidated literature data and describes additional
results.

II. NUMERICAL FORMULATION

Based on these motivations and observations, we consider
a pair of cells in close proximity. The resulting setup is
sketched in Fig. 1.

To reduce the computational complexities, we have only
considered two-dimensional (2D) geometries. However, the
models presented in this study can be easily extended to 3D
objects. More specifically, two 2D square shaped configu-
rations are designed (single-cell and two-cell, respectively)
with, respectively, three and five subdomains [9]. The core-
shell model of a biological cell, e.g., Ref. [2], serves as the
basis from which we constructed our model that best aligns
with our purpose. In Fig. 1, the single-cell model represents
the reference cell. In the two-cell model, we consider a pair
of cells suspended in a square domain and in close proximity
(Fig. 1), where h is the dimension along the x and y directions,
respectively. This dimension is found to be sufficiently large
to have nonzero interactions between the periodic images of
the lattice.

Numerical procedures to solve the continuum electrical
and mechanical equations at first require a discretization. A
2D mesh was assembled using the COMSOL 5.5 software [21].
There was a total of 15 659 nodes and 31 256 elements in the
mesh of the single-cell system and 30 576 nodes and 61 090
elements in the mesh of the two-cell system. Simulations are
performed via a cluster computer [262 GB RAM, Intel Xeon
2.2 GHz (48 CPUs) processor]. Our results are based on a
two-stage algorithm solving a set of equations in each domain
of the simulated system, whose first stage is based on the
calculation of the electrical part of the simulation via the fol-
lowing set of equations: ∇ · J = Q, J = σE + 2π ivD, E =
–∇V , and T = εε0 (E × E– 1

2 E2), where J, T, E, D, σ , ε, V,
and Q account, respectively, for the electric current density,
Maxwell stress tensor (MST), electric field, electric displace-
ment, electrical conductivity, permittivity, electric potential,
and total electric current density. The second stage of the
algorithm is the calculation of the mechanical part, based on

FIG. 1. Schematic of a typical square computational domain
filled with the ECM to study the amplitude of the MST at point a′.
The two cells are initially separated by distance r (not to scale). The
orientation angle denoted by θ refers to the angle of the line joining
the cell centers of mass relative to the electric field direction applied
along the y direction. Right and left boundaries are insulated while
the top and bottom walls are prescribed with an applied potential.
Dirichlet boundary conditions at the top and bottom boundaries are
justified as the electric field is applied through discrete electrodes; a
and a′ define the points on the outer and inner layer of the cell mem-
brane allowing us to calculate the TMP at the pole. Surface charge
distributions of ±6.2 × 10–4 C m−2 were added to both surfaces Ain

and Aout in order to account for a resting potential of –70 mV.

the outputs of the previous stage: ∇ · S + F = −ρ(∂2u/∂t2),
S = C · κ, and κ = 1

2 [∇(u)T + (∇u)], where F, S, C, κ, ρ, t ,
and u account, respectively, for external volume force, stress
tensor, compliance tensor, strain tensor, density, time, and
displacement vector. It is worth observing that the acceleration
term ρ(∂2u/∂t2) in the momentum equation can be neglected
since the viscous relaxation time is faster than the changes in
the applied electric field [1].

The cells are subjected to an AC electric field and we
assume that the nonuniformity of this field is modest on the
scale of the cell’s dimension. As we see, physics can de-
pend very strongly on Vm, which is computed by subtracting
the cytoplasm-membrane interface potential (Vm−in ) to the
membrane–extracellular medium interface potential (Vm−out ),
i.e., Vm = Vm−out–Vm−in. Here we are only interested at the
TMP at the pole Vmaa′ for the reference cell displayed in
Fig. 1. Also note that we assume a resting potential Vrest set
to –0.07 V which is constant everywhere on the cell mem-
brane [2,10]. When an external electric field E is applied
to the cell the TMP Vm superimposes to Vrest. Observe that
Vm tends to Vrest when ν is much greater than νβ (Fig. 1).
Let us now introduce what exactly is meant by MST. The
frequency dependent excess MST is defined at point a′ of
Fig. 1 and reads MST(ν)1cell−MST(ν)2cells

MST(ν=10 Hz)1cell
, where subscripts “1cell”

and “2cells,” respectively, correspond to the single-cell and
two-cell configurations.

