N

N

From moments to sparse representations, an algebraic,
geometric and algorithmic viewpoint

Bernard Mourrain

» To cite this version:

Bernard Mourrain. From moments to sparse representations, an algebraic, geometric and algorithmic
viewpoint. Ecole thématique. France. 2019. hal-04193946

HAL Id: hal-04193946
https://hal.science/hal-04193946

Submitted on 1 Sep 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04193946
https://hal.archives-ouvertes.fr

From moments to sparse representations, an
algebraic, geometric and algorithmic viewpoint

Bernard Mourrain

January 29, 2019

Contents

Contents

1

2

Sparse representations from moments

1.1 Prony’s method inonevariables . ... ......................
1.2 Symmetric tensor decomposition . . ... ... ... ...
1.3 Multilinear tensor decomposition . . ... ..... ... ...,
1.4 Simultaneous decomposition . . . .. ... ... ... ...
1.5 Sparseinterpolation . . . .. .. ...ttt e e

Duality

2.1 SequenCes . . . . . . . i e e e e e e e e e e e e
2.2 Taylor Series . . . . v v v i it e e e e e e e e e
2.3 Dualseries . ... ... e e
2.4 INVEISE SYSLEIMS . « v v v v v o vt e e e e e e e e e e e e e e e e e e e



2 CONTENTS
3 Artinian algebra 23
3.1 Univariate polynomials . .. .. .. ... ... ... .. ..., 23
3.2 Algebraic structure . . . . . . . . . v ittt e e e e 25
3.3 Roots from the algebraic structure . . . . ... .. ... ... ... . ... ... 26
3.4 The dual of an Artinian algebra . ... ... ... ... ... .. ... ..... 27
3.5 Roots from the dual structure . .. ........... ... ...... 30
4 Decomposition from moments 43
4.1 Hankel operators . . . . . .. ... i vttt e 43
4.2 Artinian Gorenstein Algebra . ... ... ... ... .. ... .. . .. ... 46
4.3 Hankel operators of finiterank . . . ... ... ..... ... ... ...... 48
4.4 Decompositionof series . . . . . . . . .. .. e 52
4.5 Decomposition algorithm . .. ... ... ... ... .. .. ... .. ... ... 56
4.6 Border basis, orthogonal polynomials. . . ... ................. 60
4.7 Structured low rank decomposition of Hankel operators . . ......... 65
4.8 Real positive Series . . . . . . .ottt e e e e e e e 67
5 Applications 69
5.1 Sparse decomposition from generating series . . . .. ... ... ... .... 69
5.2 Convolutionof finiterank . . . .. .... .. ... ... ... .. .. ... ... 71
5.3 Dirac measures from Fourier coefficients . . . . .. ... ... ......... 75
5.4 Polynomial-exponential sums fromvalues . . . ................. 77
5.5 Sparseinterpolation . . ... ... ... ... 80

Bibliography 83



Chapter 1

Sparse representations from
moments

1.1 Prony’s method inonevariables . ... ...................... 3
1.2 Symmetric tensor decomposition . ... ...... ... ... .. ..., 5
1.3 Multilinear tensor decomposition . . ... ..... ... ... ..., 9
1.4 Simultaneous decomposition . . . .. ... .. ... 11
1.5 Sparseinterpolation . . . .. .. ...t e e e 12

1.1 Prony’s method in one variables

One of the first work in this area is probably due to Gaspard-Clair-Francois-Marie Riche
de Prony, mathematician and engineer of the Ecole Nationale des Ponts et Chaussées. He
was working on Hydraulics. To analyze the expansion of various gases, he proposed in
[dP95] a method to fit a sum of exponentials at equally spaced data points in order to
extend the model at intermediate points. More precisely, he was studying the following
problem:

Given a function h € C°°(R) of the form

xe]R'—>h(x)=Z w,; e eC (1.1)
i=1

where fi,...,f, € C are pairwise distinct, w; € C \ {0}, the problem consists in
recovering

* the distinct frequencies fi,..., f, € C,
* the coefficients w; € C\ {0},

Here is an example of such a signal, which is the superposition of several “oscillations”
with different frequencies.
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The approach proposed by G. de Prony can be reformulated into a truncated series re-
construction problem. By choosing an arithmetic progression of points in R, for instance
the integers N, we can associate to h, the generating series:

0,()= Y h@) X € CllyT]

aeN

where C[[y]] is the ring of formal power series in the variable y. If h is of the form
(1.1), then

on(y) = Z Z O)ig?% =D wet (1.2)
ti=l

i=1 aeN
where &; = e/i. Prony’s method consists in reconstructing the decomposition (1.2) from
a small number of coefficients h(a) for a =0,...,2r — 1. It performs as follows:

* From the values h(a) for a € [0,...,2r — 1], compute the polynomial

r r—1
p) =] Jx—g)=x"=>p;x,
i=1 Jj=0

which roots are £, = efi, i = 1,...,r as follows. Since it satisfies the recurrence
relations

r—1 r
Vielo,....,r=1], > 0pi—05, =— ) w&p(§)=0,
i=0 i=1

it is the unique solution of the system:

O-O O-l oo O-r_l pO O-T
(o D1 Or1
: = : . (1.3)

Or1 e Oar-2 Dr— O2r—1
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* Compute the roots &4,...,&, of the polynomial p(x).

* To determine the weight coefficients w, ..., w,, solve the following linear (Vander-
monde) system:

11 1 w, h,
&1 & Er Wa | hy
5;_1 ;_1 cee 5:_1 W, hr—l

This approach can be improved by computing the roots &4, ..., ¢&,, directly as the gener-
alized eigenvalues of a pencil of Hankel matrices. Namely, Equation (1.3) implies that

O-r_]_ “oe O-zr_z 1 pr_l O-r cee Gzr_l

1.4
so that the generalized eigenvalues of the pencil (H;, H,) are the eigenvalues of the com-
panion matrix M, of p(x), that is, its the roots £, ..., &,. This variant of Prony’s method
is also called the pencil method in the literature.

For numerical improvement purposes, one can also chose an arithmetic progression
anda €[0,...,2r—1], with T € R* of the same order of magnitude as the frequencies

~|a

f;. The roots of the polynomial p are then &; = e%

1.2 Symmetric tensor decomposition

Symmetric tensors of order d of a vector space V of dimension n + 1 over a field K
are the elements of the symmetric product S‘(V). Once we have chosen a basis of V,
these elements can be identified with homogeneous polynomials of degree d in n + 1
variables x,, x1,...,x,. Let S = K[xg,Xx;,...,X,] = K[x] be the ring of polynomials
in these variables. The set of symmetric tensors of degree d € N is the vector space
S; of homogenous polynomials of degree d. An element ¢y € S; is of the form ¢ =
Zlal e ( )x* where a = (ay,...,a,) € N**! X% = Xg0 e X0, (i) = for |a| =

ot t+a,=d.

The tensor decomposition problem is the following:

aol al

Problem 1.2.1 (Symmetric tensor decomposition)
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Given a homogeneous polynomial R
—_ d\_.
v@ = 0u(5)z
|at|=d
of degree d in the variables x = (x,, x4, ..., X,), find a decomposition of 1 of the
form .
PY(x) = Z wi(Eioxg+ & X+ + gi,nxn)d
i=1

where &, =(&,0,&i1,---,&:4), 1 =1,...,r span distinct lines in K and w; €K.

L ; ; ; J

The minimal r in such a decomposition is called the rank of 1.
. . . . —n+l .
In the decomposition, the vectors &; span distinct lines in K, which means that
' . R | .
they define distinct points in ]P’(Kn ). In particular, they are non-zero vectors.

Example 1.2.2 Consider a quadratic form q(x) = 20<i,j<n q;;x;x; € R[x], with q;; =

q; ;- Using a classical reduction of quadratic forms into weighted sums of squares (e.g. ax?*+
_ b b2 . .

2bxy +cy?*=alx+ 2y)*+(c—=)y* if a # 0), q can be written as

QX)) =D (& oxo+ -+ &k,
i=1

with w; € Kand &; = (§;,...,&;,) are distinct in P". The minimal number of terms in
this decomposition is known to be the rank of q, or equivalently, the rank of the symmetric

matrix Q = (q; ;).

1.2.1 Sylvester method

In [Syl51], J.J. Sylvester proposed a method to decompose a binary form, that is, a ho-
mogeneous polynomial in two variables as a sum of powers of linear forms. This method
is based on the following theorem.

Theorem 1.2.3 The binary form (x,,x;) = Z?:o o($)xd=x! can be decomposed as a
sum of r distinct powers of linear forms

Y= Z wi(axo + Brxy)!
k=1
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iff there exists a polynomial p(xg, x,) 1= poX} + p1x} 'x; + -+ p.x] s.t.

oy O; ... o, Do
01 Ort1 P1
) . | =0
Od—r -+ Og1 0y Dr

and of the form p = ¢ [ [_,(Brxo — axxy) with (ay, B) € K*\ {0} pairewise distinct
directions.

Proof. If ¢y =3 wi(oxe+fix;)  then oy =2, wral ' and for j=0,...,d—r

d—i—j pitj o
Z OirjPi = ZZ WP Ay Jﬁk+J = Z wkai ﬁ]ip(ak; B)=0
i=0 k=1

i=0 k=1

Conversely, assume that p = poxg + P1XS_1X1 +oedpxl = n£:1(ﬁkx0 — agx;) with
I_j = [p(): oo ’pr] € kerHi—r,r where

Og (O8] O,
_ 0, Ori1
Hd nro_
[0}
Ud—r e O-d—l O-d

By a generic change of coordinates in (x,, x;), we can assume that p, # 0.
As the directions (ay, ;) are pairwise distinct, there exists w1, ..., w, such that

opd 0pd
alﬂl arﬂr Wy Oo

d. d.
a1/5§) arﬂg W, 0,1

As p € kerH,,, we deduce that

r—1
p:o, = _z :pio-i
i=0
r

r—1 r r—1
— d—ipi _ d—ipi
= —Zzpiwkak ﬁk——zwkzpi% P
i=0 k=1 k=1 i=0
r

)
= —> w(plaw, B)—p.alTB) =p, > wal B
k=1 k=1

and p, # 0 implies that o, = Z;zl wkai_rﬁlz. By induction on j, using the relations

r—1 o .
PrOyj = _Zi:o Pi0.j, we prove similarly that
r
_ d—r—j pr+j
Ur+j - WAy /3](

k=1
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for j=0,...,d —r. This implies that ¢ = Z,z:l wi(agxy + Brxy). |

1.2.2 Apolarity
Definition 1.2.4 (Apolar product) For f =Y., f. ()% g =Y,y & ($)x* € K[X],,

Gogda= 2 fota()

lal=d

Proposition 1.2.5 (f,(Eyxo+- -+ &%) = f(&o, ..., &)

Given an homogeneous polynomial 1) € S;, we can define an element v* of the dual
space S;* = Homg(S;, K) as follows

Y :S; —K
p = {,p)a

By Proposition 1.2.5, (§yxo +-+-+ &,x,)? is the evaluation

ez Sy —K
p '_’P(go;---,gn)

Since the map ¢ € S; — Y* € S;” is linear, the tensor decomposition problem can be
reformulated as follows:

Problem 1.2.6 (Dual symmetric tensor decomposition)

Given Y* € S, find a decomposition of ¢ of the form R
I/J* = Z W; e,
i=1
L for & = (& 0,&i1,---> &) distinet in PR, w; €K. )

1.2.3 Secants of Veronese variety

Let us give here a geometric view on this decomposition problem.

. * . —n+l . . .
The evaluation ¢; € S;” at a point & € K is represented in the dual basis of the

monomial basis by the vector (£%),,—4 obtained by evaluation at £ of the monomials

- : . —n+1
x* which form a basis of S;. The set of these vectors for non-zero vectors £ € K

form a projective variety called the Veronese variety and denoted hereafter #'. This
projective variety is defined by the equations x,x5 — x,xs = O for a,a’, 8, " € N**!,
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Figure 1.1: A (green) point on the 3™ gecant of “1/31 C P3, which is on the (blue) plane
spanned by 3 (orange) points of the (red) curve “1/31.

la| =Bl =la'| =|B| =d and a+p = a’+ ', where (x,),,q are the variables associated
to the dual basis of the monomial basis. These equations are 2 x 2 minors of Hankel
matrices (see Section 4.1), defining Hankel operators of rank 1.

The dual Y* of a tensor, which decomposes as * = Zir:l w;eg, corresponds to a point
in P(S,"), which is in the linear span of the evaluations [¢; ] € ¥}, i =1,...,7. Let

SV =Y 1eP(Sy") [ = Z w;e; with [e;] € V', w; € K}

i=1
be the set of points in the linear span of r distinct points of ¥'. The closure S.(¥]') =
So(¥7) is called the r'-secant of ¥]".

1.3 Multilinear tensor decomposition

A multilinear tensor 7 is an element of a space E; ® --- ® E,, where E; are K vector
p 1 m 1

spaces of dimension n; + 1. Fixing bases of E;, T is represented by a multi-index array

(Ti,,..0 Josijen, € KDt = Equivalently, T can be represented by a multilinear

.....

polynomial
T(X], . X)) = E: Gyt X1y " Xy,

0<ll <nl

in the variables X; = (x;0,...,X;,), j = 1,...,m. Let S be the vector space of

multilinear polynomials in the variables x,, ..., x,, with coefficients in K.

Problem 1.3.1 (Multilinear tensor decomposition)

Given a multilinear tensor
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. : —n;+1 ; —n,+1
find vectors £, € K" 7,...,& € K" such that

r m
T® oo Xm) = )| [E a0+ +EL, x;0)

i=1 j=1

This decomposition means that 7 is the sum of the tensor products of the vectors 5;
inE1®"'®Em:

.
T:Zgllg,...@g;n_
i=1

The minimal number of terms in such a decomposition is called the rank of t.

Notice that we don’t put a weight w; in front of each term & 11 ®---®& ;n since it can
be integrated in the term by scaling one of the vectors & by w;. However, in some cases,
for instance when the vectors &; are normalized, we will introduce these weights in the
decomposition: 7= w;E{®---@&! .

1.3.1 Apolarity

Similarly to symmetric tensors, an apolar product can be defined on multilinear tensors
as follows.

.. _ ’_ /
Definition 1.3.2 Forall T = Yo, < Ty i X1y Xmiins T = Dosien, T,

(t,7") = Z Tip ingl ,,,,, i

0<i<n,

.....

Proposition 1.3.3 For 7 € Sf’l_:'l’”l, &= (gj’o, e, Ej’nj) S Knj+1forj =1,...,m,

(T: l_[(gj,oxj,o +--t gj,mxj,m ) = T(gl: R gm)
j=1

1.3.2 Dual tensor decomposition

For a tensor ¢ = &, ® --- ® &,, of rank 1 or equivalently a multilinear polynomial ¢ =

[T (Ej0%j0++ + &) m¥X;m), and any f € §}*}"" we have

<1/J)f) :f(gla"'zgm)

.....

where £ = (&,,...,§&,,) € Kt
Using this duality, we can reformulation the decomposition problem as follows:
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* . o \
Given y* € (S;>7;"™)’, find a decomposition of 1* of the form
r
Y= Z Wik,
=]
for distinct directions &, e K™ and w, €K \ {0}.
1 A )

1.3.3 Secant of Segre variety

The set of tensors Y = &, ® ---® &, # 0 of rank 1 is an algebraic variety of P+~
called the Segre variety. We denote it by &
Decomposing a multilinear tensor T as

.
T=Zwi€§®---®€in
i=1

means we write T as an point of the linear span of r points §' =&} ® ---® ] € M,

1.4 Simultaneous decomposition

The problem of simultaneous decomposition of a set of tensors consists in finding com-
mon points, such that all the tensors can be decomposed in terms of these points. We
illustrate it here for symmetric tensors.

Problem 1.4.1 (Simultaneous symmetric tensor decomposition)

(.. . : .
Given symmetric tensors ', ...,%,, of order d,,...,d,,, find a simultaneous de-
composition of the form

,

d

Y= Z w1 (Ei0%0 +Eiaxy +-0 0+ & px,)7
i=1

. L. . . —n+l =
where £, =(&,,,..-,&;,) span distinct lines in K and w;€Kforl=1,...,m.

1.4.1 Binary forms

A method similar to Sylvester method can be applied for the simultaneous decomposition
of binary forms, based on the following proposition (similar to Theorem 1.2.3).
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Proposition 1.4.2 Let y; = Z?l:o o} i(‘?)xgl_ixi € K[xg, x1]g for L=1,...,m.
If there exists a polynomial p(x,X,) 1= pox{, + pyx ' Xy + -+ + p,x] such that

O10 O11 e O1,r
011 O1,r+1
Po
O1d—r -+ O14-1 914 D
. . 1
) =0
Gm,O Gm,l cee O-m,r p
-
Gm,l O-r+1
B O-m,dm—r cee o-m,dm—l O-m,dm .

and of the form p = ¢ [ [,_,(Bixo — ayx;) with (ay, i) € K? pairewise distinct directions,
then

.
Y= Z wi(agxq + ;)
i=1
for w; €eKandl=1,...,m.

Proof. We use the same proof as for Theorem 1.2.3 applied to the Hankel block associ-
atedto o; (fori=1,...,m).

O
1.5 Sparse interpolation
Given a black-box polynomial function f (x) b
Input — EINHQ:ID @ — Output
find r €N, w; € C,a; € N" such that f(x) =2 _, w;x%.
L _ J

Example 1.5.1 Consider the polynomial f(x;,x,) = x>*x)* —5x;x2° + 101.

Let us choose (p, = e, p, = e'0. We evaluate f at the points (¢, o8 fork=0,...,d
and get the sequence

o, = Fef, 05) = (92012 —5(p192°) + 101 = £ — 585 + 101&F,
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2n 2
where &, = @3 2 = eV, £, = 2> = €710, £5 = 1. We compute a non-zero element
[PosP1s---»> P, ] in the kernel of the matrix

o, O, o,
01 Ori1

H, = .
O4— .- Og4q (O

or r = 3 and d > 5. The roots of the polynomial p(x) := py + p;x + -+ + p,x" are
f f the poly p Po + D1 p:

&1,8,,&5 € C. Computing m; = —i% log(&;), we get

m, = 47=3x334+7x12—100x 7
m, = 78=3x1+7x25—100x1
m3 =0

Decomposing m; = 3 a;+5 b; +100c¢; modulo 3 x 7 x 100 = 2100, we recover the exponents
of the terms of f: (33,12), (1,25), (0,0).
The coefficients w; are recovered by solving the system

1 1 1 W, o
&1 &y &3 wy; | =] 0,
g &2 &2 w3 o

The solution of this system yields (w-, w,, w3) = (1,—5,101).
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In this chapter, we consider polynomials and series with coefficients in a field K of
characteristic 0. In the applications, we are going to take K = C or K=R.

We are going to use the following notation: K[x,...,x,] = K[x] =R is the ring of
polynomials in the variable x,...,x, with coefficients in the field K, K[[y;,...,Y,]] =
K[[y]] is the ring of formal power series in the variables y,...,y, with coefficients in

K.

The dual of the ring of polynomials is

K[x]" = {0 : K[x] — K linear} = Homy (K[ x ], K).

Given o € K[x]", p € K[x], we denote by (o | p) the value of o applied to p. The
elements in K[x ]" will also be called linear functionals on K[x ].
For any o € K[x]", the inner product associated to o on K[x ] is defined as follows:

Kx]xK[x] —» K
(p,q) = (p,q)s:={(clpq).

The dual space K[x]" has a natural structure of K[x ]-module, defined as follows:
Vo € K[x],Vp,q € K[x],

(pxolq) = (olpq).

The operator o € K[x]" — pxo € K[x]" is, by definition, the transpose or adjoint of the
multiplication by p: g € K[x]— pq € K[x].

15
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We check that Vo € K[[y]],Vp,q € K[x], (pq) o =p x(q x o). See e.g. [Ems7/8],
[EMO7a] for more details.

2.1 Sequences

To describe a linear functional o € K[x ], it is enough to know it on a basis of K[x]. A
natural basis is the monomial basis (x*),en»- The linear functional o is uniquely defined
by the sequence

((G | xa>)a€Nn'

The values o, := (o | x?) for a € N" are called the moments of o.
Given a polynomial p = >, _, p,x* € K[x] with A c N" finite, the value of o applied
to p is by linearity

(0 1p) = pu0

This allows us to identify K[x]* with the vector space of multi-index sequences K" via
the isomorphism:

i, :K[x]" - KY (2.1)

o = (o [x*))gen

More generally, choosing a point { € K" and monomials ((x —{)*)en» @s a basis of K[x ],
we define the isomorphism i, : 0 € K[x]" = ({0 | (x = {)*))genn-

The structure of K[x ]-module of K[x]" in this representation is given by shift oper-
ators. Let & : (0 )yern € KY = (0, 14)aenn € KV be the shift operator by e;, where
(e;)i=1,..n is the canonical basis of N". Then, we have

x;x0 = (0| ;%)) genn = ({0 | X7 )y = Fi(0).
More generally, for p e K[x ], px 0 = p(H#,..., Z)(0).