This system has recently been mathematically modeled [9],
as a step toward the understanding of mechanobiology into
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a quantitative, predictive model of the events linking ED
to electroporation. The most relevant result for us is the
electric field anisotropy which is described by the orien-
tation angle denoted by θ . This parameter refers to the
angle of the line joining the cell centers of mass relative
to the electric field direction applied along the z direction.
The material parameter values for the membrane thick-
ness of the undeformed cell is dm0 = 5 nm, cell radius (in
the undeformed state) R = 5 μm, membrane conductivity
σm = 5 × 10–7 S m–1, membrane permittivity ε0εm = 4.4 ×
10–11 F m–1, cytoplasm conductivity σc = 0.2 S m–1, cyto-
plasm permittivity ε0εc = 7 × 10–10 F m–1, ECM conductivity
σe ranging from 0.013 to 2 S m–1, ECM permittivity ε0εe =
7 × 10–10 F m–1, membrane Young’s modulus Ym = 19 MPa,
and cytoplasm Young’s modulus Yc = 100 Pa [9]. Here the
Poisson ratio of the cytoplasms and membranes are set to 0.4
and 0.49, respectively [11]. The cytoplasm is characterized by
a complex (relative) permittivity εc(ν) = εc + σc/(2π iε0ν)
covered by a confocal membrane characterized by a complex
(relative) permittivity εm(ν) = εm + σm/(2π iε0ν) suspended
in a continuous ECM characterized by a (relative) permittivity
εe(ν) = εe + σe/(2π iε0ν). Here, ε0 is the permittivity of free
space. The two cells are separated by a distance r/R = 0.2,
i.e., a choice which is motivated from our study of separation
distance–orientation angle diagrams; we include a discussion
of the influence of this parameter on the ED force distribution
in the Supplemental Material [20]. The cells are subjected to
an electric field for a given amplitude set to 0.815 kV cm–1.

Five comments are in order. (1) The overall membrane
width is variably reported to be anywhere between 4 and
10 nm due to the numerous types of lipids and proteins.
A value in the range 4–5 nm is most representative of the
membrane shaved off from its outer and inner protrusions.
Furthermore, the bilayer thickness of the membrane is criti-
cal in hydrophobic matching and it has been suggested that
cholesterol is the principal modulator of bilayer thickness in
eukaryotic cells. The standard value used in most numerical
simulations dealing with model membranes exposed to elec-
tric fields is 5 nm in the archival literature [3–4,9–14,19,21]).
(2) In some cases in-plane ordering, especially in highly
and anisotropically curved membrane regions, might suggest
properties that have the potential to affect vesicle shape but
geometrical constructions of the type presented in [22] need
some refinement to be viable under electric field excitation.
(3) When considering a membrane as a 2D object its me-
chanical properties in the absence of anisotropies can be
characterized by the Young’s modulus and the Poisson’s ratio
according to continuum elasticity theory. In the archival liter-
ature, neither Young’s modulus nor Poisson’s ratio have been
determined separately so far (even if the Young’s modulus and
Poisson’s ratio are interrelated by a formula that incorporates
the bending rigidity [23]). The Poisson’s ratio in the gel phase
of a coarse grained lipid membrane model has been found to
be close to 0.5 [24]. The analysis of volume compressibility
of lipid membranes within the framework of linear elasticity
theory for homogeneous thin fluid sheets shows that lipid
membrane deformations are to a very good approximation
volume preserving, with a Poisson ratio that is likely about
3% smaller than the common soft matter limit 0.5 [25].
(4) One of the basic assumptions (limitations) of our study

FIG. 2. (a) TMP at the pole for the reference single cell as a
function of frequency of the electric field. Solid (resp., dotted) lines
correspond to � set to 15 (resp., 0.1); (b) as in (a) for the two-cell
configuration (Fig. S1 [20]). Blue (resp., red) lines correspond to
θ = 0 (resp., θ = π/2).