For p = Zﬁ ppx? e K[x]and 0 = ) aai;—(: € K[[y]], the series expansion of
p*0ispx0 =(pPg)gens With Ya € N7,

Pa= Zpﬂ0a+/5-
B

Identifying K[x ] with the set £,(K"") of sequences p = (p,)ex- Of finite support (i.e. a
finite number of non-zero terms), we see that p = o is the cross-correlation sequence of p
and o.
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2.2 Taylor series

Assume here that char K = 0. Elements in K[x]" can also be represented by formal
power series, using following the natural isomorphism between the ring of formal power
series and the dual of K[x ]:

K[[ylz-..:yn]]XK[XI)'--:xn] - K
a! ifa=p

a p a B\ —
(y%x") —» (y*[x >_{0 otherwise.

Namely, if o € Homg(K[x ],K) = R* is an element of the dual of K[x ], it can be repre-
sented by the series:

o K[x]" — K[[yl] (2.2)

oY’
o = o)==,
al
aeN"
so that we have (o(y)[x®) = o(x®). The map 0 €R* — | _\ o(xa)’;—o; € K[[y]]is an
oL e K[[y]] can be interpreted as a linear

aeN™ ~ a q!

p= D px“€Klx]—(o|p)= D, p.o.

aEACNM acACN"

isomorphism and any series o(y) =D,
form

Any linear form o € R* is uniquely defined by its coefficients o, = (o | x*) for a € N",
which are called the moments of o.

From now on, we identify the dual R* = Homy(K[x ], K) with K[[y]]. Using this
identification, the dual basis of the monomial basis (x*) e iS (’;—T -

If K is a subfield of a field I, we have the embedding K[[y ]] — L[[y]], which allows
to identify an element of K[x |* with an element ofa]L[x]*. .

The truncation of an element 0(y) = >} e Oor € K[[y1]indegreed is D,y Our-

It is denoted o (y) + @(y)¢*}, that is, the class of o modulo the ideal (y,...,y,)¢" C

ININANE

The structure K[x ]-module of K[x]" is given as follows.

Lemma 2.2.1 Vp € K[x],Vo € K[[y]], p(x)»o(y) =p(3,,,...,0, )(o).

Proof. We first prove the relation for p = x; (i € [1,n]) and 0 = y* (a € N"). Let
e; =(0,...,0,1,0,...,0) be the exponent vector of x;. Y € N" and Vi € [1,n], we have

(x; *y*|xP) = (y*|lx;xP)= a! if a=p+e and O otherwise
= ai()’a_ei|xﬂ>-

with the convention that y*™% = 0 if a; = 0. This shows that x; *y* = o,y = 9, (¥).
By transitivity and bilinearity of the product x, we deduce that Vp € K[x],Vo € K[[y]],
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p(x)xo(y)=p(3,,,...,8,)(). g

This property can be useful to analyze the solution of partial differential equations.
Letp,(0,,...,0, ),...,0s(d,,...,0, ) €EK[,,...,0,] be a set of partial differential poly-
nomials with constant coefficients € K. The set of solutions o € K[[y]] of the system

p1(3,,...,8,)(0)=0,...,p,(8,,...,8, )(0) =0

is in correspondence with the elements o € (p,, ..., p,)*, which satisfy p;,xo =0 for i =
1,...,s (see Theorem 3.4.4). The variety ¥(p;,...,p,) C K’ is called the characteristic
variety and I = (pq,...,p,) the characteristic ideal of the system of partial differential
equations.

2.2.1 Polynomial-Exponential series

Among the elements of K[x]" = K[[y]], we have the evaluations at points of K":
Definition 2.2.2 The evaluation at a point § = (&4,...,&§,) € K" is:

e 1 K[xy,...x,] —» K
p(x) — p(&)

It corresponds to the series:

— AN N )
a Y nYn B4
e:(y) E:i il e'> ¥,

aeN"

Using this formalism, the series o(y) = Zir:1 w;ez (¥) with w; € K can be interpreted
as a linear combination of evaluations at the points &; with coefficients w; € K, for
i =1,...,r. These series belong to the more general family of polynomial-exponential

series, that we define now.

Definition 2.2.3 Let

PoléExp(yr,--.,¥a) = {0 = > w0¥)e; () €KY & €K w,(y) € K[y]}

i=1

be the set of polynomial-exponential series. The polynomials w;(y) are called the weights of
o and &; the frequencies.

Notice that the product of y*e¢.(y) with a monomial xP e C[x,,...x,] is given by

a B _ /3'
Ve ) = FE e

= Ootherwise.

T =0m 00 (xP)(E)ifa; < Pifori=1,...,n(2.3)
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Therefore an element o = 22:1 wi(¥)eg,(¥) of Zol&xp(y) can also be seen as a sum
of polynomial differential operators w;(d) “at” the points &;, that we call infinitesimal

operators: Vp € K[x1],{olp) =2, w:(3)(P)(&).

Lemma 2.2.4 Theseries y*ie: (y)fori=1,...,randj=1,...u;witha,,,...,a;, €N"
and &; € K" pairwise distinct are linearly independent.

Proof. Suppose that there exist w;; € K such that o(y) =Y., _, “l w; ¥y e (¥) =

and let w,;(y) = J Ly Then VpeK[x],pxo=0= Z 1p(i + 0, )(w;)ee, (y)
If the weights w;(y) € K are of degree 0, by choosing for p an 1nterpolat10n polynomial
at one of the distinct points &;, we deduce that w; = 0 fori = 1,...,r. If the weights
w;(y) € K are degree = 1, by choosing p = [(x) —[(&;) € K[x] for a separating polyno-
mial [ of degree 1 (I(&;) # I(&;) if i # j), we can reduce to a case where at least one of
the non-zero weights has one degree less. By induction on the degree, we deduce that
w;(y) =0fori=1,...,r. This proves the linear independency of the series y“e; (y)

forany a;,...,a;, € N"and §; € K" pairwise distinct. O

Lemma 2.2.5 Vp € K[x],Vw € K[[y]], £ € K", p(x)*(w(¥)e:(¥)) = p(&1+3,,,...,Et
9y, w(y)e:(y).

Proof. By Lemma 2.2.1, x; * (w(¥)ez(¥)) = 9, (0)(¥)e:(¥) + & w(y)e:(y) = (& +
3, )(w(¥))e:(y) fori =1,...,n. We deduce that the relation is true for any polynomial
p € K[x ] by repeated multiplications by the variables and linear combination. O

2.3 Dual series

For K of any characteristic, another representation of elements of K[x ]* as formal power
series, is based on the following isomorphism:

o :Kx]" - K[[z]] 2.4
o - a(z)zZ(olz"‘)z“

aeN"

where z = (2;,...,%,) is a set of new variables, Using the following pairing:
K[[21,...,2,]] X K[xq,...,x,] — K

(za’xﬂ) — (zalx/j>:{ 1 lfa:ﬁ

0 otherwise.

we have, for any p = > __, . PoX® With A finite and any o € K[x]",

(o(2) | p) Zoapa
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In this representation, (2%),cx» is the basis of K[x]" dual to the monomial basis (x %) exn
of K[x].

The map, which associates to the sequence (0, ) e, the formal power eries o(2) =
D wen O 2% is the Z-transform of the sequence (a(xa))aeNn [enc16]. It corresponds to the

embedding in the ring of divided powers (2* = S =) [Fis94][Sec. A 2.4], [IK99][Appendix
A]. It allows to extend the duality properties to any field K, which is not of characteristic
0.

The transformation of the series Y, .. 04,2% € K[[2]] into the series D,
K[[y]] is known as the Borel transform [encl 6].

In this representation, the structure of K[x ]-module of K[x ] is described as follow.
For a, 3 € N*, we have x* » 2P = 7, (2P~*) where 7, is projection on the formal power
series with positive exponents, which are spanned by the monomials 2* with a € N". For
a€Z', (z“)={ ztifa e,

S 0 otherwise.
More generally, for any p € K[x],0 € K[x],

Y e

aeN" Oq a!

pro=m,(pz ...,z )o(2)).

In this representation, z; plays the role of the inverse of x;. This explains the terminology
of inverse system, introduced in [Mac16].
With this formalism, the variables x;, ..., x,, act on the series in K[[2]] as shift oper-

ators:
xi*(g aaz“)z E O e, 2°

aeNn aeN"

where ey, ...,e, is the canonical basis of N". Therefore, for any p,,...,p, € K[x], the
system of equations
p1*o0=0,...,p,x0c =0

corresponds to a system of difference equations on o € K[[2]].

2.3.1 Rational series
In this setting, the evaluation ¢, at a point £ € K" is represented in K[[2]] by the rational

fraction m The series yﬁeg € K[[y]] corresponds to the series of K[[z]]
j=1 j%j

(a—+—/5) @ at A+ B paa_ Blzf
Z T ST =ps ﬁZ( B )5 1_[;;1(1_5}'2]')“/5"'

aeNn aEeN?

The reconstruction of truncated series consists then in finding points &, ...,§,, € K" and
finite sets A; of coefficients w; , € Kfori=1,...,r" and a € A, such that

Z 042" _ZZ l_L 1(1 5112])1+aj _l_[ ZZ 1_[1 ) _gl])1+a (2.5)

aEeNn i=1 a€A; i=1 i=1 a€Ah;
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where z; = zj_l.

In the univariate case, this reduces to computing polynomials w(z), 6(z) = ]—L.r/:l(l —
£:2)" € K[z] with deg(w) < deg(6) = >, u; = r such that

The decomposition can thus be computed from the Padé approximant of order (r —1,r)
of the sequence (0 )rey (see e.g. [vzGG13][chap. 5]).
Unfortunately, this representation in terms of Padé approximant does not extend so

nicely to the multivariate case. The series 0 = ), _.. 0,2* with a decomposition of the

1
form (2.5) correspond to the series Y, . , which is rational of the form lf[‘f—i((zi)) with

a splitable denominator where deg(g;) = 1 are univariate polynomials (see e.g. [Pow82],
[Bar84]). Though Padé approximants could be computed in this case by “separating” the

variables (or by relaxing the constraints on the Padé approximants [ Cuy99]), the rational
z!p(2)

[Tai(z)

0,2

fraction
w

is mixing the coordinates of the points &;,...,&,, € K" and the weights
i,a*

As the duality between multiplication and differential operators is less natural in
K[[2]], we will use hereafter the identification (2.2) of R* with K[[y]], when K is of
characteristic O.

2.4 Inverse systems

For a vector space V C K[x], let V* = {oc € K[x]"| (o | v) =0, Vv € V}. Similarly, for a
vector space D C K[x]", Dt = {p € K[x]| (6 | p) =0,VY5 € D}.

The set of formal power series K[[y]] is a topological space for the m-adic topol-
ogy where m = (y4,...,y,). The dual space K[x]", equipped with topology of simple
convergence is also a topological space. For these topologies, the isomorphism (2.2) be-
tween K[[y]] and K[x]" is an isomorphism of topological vector spaces. In particular,
D c K[x]" is closed iff D*+ = D.

Given an ideal I C K[x ], stable by multiplication by x; € K[x], i = 1,...,n, the or-
thogonal I is stable by the transpose multiplication, which is the derivation (see Lemma
2.2.1):

Voelti=1,...,n,x;x0 = 9,0 elt.

Thus, the map I € K[x] — It c K[[y]] defines a correspondence between the ideals I
of K[x] and the vector spaces of K[[y]] which are closed for the m-adic topology and
stable by derivation with respect to y;. See e.g. [Ems78] for more details.

This leads to the following definitions:

Definition 2.4.1 For a subset D C K[x]", the inverse system generated by D is the vector
space spanned by the elements px 6 for 6 € D, p €R.
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For D C K[[y]], the inverse system generated by D is the vector space spanned by the
elements in D and all their derivatives.

For w,...,w,, € K[y], we denote by 2(w-,...,w,,) the inverse system of w,...,w,,
generated by w; and all the derivatives aya(wi), aeN, i=1,...,m Let u(wq,...,w,,)
denote its dimension.

Lemma 2.4.2 For w € K[y]and £ =(&4,...,§,) € K",

g(weg(J’)) = @(O))eg
Proof. We have, fori = 1,...,n, 9, (we:(¥)) = 9, (w)e + &;we: € D(w)e:(y). This
shows, on one hand, that Z(we:(y)) C Z(w)e¢;. Since J, (w) e = I, (wez) —&;w ey, this
shows on the other hand, that 2(w)e; C 2(we;) and the equality. O

Example 2.4.3 Let I = ((x; —1)%,(x,—1)*) c K[xy, x,]. Then,

It = (e(l,l);}’19(1,1);)’23(1,1),)’1}’2 e(l,l)) = 2(y1Y- 3(1,1)) = 9()’1}’2)9(1,1)-

and u(y,y,) = 4. This is the multiplicity of the unique point (1, 1) defined by I.
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In this section, we recall the properties of Artinian algebras. Let I C K[x ] be an ideal
and let .« = K[x]/I be the associated quotient algebra.

Definition 3.0.4 The quotient algebra .«f is artinian if dimy(.«/) < 00.

Notice that if K is a subfield of a field L, we denote by .y = L[x]/I}, = &/ ® L
where I}, = I ® L is the ideal of L[x ] generated by the elements in I. As the dimension
does not change by extension of the scalars, we have dimy(K[x]/I) = dim; (L[x]/I;) =
dimy (.¢% ). In particular, .¢/ is artinian if and only if .z is artinian, where K is the
algebraic closure. For the sake of simplicity, we are going to assume hereafter that K is
algebraically closed.

3.1 Univariate polynomials

Let us analyze first, the ring R = K[x] of univariate polynomials in the variable x and
coeficient in K. Let I be the ideal of R generated by the polynomial f = f; x% +---+ f,
of degree d (f; #0).
The vector space ./ = K[x]/(f) is of dimension d, and admit as basis (1, x, ..., x%™1).
Assume that the field K is algebraically closed and that the roots of f are simple:

f=faTTL,Ge= ¢, with & # ¢ sii # .

23
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Let M, be the operator of multiplication by x in .«/:

M,: o —
a — ax.
The matrix of M, in the basis (1, x,...,x%!) is the compagnon matrix
e _f
0 0 fa
1 .
M, =
.0
_fi
0 1 -

The last column of M, corresponds of the Euclidean division of x¢ by f. The characteristic
polynomial of M, is f and the eigenvalues of M, are the roots {4,...,{, of f. As these
eigenvalues are assumed to be distinct, the matrix M, is diagonalisable.

Let p be an element of K[x]. The eigenvalues of the multiplication by p in .« are
p(&1),...,p({4) since they are the diagonal terms of M, in the basis of eigenvectors of
M,. Let us describe this basis of common eigenvectors of the operators M,,, p € K[x].

Let . i
u(@= |1 (ci—cjj)

the i Lagrange interpolation polynomial of f. The elements u,(u;—1), (x — ;) u;, u; u;
for j # i vanish at all the roots of f. Thus they are divisible by f and we have in .¢/,

u

2=u
A

i Xw;=Cu; , wu; =0 si £
As1=u;+---+u, we have for any a € K[x]

in .. This implies that .o/ = Ku; @ --- ® Kuy,. The family u = (u4,...,uy) is a basis
of .«/. The elements u; are called orthogonal idempotents since they satisfy the relations:
u?=u;, uu; =0if i # j. Moreover, as M, (u;) = x u; = {;u; and u, is an eigenvector
of M, for the eigenvalue ;.

Let us consider now the dual .&/* of .«/, that is, the vector space of linear forms on the
vector space .. It is a vector space of dimension d = dim .«/. The dual basis of the basis
(1,x,...,x91) of ./ is denoted d = (d°,...,d%™). The decomposition of an element
o € /" in this basis is of the form

oc=0c()d’+ -+ o(x¢Hd.
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Let p € K[x]and r = ry+ -+ + ry_, x4~ its representative in the quotient algebra .¢f,
that is, the remainder in the Euclidean division of f by p: p = f ¢+ r with deg(r) < d.
For o € .&/*, we have

op)=oc()=ryo(1)+--+r;,ox).

Among the elements of .¢/*, we have the evaluations ¢, : p — p({) at the roots o; of
f. The identity (3.1) shows that ¢ = (¢, ,...,¢,, ) is the basis of .o/* dual to the basis u
of .

The transpose M of the operator on multiplication M, is by definition

M :o" — o
o — ooM,.

The matrix of M| in the basis d of ./* is tthe transpose of the matrix of M, in the basis
(1,x,...,x7)) of ..

Asforall a € .,

M. (eg))(a) = e, (x a) = ({ieg)a),

we have M (¢, ) = {;¢, and ¢, is an eigenvector of M| for the eigenvalue ;. This implies
that for all p € ./, ¢, is an eigenvector of M; for the eigenvalue p({;). The operators M ;
for p € K[x] share a family of common eigenvectors.

We are going to see that many of these properties generalize to Artinian algebra as-
sociated to polynomials in several variables.

3.2 Algebraic structure

A classical result states that the quotient algebra .o = K[x]/I is Artinian (i.e. of finite
dimensional), if and only if, ¥x(I) is finite, that is, I defines a finite number of (isolated)
points in K" (see e.g. [CLO92][Theorem 6] or [EMO7b][Theorem 4.3]). Moreover, we
have the following structure theorem (see [EMO7b][Theorem 4.9]):

Theorem 3.2.1 Let . = K[x ]/I be an artinian algebra of dimension r defined by an ideal
I. Then we have a decomposition into a direct sum of subalgebras

ﬂ:ﬂgl@"‘@:ﬂfgr, (32)
where
s v(I)={&,..., &} C K  withr' <.

* I =Q;N---NQ, is a minimal primary decomposition of I where Q; is mgi—primary
with mgi = (xl - gi,l: R gi,n)-

® edgl EK[X]/Ql and Vdgl ﬁg] EOlfl #]
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We check that .¢/ localized at m,. is the local algebra ./, . The dimension of .¢/;_ is
the multiplicity of the point &; in ¥(I).
The projection of 1 on the sub-algebras .¢/;. as

1Eu€]+"'+ll§r/

with u; € .o/ yields the so-called idempotents u associated to the roots &;. By con-
struction, they satisfy the following relations in .«/, which characterize them:

o 1Eu£1+"'+u;§r/,

2 — - /
*up =ug fori=1,...,r,

. ugiugjEOf0r1<i,j<r’andi7éj.

3.3 Roots from the algebraic structure

The solutions ¥ (I) = {&;,...,&,.} can be recovered by linear algebra, from the multi-
plicative structure of ./, using the properties of the following operators:

Definition 3.3.1 Let g be a polynomial in .«/. The g-multiplication operator #, is defined

by
My A > A
h — M,(h)=gh.

The transpose application //tgt of the g-multiplication operator .#, is defined by

//lgt: A A
o - %;(a)zaojlg:g*o.

Let B = {b;,...,b,} be a basis in .¢ and B* its dual basis in .«/*. We denote by Mf
(or simply M, when there is no ambiguity on the basis) the matrix of .#, in the basis B.
As the matrix (M f )" of the transpose application ./ gf in the dual basis B* in .&* is the

transpose of the matrix M ; of the application .#, in the basis B in .¢/, the eigenvalues
are the same for both matrices.
The main property we will use is the following (see e.g. [EMO07b]):

Proposition 3.3.2 Let I be an ideal of R = K[x ] and suppose that ¥ (I) = {£1,&,,...,&,}-
Then

* for all g € .o/, the eigenvalues of .#, and //lgt are the values g(&,),...,g(&,) of the
polynomial g at the roots with multiplicities u; = dim .</, .

* The eigenvectors common to all A gt with g € .of are - up to a scalar - the evaluations

251,...,2€r.
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Remark 3.3.3 If B={b,,..., b, } is a basis of ./, then the coefficient vector of the evalua-
tion 5

=2

1 ﬂ'

BeNn
in the dual basis of ./ is [<°€i|b1>]/geg = [b;(&:)]i=1.., = B(&;). The previous proposition
says that if M, is the matrix of .#, in the basis B of .</, then

M!B(E) = g(£)B(E).

If moreover the basis B contains the monomials 1, x,, X5, ..., X,, then the common eigenvec-
tors of Mgt are of the form v, =c[1,&;,,...,&; ,,...] and the root &; can be computed from
the coefficients of v; by taking the ratio of the coefficients of the monomials x, ..., x, by the
coefficient of 1: &, = L:l Thus computing the common eigenvectors of all the matrices

Mg for g € . yield the roots §, (i = 1,...,r). In practice, it is enough to compute the
common eigenvectors of M;l, ...,M; , since Vg € ]K[x],Mgf = g(M;I, .M.

3.4 The dual of an Artinian algebra
The dual .&* = Homg (., K) of ./ = K[x ]/I is naturally identified with the sub-space
t={oeK[x]I"=K[[y]l|Vp €l,0(p) =0}

of K[x]* = K[[y]] As I is stable by multiplication by the variables x;, the orthogonal
1 = .* is stable by the derivations diy. In the case of a primary ideal, the orthogonal
has a simple form [Mac16], [Ems78], [Mou96]:

Proposition 3.4.1 Let Q be a primary ideal for the maximal ideal m; of the point & € K"
and let .o/; = K[x]/Q. Then

Q' = = 2:(Q) e (y),

where 2:(Q) = {w(y) € K[y] | Vg € Q,w(4,,...,3,)(q)(§) = O} is the set of differential
polynomials that vanish on Q at the point &.

The vector space Z:(Q) C K[y] is called the inverse system of Q. As Q is an ideal,
Qt = 2:(Q) - e(y) is stable by the derivations diy_, and so is 2:(Q).

Lemma 3.4.2 If[ =Q;N---NQ,. is a minimal primary decomposition of an ideal I C K[x ]
with .o/ = K[x]/I artinian and Q; m -primary, then

g =I"=Q & - 0Q, = O]

with sz’gi =Ug, *x of .
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Proof. AsI=Q,N---NQ,, It= Zl Q. As QY mQL (Q: +Q))*F = (1) = {0} for
i # j, we have the decomposmon of .&/* as a dlrect sum

r’ r
_ 1 _ *
=P =D~
i=1 i=1

/
Since Zirzl u; =1in ¢/, any element o € ./* decomposes as

O=Ug *O+-FUg, *x0. (3.3)

As we have u, * 0(42:751) = a(ugiﬂgj) =0 for i # j, we deduce that u; o € Ay = Ql.L.

The decomposition (3.3) for any o € ./* implies that .o/ = u; * .&/". a
As we have

Q= 2:(Q) e, € 2 e, < IMN(KlyJey),

we deduce from the previous lemma that Qil = 9;.(I) ¢y where 9, (I) is the set of dif-
ferential polynomials that vanish on I at the point £. This can be exploited to compute
efficiently the inverse system of a multiple point &; from the generators of the ideal I (see
e.g. [Mou96]).

From Proposition 3.4.1 and Lemma 3.4.2, we deduce the following result:

Theorem 3.4.3 Assume that K is algebraically closed. Let .o/ be an Artinian algebra of
dimension r with ¥(I) = {&;,...,&,/} C K" Let D; = 9. (I) C K[y] be the vector space
of differential polynomials w(y) € K[y] such that Vp € I, w(d,,...,0 )(p)(i ) =0. Then

D; is stable by the derivations -+ oo L =1,...,n Itis of dimension u; with Z _ M =T. Any
elements o of ./* has a unique decomposmon of the form

o(y) =D (e (), (3.4)
i=1

with w,;(y) € D; C K[y], which is uniquely determined by values {o|b;) for a basis B =
{by,...,b,} of .&/. Moreover, any element of this form is in ./*.

Proof. For any polynomial w(y) € K[y], suchthatV§ € ¥(I),Vp €I, w(d;,...,3,)(p)(E) =
0 w(3d,,...,0,)(p)(&) =0, the element w(y)e:(y) is in I*. Thus an element of the form
(3.4) is in IL "

Let us prove that any element o € .&* is of the form (3.4). By the relation (3.3),

o decomposes as o = er;1
Ql.l = D;ez (¥), where D; = 2, (Q;) is the set of differential polynomials which vanish
at &;, on Q; and thus on I. Thus u; * o is of the form u; * o = w;(¥)e; (¥) with

w;(y) € D; c Kly ] By Lemma 2.2.4, its decomposition as a sum of polynomial expo-

ug * 0 with uz x 0 € ./ = Q;. By Proposition 3.4.1,

nentials o(y) = er L wi(¥)ez,(¥) is unique. This concludes the proof. |
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Theorem 3.4.3 can be reformulated in terms of solutions of partial differential equa-
tions, using the relation between Artinian algebras and polynomial-exponentials Z ol&xp.
This duality between polynomials equations and partial differential equations with con-
stant coefficients goes back to [Riq10] and has been further studied and extended for
instance in [Gro], [Ems78], [Ped99], [OPO1], [HT04]. In the case of a non-Artinian al-
gebra, the solutions on an open convex domain are in the closure of the set of polynomial-
exponential solutions (see e.g. [Mal56][Théoreme 2] or [Hor90][Theorem 7.6.14]).

The following result gives an explicit description of the solutions of partial differ-
ential equations associated to Artinian algebras, as special elements of Zol&xp, with
polynomial weights in the inverse systems of the points of the characteristic variety of
the differential system:

Theorem 3.4.4 Let p,,...,p, € C[xy,...,x,] be polynomials such that C[x]/(p;,.-.,Ds)
is finite dimensional over C. Let Q2 C R" be a convex open domain of R". A function
f € C*°(Q) is a solution of the system of partial differential equations

pl(ab ] an)(f) = OJ s Jps(al’ e an)(f) =0 (35)
if and only if it is of the form
F) =D o (y)es”
i=1

Wlth /VC(plz L -:ps) = {513 . .)gr} C Cn and wl(.y) € Di c (C[y]Where Di = @.gi((pl)' . ':ps))
is the space of differential polynomials, which vanish on the ideal (p4,...,p,) at &;.

Proof. By a shift of the variables, we can assume that 2 contains 0. A solution of f of
(3.5) in C*°(£2) has a Taylor series expansion f(y) € C[[y]] at 0 € 2, which defines an
element of C[x ]*. By Lemma 2.2.1, f is a solution of the system (3.5) if and only if we
have p;xf(y)=0,...,p,xf(y) = 0. Equivalently, f(y) € I* where I = (p,,...,p,) is the
ideal of K[x ] generated by p,,...,p,. If .« = K[x]/I is finite dimensional, i.e. Artinian,
Theorem 3.4.3 implies that the Taylor series f(y) is in I, if and only if, it is of the form:

)= w(y)es (3.6)
i=1

with Yc(py,...,p) = {&1,...,&,} € C" and w,(y) € D; = Z;,(I) C Cly] where D; is the
space of differential polynomials which vanish on I = (p,...,p,) at &;. The polynomial-
exponential function (3.6) is an analytic function with an infinite radius of convergence,
which is a solution of the partial differential system (3.5) on Q. By unicity of the solu-
tion with given derivatives at 0 € Q, 3", w;(y)e*” coincides with f on all the domain
QCR". O

Here is another reformulation of Theorem 3.4.3 in terms of convolution or cross-
correlation of sequences:
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Theorem 3.4.5 Let p,,...,p, € C[x4,...,Xx,] be polynomials such that C[x]/(p4,.--,Ps)
is finite dimensional over C. The generating series of the sequences o = (o) € CN" which
satisfy the system of difference equations

pyxo=0,...,p,x0=0 (3.7)

are of the form

— y_a — y &y

oly)= ), 0, i Z w;(y)e
aeNn i=1

with ny(C(pD ce :ps) = {g:l) R gr} c C"and wl(.V) € Di C C[y] such thatDi = @gi((plﬂ cee ;ps))

is the space of differential polynomials, which vanish on the ideal (p,,...,p,) at &;.

Proof. The sequence o is a solution of the system (3.7) ifand only if o (y) = > 1 O'aJ(;—T S

I+ where I = (py,...,p,) is the ideal of K[x ] generated by p,,..., p,. We deduce the form

of o(y) € Zol&xp(y) from Theorem 3.4.3. O

3.5 Roots from the dual structure

3.5.1 Notations

Let /4 be the set of monomials in the variables x,,...,x,. An element of ./ is of the
form x* = x" -+ x% with a = (ay,...,a,) € N". Its degree is |a| = a; +--- + a,. Let
R = K[x] be the ring of polynomials in the variables x,, ..., x, with coefficients in a field
K. For p =Y, _, P, x® with p, # 0, A s the support of p and deg(p) = max,e, ||.

For d e Nand F CR, let F¢; (resp. F;) be the set of polynomials in F of degree < d
(resp. d).

For f €R, let f be the homogeneous component of f of highest degree. Similarly
foraset SCR,ST={f"|f €S}

For F C R, let (F) be the K-vector space spanned by F. Let F* = FUx;FU---x,F
and OF = F*\F. Ford e N, let Fe;, = {mf | me #,f € F,deg(mf) < d} and
Fg=Feq\Feq .

A set B C ./ is connected to 1if 1 € B and Vm € B\ {1}, there exists 1 < i < n and
m’ € B, such that m = x; m’.

For F C R and B C .#, (F|B) is the matrix of coefficients of the polynomials for the
monomials in B.

3.5.2 Truncated normal forms

As in the introduction, let R = C[x3,...,Xx,] be the ring of polynomials in the variables
X1,...,Xx, with coefficients in the field C and take I C R defining 6 < o0 points, counting
multiplicities. This is equivalent to the assumption that dim:(R/I) = 6 < co. A normal
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form, which in [DB04] is also called an ideal projector, is a map characterized by the
following properties.

Definition 3.5.1 (Normal form) A normal form on R w.r.t. I is an R-map A4 : R — B
where B C R is a vector space such that

0—1—>R-ZB

~
o

is exact and Az = idp.

From this definition, it follows that B ~ R/I and that the algebraic structure of .o/ =R/I
is completely determined by .4". Since A{z = idg, we have A o A = A and A is a
projector with kernel I and image B.

Example 3.5.2 (Euclidean division) Take R = K[x;], f = fo + -+ fdx‘f with f; € K
and f; # 0. By euclidean division, for all p € R there exists a unique polynomial r € R of
degree < d and a unique q € R, such that

p=qf+r.

The remainder r belongs to the vector space B spanned by the monomials 1,... ,xf_l. The
map A which associates to every polynomial p € R its remainder r = A (p) by euclidean
division by f is such that

0-(f)»R5B—0
is exact. In other words, we have ker &/ = (f), imA# =B ~R/(f).

Since we want to find a representation of R/I using numerical linear algebra tech-
niques, we will work with linear maps .4 that can be represented by a matrix. That is,
we will work with restricted or truncated versions of normal form maps [TMVB18].

Definition 3.5.3 (Truncated normal form) Let BCV CRwithx;-BCV,i=1,...,n. A
Truncated Normal Form (TNF) on V w.r.t. I is a linear map A" : V — B such that Az = idp
and ker /' =1NV. That is, A is a projector such that

0—>InV —v-2LB-—30

is exact.

In the case B is of finite dimension &, let P : B — C° be an isomorphism defining
coordinates on B. Denote N = P o 4. The linear map N is of the form N : f € V —
N(f)=(n,(f),...,ns(f))eC®withn, e V' NIt ={A€V*|VpeInV,A(p) =0}. Itis
given by 0 linear forms, which kernel is I NV and such that N is invertible. Conversely,
amap N : V — K° such that kerN = I NV and Ny = P invertible, defines a truncated
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normal form A = NE oN. Such a map N will also be called a truncated normal form on
V, with respect to B.

Let us give conditions under which a projector is the truncated normal form of an
ideal, showing that a truncated normal form is the restriction of a normal form.

We consider B,V C R such that B¥ C V and N : V — B a projector such that kerN C
INV. We assume that V is connected to 1.

Let us define the operator of multiplication by the variable x; as

M. .

i-

B — B,
b— N(x;-b).

To check that N is a truncated normal form, we use the following set of commutation
polynomials:

Definition 3.5.4 For F C R and B C R, let 6,(F) be the set of polynomials in V which are
of the form

1. x;f with f €F, or
2. x;f —x;f'with f,f’€F,1<i<j<n
The set 6, (F) is called the set of commutation polynomials of F.

The subset of 6, (F) satisfying condition 1 (resp. 2) is denoted %, (F) (resp. 62(F)).
Notice that 6, (F) c (F*).
For F; CR,0<i<d,let

Fyy=(pf|p€Rq,f €Fyy)

The next theorem describes different equivalent conditions for a normal form in de-
gree < d. It summarizes results which can be deduced from results in [Mou99], [MT05a],
[MTO08].

Theorem 3.5.5 Let B,V C R such that Bt ¢ V, V is connected to 1, N : V — B be a
projector on B along K = kerN. Let V, = (1), B, = (N(1)), and for l € N, V,,; = B,
B;,; =N(V,;;) and K; =ker N NV,. Then for d = 2 the following points are equivalent:

1. (MjoM;—M;oM,;)p, ,=0for1<i,j<n;

2. there exists a unique truncated normal form N : R, — By such that vad = Ny, and
kerN = K(d):

3. Kf, NVyCKy
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Proof.
1) = 2) : By construction, we have V;,; = B C V, N(B,") = B, so that M, : B — By,.
Let u = N(1) and define

N:R<d i Bd
p — pM)w).

This construction is well defined since it is independent of the order in which we compose
the operators M; since they are commuting, and u € B,, and since for p € R.,;, we have
p(M)(u) € B. )

Let us show that N is a projection of R¢; on By, which extends N and such that
kerN = K(d)

We first prove by induction on k € N that for b € Vi, N(b) = N(b). For 1 =0, V, = (1)
and N(1) = u = N(1), which shows that the hypothesis is true for [ = 0. Let us assume
that the property is true for 0 < | < d. Any b € By, is of the form b = ), x;b/ with
b; € B;. Then

N(b) = D M(b[(M)(W) = Y MN (b)) = > N(x; b)) = N ,x;b)) = N(b)

by the induction hypothesis and since N = id| B,
In the next step, we prove that K4 C kerN. Fork € K; and p € R;_; with 0 < [ < d,
we have

N(pk) = p(M)ok(M)(u)=p(M)(N(k))=p(M)(N(k))=p(M)(O0)=0

since NWI =Ny,.
Finally, we prove by induction that R¢; = By®K 4. Forany p € Rof degree 1 <[ < d,
there exist p; € R of degree [ —1 such that p = )., x;p!. We have

P=N (@)= D x ;=N D)+ >, xN ()~ NN ED) + D N (x (N () —p)).

By induction on the degree, we have (p! N(p )) € K_y. Then Z x;(p; N(p )) EKy
and N(Z x;(p; —N(p ))) = 0 since Ky C kerN. Moreover b, = N(p) € B4, thus
x;b; € B , =V, and x;b, —N(x;b,) = x;b, N(xb)ekerNﬂVl K.

Th1s shows that p— N(p) € K. As for any p €Rey, p = N(p)+p—N(p), we deduce
that Rey = By + Kg)- As Kigy C kerN and N|B = id, we have

Réd = Bd ®K(d)7

with K(d) = ker1\~l|R<d.
2) = 3):Since K  NV; C Ky NVy; CkerNNV; =kerN NV, =K, since N coincides
with N on V.
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3) = 4) : Clear, since ¢(K;_,) CK; , NV,.
4)=>1):Letb €By,, by =xbeV;,,b,=x;beV,;withl<i<j<n k =
b]_ _N(bl) (S Kd—l and kz == bz_N(bz) (S Kd—l‘ AS Xibz = X]bl = Xiij, we have

(M;oM; —M;oM;)(b) = N(x;N(by))—N(x;N(b;))
= N(Xi(bZ_kz)_xj(bl_kl))
= N(xjk; — x;k,).

As x;k; — x;ky = x;N(by) —x;N(b,) € B;_, =V, is an element of 6, (K,_,), Hypothesis
(4) implies that N(x;k; — x;k,) = 0. Consequently, (M; o M; —M; o M;)j5, , = 0. O

Theorem 3.5.6 Let B,V C Rsuchthat W :=B* CV, Visconnectedto 1 andletN : V — B
be a projector such that K :=kerN C I N W. Then the following points are equivalent:

1. (M;oM;—M;oM;)=0for 1<i,j<n;

2. there exists a unique normal form N : R — B such that ]\7|W = N and kerN = (K);
3. K'nW CK;

4. 6y(K) CK;

Proof. Apply Theorem 3.5.5 for all d € N. a

Corollary 3.5.7 Let B,V C RsuchthatW :=B* CV, V isconnectedto 1 andletN : V — B
be a truncated normal form with respect to I and K = ker NNW. Then there exists a unique
normal form N modulo (K) C I such that N, = N.

Proof. Since N is a truncated normal form, kerN = I NV for some ideal I C R.
byw(K) cINW =kerNNW =K, Theorem 3.5.6(4) implies that there exists a unique
normal form N modulo (K) such that N|W = N and ker & = (K). |

3.5.3 Border basis

Border basis are special types of normal forms associated to sets 98 of monomials. In
some works like [KR05, KKO5, KK06, CMO07, Kas11], the set & is finite and stable by
division (called an order ideal). Hereafter we consider a more general case where 98 =
{xP1,...,xPr} is finite and connected to 1 = x".
We take V = (27) and B = (%) and a projector N : V — B.
For any x% € 04,
fa=x*—N(x*)=x"— Z ca’ﬁx/j (3.89)

xPen



3.5. ROOTS FROM THE DUAL STRUCTURE 35

is an element of K = ker N. Conversely, a family F of polynomials f, of form (3.8) for
x® € 0% defines a unique projector N : V — B such that N(x?) = x# for x? € % and
N(x*) =2 scs ca’ﬁx/5 for x* € 0%. Such a family will be called a rewriting family for
AB.

A border basis for & is a rewriting family for % such that R = (%) @ (F) and the
projection on (4) along (F) is a normal form.

By Theorem 3.5.6, if any of the following points is satisfied:

* M;oM;—M;oM;=0where M, : b €B— N(x;b) €B.
 (FY)NnV = (F).
* Vf e (F),N(f)=0.

then N extends to a unique normal form .4 such that 4, = N and ker 4" = (F). That is
R=B® (F) and F is a border basis.

We will not assume that B is known apriori or that the projection is compatible with
a monomial ordering as in [KR0O5, CMO07], since this leads to the construction of Grob-
ner bases, with well-developed monomial rewriting techniques but also with numerical
instability problems that we want to avoid.

For the sake of simplicity, we restrict the present article to projections compatible with
the usual degree. This is not a conceptual limitation.

So far, border bases have been developed essentially for zero-dimensional ideals, ex-
cept in [CMO7] where the projection is compatible with a monomial ordering and thus
leads to Grébner basis computation.

The main contribution of this paper is to provide a new criteria of border basis for any
projection compatible with the degree on a vector space spanned by a set B of monomials
connected to 1. This criteria which applies to any ideal is based on the persistence and
regularity theorems of G. Gotzmann [Got78].

We describe an algorithm, which exploits a new characterization of border basis up
to a given degree, and proceeds incrementally degree by degree until the regularity cri-
teria is satisfied. This algorithm is an extension of the algorithm in [MTO05a] for zero-
dimensional ideals. It is complete and has no possible case of “failure” as the algorithm
for zero-dimensional ideals in [Kas11]. As a byproduct, we obtain the Hilbert polynomial
of the graded part of the ideal and thus the dimension and the degree of the solution set.

Let B C . be a set of monomials connected to 1 and let d € N.

In this section, we assume that we are given a projection 7 : (B™)<; — (B)<, (ie.
satisfying 7 o © = 7t) which is compatible with the degree: Vb € (B"),, deg(n(b)) <
deg(b). As 5 _, is the identity map, ker 7t is spanned by the elements:

fa=x%—n(x*),a € (IB).

We denote by F this generating set of polynomials of ker 7w and call it the rewriting family
of ker .
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Our objective is to characterize the projections 7 which are the restriction of a pro-
jection 7 : R — (B) such that I := ker 7 is the ideal generated by ker 7. In such a case,
we have R = (B) @ I and 7 is a normal form modulo the ideal I.

The main idea behing border basis techniques is to relate this normal form property
to commutation properties of multiplication operators [Mou99]. We define the operator
of multiplication by x; associated to 7 as:

M;:(B)<s-1 — (B«
b — m(x;b).

As 7t is compatible with the degree, the image by M, of an element of degree < k is of
degree < k+1for 0 <k <d.

For a monomial x* = x{" --- x% € ./ of degree < d, we define x*(M) :=M," o---0
M@ It is an operator from (B)<,;_|4 to (B)<4. We extend this construction by linearity
and for any p € R;, we define

P(M) : (B) <d—deg(p) — (B)<a-

Remark 3.5.8 As a border basis in degree < d is a border basis in degree < k for 0 < k < d,
this theorem implies that the restriction of 7t to R¢; is the projection onto (B) < along F .

Remark 3.5.9 We can define the projection 7t : Rc; — (B)<4 such that for any x* € M,
fi(x*) = M*(1) € (B)<4 and we extend it by linearity on R<,. Any order in the composition
of the operators M; can be used to define a projection 7t on a specific monomial of degree
< d. For any of these choices, we have a projection such that Vp € R¢y,p — fi(p) € Fi<y).

However, if the operators M; commute in degree < d—2, then this projection 7t is uniquely
defined.

3.5.4 Characterization of TNFs

Given a linear map N : V — C® with V C R a finite dimensional subvector space, what
are the conditions on N, V such that N covers a TNF A4 w.r.t I?