is to consider linear, homogeneous, and isotropic membranes
and cytoplasms. In point of fact, our next goal will be to
apply these simulation tools to deal with μs and sub-μs elec-
troporation for which the cross-membrane transport and the
local electrical properties are central, and linear mechanical
behavior can be safely assumed due to force amplitudes and
shortness of the considered timescales [26,27]. Within this
perspective, it is known that when the TMP exceeds a certain
value, hydrophilic membrane pores greater than a particular
size become favorable because they provide lower energy
states than the intact lipid bilayer which holds otherwise more
capacitive energy. (5) One should keep in mind that the elec-
trical timescales are several orders of magnitude smaller than
the viscous relaxation time. Thus, based on the decoupling of
the electric and hydrodynamic equations, our algorithm solves
a set of equations within the scope of quasistatic mechanical
equilibrium [28].

III. RESULTS AND DISCUSSION

Our results are discussed from three perspectives. Firstly,
we examine the impact of conductivity ratio � on TMP at the
pole. We display two different choices of �, corresponding to
increasing or decreasing σe and σc is constant. We present our
results in Fig. 2 as a function of frequency for the single-cell
case. For a single-cell configuration, TMP can be expressed as
Vm(ω, t, ψ ) = 3

2
RE0√

1+ω2τ 2 cos(ψ )cos[ωt− arctan(ωτ )], where
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E0, ψ and τ , respectively, account for the magnitude of the
exogenous field, the angle between the electric field direction
and position on the membrane contour, and the membrane
charging time defined as τ = RCm( 1

σc
+ 1

2σe
), Cm denoting the

membrane capacitance [28]. In Fig. 2, we display the location
of να and νβ by arrows with corresponding relaxation times
τα ∼ 1 ms and τβ ∼ 0.1 μs, respectively. The top panel of
Fig. 2 depicts the strong decrease in TMP for a single cell,
as the frequency is increased from kHz to several MHz, in
accordance with earlier results [1,29]. We observe a blueshift
of Vm at the β-dispersion frequency when the conductivity
of the ECM is increased. This is due to the fact that if the
intracellular medium is more conductive than the ECM, the
cell is more polarizable than the medium. Complementary
results (not shown) indicate a blueshift of the α-dispersion
frequency in the graph of Vm as the membrane conductivity
is increased. This observation is consistent with a higher tan-
gential mobility of ions on the membrane surface decreasing
the associated characteristic dispersion timescale and shift-
ing the value of να toward higher frequency value [1]. The
bottom panel of Fig. 2 displays the TMP corresponding to
the two-cell case. Asymmetry is always important at low
frequencies, ν < να , since Fig. 2 shows a 24% increase (resp.,
27% decrease) in the magnitude of Vm when the two cells are
aligned (resp., perpendicular) with the electric field direction
in accordance with the fact that the membrane represents a
barrier limiting the polarization of the intracellular medium at
low frequencies [4]. However, evidence suggests that at higher
frequencies, ν > νβ , Vm changes abruptly with a noticeable
blueshift of the displacement of the Vm decay for a large
conductivity ratio. Overall, these results show the extreme
sensitivity of proximity-induced capacitive coupling arising
concomitantly when the magnitude of the ED force increases
as the distance between cells is decreased (see Supplemental
Material [20]) and the spatial anisotropy becomes important.

Secondly, because TMP is only a single parameter, it is
likely that the true richness of ED can be fully appreciated by
considering the MST driving cytoplasmic remodeling under
electric field excitation. An exciting result bearing on this
issue is the frequency-sensitive modulation of the ED force
induced by the local TMP: At low frequencies, ν < να Fig. 3
shows that there is a 47% decrease (resp., 53% increase) in
the magnitude of FED when the two cells are aligned (resp.,
perpendicular) with the electric field direction while at high
frequencies, ν > νβ , the ED force profile shifts to progres-
sively higher frequencies as � is decreased.

Upon further inspection, our results quantitatively confirm
the quadratic variation of the MST as a function of Vm (not
shown) and its dependence on variations in proximity factor
r/R as reported in the Supplemental Material [20]. Addition-
ally, our work also indicates that the elastic fields emanating
from the Maxwell stress tensor are highly localized (Fig. 4).