Also, which subspaces B C V such that x;-B € V,i =1,...,n can we identify with R/I?
That is, the map N : V — C° might cover different TNFs 4 : V — B and A4’ : V — B'.
Theorem 3.5.10 gives an answer to these questions.

We consider a 0-dimensional ideal I = (fi,..., f,) C R generated by s polynomials in
n variables with 6 < oo solutions in C", counting multiplicities. For any ideal J C R and
pE€R, wedenote (J:p)={q€R|pgeJ}and (J :p*)={q€R|Ik €Ns.t. pkq € J}.

Theorem 3.5.10 Let V C R be a finite dimensional subvector space and let W = {f € V :
x;f €V,i=1,...,n}. Suppose we have a C-linear map N : V — C° such that

1. Ju €V such that u+1 is a unit in R/I,
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2. ker(N)cInV,
3. Ny is onto Ce.

Then for any 6-dimensional vector subspace B C W such that N is invertible we have:

(i) there is an isomorphism of R-modules B ~R/I,
(i) V=B (INV)andI = ((ker(N)) : u),
(iii) the maps N; given by

N;: B—C?,
b—> N(x;-b)
fori=1,...,n can be decomposed as N; = Njgy o m, where m,. : B — B define the

multiplications by x; in B modulo I and are commuting (m,, o m, = m, o m, for
1<i<j<n).

Proof.

() It follows from the fact that Np is invertible that V = B @ ker(N). Let w : V — B be
the projection onto B along ker(N) and define

m, : B—B,
b— n(x; - b).
Then Vb € B,
m, (b) = x;-b mod ker(N) (3.9
= Xx;-b mod]I (3.10)

where the last equality follows from ker(N) cINnV.
For a € N", we write m* = m{! o---om{ and for f = > cix% € R we define
4
f(m) =Zcimai :B — B.
i=1
Replacing u by m(u) which is also invertible in R/I, we can assume that u € B. We

will show that the sequence

0—sJ—3R—2 1B

f— f(m)(w)

~
o
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with J = ker(¢) is exact. From (3.10), we deduce that Vf € R, ¢(f) = fu mod I
so that J = ker¢ C I. If m; : R — R/I is the map that sends f to its residue class
in R/I, we have 7;(¢(f)) = m;(f u). Hence m,(¢(R)) = m;(Ru) = R/I since u
is invertible in R/I and dim(¢(R)) = dimc(R/I) = &. But also ¢(R) C B means
dimq(¢(R)) < dimg(B) = 6. We deduce that ¢ is surjective and 7; : B — R/I
is an isomorphism. It follows that the induced map a :R/J —> B ~ R/I is an
isomorphism of C-vector spaces, which implies J = I since J C I. We conclude that
¢ is an isomorphism of R-modules between R/I and B and its inverse is u " - ;.

This proves the first point.

(ii) Moreover, BNI = {0} since 7; : B — R/I is an isomorphism; As B is supplementary
to ker(N) in V and ker(N') C INV by hypothesis, we deduce that NV = ker(N). It
follows that V = Béker(N) = B&(INV). We have ker(N) C I and thus (ker(N)) C I.
Therefore ({(ker(N) : u) € (I : u) = I since u is a unit in R/I. To prove the reverse
inclusion, notice that if f € I =J = ker ¢ then by the relation (3.9), f u € (ker(N)).
This implies that

Ic({(ker(N)):u)cCl,

which proves the second point.

(iii) From Equation (3.10) and the isomorphism E between R/I and B, we deduce
that the operators m,. correspond to the multiplications by the variables x; in
the quotient algebra R/I. Thus they are commuting. By construction, we have
N;(b) = N(x;-b) = N(n(x;- b)) = (Njpom, )(b), where the second equality follows
from ker(7t) = ker(N). This concludes the proof of the third point.

O

Corollary 3.5.11 A linear map N : V — C® covers a TNF A with respect to I if and only
if N,V satisfy the conditions of Theorem 3.5.10.

Proof. For the if direction, take any B C W for which N is invertible and (N, 3) loNisa
TNF by Theorem 3.5.10. For the other implication, if N covers a TNE, then N = Po 4 for
some isomorphism P : B — C?%, B C W. Hence Njp = P and N, is onto C°. Itis clear from
the properties of TNFs that ker(N) = I N V. For the first condition, if the isomorphism
R/I ~ B is given by ¢, we can take u = ¢(1 +1) € B C V and we’re done. |
It follows from Theorem 3.5.10 that once we have a matrix representation of N, Nz and
the N;,i = 1,...,n, the matrices m, are given by (N|B)_1Ni. The eigenvalues zj;,j =
1,...,0 of the m, can be computed as the generalized eigenvalues of N;v = ANzv. As
detailed in Section 3.3, computing the eigenvalues and eigenvectors of the operators of
multiplication yields the solution of the polynomial equations.

Whenu=1€V, then Vb€ B,¢p(b)=>b mod I. Since BNI = {0}, we have Vb € B,
¢(b) = b and ¢ is the normal form or ideal projector on B along its kernel I. Moreover,
(iii) implies that (ker(N)) = I.
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By the normal form characterization proved in [Mou99, MTO5b], if the set B is con-
nected to 1 (1 € B and there exists vector spaces B; C R such that B, = {(()1)=C C B, C
-++ C By = B with By, C B where B” = B, + x;B; + -+ + x,,B;), then the commutation
property (point (iv)) implies that B ~ R/I (point (ii)).

3.5.5 Constructing truncated normal forms

In some interesting cases, a map N : V — C° covering a TNF can be computed as the
cokernel of a resultant map. Such a map is defined as follows.

Definition 3.5.12 (Resultant map) Let f = [f;,..., f,] € R’. A resultant map w.r.t. f is
a map

M: Vix--xV,— V:(qy,...,q)— qif1+ - +qfs.

with V,,V C R finite dimensional vector subspaces.

Note that all resultant maps with respect to f share the property thatim(M) C INV where
I =(fy,...,f,). Hence, if N = coker(M), we have ker(N) c I nV. In the following
sections, we show how TNFs are covered by the cokernel of a specific resultant map
in the affine, toric, homogeneous and multihomogenous setting when I is a complete
intersection.

We now show how the cokernel of a particular resultant map gives a map N and a
subspace V satisfying the conditions of Theorem 3.5.10. Consider a zero-dimensional
ideal I = (f3,..., f,) C R such that the f; define a system of polynomial equations that
has no solutions at infinity. That is, denoting deg(f;) = d;, we assume that the f; are
generic in the sense that there are 6 = ]_[?:1 d; solutions, counting multiplicities, in C".
We denote these solutions by ¥(I) = {zy,...,25,} C C", where §, < § is the number of
distinct solutions. Next, we consider a generic linear polynomial f,,. We use the classical
Macaulay resultant matrix construction defined as follows. Let p = Z?:l di—n+1, let
V = R_, be the space of polynomials of degree < p and V; = R, ;. The associated
resultant map is

My: VyxV,x---xV, — V
(Q0,915-++,92) — Qofot+qifit+ - +q.fn

There is a square submatrix M’ of the matrix of M, such that det(M’) is a nontrivial
multiple of the resultant Res(f,, fi,...,f,) [CLO97, Mac0O2]. The monomial multiples
of f, involved in M’ have exponents in ¥, = {a € N" : a@; < d;,i = 1,...,n}. The set
%, of monomials with exponents in 3}, corresponds generically to a basis (the so-called
Macaulay basis) of R/I: B, = (%,) ~ R/I. The matrix M’ decomposes as

My, M
M = [ 00 01]
My My,
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where the rows and columns of the first block M, are indexed by 98,. The matrix M =
M .
[ MOl] representing monomial multiples of fi,..., f, is such that im(M) c I NV. Since
11

for generic systems f,..., f,, the matrix M;; is invertible (see [Mac02], [CLO97, Chapter
3]), the rank of M is dimV —§&. Let N be the coefficient matrix of a basis of the left null-
space of M so that N M = 0. Then N corresponds to a linear map V — C? of rank & such
that its kernel is im(M) c I. In fact, denoting M = (Mo)y, x..xv, (i.e. M(qy,...,q,) =
q.f1 +...+q,f,) it satisfies

ker(N) =im(M) =im(M)=1nV =1,

since B,N I = {0} and M, is invertible, so that any element in im(M) can be projected
in B, NI along im(M) (i.e. im(M) C im(M) C im(M)).

In order to apply Theorem 3.5.10, we need to restrict N to a subset W C V, such that
x;+W C V and N, is surjective. Let us take W = R_,_;. Since M, is invertible, N is
equivalent to the matrix |:id —MOlMl_ll] where the columns of the § x § identity block
are indexed by the monomials in %,. Since B, C W, we deduce that Ny, is surjective.

This leads to Algorithm 3.5.1 for computing the algebra structure of R/I. Note that
in step 5 of the algorithm we make a choice of monomial basis for R/I. In order to
have accurate multiplication matrices, Nz should be ‘as invertible as possible’. A good
choice here is to use QR with optimal column pivoting on the matrix N, such that
2B corresponds to a well-conditioned submatrix. We use M instead of M for numerical
reasons. It leads to a more accurate computation of the null space.

Algorithm 3.5.1: Computes the structure of the algebra R/I (affine, dense case)

1: procedure ALGEBRASTRUCTURE(f:, ..., f,)
2 M <« the resultant map on V; x --- x V,,
3 N «null(M")"
4: Ny < columns of N corresponding to monomials of degree < p
5 Np < columns of Ny, corresponding to an invertible submatrix
6 % < monomials corresponding to the columns of Nz fori =1,...,n do
7:
end

N; < columns of N corresponding to x; - B
8: My, < (N|B)_1Ni
9:
10: returnm, ,...,m,
11: end procedure

n

Example 3.5.13 Consider the ideal I = (f;, f,) C C[x;,x,] given by

fi = 7+3x;—6x,—4x> +2x,x, + 5x2,
fo = —1-=3x;+14x,— 2xf +2x;x9 — 3x§.
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As illustrated in Figure 3.1, the solutions are z; = (—2,3),2, = (3,2),25 = (2,1),2, =
(—1,0). The dense Macaulay matrix M of degree p =d, +d,—n+1=31is

1 X1 Xo xf X1Xo x% xf xfxz xlxg xg‘
A 7 3 —6 —4 2 5 i
x1f1 7 3 —6 —4 2 S5
VT = 7 3 —6 —4 2 5
fa -1 -3 14 -2 2 =3
x1fs -1 -3 14 -2 2 =3
woh | —1 -3 14 —2 2 -3

Since all solutions are simple, a basis for the left null space of M is given by v®(z,),i =
1,...,4, where

x1x, X2 x3 xix, x;x2 x3].

V(B)(X1:x2)2[1 X1 x2 X2 1 1 2

1

These are the linear functionals n;,i = 1,...,4 in V*NI* representing ‘evaluation in z,. We

find

1 x; xp x2 xxp x2 X3 x¥xy  xxi X3

vB®(=2,3) 1 -2 3 4 -6 9 -8 12 -—-18 27

_ vO32) 1 3 2 9 6 4 27 18 12 8
O 1 2 1 4 2 1 8 4 2 1
vWe-10L1 -1 01 0 0 -1 O 0 0

For 38 = {xl,xz,xf, X1X,}, the submatrices we need are

-2 3 4 —6 4 —6 —8 12 -6 9 12 —18
3 29 6 9 6 27 18 6 4 18 12

Np = 2 1 4 2 » N = 4 2 8 4 » Ny = 2 1 4 2|
-1 01 O 1 0 -1 0 0O 0 0 O

corresponding to 98, x; - $B and x, - B respectively. The vector space B in this example is the
space of polynomials supported in 98. One can check that N is invertible. Using Matlab,
we find the eigenvalues of N,v = ANgv via the command eig. The eigenvalues are 0,1,2,3
as expected. Of course, in practice we do not know the solutions and we cannot construct
the nullspace in this way. Any basis will do, since using another basis comes down to left
multiplying N and the N; by an invertible matrix. Note that 98 does not correspond to any
monomial order and it is not connected to one, so it does not correspond to a Groebner or a
border basis.
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Xy

Figure 3.1: Picture in R? of the algebraic curves ¥(f;) (—) and ¥(f,) (—) from Ex-
ample 3.5.13.
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In this chapter, we use the algebraic tools and the properties of Artinian algebras to
recover the decomposition of moment series as polynomial-exponential series.

4.1 Hankel operators

The external product * allows us to define a Hankel operator as a multiplication operator
by dual elements € R* where R = K[x ]:

Definition 4.1.1 The Hankel operator associated to o = (04,...,0,,) € (R*)™is
H,:R — (R)™
p = (pxoy,...,p*x0p)
Its kernel is denoted I, = ker H,. The element o € (R*)™ is called the symbol of H,,.

Hereafter, we will also denote px o = (p x0,...,p*0,,) € (R*)™ and (o | p) = ({0, |

p)---s {om | p)) €K™
As Vp,q €R, pqgxo = p*(q*0), we easily check that I, = kerH,, is an ideal of R
and that .o/, =R/I, is an algebra.

43
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Definition 4.1.2 The rank of an element o € (R*)™ is the rank r of the Hankel operator
H

o
If the rank r of o is finite, then the quotient .«/; of R by the kernel I, is of dimension
r < oo, ie. dim.«/, =rankH, =ranko and .¢/, is Artinian.

Since Vp(x),q(x) € K[x], {p(x) +15,q9(x) +1,), = (p(x),q(x)),, we see that (),
induces an inner product on ./, .

Definition 4.1.3 The variety ¥%(I,) is called the characteristic variety of o.

The Hankel operator can be interpreted as an operator on sequences:

H, : fo(KY) — (K™)"

p:(p[j)ﬁEBCN” = ((Zpﬁo-i_;_ﬁ) ;)(Zpﬁo-z.g.[j) )
p<B aEN? peB aEN"

where £,(K"") is the set of sequences € K" with a finite support and (0?) e is the
sequence in K associated to the element o € R* (see chap. 2). This definition applies
for a field K of any characteristic.

Given sequences o = (04,...,0,,) with o; = (Gi)aENn e KY fori =1,...,m, the
kernel of H, is the set of polynomials p = >},_, ppxP such that p = Dpen PpO g, for
alla e N"and i = 1,...,m. This kernel is also called the set of (simultaneous) linear
recurrence relations of the sequences (07 )yeyn, i =1,...,m.

The operator H, can also be interpreted, via the Z-transform of the sequence p x o
(see Section 2.3), as the following operators on series:

H, :K[x] — K[[=]]"

p=>.ppxP (Z (Zp,ga;+ﬂ)z“,...,z(Zpﬁag;ﬁ)za).

peB aeN" \ BeB aeN" \ feB
In the terms of series in y, the operator H,, is operating as follows:

H,:K[x] — K[[y]]"
p = (p(ay)(o-l)::p(ay)(o-m))

Its kernel is spanned by the differential polynomials p(J, ), which cancel simultaneously
T1yeees Opye

Example 4.1.4 If 0 = ¢ € R" is the evaluation at a point & € K", then H,:peR—
p(&)es(y) € R". We easily check that rankH,, = 1 since the image of H,, is spanned by
e:(y) and that I, = (x; — &y, ..., x, — ).
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Example 4.1.5 If 0 = (04,...,0,,) with 0; = erzl w;(¥)eg (¥) then, by Lemma 2.2.1,
the kernel I is the set of polynomials p € K[x ] such that Vq € K[x ], p is a solution of the

following system of partial differential equations:

Z w i (A)pg)E)=0,k=1,...,m.

4.1.1 Truncated Hankel operators

In the sparse reconstruction problem, we are dealing with truncated series with known
coefficients o, for a in a subset a of N". This leads to the definition of truncated Hankel
operators.

Definition 4.1.6 For vector spaces V CR, W = (W,,...,W,,)) CR" and 0 = (04,...,0,,)
with o, € (V - W;)" where V-W; = (v-w|v € V,w € W,) C R we denote by H"" the follow-
ing map:

vw ., — *
HY v - wi=]]w,
i=1

p = ((p * 0-1)|W19 con(px O'm)|wm)
It is called the truncated Hankel operator on (V, W).

When m =1, 0 € R and W =V, the truncated Hankel operator is also denoted H(‘j’.
When V (resp. W) is the vector space of polynomials of degree < d € N (resp. < d; € N),
the truncated operator is denoted H? where d’ = (d.,...,d").

If B={b,,...,b,} (resp. C' ={c},...,c,}) is a basis of V (resp. W,), then the matrix
of the operator H" in B and the dual basis of C = (C",...,C™) has a block structure of

the form
<U1|b1011> T (0'1|brC11>

(0'1|b1‘331> "'(0'1|brcr1])

[H2C] =

(O'l|b1Cim>"'<O'1|brC£n>

i (01|b10;7n>“'<0'1|brc;7n) ]

Hereafter, we will use the notation [H5] = [{(o | bjcf) cheC,b;eB-

Example 4.1.7 Let 0 = (eq1,0),¢1.2)) € K[x1,x,1)5, B = [1,x7, %5, X2, %125, x5], C =
(C1,Cy) = ([1,x1,x,],[1,x,,x,]). Then HC is composed of two blocks, which (i, j) entry
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is obtained by evaluating o, on the product of the i"* monomial of C, and the j™ monomials
inBfork=1,2:

11010 0
110100
qpc_ | 00000 0
o 11212 4
2 2 42 4 8
| 4 4 8 48 16

It is a matrix of rank 2 composed of two blocks of rank 1 (which rows are multiples of the
first row of the block).

Ifm=1,0€K[x],B= {xﬁ}ﬁeb and C = {x"}, .. are monomial sets, we obtain the

following truncated moment matrix of o:

[HeC1 = (o 1x7)) e peb-

ye€C

Its coefficients depend only on the sum of the indices indexing the rows and columns.

This is a characterization of the classical structure of Hankel matrices when n = 1
and B = {1,x,x%,...,x9}, C ={1,x,...,x¥} (see e.g. [BP94]). When n > 2, we have a
similar family of structured matrices, which rows and columns are indexed by exponents
in N" (or monolials) and which entries depends on the sum of the row and column indices.
These structured matrices called quasi-Hankel matrices have been studied for instance
in [MPOO].

4.2 Artinian Gorenstein Algebra

In this section, we analyse the properties of Artinian algebras associated to Hankel oper-
ators, in the case m = 1.

Given o € K[[y]], we consider its Hankel operator H, : p € K[x] — px o € K[[y]].
The kernel I, of H, is an ideal and the elements p x o of imH, for p € K[x] are in
I7 = o/ where ./, =K[x]/I,: Yq€I,, (pxo |q)=(qgr0o|p)=0. If ., is artinian
of dimension r, then

imH, ={pxo |p€R} Clizbrzf;

is of dimension < r. Therefore, the injective map

5, A, — A
p(x) — plx)*xo(y)

induced by H,, is an isomorphism, and we have the exact sequence:

H,
0—-1,>K[x]— . —0. 4.1)
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Proposition 4.2.1 The inner product (., .), is non-degenerate on .o, =K[x]/I,.

Proof. By definition of I, if p € K[x ] is such that YVq € K[x ],

(p(x),q(x)), = (pro(¥) [ q(x)) =0,

then p x o(y) = 0 and p € I,. We deduce that the inner product (-,-), is non-generate
on ., =K[x]/I,. O
This is in fact a characterization of Gorenstein Artinian algebra, as shown in the following
theorem:

Theorem 4.2.2 Let I C K[x ] be an ideal such that ./ = K[x]/I is Artinian. The following
properties are equivalent:

1. " is a free .of -module of rank 1 (spanned by o € .&/*).
2. There exists o € .o/* such that the inner product (., .), is non-degenerate on .o .
3. There exists an .«/-isomorphism A between .o/* and .« .
4. Hom _,(.o*, o) is a free .o -module of basis A.
If these properties are satisfied, .<f is called a Gorenstein Artinian algebra.

(see e.g. [EMO7a][chap. 8]).

Example 4.2.3 Let I = (x?,x2) C K[x;,x,]. Then .o/ =K[x,,x,]/I is an Artinian alge-

bra of dimension 4. Its dual is

ud*:IL: <1:J’1,J’2:}’1J’2> :@(ylyz)'

The inverse system I = .of* is generated by the element y,y,. It is a free .o/-module of rank
1, since p * y,¥, = 0 with p € K[x,, x, ] implies that

p(0,0) =0,3,(p)(0,0) =0, 3,(p)(0,0) = 0, ,3,(p)(0,0) = 0.

and that p € (x?,x2)or p=0in ..

A basis of .of is B = {1,x,, X5, X;X,}. The matrix of .,.),,,, in this basis is

— O O O
(el NoNe
o O = O
o OO+

It is invertible and (., .),, ,, is non-degenerate.
These two equivalent properties mean that ./ is a Gorenstein Artinian algebra.
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Example 4.2.4 Here is an example of a non-Gorenstein Artinian algebra. Let I = (x;,x,)* C
K[x;,x,]. Then .o/ = K[xy,x,]/I is an Artinian algebra of dimension 3. A basis of ./ is
B ={1,x,,x,}. Its dual is

=11 =(1,y1,¥2) = 2(¥1,>)-

The inverse system I+ = .o/* is generated by the two elements y,,y,. For any element
o € . of the form 0 =0y+ 0,y + 0, Y, € ", with o; €K, the matrix of (.,.), in the
basis B={1,x,,x,} of & is

o, O, Oy

o, 0 O

o, 0 O

It is of rank < 2. Thus (.,.), is degenerate and .o/ is not a Gorenstein Artinian algebra.

Proposition 4.2.1 and Theorem 4.2.2 implies that for c = K[x]" o # 0, o # 0, H,, of
finite rank, I, = ker H,, the Artinian algebra .o/, = K[x]/I, is Gorenstein. Conversely,
any Artinian Gorenstein algebra is of this type.

Proposition 4.2.5 For any Artinian Gorenstein algebra .o/ = K[x]/I with I an ideal of
K[x], there exists o € K[x]", such that I =kerH,,.

Proof. As .o = K[x]/I is Artinian Gorenstein, by Theorem 4.2.2 there exists o € .&*
such that o is a basis of the free .¢/-module .&/*:

A =I"=0*.o
This implies that the map

H,:K[x] —» &~
p — p*x0O

is surjective and that it induces an isomorphism between K[x ]/I, and ./* where I, =
kerH,. AsI C I, and dim .« = dim .&¢* < 00, we deduce that I =1 . a
This construction defines a correspondence between series o € K[[y]] of finite rank # 0
or Hankel operators H,, of finite rank # 0 and Artinian Gorenstein Algebras.

4.3 Hankel operators of finite rank

Hankel operators of finite rank play an important role in functional analysis. In one
variable and m = 1, they are characterized by Kronecker’s theorem [Kro80] as follows
(see e.g. [Pel98] for more details). Let £,(K") be the vector space of sequences € K" of
finite support and let o = (0 )iy € K". The Hankel operator H,, : (p;);cy € £o(KY) —
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(Zz Tt pl)keN € K" is of finite rank r, if and only if, there exist polynomials w,(u),...,
w,(u) €eK[u] and &, ..., &, € K distinct such that

o= w(k)EL,
i=1

with 2;1 deg(w;) + 1 = rankH,. Rewriting it in terms of generating series, we have

Hy:p=>,px' €K[x]— >, (Zz 0k+zp1) }l;_:: = p » o is of finite rank, if and only if,

k r
o) =D o0 = D (e
: i=1

keN

with wq,...,w, € K[y]and &,,..., &, € K distinct such that 2;1 deg(w;)+1 =rankH,.
Notice that deg(w;)+ 1 is the dimension of the vector space spanned by w;(y) and all its
derivatives.

In the case of several variables, extensions of Kronecker’s theorem have been devel-
oped [Fli70], [Pow82], [AC16], [AC15], but without connecting the rank of the Hankel
operator with the decomposition of the associated symbol. The following result general-
izes Kronecker’s theorem, by establishing a correspondence between Hankel operators of
finite rank and polynomial-exponential series and by connecting the rank of the Hankel
operator with the decomposition of the associated series.

Theorem 4.3.1 Let 0 =(04,...,0,,) € (R*)™. ThenrankH, < oo, ifand only if, o, (y) €
PolExp(y) fork=1,...,m.

Ifoly)= Zirzl wy (¥)eg, (¥) with wy;(y) € K[y]and §; € K" pairwise distinct, then
rankH, = >0 (w14, .., wy,) where p(ws g, ..., wy;) is the dimension of the inverse
system 9(wy;, ..., w,,;) spanned by w; ;(y) and all their derivatives By"il e Sy";”a)k,i(y)for
a=(ay,...,a,)eN, k=1,...,m.

Proof. If H, is of finite rank p, then ./, = K[x]/I, = K[x]/kerH, ~ Im(H,) is of
dimension p and .¢/, is an artinian algebra. By Theorem 3.2.1, it can be decomposed as

a direct sum of sub-algebras
A=Ay O Dy

where I, =Q; N---NQ, is a minimal primary decomposition, ¥(I,) = {&;,...,&,} and
;. is the local algebra for the maximal ideal m,; defining the root §; € K", such that
o =K[x]/Q; where Q; is a m -primary component of I,,.

By Theorem 3.4.3, for k = 1,...,m, the series 0} € .&/) = Ii can be decomposed as
0= 0 (¥)e () 4.2)
i=1

with e (y) €Klyland w(¥)ez (y) € o = Qi ie. o€ Poléxp(y).
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Conversely, let us show that if, for k = 1,...,m, o(y) = Zirzl wy i (¥) ez, (y) with
w;(y) € K[y]\ {0} and &; € K" pairwise distinct, the rank of H, is finite. Using
Lemma 2.2.5, we check that I, = ker H, contains N[_,m Zl” where d; = max; {deg(w, ;)}.
Thus ¥(I,) € {&;,...,&,}, &, is an artinian algebra and rankH, = dim(Im(H,)) =
dim(K[x]/I,) = dim(.«,) < oo.

Let us show now that rank H, = > (w14, ..., w,,,). By construction,

rankH, = dim(R/kerH,) = dim((kerH,)!) = dim((M;, kerHUk)i) = dim(z Iik)
k=1

where H, :p €R— p*xo, €R"and I, =kerH, fork=1,...,m. Consider the Artinian
algebra .¢/; =R/I,, and its decomposition (3.3) as a direct sum of local algebras: .«/, =
®._, % .- Thus, we have the dual decomposition:

1 _ * o *
IO'k - "dak - ®l.:1=dk,£l'
By the exact sequence (4.1), ﬂ;k = Im(H,,) = {p oy | p € K[x]}. From Lemma
3.4.2, we deduce that szk*g_ is spanned by the elements u; ; x(p*x0y) =p*(Uy g, x0y) =
p*(wk () ee (y)) for p € K[x ], thatis, by w;(y) ¢;,(y) and all its derivatives with respect

to d . This shows that ,ef/’* P(wy;) ez, (y) where 9(w, ;) C K[y] is the inverse system
spanned by w;(¥). It 1mp11es that

k

r m r
Z IfJT_k = EB (Z @(wk,i) eii) = @ @(wl,ia ] wm,i) eii
i=1 k=1 i=1

k=1

1
IO‘

We deduce that rankH, = ».._, dim(2(wy;,..., wp:)) = Doy (w1 4. ., wp;). This
concludes the proof of the theorem. |
Here are some direct consequences of this result.

Proposition 4.3.2 If 0 = (04,...,0,,) with o, (y) = Z::l i (¥)ez, (¥) and wy ;(y) €
K[y]not all zero for k =1,...,m and &; € K" pairwise distinct, then we have the following
properties:

* The points &£,,&,,...,&, € K" are the common roots of the polynomials in I, =
kerH, = {p €K[x]| ¥q € K[x], (o|pq) = 0}.

* The inverse system of Q; is D(w1,...,w,;), where Q; is the primary component of
I, associated to &;.

Proof. From the previous proof of Theorem 4.3.1, we have

r r
1
= EBQi = @9(“1@---’%,0%
i=1 i=1

with Q" = 2(w,, ..., w,,;) es,. This shows that
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* Q; is m, -primary and ¥ (I,) ={&y,...,¢&,},
* the inverse system of Q; is Z(wq;,..., Wy ;) ¢z -

O
A special case of interest is when the roots are simple. We characterize it as follows:

Proposition 4.3.3 Let o(y) € (K[[y]])™. The following conditions are equivalent:

1. o (y) = Z::l wy ez, (¥), with {wq;,...,w,;} € Knot all zero and &; € K" pairwise
distinct.

2. The rank of H, is r = #V¥(I,) and the multiplicity of the roots &,,...,&,. € ¥(I,) is 1.
3. Abasisof A iser,... ¢z .

Proof. 1= 2. By theorem 4.3.1, the rank of H, is ».,_, (w1 ,...,w,) the dimension
of the space spanned by w;; and their derivatives. As {w;;,...,w,,;} C K are not all
zero, rank H, = r and the multiplicity of the root &; is u(w;;,...,w,;) = 1.

2 = 3. As the multiplicity of the roots &; is 1 and o € Ii, by Theorem 3.4.3 o} =
2:21 wy; ¢z, With w; = 0 or deg(wy ;) = 0. By Theorem 4.3.1, we have

r r
1
"d; = IU‘ = @ @(O)U, o wm,i)egi = @ Kegi'
i=1 i=1

This shows that e, ,..., ¢ is a basis of ./

3= 1.As ¢ ,...,¢; isabasis .« , the points &; € K" are pairwise distinct. As oy €
o, there exists w, ; € K such that o} = Zirzl wy ¢, If all the coefficients wq ;, ..., W, ;
vanish then dim(.¢f}) < r, which is contradicting point 3. Thus w, ..., w,,; are not all
Zero. o

Given a Hankel operator H,, of finite rank r, it is clear that the truncated operators will
have at most rank r. We have a converse property, so-called flat extension property, which
gives conditions under which a truncated Hankel operator of rank r can be extended to
a Hankel operator of the same rank (see [.M09] and extensions [BCMT10], [BBCM13],
[Moul6]).

Theorem 4.3.4 Let V,V’ C IK[x ] be vector spaces connected to 1, such that xy,...,x, €V
and let o € (V- V')*. Let B C V, B’ C V' such that Bt c V,B"* c V' IfrankH(‘T/’V/ =
ranng’B/ = r, then there is a unique extension & € K[[y]] such that & coincides with
o on (V -V’) and rankH; = r. In this case, ¢ € POLYEX P with r = u(F) and
Iy = (keer’B/).

We will use this property in a decomposition method to test when to stop (see section
4.6).
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4.4 Decomposition of series

The sparse decomposition problem of series ¢ € K[[y]] consists in computing points
{&1,...,&,} < K" and weights w,(y) € K[y] such that 0 = >_, w;(y) e (¥). In this
section, we describe how to compute this decomposition from the Hankel operator H,.

We recall classical results on the resolution of polynomial equations by eigenvalue
and eigenvector computation, that we will use to compute the decomposition. Hereafter,
o/ = K[x]/I is the quotient algebra of K[x ] by any ideal I and .&/* = Homy (.«/,K) is
the dual of .«/. It is naturally identified with the orthogonal I+ = {A € K[[y]] | Vp €
I,{(A,p) =0}. In the reconstruction problem, we will take I =1,.

In the first step of method, we will determine a basis of .«/, = K[x]/I,. We will use
the following result:

Lemma 4.4.1 Let B = {b,,...,b,} C K[x], C = {Cy,...,C,} C (K[x])™. If the matrix
HEC = ({oklbjcisc))e; sec,b,en is invertible, then B is linearly independent in .o/,

Proof. Suppose that H)“ is invertible. If there exist p = >} p;b; (p; € K) such that
p=0in.¢,. Thenpxo =0and Vq €R, k =1,...,m (o|pq) = 0. In particular, we

have
.

j=1
B,C . . . _ . . . . .
As H_>* is invertible, p; = 0 for j = 1,...,r and B is a family of linearly independent
elements in .o7. a

Notice that this result depend only on the classes of b;, ¢, ; modulo I, (i.e. in .¢/,;)

since
(ol (b; + p)(cj +P)) = (ol bicy ;)
for any p,p’ €1,.

The converse of Lemma 4.4.1 is not necessarily true, as shown by the following exam-
ple in one variable: if m=1, o = y, then I, = (x?), ./, = K[x]/(x?) and B = C = {1}
are linearly independent in ./, but H> = ({o|1)) = (0) is not invertible.

This lemma implies that if dim .«/, < +00, |B| =|C| = dim .«/, and H>¢ is invertible,
then B is a basis of .«/.

If m=1and B, C c K[x] such that |B| = |C| and Hg’c invertible, we can also deduce
from Lemma 4.4.1 that C is linearly independent in .¢/, since H>® = (H2¢)" is invertible.

By quotient by I, = ker H, the Hankel operator H induces the map

o, — ()"
p — pxo.
For g € K[x ], the operator of multiplication by g in ./, is
My A, — A,
p — &P
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Lemma 4.4.2 For any g € K[x ], we have

Hyeo = 55 0 M. (4.3)
Proof. This is a direct consequence of the definitions of J,,,, 5, and #,. O

The transpose operator of multiplication by g is (by definition of the tranposition)
//tgt A
o — gxo.

When m = 1, we have an additional relation:

Lemma 4.4.3 For any g € K[x] and o € K[x ], we have
Hgug = My 0 H. (4.4)

Proof. This is also a direct consequence of the commutativity of the product in .«/, and
the definitions of £, 7, and /. O
From Relation (4.3) and Proposition 3.3.2, we have the following property.

Proposition 4.4.4 Ifo(y)=>..

o1 Wi(¥)eg, (y)with w; € K[y]\{0} and &; € K" distinct,
then

* for dll g € .o/, the generalized eigenvalues of (.., 7,) are g(&;) with multiplicity
wi=ulw;), i=1...r,

* the generalized eigenvectors common to all (5,
scalar - 6, (eg), ..., (e ).

H,.) with g € o are - up to a

*0 9

Remark 4.4.5 If we take g = x;, then the eigenvalues are the i-th coordinates of the points

g5

4.4.1 The case of simple roots

We consider the case where m = 1 and I, defines simple roots, that is o is of the form
o(y)= Z:Zl w;ez (¥) with ; € K\ {0} and &; € K" distinct, computing the decompo-
sition reduces to a simple eigenvector computation, as we will see.

By Proposition 4.3.3, {e;,...,¢; } is a basis of .&/7. We denote by {u, ,...,u; } the
basis of .¢7,, which is dual to {e ,..., ¢ }, so that Va € .«/,,

r r

a(x)= Z (ez @) ug (x) = Z a(&)ug (x). (4.5)

i=1 i=1

From this formula, we easily verify that the polynomials u; ,u; ,...,u, are the interpo-
lation polynomials at the points £, &, ..., &, and satisfy the following relations in .< :
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1 ifi =j,
0 otherwise.

 ug (€)=

© ug (%) =ug (%)
« D u(x)=1.

Proposition 4.4.6 Let 0 = 2:21 w;ez (¥) with &; pairwise distinct and w; € K\ {0}.
Thebasis {u; ,...,u; } is an orthogonal basis of .</,, for the inner product (., ), and satisfies
(ug,1), =(olug)=w; fori=1...,r.

Proof. Fori,j=1...r, we have (ugi,ugj)a = (o | ugl_ugj) = 212:1 wkugi(ik)ugj(ik).
Thus
(ugougdoe = { 0 otherwise

and {ug ,...,u, } is an orthogonal basis of .</,. Moreover,

(ugi: o =(o| ug) = Z wkuéi(gk) = w;.
k=1

Proposition 3.3.2 implies the following result:

Corollary 4.4.7 If g € K[x] is separating the roots &;,...,&, (ie. g(&;) # g(&;) when
i #j), then

* the operator ./, is diagonalizable and its eigenvalues are g(&,),...,8(&,),

* the corresponding eigenvectors of #, are, up to a non-zero scalar, the interpolation
polynomials u; ,...,u; .

* the corresponding eigenvectors of //tgt are, up to a non-gero scalar, the evaluations
251,...,2€r.

A simple computation shows that H,(u; ) = w;e; (y) fori = 1,...,r. This leads to the
following formula for the weights of the decomposition of o:

Proposition 4.4.8 If 0 = D, w,e; (y) with &; pairwise distinct and w; € K \ {0} and
g € K[x]is separating the roots £, ..., &,, then there are r linearly independent generalized
eigenvectors v,..., Vv, of (¥,.,, 5;), which satisfy the relations:

(olxv) = & {olv)forj=1,...,n,i=1,...,r
r

W) = Xt vl o)

i=1
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Proof. By Lemma 4.4.2 and Corollary 4.4.7, the eigenvectors u; ,...,u; of .#, are
the generalized eigenvectors of (#€,,,, 7,). By Corollary 4.4.7, v, is a multiple of the
interpolation polynomial u £ and thus of the form v,(x) = v,(§;)u,, (x) since u, (&;)=1.

We deduce that u; (x) = (g 5vi(x). By Proposition 4.4.6, we have

1
w; =(0 |ug)=—=(o vy,
W (&)
from which, we deduce the decomposition of o = Z: | VE )(0 | vi) ez (¥). It implies
that

(o] Xjugi) = Z wkgk,jugi(gk) = gi,jwi = gi,j(o- | ug,.)-
k=1
Multiplying by v,(&;), we obtain the first relations. a

4.4.2 The case of multiple roots

We consider now the more general case where m =1 and o is of the form

o= Z w;(¥)e: (¥)
i=1

with w;(y) € K[y] and &; € K" pairwise distinct. By Theorem 3.2.1, we have
Ao = Aoe, @D Ay

where .o/, - ~K[x]/Q; is the local algebra associated to the m, -primary component Q;
of I,. The decomposition (3.3) and Proposition 3.4.1 imply that ./, . is a local Artinian
Gorenstein Algebra such that u; * o is a basis of A . The operators ., of multiplica-
tion by the variables x; in .¢/, for j=1,...,n are commutlng and have a block diagonal
decomposition, corresponding to the decompos1t10n of .« .

It turns out that the operators M, have common eigenvectors v;(x) € ./, .. Such
an eigenvector is an element of the socle (0 : m;) ={v € &, | (x;—&;;)v =0,j =

,nt=(Q;: mgi)/Qi-

In the case of an Artinian Gorenstein algebra .</, -, the socle (0 : m; ) is a vector
space of dimension 1 (see e.g. [EMO07b] [Sec. 7.1.5 and Sec. 9.5] for a simple proof).
A basis element can be computed as a common eigenvector of the commuting operators
My, The corresponding eigenvalues are the coordinates &; 1,...,&; , of the roots &,
i=1,...,r

For a separating linear form I(x) = [;x; + - +[,x, (such that I(§;) # I(&;) if i # J),
the eigenspace of ./ for the eigenvalue [(&;) is the local algebra .¢/; associated to the
root &;. Let B; = {b;,...,b; , } be a basis of this eigenspace. It spans the elements of
/., which are of the form u a for a € .¢/, where u,_is the idempotent associated to &;
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(see Theorem 3.2.1). In particular, the eigenspace of ./, associated to the eigenvalue
[(&;) contains the idempotent u, , which can be recovered as follows:

Lemma 4.4.9 Let B; = {b;,...,b;, } be a basis of ./: and U; = ({0 | b; x))x=1,_,,- Then
(HZ-P)'U, is the coefficient vector of the idempotent u . in the basis B; of .o/ .

Proof. As the idempotent u,, satisfies the relation ué = u;, in ., and .o, = u; A,
we have

<ug *O.lblk> (0|u£ lk)—<0'|b1k)

and U; = ((0 | )b; g k=1, is the coefficient vector of u, o in the dual basis of B; in

./} . By Lemma 4.4.1, as B; is a basis of .¢/; , HPPi is invertible and (H2-%)~'U; is the
coefﬁc1ent vector of u,, in the basis B; of ./ . O

Using the idempotent u., we have the following formula for the weights w;(y) in
the decomposition of o:

Proposition 4.4.10 The polynomial coefficient of e (y) in the decomposition of o is

)= D g o | =€) L (4.6)

aEeNn

Proof. By Theorem 4.2.2 and relation (3.3), we have

ug *o = w(yes ().

B _rey — a! ifa= /3 . .
As(yPe: (y) | (x —&)%) { 0 otherwise * V€ deduce the decomposition (4.6), which
is a finite sum since w;(y) € K[y]. O

4.5 Decomposition algorithm

The results of the previous section show that the decomposition of o can be deduced
from the generalized eigenvectors of (,,,, 7).

This is summarized in the following algorithm, which computes the decomposition
of o, assuming a basis B of .« is known.
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Algorithm 4.5.1: Decomposition of polynomial-exponential series

Input: the (first) coefficients o, of a series o € K[[y]] for @ € a c N" and bases
B={by,...,b.},B={bj,...,b’}, of &, such that (B"- BT) C (x).

1. Construct the matrices Hy = ({0 | b;b;))<; j<, (resp. Hy = ({0 | x¢b}b;))1<; j<,) Of

5, (resp. 7, .,) in the basis B of .</,;

2. Take a separating linear form I(x) = [;x; + -+ + [, x,, and construct
H = Z:‘l:l LH; = ({0 | 1b{b;))<ij<rs

3. Compute bases B;,i = 1,...,r’ of the generalized eigenspaces of (H;, H,);

4. For each basis B; = {b; ,...,b; , }, compute U; = ({0 | b; 4))1, ., and
ui = (Hgi’Bi)_lui;

5. Compute common eigenvectors v; € (B;) i = 1,...,r’ of all the pencils (H,, H,),
k=1,...,nand &; = (&;,,...,&;,) such that (H, — &, Hy)v; = 0;

6. Compute w;(y) =D, (U *o | (x — 51-)“){1—7;

Output: the decomposition o(y) = Z:zl coi(y)egi (¥).