Upon application of an electric field energy redistributes
to maintain consistent boundary conditions through a per-
turbation of line fields for the single-cell and two-cell
configurations. Notice that Fig. 4 reinforces the trend shown
in Figs. 2 and 3 indicating that the frequency of the applied
electric field controls the modulation of electrical cues and
ED force. Comparing these results for the single-cell config-
uration at two values of � and fixed frequency [Fig. 4(a)]

FIG. 3. (a) MST at the pole for the reference single cell as a
function of frequency of the electric field. Solid (resp., dotted) lines
correspond to � set to 15 (resp., 0.1); (b) as in (a) for the two-cell
configuration (Fig. S1 [20]). Blue (resp., red) lines correspond to
θ = 0 (resp., θ = π/2).

with the evolution of the aspect ratio (defined as the ratio
of semimajor axis b to semiminor axis a of the ellipsoid)
of the cell deformation induced by the electric field as a
function of frequency [left panel of Fig. 4(b)] indicates that
shape anisotropy has a much weaker influence on ED of the
cell membrane compared to the anisotropy induced by the
orientation angle itself. Notice that the decrease of the aspect
ratio beyond the α-dispersion frequency is consistent with the
slight reduction in the intensity of the MST shown in Fig. 2
resulting in a decrease of the deformation. Furthermore, one
sees explicitly in the left panel of Fig. 4(b) a minimum of the
aspect ratio as the field frequency approaches the β-dispersion
frequency when �< 1. This is due to the frequency dependent
sign inversion of the local net electric field imbalance across
the membrane (which is the main driver behind the reduction
of its local absolute value and thereby of the local intensity
of the MST), occurring for a more polarizable ECM than the
cytoplasm. We observe in the right panel of Fig. 4(b) how the
deformation of the reference cell for a two-cell configuration
and anisotropy impacts electromechanical coupling compared
to the single-case configuration. Interestingly, the two cases
(θ = π/2 and � = 0.1; θ = 0 and � = 15) considered in
Fig. 4(b) suggest that sensitive tuning of the mutual attraction
between cells can be achieved at particular orientations of the
cells to the field direction, with varying both � and frequency.

It is also informative to discuss our results with those
dealing with the ED of a single (quasispherical in the unde-
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FIG. 4. (a) Effect of increasing the rotation angle θ on the local
distribution of the cell displacement arising from ED forces for the
single-cell and two-cell configurations. The electric field is vertically
oriented and frequency is fixed to 10 MHz. White arrows represent
the direction of the local displacement field and the color bar shows
the total displacement. (b) Evolution of the deformation induced by
the electric field in terms of the aspect ratio b/a (defined as the ratio of
semimajor axis b to semiminor axis a of the ellipsoid) as a function of
frequency of the electric field. The solid and dotted lines correspond
to � = 15 and � = 0.1, respectively, while the red and blue curves
correspond to values of θ set to π /2 and 0, respectively. Black arrows
are guides to the eye for the curves associated with different values
of θ .

formed state) giant unilamellar vesicle in AC electric fields;
see, e.g., Refs. [1,16]. One main difference between the two
studies is that the inner media (cytoplasm) is described via
the continuum elasticity theory rather than fluid mechanics.
Despite such difference, we see similar trends of the ellip-
soidal deformation in uniform alternating electric field as a
function of the frequency due to the decoupling of the electric
and hydrodynamic modeling. Varying the ECM conductivity
can induce morphological deformations, i.e., prolate-oblate
transitions as a function of � and frequency which closely
resemble those displayed in Fig. 4(b). Since the cytoplasm’s
mechanical behavior is described by an elastic modulus which
is five orders of magnitude lower than that of the membrane,
and because the membrane thickness is three orders of mag-
nitude smaller compared to the cell’s radius, increasing Yc

by one order of magnitude induces an increase of the effec-
tive modulus of the core(cytoplasm)-shell(membrane) system
(and consequently, its resistance to deformation) thereby pro-
ducing a significant impact on the amplitude of deformation
induced by the electric field leading to a reduction of the
aspect ratio and the amplitude of the total displacement by
two orders of magnitude (see Supplemental Material [20]).