To apply this algorithm, one need to compute a basis B of ./, such that o is defined
on B -B* where B = U"_ x;BUB. In Section 4.6, we will detail an efficient method to
compute such a basis B and a characterization of the sequences (o ,),e4, Which admits a
decomposition of rank r.

The second step of the algorithm consists in taking a linear form I(x) = [;x; + -+ +
l,x,, which separates the roots in the decomposition (I(&;) # I(§;) if i # j). A generic
choice of 1 yields a separating linear form. This separating property can be verified a
posteriori, by checking that there are r distinct generalized eigenvalues. Notice that we
only need to compute the matrix H; of 4, in the basis B of ./, and not necessarily all
the matrices H,.

The third step is the computation of generalized eigenvectors of a Hankel pencil. The
other steps involve the application of o on polynomials in B.

The fifth step computes eigenvectors v, ..., v, common to all the pencil of matrices.
Efficient methods as in [GT09] can be used to computed them from (B;) when the eigen-
value is not simple. In the case of a simple eigenvalue, step 5 can be removed since the
vector u; computed in step 4 or the element b, ; in the basis B! is a common eigenvector.

In step 6, only a finite number of terms (u; » o|(x —&;)*) need to be computed. If the
weight w; is are constant, its computation in the last step can be replaced by w; = (o |u;).

Notice that the weights w; are recovered directly from the polynomials u; and that it
is not necessary to solve a Vandermonde linear system to compute them as in the pencil
method (see Section 1.1).
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4.5.1 Example

We illustrate the method on a sequence o, obtained by evaluation of a sum of exponen-
tials on a grid.

We consider the function h(u;,u,) = - 2112%2—-3"  Its associated generating
seriesis o = ZaENZ h(a)};l—(:. Its (truncated) moment matrix is

[ h(0,0) h(1,0) h(0,1) 4 5 7 5 11 13

h(1,0) h(2,0) h(1,1) 5 5 11 -1 17 23

glveredtand] _ | h(0,1) h(1,1) h(0,2) | 7 11 13 17 23 25
g - . . . I

-1 17 =31 23 41
1 17 23 23 41 47
3 23 25 41 47 49

— =

We compute B = {1, x;, x,}. The generalized eigenvalues of (H, .,,H,) are [1,2,3] and
corresponding eigenvectors are represented by the columns of

associated to the polynomials u(x) = [2—1 x;—3 x,,—14X,,3 X;—3 X,]. By computing
the Hankel matrix

(olu,) (olu,) (olus)
H([Tl’xl’xﬂ’u = | (olxuy) (olxju,) (olxuz) | = 1 2 3
(olxuy) (olxuy) (olxus) 1 2 1
we deduce the weights and the frequencies (1, 1),(2,2), (3, 1), which corresponds

to the decomposition o = e?1%72 4 3e201%2V2 — 29142 and h(uy,u,) = 2+ 3 - 24tz — 3u,

4.5.2 Example

Consider the following symmetric tensor of order d = 4, that is in the vector space
K[x, X1, X, ]4) of homogeneous polynomials of degree d :

_46 x24 - 200 X1X23 - 228 X12X22 - 296 X13X2 + 34 X14

By apolarity (see Section 1.2.2), we associate to v the dual element y* : p — (3, p),; €
K[x]4;"- The Hankel matrix associated to v* in degree 2, 2 for the set B = {1, x;, x5, X3, X x5, X3}
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indexing the rows and columns is

2
-14 4 -32] (-20
22— 10)| (-32] (-20) (-24
P T
—2 4 32 34 —74 -38
-14 -32 -20 -74 —38 —50
| -10 —20 24 38 —50 —46

For B ={1,x,,x,},

Hi’f _ qu/?),*xlB _ Hz,*sz _
-1 -2 -6 -2 -2 14 —6 —14 -10
-2 -2 14 —2 4 =32 —14 —-32 =20
-6 —14 -10 —-14 —-32 —-20 —-10 —20 —24
The matrix of multiplication by x, in B = {1, x;, x,} is
0 —2 -2
M,=(Hy Y 'H* = 0 3 3
1 g2

Its eigenvalues are [—1, 1,2] and the eigenvectors:

NI—= N+

that is the polynomials U(x) = [ %xl — %‘ X 2—%x1 — %xz —1+3x;+35%, ] We
deduce the weights and the frequencies:

Hy el = 1x3 1x1 —3x2

x —1 x 1 X 2

This gives the weights 1, 1,—3 and the frequency points (3,—1), (1, 1), (2, 2) correspond-
ing to the decomposition

YY) =ea-(¥y)+eq1—3epy(y)+ o(y)*
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and the tensor decomposition

'l/) =(x0+3xl—x2)4+(xo+x1+X2)4—3 (x0+2X2+2x2)4

4.6 Border basis, orthogonal polynomials

An important step in the decomposition method consists in computing a basis B of .<,,.
In this section, we describe how to compute a monomial basis B = {x’} and two other
bases p = (pg) and q = (qp), which are pairwise orthogonal for the inner product (-, ),:

(1 ifp=p
{Pp>ap)o = { 0 otherwise.

Such pairwise orthogonal bases of .¢7,, exist, since ./, is an Artinian Gorenstein algebra
and (-, ), is non-degenerate (Proposition 4.3.2).

To compute these pairwise orthogonal bases, we will use a projection process, similar
to Gram-Schmidt orthogonalization process. The main difference is that we compute
pairs pg,q of orthogonal polynomials. As the inner product (-, ), may be isotropic, the
two polynomials pg, g may not be equal, up to a scalar.

The method proceeds inductively starting from b = [ ], extending the monomials basis
b with new monomials x%, projecting them onto the space spanned by b:

Pa=X"— D (x*,q5),D;
peb

and computing q,, if it exists, such that {p,,q,), = 1 and (x?,q,), = 0 for B € b. Here
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is a more detailled description of the algorithm:

Algorithm 4.6.1: Orthogonal bases
Input: the coefficients o, of a series 0 € K[[y]] for a € a C N".

Letb:=[]; b :=[];d=[];n:=[0];s:=a;s :=a;l:=0;

while n # 0 do
l:=1+1;

for each a € n do

a) compute p, =X*— 0 5(X%,qp)oDp;
b) find the first o’ € s’ such that x* p,, € (a) and (x*,p,), # 0;
¢) if such an o’ exists then

let q, 1= 7 o= (x* = Spen(x,Pp)ods )

add a to b; remove a from s;

add o’ to b’; remove o’ from s’;
else

add a to d;

end
n :=next(b,d,s) ;

end
Output:
e monomial setsb=[f,,...,5.]Ca, b =[f;,...,p/]Ca
* pairwise orthogonal bases p = (pg ), q = (qp) for (:,"),.

« the relations p, :=x*— > _ (x*,q,),pp, for a € d.

The algorithm manipulates the ordered lists b,d, s, s’ of exponents, identified with
monomials. The monomials are ordered according to a total order denoted <. The index
[ is the loop index.

The algorithm uses the function next(b, d,s), which computes the set of monomials
a in dbnN's, which are not in d and such that a + b’ C a.

We verify that at each loop of the algorithm, the lists b and s (resp. b’ and s’) are
disjoint and bUs = a (resp. b’ Us’ = a).

We also verify by induction that at each loop, (x*) = (ps | B € b) and (x”) = (g, |
p €b).
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The following properties are also satisfied at the end of the algorithm:

Theorem 4.6.1 Letb=[f,,..., B, b =[B,....,8/ 1, p=[pp----Pp. L Aa=1[ap,--->qp,]
be the output of Algorithm 4.6.1. Let V = (x®"). If there exists a vector space V' connected
to 1 such that x®" c V' and V - V' = (x?). Then o coincides on (x®) with the unique series
6 € K[[y]] such that &,«) = 0 and rankH; = r and we have the following properties:

e (p,q) are pairwise orthogonal bases of .</5 for the inner product (-, ) 5.

e The family {pa =x*—>_ (x% 4p.)oPp,> A € d} is a border basis of the ideal 15, with
respect to x°.

e The matrix of multiplication by x, in the basis p (resp. q) of .5 is M := ((0'|kaﬁﬂ/5i>)1<i,j<r
(resp. MJ).

Proof. By construction, V = (x"") is connected to 1 and x® contains 1, otherwise o = 0.
As V' contains x* and V - V/ = (x?), we have Ya € db,x* - x” c x®. Thus when the
algorithm stops, we have n = () and b = d. By construction, for a € d the polynomials
Py = X°* —Zﬁeb(xa,qﬁ)(,pﬁ are orthogonal to (g | B € b) = (x*). As a € d, for each
v/ € V', we have moreover (p,,v’), = 0.

A basis of V is formed by the polynomials p, for a € b* since (ps | B €b) = (x*) and
Po =X*+ b, with b, € (x°) for a € d = 3b. The matrix of H""" in this basis of V and in

a basis of V', which first elements are dp,>--->qp,, is of the form

v (L 0
w=( 1 o)
where I, is the identity matrix of size r. The kernel of H(‘T”V/ is generated by the polyno-
mials p, for a € d.

By Theorem 4.3.4, o coincides on V -V’ = (x?) with a series & such that x” is a basis
of .o/, = K[x]/I; and I = (ker H}"") = (Po)uca-

As p, =x*+ b, with a € b and b, € (x°), (p,)4cs1 is @ border basis with respect to
xP for the ideal I;, since x” is a basis of of .e/;.

This shows that rank H; = dim.«/; = |b| = r. By construction, (p,q) are pairwise
orthogonal for the inner product (,-),, which coincides with (-,-)5 on (x*). Thus they
are pairwise orthogonal bases of .Z; for the inner product (-, ) 5.

As we have XyPp, = Zl.r:l(xkpﬁj,qﬂi)(,pﬁi, the matrix of multiplication by x, in the
basis p of .« is M := ((xkpﬁj,qﬁi)a)lgi,jgr = ((olxkpﬂjqﬁi))lgi’jgr. Exchanging the role
of p and q, we obtain M, for the matrix of multiplication by x, in the basis q. a

Remark 4.6.2 If the polynomials p,,q, are at most of degree d, then only the coefficients
of o of degree < 2d + 1 are involved in this computation. In this case, the border basis and
the decomposition of the series o as a sum of exponential polynomials can be computed from
these first coefficients.
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Remark 4.6.3 When the monomials in s are chosen according to a monomial ordering <,
the polynomials p, = x*+ b,, a € d are constructed in such a way that their leading term
is x*. They form a Grobner basis of the ideal I;. To construct a minimal Grobner basis of 15
for the monomial ordering <, it suffices to keep the elements p, with a € d minimal for the
division.

Remark 4.6.4 The computation can be simplified, when (-, ), is semi-definite, that is, when
forall p € (x?) such that p? € (x*), we have (p, p), = 0 implies that Va € awith x*p € (x?),
(p,x*), = 0. In this case, the algorithm constructs a family of orthogonal polynomials
p=1[pp,>--->Pp, land q=[qp,,...,qp 1 with q5 = mpﬁi and we have b =Db'. Indeed,
in the while loop for each a € n, either {p,,p,)s = 0, which implies that Ya' € t with
x¥p, € (x2), (x¥,p,)e =0, so that a €d, or (p,,Py)y = (X%, P,) s # 0 and the first o’ €t
such that (x* ,p,), is @’ =a €b.

If K =R and o is semi-definite positive, then the polynomials pgp, are classical

Pp; :P[}i)cr
orthogonal polynomials for {-,-),.

We can now describe the decomposition algorithm of polynomial-exponential series,
obtained by combining the algorithm for computing bases of .« and the algorithm for
computing the frequency points and the weights:

Algorithm 4.6.2: Polynomial-Exponential decomposition
Input: the coefficients o, of a series 0 € K[[y]] for a € a C N".

* Apply Algorithm 4.6.1 to compute bases B = x?, B’ = x? of ./, ;

e if V' D B’ s.t. (V/-B*) = (x*) then
Apply Algorithm 4.5.1.

Output: the polynomial-exponential series Zirzl w;(¥)es (¥) with w,(y) € K[y],
&; € K" with the same Taylor coefficients o, as o for a € a C N".

4.6.1 Examples

Example 4.6.5 Let n =1 and o(y) = % € K[[y]] with 0 < d and a # 0 € K.

In the first step of the algorithm, we take p; = 1 and compute the first i such that
(x%,p;), is not zero. This yields b=[1], b’ =[x¢] and q; = x¢.

In a second step, we have p, = x — {x,q,),p; = x. The first i such that {x',p,), is not
zero yields b=[1,x], b’ =[x%, x4 and q, = x¥ ' — (x4}, p;) ,q; = x4

We repeat this computation until b=1[1,...,x%], b’ = [x¢,x%,..., 1] with p,. = x,
g =x4fori=0,...,d.

In the following step, we have p as1 = x¥ 1 —(x4 q,) o p1— - —(x¥"1,qa) g Pra = X
The algorithm stops and outputs b=[1,...,x%], b’ =[x, x4, ..., 1], pyan = x¢*1.

d+1
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Example 4.6.6 We consider the function h(uy,u,) = - 22" —3%_ Jts associated

generating series is 0 = ZaeNz h(a)%. Its (truncated) moment matrix is

[ h(0,0) h(1,0) h(0,1) --- ] 4 5 7 5 11 13
h(1,0) h(2,0) h(1,1) 5 5 11 -1 17 23
glvmredand] _ | h(0,1) h(1,1) h(0,2) 7 11 13 17 23 25
o . . . 5 —1 17 —31 23 41
11 17 23 23 41 47
| 13 23 25 41 47 49

1

At the first step, we have b = [1], p = [1], q = [Z]' At the second step, we compute

b= [Lxl’le P= [Lxl - %9)(2 + gxl _4] = [plﬁpxlapxz] and q= [%pl’_%pxla ziArpxz:I'
At the third step, d = [x?,x,x,,x5] and the algorithm stops. We obtain the following
generators of kerH,:

px% == xf+x2—4xl+2

pX1X2 X1X2—2X2—X1+2

P2 = X5—3x,+2

2

We have modulo ker H:

5
X1p1 = D (01P1.a1)ePi =P+ P

- 4
5 91
X p, = Z<X1Pz,ql'>api:_EP1+%P2_P3
96 1
X ps = Z(xlpg,qi)api=£pz+gp3

1

The matrix of multiplication by x, in the basis p is

M, =

O R Al
2
=Rl ©

Its eigenvalues are [ 1,2, 3] and the corresponding matrix of eigenvectors is

3 _1

4 4
R
5 51

I =

NN | =

U:=

1
2

that is, the polynomials U(x) = [2— % X, — % Xy, —1 4+ x,, % X, — % x,]. By computing the

Hankel matrix

e 1 3x2 3
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we deduce the weights and the frequencies (1,1),(2,2),(3, 1), which corresponds to
the decomposition o = 172+ 3e*112Y2—e2011Y2 gssociated to h(uy,u,) = 2+3-2"1742—3%,

4.7 Structured low rank decomposition of Hankel
operators

In this section, m = 1 and we consider Hankel operators associated to symbols o € K[x ]".

4.7.1 Simple roots

Leto=2._, w;ez. with w; € K\ {0}. Let us recall other relations between the structured
matrices involved in this decomposition problem, that are useful to analyse the numer-
ical behavior of the method. For more details, see e.g. [MP00O]. Such decompositions,
referred as Carathéodory-Fejér-Pisarenko decompositions in [YXS15]. They can be used
to recover the decomposition of the series in Pencil-like methods.

Definition 4.7.1 Let B = {b4,...,b,} be a family of polynomials. We define the B-Vandermonde
matrix of the points &4,...,§, € C" as

VB,g = ((egjlbi»lﬁi,er = (bi(gj))lﬁi,jﬁr'

By remark 3.3.3, if {e; ,...,¢; } is a basis of .¢/7 and B is a basis of .¢/,,, then Vg, is
the matrix of coefficients of ¢, ,...,¢; in the dual basis of B in ./} and it is invertible.
Conversely, if {e;,...,¢; } is a basis of .&/7, we check that V; ; is invertible and that
B ={b,,...,b,} is a basis of .« .

Proposition 4.7.2 Suppose that o = Z;zl weg, (¥) with &5,..., &, € K" pairwise dis-
tinct and wq,...,w, € K\ {0}. Let D, = diag(w,,...,w,) be the diagonal matrix associ-
ated to the weights w; and for g € K[x], let D, = diag(g(&,),...,g(&,)) be the diagonal
matrices associated to g(&,),...,g(&,). For any family B, B’ of K[x], we have

BB _

H}? = VpD,Vj,

BB _ _

Hgp = Vg gDyDVy, =V DD,V

If moreover B is a basis of ./, then Vy  is invertible and

(M) = VBngVngl
Proof. If 0 = Z,r(:l wiez (y) and B = {by,...,b,},B" = {b],..., b/} are bases of .¢/,,
then

i,j=1,...,r

HPY = [Z wkbg(sk)bj(gk)] =Vy DV, .
k=1



66 CHAPTER 4. DECOMPOSITION FROM MOMENTS

By a similar explicit computation, we check that H g;BU/ = VB,,ngDgVBt,g. Equation (4.3)

implies that (M;)t = Hfjf,(Hfi’B)‘l = VB,§DgVB_,§1' -

4.7.2 Multiple roots

The relations between Vandermonde matrices and Hankel matrices (Proposition 4.7.2)
can be generalized to the case of multiple roots. Let 0 = Z::l wr(¥)eg, (¥)with&q,..., &, €
K" pairwise distinct, w;(¥),..., w,.(y) € K[y]\ {0}. To deduce a decomposition of Hg’B/
similar to the decomposition of Proposition 4.7.2 for multiple roots, we introduce the
Wronskian of a set B = {b,,...,b;} C K[x] and a set of exponents I' = {y,,...,7,} C N"

at a point £ € K™:

Wy e = [%aﬂ(bixg)

J :|1<i<r,1<j<s

For a collection I = {I},...,I},} with I}, ...,T., C N" and points § = {£,,..., 5.} C K" let

WB,r,g = [WB,rl,gl’ cees WB,F,/,Er/]

be the matrix obtained by concatenation of the columns of Wereok=1,..., rl.

We consider the monomial decomposition w(y) = ZaeAk W o(x — & )* with wy , #
0. We denote by T}, the set of all the exponents a € A in this decomposition and all their
divisors § = (3, ..., 8,) with 3 < a. Let us denote by y4,...,7;, the elements of T}.

Let AZ’;k = [(vi + v))! @4y, 1<i j<s, With the convention that wy, ., = 0if y; +7v; /
€A, is not a monomial exponent of w,(y). Let Al be the block diagonal matrix, which
diagonal blocks are Affk’ k=1,...,r.

The following decomposition generalizes the Carathéodory-Fejér decomposition in
the case of multiple roots (it is also implied by rank deficiency conditions):

Proposition 4.7.3 Suppose that o = Z::l wi(¥)eg, (¥) with &,,...,&,, € K" pairwise

distinct, w1(y), ..., w.(y) €K[y]\{0}. Forg € K[x], g®w =[g(§,+9,)(w1),...,8(E+
9,)(w,.)]. For any set B,B’ C K[x] of size I, we have

BB _ T a7t
HEP = Wy AW,
B,B _ r t
HEP = Wy AT, Wi,

If moreover B is a basis of .9/, then Wy, p r and AL are invertible and the matrix of multi-
plication by g in the basis B of ./, is

B __ — Ir'y—1 —
M = Wit (AL Ageu Wyt



4.8. REAL POSITIVE SERIES 67

Proof. By the relation (2.3), we have

Hg,B’ = Z W(Fy 55 axn)(b;bj)(ék)}
k=1

1<i,j<l

By expansion, we obtain

(B, 3 )BBED = D | w0 (8X(B/D)(EL.

aEAL

By Leibniz rule, we have

. 9P (b)) 027 (b;)
2x(bb) =S 2P (b =t S S
x( i ]) [;tﬂ|(a_ﬂ)| x( 1) X ( ]) a'[;x /j] (a—ﬁ)'

We deduce that

Wi(Be -, 8 )JBDIED = D w0 8%(b/b)(EL)

a€A,
2P (b)) 2%7F (b))
= alwy T (E) (8
;Ak “ ﬁz B T (a—p) "
= WB’,Fk,EkAZ'ﬁk WBt,Fk,ik'

By concatenation of the columns of Wy, - and Wy, 1. - , using the block diagonal matrix

r : s B,B’ _ T t

A, we obtain the decomposition of H** =W/, » A o Wer e
By Lemma 2.2.5, we have

gxo = g(E+3,)wes, = Y (8@ wlee,.
k=1 k=1

Thus, a similar computation yields the decomposition: H?E = W, Ao Wire
g*xo >1, g®w "B[TI§
If B is a basis of .¢/,, then by Proposition 4.3.2, H>? is invertible, which implies that
Wy r ¢ and Ar are invertible. By Relation (4.3), we have

B _ B,B\—117B,B __ 17— ry-1 -
Mg - (HO- ) Hg*o' - WB,IE,g(Aw) Ag®wWB’I{’§'

4.8 Real positive series

In the case where all the coefficients of o are in R, we can consider the following property
of positivity:
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Definition 4.8.1 Anelement o € R[[y]] = R[x ]* is semi-definite positive if Yp € R[x ], {p,p) s =

(o|p?) = 0. It is denoted o > 0.