FIG. 5. Characterizing the anisotropy of the attenuation-
amplification transition of the excess MST taken at the pole of the
reference cell as a function of frequency of the electric field for
values of � ranging from 0.1 (bottom) to 15 (top). The color bar
represents the excess MST at the pole of the reference cell in percent.
The blue and red regions correspond, respectively, to attenuating and
amplifying proximity effect induced by the presence of the neigh-
boring cell. A cubic spline interpolation algorithm in the PYTHON

programming language was used to plot the diagram. The simula-
tion data on the y axis correspond to values of θ = i(π/10), with
i = 0, . . . , 5 and data on the x axis were logarithmically sampled at
a rate of eight points per decade.

Our results are also in accordance with the analytical calcu-
lations reported by Ye [30] showing that a vesicle under DC
electric field excitation (2 kV cm–1) exhibits similar trends in
prolate-oblate deformation transitions, and where decreasing
membrane conductivity of a few orders of magnitude can
result in oblate geometries when the ECM is more conductive
than the cytoplasm.

Thirdly, to investigate the implication of the anisotropy
induced by the orientation angle on the MST distribution we
present the evolution of the frequency dependent attenuation-
amplification transition of the excess MST taken at the pole of
the reference cell (point a′ in Fig. 1) in Fig. 5.

Such frequency-orientation angle diagram allows us to de-
termine the attenuation-amplification transition of the MST at
a given value of the proximity factor r/R. As was shown in [9],
lower (resp., larger) values of θ tend to favor attenuation
(resp., amplification) of the excess MST for a pair of cells
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compared to the MST for a single cell in the low frequency
(ν < να ) regime. Frequency has a significant impact on the
transitional behavior for a large value of the conductivity ratio
� suggesting that shape anisotropy has an even weaker influ-
ence on ED of the cell membrane compared to the anisotropy
induced by the orientation angle when considering intracellu-
lar conditions of greater electrical polarizability than those of
the ECM. When we dial the angle θ toward a critical value
from either side of the frequency-orientation angle diagram
the behavior of the attenuation-amplification transition of ED
force diverges. This latter property makes the ED force the
most interesting parameter for applications as it allows con-
finement and manipulation of cells using alternating electric
fields.

IV. CONCLUSION AND OUTLOOK

To summarize, the calculations reported here are intended
to show that a simple continuum model of cells suspended in a
fluid medium can generate sizable contributions to local MST
distribution. The key point to take away from this study is that
the modulation of electrical cues and MST by the frequency
(from hundreds of kHz to tens of MHz) of the applied electric
field provides an extremely rich tool kit for manipulating cells.
Our model provides evidence that shape anisotropy has a
much weaker influence on ED of the cell membrane compared
to the anisotropy induced by the orientation angle itself. The
behaviors of the attenuation-amplification transition of MST
in a frequency–orientation angle diagram could not have been
anticipated without detailed calculation. Measuring physical
and in particular biomechanical properties at a single-cell-
scale level is a difficult and often challenging task [31]. Our
results provide several testable hypotheses of how membrane
polarization functions in a variety of cellular shapes involving
ED. At least in principle, the above-mentioned differences in

MST distribution illustrated in Fig. 3 might be exploited to
create mechanical-based targeting strategies for discriminat-
ing between tumor and healthy cells, since the former are
about 70% softer than the latter [32].

The question of how mechanotransduction events involv-
ing the cell nucleus, cytoskeleton, elastic membrane, and
cytosol act on the ED cell behavior remains substantially
an open issue, i.e., conversion of ED force into biochemi-
cal signals [33]. Controlling frequency and polarization of
electromagnetic waves is key for a full manipulation of cell in-
teractions. This dynamical study offers the hope of a complete
and accurate method to describe the mechanical force field
in multicellular structures induced by an electric stimulation.
Ultimately, it is experiments that will hopefully shed light on
the precise nature of the cell membrane ED and bioelectric
cues. The latter are expected to find important applications
in structures on several scales (from single cells to tissues),
and provide a quantitative assessment of the role of elastic
interactions among a set of cells on their effective electric
field induced mechanical behavior. While we limit our study
to a pair of cells we anticipate that the work will open a
window into the emergent mechanobiology techniques for
confinement, manipulation, and actuation of biological mate-
rials using electric fields [34].

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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