The positivity of o induces a nice property of its decomposition, which is an important
ingredient of polynomial optimisation. It is saying that a positive measure on R" with
an Hankel operator of finite rank r is a convex combination of r distinct Dirac measures
of R". See e.g. [Lau09] for more details. For the sake of completeness, we give here a
simple proof (see also [LLM"13][prop. 3.14]).

Proposition 4.8.2 Let o € R[[y]] of finite rank. Then o > O, if and only if,

-
o = E w; egi
i=1

with w; >0, §; € R".

Proof. If o =3 _ w; ¢ with w; >0, &; €R", then clearly Vp € R[x],

(o | p?) pr(é)

and o > 0.

Conversely suppose that Vp € R[x], (o | p>) = 0. Then p € I, if and only if,
(o | p?) = 0. We check that I, is real radical: If p** + 3. q; € I, for some k € N,
p,q; € R[x] then

0|p2k+Zq (o | p*) +Zalq =

which implies that (o | (p*)?) = 0, (o | ¢}) = 0 and that p*,q; € I,.. Let k' =[5]. We
have (o | (p¥)?) = 0, which implies that p¥ € I,. Iterating this reduction, we deduce
that p € I,. This shows that I is real radical and ¥(I,) C R". By Proposition 4.3.3,
we deduce that o = 2;1 w; ¢z, with w; € C\ {0} and &; € R". Let u; € R[x] be a
family of interpolation polynomials at ; € R™: u;(&;) = 1, u;(&;) = 0 for j # i. Then
(0 |u?) = w; €R,. This proves that o(y) = D,7_, w; ¢; (y) with w; >0, §; € R". |



Chapter 5

Applications

5.1 Sparse decomposition from generating series . . . ... .......
5.2 Convolution of finiterank . . . ... ... ................
5.3 Dirac measures from Fourier coefficients . . . . .. ..........
5.4 Polynomial-exponential sums from values . . . ............
5.5 Sparseinterpolation . .......... .. .. .. ...

5.1 Sparse decomposition from generating series

To exploit the previous results in the context of functional analysis or signal processing,

. . . . n
we need to transform functions into series or sequences KN .

Here is the general

context that we consider, which extends the approach of [PP13] to multi-index sequences.

We assume that K is algebraically close.

* Let Z be a functional space (in which “leaves the functions, distributions or sig-

nals”).

* LetSy,...,S, : F — Z be linear operators of #, which are commuting: S;0S; =

S;o0S;.
* Let A:heZ — A[h] € K be a linear functional on Z.

We associate to an element h € Z, its generating series:

Definition 5.1.1 For h € &%, the generating series associated to h is

o) = 3 ISy

aeN"

where $* =S§" 0.0 8% for a =(a,...,a,) €N".

69

(5.1)
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Definition 5.1.2 We say that the regularity condition is satisfied if the map h € F —
o,(y) € K[[y]] is injective.

We are interested in the decomposition of a function h € Z in terms of (generalized)
eigenfunctions of the operators S;. An eigenfunction of the operators S; is a function
E € & such that S;(E) = §E for j = 1,...,n with & = (&3,...,&,) € K". Generalized
eigenfunctions of the operators S; are functions E;, ..., E, € & such that S;(E;) = & ;E, +
DwMipEyfork=1,...,uand &,,...,§, €K.

The following proposition shows that if a function is a linear combination of general-
ized eigenfunctions, then its generating series is a sum of polynomial-exponential series.

Theorem 5.1.3 LetS,,...,S, becommuting operators of #. LetE, y,...,Ey,, ,...,,E.;,...,E, , €
Z be generalized eigenfunctions of Sq,...,S, such that for i = 1,...,r, j = 1,...,n,
k == 1, ey ,LLi,

Si(Eix) =& Eix+ Z m Eix
k'<k

. . . .. i
with & = (&;1,...,&;,) € K" pairwise distinct. Ifh =, _, > _ h; E;,, then the gener-
ating series o, has a unique decomposition as:

r

o) = D, o) e )

i=1

where w;(y) € K[y] If the regularity condition is satisfied, the decomposition uniquely
determines the coefficients h; ;. of the decomposition of h € Z.

Proof. By Lemma 2.2.4, in a decomposition of series as a polynomial-exponential func-
tion 2:21 w;(¥) ez (¥), the polynomials w;(y) € K[y] and the support {&;,...,&,} are
unique. Let N;; = S; — &, ;1d be the linear operator of ¢; = (E;,...,E;, ) such that
N;;(Ejx) = Dk mj.,k,Ej,k,. By construction, N;; is nilpotent of order < y; + 1 and its

matrix in the basis {E, ,,...,E;, } of ¢; is (mj{”]k,)k,k, (with m;Jk, =0 if k > k). As the
operators S; restricted to ¢; are &; ;Id+N;; and commute, we deduce that the opera-
tors N; ; commute for j = 1,...,n. By the binomial expansion of S% = S -+ 87 for

a=(ay,...,a,) € N" and the commutation of the matrices N; ;, we have

SUEQ)= . (“)5?‘ﬂNf(Ei,k),

B<a,fi<y; ﬁ

where (g) = (gi) fe (73‘:) and Nl.[j = Nfll o -Nl./i’;. As N, ; is nilpotent of order u,+1, this sum

involves at most (u; + 1)" terms such that §; < wu;, j=1,...,n.
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The generating series of E, ; is then

o) = 2 3 a5 )G

aeN" f<a,B;<u;

/

= Z A[Niﬁ(Ei,k)]y_/j Z g?/i;_:

Bisu p! o/eNn
B yP
= D AINP(E )15 () = 0 0)ee, (),
Bisu; p!

using the relation %(g) = %(a_;ﬁ),, exchanging the summation order and setting a’ =

a—f. We deduce thatif h = >, _ 22;1 hixEix, then 0,(y) = D51 @;(¥)eg (y) with
w;(y) =5 hixw; i (y) € K[y]. If the regularity condition is satisfied, the map h € & —
o,(y) € K[[y]] is injective and the polynomials w,;(y) k = 1,..., u; are linearly inde-
pendent. Therefore, the coefficients h;;, k = 1,..., u; are uniquely determined by the

polynomial w;(y) = >, hy o (¥). -

Definition 5.1.4 We say that the completness condition is satisfied if for any polynomial-
exponential series w(y)e:(y) with w(y) € K[y] and & € K", there exists a linear com-
bination h € & of generalized eigenfunctions of the operators S;, such that its generating

function is w(y)e:(y).
Under the completness condition and the regularity condition, any function h € &

with a generating series of finite rank can be decomposed into a linear combination of
eigenfunctions. We analyse several cases, for which this framework applies.

5.2 Convolution of finite rank

Let & = C*(R"), & be the set of functions in & with fast decrease at infinity (Vf €
&, Vp € C[x], |[pf|is bounded on R"), 0, be the set of functions in & with slow increase
at infinity (Vf € 0, |f(x)| < C(1 + |x|)N for some C € R,N € N), & be the set of
distributions with compact support (dual to &), &’ be the set of tempered distribution
(dual to &) and ﬁé be the space of distributions with rapid decrease at infinity (see
[Sch66]).

In this problem, we consider the following space and operators:

* F = 0, is the space of distributions with rapid decrease at infinity;
* S;:h(x) € 0. = x;h(x) € 0. is the multiplication by x;;

* A:h(x)€ 0.~ [h(x)dx € C.
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For any h € 0., for any a € N",
A[S%(h)] = J x%*h(x)dx

is the a™ moment of h. For h € 0/ and o), = D e f h(x )xa’é—jdx its generating series,
we verify that Vp € C[x], (o, | p) = f h(x)p(x)dx (i.e. the distribution h applied to p).
We check that

* the operators S; are well defined and commute

* a Dirac measure 6, with & = (&;,...,&,) € C" is an eigenfunction of S;: S;(6;) =
€;6¢. Similarly for a = (a,,...,a,) € N" and

* the Dirac derivation 5(511) Vf € C*=(Q), (5(£a)’f) = (_1)|alaxoi1 +-9%(f)(£)) satis-
fies
Si(5(§a)) = Xi5(§a) = 515(;) + 5(§a_ei)

with the convention that 5(;‘_81') =0 if a; = 0. It is a generalized eigenfunction of
the operators S;.

By the relation (5.2), the generating series of 6 (ga) is
O g = (5éa),e"'y) =y%:(y).

This shows that the completeness condition is satisfied.

To check the regularity condition, we use the Fourier transform & : f € 0, —
ff(x)e_ix'zdx € 0. It is a bijection between 0, and . (see [Sch66][Théoréme XV]).
Its inverse is F 7' : f € O} — (Zn)”ff(x)ei"‘zdx € 0y. Letiv: f(y) e Clly]ll —»
f(iy) e Clly]l.

. . / .
The generating series of f € g is

lal,,a
o(iy)=1o0s(y)= Z ff(x)x“l a}!' dx = ff(x)eix'ydx =2m)"Z7(f). (5.2)

acNn

This shows that the map f € g/ — o, € C[[y]] is injective and the regularity condition
is satisfied.
For f € 0/, the Hankel operator H,, is such that Vg € Clx],
.lal ., a

Hyo,(8) = fo(x)g(x)xaidx

|
aeNn a

— ff(x)g(x)eix'ydx=(27'C)"9_1(fg)-
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Using Relation (5.2), we rewrite it as Vg € C[x ],

Hg5(8) = F(fg) (5.3)

with ¢ = Z7(f) € 0.

From this relation, we see that the operator Hz-1() can be extended by continuity to
an operator Hg 5y : Oy — O).

The Hankel operator H,,, (or Hz-1(5)) can be related to integral operators on func-
tions defined in terms of convolution products or cross-correlation. For ¢ € &', the
convolution with a distribution v € @, is well-defined [Sch66]. The convolution opera-
tor associated to ¢ on g, is:

9, :d)eﬁC’Hcpﬂ,b:fgo(x—t)w(t)dt6,9”.

The image of an element v € @ is a tempered distribution in #’. The distribution ¢ is
the symbol of the operator §,,.

Using the property that Yy € &',Vy € 0", F (¢ xy) = Z(¢)Z(Y) € &’ and the
relation (5.3), we have for any ¢ € 0/,

Hya(5)(8) = Z 7 (fg) = ¢ x b = H,(¥),
with f = Z(p) e ¥, g = Z () € 0,,. We deduce that
H,=H,0oF (5.4)

withH, : g€ 0y, — F (F(p)g) €S
In the case where ¢ € Z0l&xp N 0y, the operator is of finite rank:

Proposition 5.2.1 Let ¢ = w(y)e;:(y) with w € C[y] and & € R". Then rank$), <
u(w).

Proof. By Taylor expansion of the polynomial w at x, we have Y €

H,(y) = J w(x —t)e*C Yy (¢)dt

= Zaa(w)(x)eif*J(—1)a;¢(t)e—i€'tdt.

acNn

This shows that £,(1)) belongs to the space spanned by 2% (w)(x)e*™ for a € N, which
is of dimension u(w) and thus rank $, < u(w). O

The converse is also true:
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Theorem 5.2.2 Suppose that ¢ € &' is such that the convolution operator $),, is of finite
rank r. Then its symbol ¢ is of the form

Y= Z w;(¥)ei, (¥).
i=1

with & =(&;1,...,8:,) ER", w,(y) € Cly] Therank r of §,, is the sum of the dimension
of the vector spaces spanned by w;(y) and all its derivatives 8},Ywi(y), y € N

Proof. Since % is a bijection between ﬁc’ and 0,;, the relation (5.4) implies that 9, is
of finite rank r, if and only if, H, : 6y, — 0), is of rank r. As the restriction of H,, to the
set of polynomials C[x ] C 6y, is of rank 7 < r =rank$),,, Theorem 4.2.2 implies that

Y= Z Z wi,ayaeg;(.}’)

i=1 a€A;

with & € C" distincts, A; C N" finite and 7 = 2:21 u(w;) where u(w;) is the dimension
of the inverse system of w; = ZaeAi w; ,y*%, spanned by w;(y) and all its derivatives. As
¢ € &' is a distribution with slow increase at infinity, we have &/ = i&; with £; € R".

By Proposition 5.2.1, we have r = rank$), < Z:lzl uw(w;) = 7. This shows that
rank §),, = 2:21 w(w;) and concludes the proof of the theorem. m|

We can derive a similar result for the convolution by functions or distributions with
support in a bounded domain 2 of R". The main ingredient is the decomposition ), =
H, 0%, which extends the construction used in [Roc87] for Hankel and Toeplitz operators
on L2(I) where I is a bounded interval in R.

By the generalized Paley-Wiener theorem (see [Sch66][ Théoreme XVI]), the Fourier
transform 7 is a bijection between the set & of distributions with a compact support and
the set of continuous functions f € C(IR") with an analytic extension of exponential type
(there exists A€ R, C € R, such that Yz € C",|f(2)| < CelnlF+zD) Let us denote by
&'(Q) the set of distributions with a support in 2, and by Z#(Q) = {Z (¢) | ¢ € &'(Q)}
the set of their Fourier transforms.

Theorem 5.2.3 Let Q,= be open bounded domains of R" with , T = 2+ Q C R" and
¢ € &'(Q). The convolution operator

9, Y e E) -~ f p(x —thp(t)dt € &'(T)

is of finite rank r, if and only if, the symbol ¢ is of the form

¥ = ILQZ w;(y)eg,(v)
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where & =(&;1,...,&;,) € C", w;(y) € Cly]. The rank r of §,, is the sum of the dimen-
sions u(w;) of the vector spaces spanned by w;(y) and all the derivatives 8yycol-(y), y € N™.

Proof. Using the relations V¢ € &'(Q),y € &'(E),
F (o) =F(p)F (),
and (5.3), we still have the decomposition
H,=H,o0 Z.
withH, : g € Z¥#(E) — F Y Z(p)g) € &(T). Thus 9, is of finite rank r, if and only
if, H,, is of finite rank r. As the rank of the restriction of H,, to C[x ] C 2 #/(E) is at most

r, we conclude by using Theorem 4.2.2, a result similar to Proposition 5.2.1 for elements
1) € &'(E) and the relation Z}(Z(¢)) = ¢ on Q. O

Similar results also apply for the cross-correlation operator defined as
Ny e > pxy =J4cp(x+t)1ﬁ(t)dt€5”.

Using the relation & (¢ x) = 9(90)9(1/)) (With & =¢co ZF Where c:zeC—zeCis
the complex conjugation), we have 55 =H,o ZF.As ' =F toc, we deduce that 53
and H,, have the same rank and the same type of decomposition of the symbol ¢ holds

when qu, is of finite rank.

Remark 5.2.4 To compute the decomposition of ¢ € &’ (resp. ¢ € &'(R2)) as a polynomial
exponential function, we first compute the Taylor coefficients of 0 z(,) = 9,(1), that is, the
values o, = (—i)!*.Z (x*¢)(0) for some a € a € N" and apply the decomposition algorithm
4.6.2 to the (truncated) sequence (T ) cq-

5.3 Dirac measures from Fourier coefficients

We consider here the problem of reconstruction of functions or distributions from Fourier
coefficients. Let T = (Ty,...,T,) € R? and Q= [ - znT 2n; L] c R". We take:

© 7 =L%);
* Si:h(x) € L*(Q) - ezn%h(x) € L*(9) is the multiplication by e*" ™

* A:h(x)€ 0~ [h(x)dx €C.
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For f € &'(2) with a support in Q and v = (v4,...,7,) € Z", the y-th Fourier coefficient
of f is

Yn — 2“11]7
o () (2n L. 2n L ) = ]ij()

Y l_ljll

Let o = (0,),ezn be the sequence of the Fourier coefficients. The discrete convolution
operator associated to o is ®, : (pg)pezn € L*(Z") — (Zﬁ oa_ﬁpﬁ) o € L*(Z™M). The
discrete cross-correlation operator of o is T, : (Pg)peyn € LA(7ZM) — (Zﬁ 0a+ﬁpﬁ) o
L*(Z"). 1t is obtained from I, by composition by % : (rg)gezn € L*(Z") — (p_p)pezn €
LX(7Z"): T, =®,02R.

A decomposition similar to the previous section also holds:

Theorem 5.3.1 Let f € L?(Q) and let o = (0, ) ez be its sequence of Fourier coefficients.
The discrete convolution (resp. cross-correlation) operator ® . (resp. T,) is of finite rank if

and only if
=3 3 el

i=1 a€A;CIN"

where
° gi = (gi,lj ey gi,n) € Q’ wi,a € CJ Ai c N" iSﬁnite,

* the rank of T, is the sum of the dimensions u(w;) of the vector spaces spanned by
wi(y)= ZaeAi w; ,¥* and all the derivatives Byy(coi), y € N

Proof. Let S : f € L*(Q) = (0,),ez € L*(Z") be the discrete Fourier transform
where 0, = ﬂ 9‘(f)(27'c ...,Zﬂ%). Its inverse is S : 0 = (0,)yezn € L*(Z") —

TiXj
D e O'Y]lﬂe ZJ 1T e L*(Q). As the discrete Fourier transform exchanges the convo-

lution and the product, using Relation (5.3), we have Yo, p € L3(Z"),

2,(p)=5(S"(0)SH(P)) =S(fg) =S o F o F(fg)=50F o Hyi(5)(g)

where f =S7(0),g =S (p) € L*(Q) and Hyp(5) : § € L*(Q) = F () € 2 W(Q).
We deduce that
®,=S0F 0Hgz 1,515)°S

As S is an isometry between L?(Z") and L?(Q) and . is an isomorphism between L*(£2)
and Z#(Q), @, =S0F cHy 1,515y ° S~ and Hz1,6-1(,) have the same rank.
As C[x ] c PW(£2), we deduce from Theorem 4.2.2 that

Flos V(o) = Z &:(y)ez (v)
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where &, = (Ei,l,...,éi,n) e C", o,y) = ZaeAl_ @; ,y* € C[z]. Using a result similar
to Proposition 5.2.1 for the elements v € L?(Q2), we deduce that the rank r of &, is
r=>._, u(&;). Consequently,

f=s0)=7 (ZZwmy e, (y))—(zn)"z D, 6,50

i=1 a€A i=1 acA;CIN"

As the support of f is in ©, we have &, = i€, € Q. We deduce the decomposition of f

with w; = (27)" er/:1 ZaEAiclN" ilala‘)i,a.}’a-

The dimension u(c;) of the vector space spanned by &,(y) = >, ., w;,¥® and all
its derivatives is the same as the dimension u(w;) of the space spannéd by w;(y) =
)" ZaeAi w;, |°‘|y and all its derivatives, since w;(y) = (2m)"®;(iy). Therefore,

rank®, =r = Zi:l w(@;) = Zi:l u(w;). This concludes the proof of the theorem. O

Remark 5.3.2 To compute the decomposition of f € L*(Q)) as a weighted sum of Dirac
measures and derivates, we apply the decomposition algorithm 4.6.2 to the (truncated)
sequence of Fourier coefficients (0 ) cq fOr some subset a C N". The polynomial-exponential

decomposition ¢ = Zirzl D raen Giaye £.(¥), from which we deduce the decomposition f =
r’ elal| ~ (a)
2n)" X, ZaEAiclN" llalwi,aéigi'

5.4 Polynomial-exponential sums from values

In this problem, we are interested in reconstructing a function in C°°(R") from sampled
values. We take

* F=C"(RY,

* S;:h(x)~ h(xy,.. X; +1,Xj41,...,X,) the shift operator of x; by 1,

L] ] 1) j
* A:h(x)— A[h] = h(0) the evaluation at 0.
The generating series of h is
)= Y M, a)le = S @
a€N? a€N?

The operators S; are commuting and we have S j(ef *)=£& jef * where f = (f,...,f,) €
C'and &; = e/i. The generating series associated to e/ is e:(y)where & = (&;,...,&,) =
(eh,...,eM).
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. . . a; . : i
Similarly for any a = (a,...,a,) € N, S;(x%™*) = &> (¥)x ] Ly xie”™,
which shows that the function x%ef* is a generalized eigenfunction of the operators
S;. Its generating series is

x“ef"(y)_ Z /5 gﬁy . (5.5)

peNn

Let b,(y) = (2 1) +-+(2") be the Macaulay binomial polynomial with (¥') = L y,(y; —
1)---(y; —a; + 1), which roots are 0, ..., a; — 1. It satisfies the following relations:

S bt =S b et =S L Py a), — ey

BeNn Bsa ’ p>a

Asy® =73 uMy oby(y) for some coefficients m, , € Q such that m, , =1, we have

Oacr=(¥) = (Z M &% )eg(y) = wy(¥)es(y). (5.6)

'La

The monomials of w,(y) are among the monomials y* = yf . Yo " such that 0 < a’ <
a;, which divide y“. As the coefficient of y* in w,(y) is 1, we deduce that (w,),enn IS @
basis of C[y ] and the completeness property is satisfied.

Let h = (h(a))4enn- The Hankel operator Hj, is such that Vp = 2/3 ppxf e C[x],

Hy(p)= D (;h(aﬂs)pﬁ)%

a€N"
Identifying the series o(¥) = >, cnn O'a};—T € C[[y]] with the multi-index sequence
(0o)aen and a polynomial p = >. _, p,x® with the sequence (p,)genn Lo(IN") of finite
support, the operator H;, corresponds to the discrete cross-correlation operator by the
sequence h. This operator can be extended to sequences h, p are in L*(N").

Theorem 5.4.1 Leth € C*°(R"). The discrete cross-correlation operator T}, : p € L*(IN") —
hxp= (Z/& h(a+ ﬁ)pﬁ) o € L?(IN") is of finite rank, if and only if,

h(x) =Y gi(x)ef™ +r(x)
i=1

where

° fi = (fi,l)"':fi,n) € (Dn’ gi(x) € @[X],
* r(x) e C(R") such that r(a) =0, Va € N7,
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* The rank of Ty, is the sum of the dimension u(g;) of the vector space spanned by g;(x)
and all its derivatives 07 g;, a € N".

Proof. Since H,, is of finite rank, Theorem 4.2.2 implies that

7= DM@ =D e v

acN"

where &; € C", w,(x) € C[x] and rank H, = er,:l u(w,). Let f; = (fir,..-, fin) €C"
such that &; = (e/i1,...,efin) and g; , € C for a € A; € N" such that

w;(y) = Z gi,awa(y)'

C(GAI’

By the relation (5.6), the generating series of r(x) = h—Z::l ZaeAi gi,ax“ef i* is 0, which
implies that r is a function in C°°(IR") such that r(a) =0, Ya € N".

It remains to prove that the inverse systems spanned by w;(y) = ZaeAi g aw,(y)and
by g;(x) = ZaeAi 8 ox* have the same dimension. The polynomials w, are of the form

wa(y) = ya + Z wa,a’ya/:

a'#a,a'<Ka

with w, , € Q. Let p denotes the linear map of C[y ] such that p(y*) = w,(y)—y*®. We
choose a monomial ordering >, which is a total ordering on the monomials compatible
with the multiplication. Then, the initial in(w,) of w,, that is the maximal monomial of
the support of w,, is y* since y* > in(p(y“*)). As the support of w, is in {a’,a’ < a},
the support of 3w, (f € N") is {a’,a’ < a— 8} and the initial of 8P w, is 3#(x*). By
linearity, for any g € C[y ], we have in(g) > in(p(g)). We deduce that

w(y) = Z 8ia®a(¥) = Z 8ia¥* +o(¥y*) =28:(¥y)+p(s)

i i

and the initial in(8” w,) is also the initial of 8P g; (8 € N™). Therefore the initial of the
vector space spanned by w;(y) = g;(¥) + p(g;) and all its derivatives coincides with the
vector space spanned by the initial of w;(y) = g;(y) and all its derivatives. Therefore,
the two vector spaces have the same dimension. This concludes the proof. O

Remark 5.4.2 Instead of a shift by 1 and the generating series of h computed on the unitary
grid N", one can consider the shift S;(h) = h(xl,...,xj_l,xj + %,xjﬂ,...,xn) for T; €

451 an

R, and the generating series of the sequence (h( —)) o The previous results
a n

T T,
apply directly, replacing the function h by h; : (xq,...,x,) — h(%,..., %) where T =
(Ty,...,T,).
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Remark 5.4.3 Using Lemma 2.2.4, we check that the map h € 2 ol&xp — o, € C[[y]]
is injective and the regularity condition is satisfied on & ol&xp. Thus, in Theorem 5.4.1 if
h € Zol&xp then we must have r(x) = 0.

Remark 5.4.4 By applying Algorithm 4.6.2 to the sequence of evaluations of a function
h € Z0ol&xp on the (first) points of a regular grid in R", we obtain a method to decompose
functions in € ol&xp as a sum of products of polynomials by exponentials.

5.5 Sparse interpolation

For B =(By,...,0B,) € N and x € C", we denote log? x = [ I'_,(log(x;))P where log(x)
is the principal value of the complex logarithm C \ {0}. Let

PolLog(xy,...,x,) = {Zpa’ﬁxalogﬂ(x),pa,ﬂ € (D}
ap

be the set of functions, which are the sum of products of polynomials in x and polynomials
in log(x).

For h = Za,ﬂ hy px® logf(x) € ol Log(x), we denote by £(h) the set of exponents
a € N" such that h, 5 # 0.

The sparse interpolation problem consists in computing the decomposition of a func-
tion p of Z ol £ 0g(x) as a sum of terms of the form p, zx* log” (x) from the values of p.
We apply the construction introduced in Section 5.1 with

* F=Rol%og(x),

* S;:h(xy,...,x,) = h(xy,...,X;_1,A;X},Xj41,...,X,) the scaling operator of x; by
A, eC
J 3

* A:h(xq,...,x,)— Alh]=h(1,...,1) the evaluation at 1 =(1,...,1).
We easily check that
* the operators S; are commuting,
¢ for a = (ay,...,a,) € N", the monomial x* is an eigenfunction of S;: S;(x*) =

Aajxa
i .

o for a = (ag,...,a,) € N, B = (B,...,B5,) € N, x*logP(x) is a generalized
eigenfunction of S;:

S;(x*® log?(x)) = Z A?j (g)]/) logﬁf_ﬁ/ A logﬁ/(xj)x“ l_llogﬁk(xk).
0<p'<P; k#j
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More generally, for y € N", we have

S (x"log’(x)) = (l—[(x?xi)“f)(]‘[(nlog(xmlog(xi))ﬁf)
i=1 i=1
/5 / / _p’
= &ix° ) 108" () log? ﬁ(x))
(Z ()

where & = (A7, ..., A%). We deduce that,

A[S"(x%logP (x))] = £7yP logP (). (5.7)

Theorem 5.5.1 Let h € PolLog(x). For Aq,...,A, € C, the generating series o, =
> ens RAL, .. A% of R is of the form

on(y) =D w,(¥)e,(¥)
i=1

with
° S(h) = {alz KR ar’}J
CE=0, LA e,

1 >
e wi(y)= Z[jeBi wi,ﬁyﬁ eClyl

If moreover A; # 1 and the points &; = (A
i ZﬁeBi w; pX % log” (x).

Proof. Leta,8 € N". As x® is an eigenfunction of the operators S;, its generating series
associated to x* is e;(y) where & = (Afl, ..., A%). From the relations (5.5) and (5.6),

we deduce that the generating series of x*log® (x) is

Qi1

A, a; € e(h) are distinct, then h =

Y
O erogh) = 108" (A) D Yﬁiy% = log’ (Mwy(¥)e:(y)
yelNn ’

where wg(y) is the polynomial obtained from the expansion of yP in terms of the Macaulay
binomial polynomials b,(y). Asin Section 5.4, this shows that the completeness property
is satisfied.

Ifh=>_, D pes, hipx® logP(x), A; # 1 and the points &; = (A;",...,A,"") are
distinct, then

o= (Z hip 1ogﬂ(x)wﬁ(y)) e ()= 0 (y)e ()
1

i=1 \ BeB; i=
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with £ = (A", ..., A;"") and w;(y) € C[x]. By Lemma 2.2.4 and the linear indepen-
dency of the polynomials wg, we deduce that the coefficients h; 4 are uniquely determined
from the coefficients of the decomposition of w;(y) in terms of the Macaulay binomial

polynomials wg, since log? (1) # 0. a

This result leads to a new method to decompose an element h € ZolLog(x) with
an exponent set e(h) C A € N". By choosing A,,...,A, € C\ {1} such that the points
(Af,...,A%) for a € A are distinct and by computing the decomposition of the gener-

ating series as a polynomial-exponential series Z:lzl w;(¥)e: (y) (Algorithm 4.6.2), we
deduce the exponents a; = (log; (&;1),-..,108; (£;,)) and the coefficients h; g in the

decomposition h = Z:lzl > pes, NipX™ log? (x) from the weight polynomials w,(y).

This method generalizes the sparse interpolation methods of [BOT88], [Zip79], [GLL09],
where a single operator S : h(xy,...,x,) — h(A;x,...,A,Xx,)isused forsome A,,..., A, €
C and where only polynomial functions are considered. The monomials x* (a € N") are
eigenfunctions of S for the eigenvalue A% = ]_[?zl Afl. For h = 2;1 w;x%, the cor-
responding univariate generating series o, defines an Hankel operator, which kernel
is generated by the polynomial p(x) = ]_[l.r:l(x — A%) when A™,..., A% are distinct.
If A4,...,A, € C are chosen adequately (for instance distinct prime integers [BOT88],
[Zip79] or roots of unity of different orders [GL1.09]), the roots of p yield the exponents
of he C[x].

The multivariate approach allows to use moments h(?L‘fl s A witha = (ay,...,a,) €
IN" of degree |a| = a, +- -+ a,, less than the degree 2r —1 needed in the previous sparse
interpolation methods. Sums of products of polynomials and logarithm functions can
also be recovered by this method, the logarithm terms corresponding to multiple roots.



Bibliography

[AC15]

[AC16]

[Bar84]

[BBCM13]

[BCMT10]

[BOT88]

[BP94]

[CLO92]

[CLO97]

Fredrik Andersson and Marcus Carlsson. On General Domain Truncated Cor-
relation and Convolution Operators with Finite Rank. Integral Equations and
Operator Theory, 82(3):339-370, 2015.

Fredrik Andersson and Marcus Carlsson. On the structure of positive semi-
definite finite rank general domain Hankel and Toeplitz operators in several
variables. Complex Analysis and Operator Theory, to appear, 2016.

Laurent Barachart. Sur la réalisation de Nerode des systémes multi-indiciels.
C. R. Acad. Sc. Paris, 301:715-718, 1984.

Alessandra Bernardi, Jérome Brachat, Pierre Comon, and Bernard Mourrain.
General tensor decomposition, moment matrices and applications. Journal
of Symbolic Computation, 52:51-71, 2013.

Jérome Brachat, Pierre Comon, Bernard Mourrain, and Elias P Tsigaridas.
Symmetric tensor decomposition. Linear Algebra and Applications, 433(11-
12):1851-1872, 2010.

Michael Ben-Or and Prasson Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, STOC ’88, pages 301-309, New
York, NY, USA, 1988. ACM.

Dario Bini and Victor Y. Pan. Polynomial and Matrix Computations. Birkh&user
Boston, Boston, MA, 1994.

David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms.
Undergraduate Texts in Mathematics. Springer, 1992.

D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer-Verlag,
New York, 1997.

83



84

[CMO07]

[Cuy99]

[DB04]

[dP95]

[Eis94]

[EMO07a]

[EMO7b]

[Ems78]

[encl6]

[Fli70]

[GLLO09]

[Got78]

[Gro]

BIBLIOGRAPHY

Yufu Chen and Xiaohui Meng. Border bases of positive dimensional polyno-
mial ideals. In Proceedings of the 2007 international workshop on Symbolic-
numeric computation, SNC’07, pages 65-71, New York, NY, USA, 2007. ACM.

Annie Cuyt. How well can the concept of Padé approximant be generalized
to the multivariate case? Journal of Computational and Applied Mathematics,
105(1-2):25-50, 1999.

Carl De Boor. Ideal interpolation. Approximation Theory XI: Gatlinburg, pages
59-91, 2004.

Baron Gaspard Riche de Prony. Essai expérimental et analytique: sur les
lois de la dilatabilité de fluides élastique et sur celles de la force expansive
de la vapeur de I'alcool, a différentes températures. J. Ecole Polytechnique,
1:24-76, 1795.

David Eisunbud. Commutative Algebra: With a View toward Algebraic Geom-
etry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1994.

Mohamed Elkadi and Bernard Mourrain. Introduction a la résolution des sys-
téemes polynomiaux, volume 59 of Mathématiques et Applications. Springer,
2007.

Mohamed Elkadi and Bernard Mourrain. Introduction a la résolution des sys-
témes polynomiaux, volume 59 of Mathématiques & Applications. Springer,
Berlin, 2007.

Jacques Emsalem. Géométrie des points épais. Bulletin de la S.M.E, 106:399-
416, 1978.

Encyclopedia of Mathematics. Wikipedia, the free encyclopedia, April 2016.

Michel Fliess. Séries reconnaissables, rationnelles et algébriques. Bulletin des
Sciences Mathématiques. Deuxiéme Série, 94:231-239, 1970.

Mark Giesbrecht, George Labahn, and Wen-shin Lee. Symbolic-numeric
sparse interpolation of multivariate polynomials. J. Symb. Comput.,
44(8):943-959, August 2009.

Gerd Gotzmann. Eine Bedingung fiir die Flachheit und das Hilbertpolynom
eines graduierten Ringes. Math. Z., 158:61-70, 1978.

Wolfgang Grobner. iiber das Macaulaysche inverse System und dessen Be-
deutung fiir die Theorie der linearen Differentialgleichungen mit konstanten
Koeffizienten. In Abhandlungen Aus Dem Mathematischen Seminar Der Uni-
versitdt Hamburg, volume 12, pages 127-132. Springer, 1937.



BIBLIOGRAPHY 85

[GT09]

[Hor90]

[HT04]

[IK99]

[Kas11]

[KKO5]

[KKO6]

[KRO5]

[Kro80]

[Lau09]

[LLM*13]

[LMO09]

[Mac02]

Stef Graillat and Philippe Trébuchet. A new algorithm for computing certi-
fied numerical approximations of the roots of a zero-dimensional system. In
Proceedings of the 2009 International Symposium on Symbolic and Algebraic
Computation, pages 167-174. ACM, 2009.

Lars Hormander. An Introduction to Complex Analysis in Several Variables,
volume 7. North Holland, Amsterdam; New York; N.Y., U.S.A., 3rd edition,
1990.

Hakop A. Hakopian and Mariam G. Tonoyan. Partial differential analogs of
ordinary differential equations and systems. New York J. Math, 10:89-116,
2004.

Anthony Iarrobino and Vassil Kanev. Power Sums, Gorenstein Algebras, and
Determinantal Loci. Lecture Notes in Mathematics. Springer, 1999.

S. Kaspar. Computing border bases without using a term ordering. Beitrdge
gur Algebra und Geometrie / Contributions to Algebra and Geometry, pages
1-13, 2011.

A. Kehrein and M. Kreuzer. Characterizations of border bases. J. Pure Appl.
Algebra, 196(2-3):251-270, 2005.

A. Kehrein and M. Kreuzer. Computing border bases. J. Pure Appl. Algebra,
205(2):279-295, 2006.

M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2. Springer,
Heidelberg, 2005.

Leopold Kronecker. Zur Theorie der Elimination Einer Variabeln aus Zwei
Algebraischen Gleichungen. pages 535-600., December 1880.

Monique Laurent. Sums of squares, moment matrices and optimization over
polynomials. In Emerging Applications of Algebraic Geometry, volume 149 of
IMA Volumes in Mathematics and Its Applications, pages 157-270. Springer,
2009.

Jean-Bernard Lasserre, Monique Laurent, Bernard Mourrain, Philipp Rostal-
ski, and Philippe Trébuchet. Moment matrices, border bases and real radical
computation. Journal of Symbolic Computation, 51:63-85, 2013.

Monique Laurent and Bernard Mourrain. A generalized flat extension theo-
rem for moment matrices. Archiv der Mathematik, 93(1):87-98, 2009.

E S. Macaulay. Some formulae in elimination. Proceedings of the London
Mathematical Society, 1(1):3-27, 1902.



86

[Macl6]

[Mal56]

[Mou96]

[Mou99]

[Moul6]

[MP0O]

[MTO05a]

[MTO5b]

[MTO08]

[OPO1]

[Ped99]

[Pel98]

[Pow82]

BIBLIOGRAPHY

Francis S. Macaulay. The Algebraic Theory of Modular Systems. Cambridge
University Press, 1916.

Bernard Malgrange. Existence et approximation des solutions des équations
aux dérivées partielles et des équations de convolution. Annales de Uinstitut
Fourier, 6:271-355, 1956.

Bernard Mourrain. Isolated points, duality and residues. J. of Pure and Applied
Algebra, 117&118:469-493, 1996.

B. Mourrain. A new criterion for normal form algorithms. In M. Fossorier,
H. Imai, Shu Lin, and A. Poli, editors, Proc. AAECC, volume 1719 of LNCS,
pages 430-443. Springer, Berlin, 1999.

Bernard Mourrain. Polynomial-exponential decomposition from moments,
2016. hal-01367730, arXiv:1609.05720.

Bernard Mourrain and Victor Y. Pan. Multivariate Polynomials, Duality, and
Structured Matrices. Journal of Complexity, 16(1):110-180, 2000.

B. Mourrain and Ph. Trébuchet. Generalised normal forms and polynomial
system solving. In M. Kauers, editor, International Conference on Symbolic
and Algebraic Computation, pages 253-260, Beijing, China, 2005. ACM New
York, NY, USA.

Bernard Mourrain and Philippe Trebuchet. Generalized normal forms and
polynomial system solving. In Proceedings of the 2005 International Sym-
posium on Symbolic and Algebraic Computation, pages 253-260. ACM Press,
2005.

B. Mourrain and Ph. Trébuchet. Stable normal forms for polynomial system
solving. Theoretical Computer Science, 409(2):229-240, 2008.

Ulrich Oberst and Franz Pauer. The Constructive Solution of Linear Systems
of Partial Difference and Differential Equations with Constant Coefficients.
Multidimensional Systems and Signal Processing, 12(3-4):253-308, 2001.

Paul S. Pedersen. Basis for Power Series Solutions to Systems of Linear,
Constant Coefficient Partial Differential Equations. Advances in Mathemat-
ics, 141(1):155-166, 1999.

Vladimir V. Peller. An excursion into the theory of Hankel operators. Holo-
morphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ, 33:65-120,
1998.

Stephen C. Power. Finite rank multivariable Hankel forms. Linear Algebra
and its Applications, 48:237-244, 1982.



BIBLIOGRAPHY 87

[PP13]

[Riq10]

[Roc87]

[Sch66]
[Syl51]

[TMVB18]

[vzGG13]

[YXS15]

[Zip79]

Thomas Peter and Gerlind Plonka. A generalized Prony method for recon-
struction of sparse sums of eigenfunctions of linear operators. Inverse Prob-
lems, 29(2):025001, 2013.

Charles Riquier. Les Systémes d’équations Aux Dérivées Partielles, volume
XXVII. Gauthier-Villars, 1910.

Richard Rochberg. Toeplitz and Hankel operators on the Paley-Wiener space.
Integral Equations and Operator Theory, 10(2):187-235, 1987.

Laurent Schwartz. Théorie des distributions. Editions Hermann, Paris, 1966.

James Joseph Sylvester. Essay on Canonical Form. The Collected Mathemat-
ical Papers of J. J. Sylvester, Vol. I, Paper 34, Cambridge University Press.
1909 (XV Und 688). G. Bell, London, 1851.

Simon Telen, Bernard Mourrain, and Marc Van Barel. Solving Polynomial
Systems via a Stabilized Representation of Quotient Algebras. SIAM Journal
on Matrix Analysis and Applications, 39(3):1421-1447, October 2018.

Joachim von zur Gathen and Jiirgen Gerhard. Modern Computer Algebra.
Cambridge University Press, 3rd edition, 2013.

Zai Yang, Lihua Xie, and Petre Stoica. Generalized Vandermonde decomposi-
tion and its use for multi-dimensional super-resolution. In IEEE International
Symposium on Information Theory (ISIT’15), pages 2011-2015. IEEE, 2015.

Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceed-
ings of the International Symposiumon on Symbolic and Algebraic Computation,
EUROSAM ’79, pages 216-226, London, UK, 1979. Springer-Verlag.



	Contents
	Sparse representations from moments
	Prony's method in one variables
	Symmetric tensor decomposition
	Multilinear tensor decomposition
	Simultaneous decomposition
	Sparse interpolation

	Duality
	Sequences
	Taylor series
	Dual series
	Inverse systems

	Artinian algebra
	Univariate polynomials
	Algebraic structure
	Roots from the algebraic structure
	The dual of an Artinian algebra
	Roots from the dual structure

	Decomposition from moments
	Hankel operators
	Artinian Gorenstein Algebra
	Hankel operators of finite rank
	Decomposition of series
	Decomposition algorithm
	Border basis, orthogonal polynomials
	Structured low rank decomposition of Hankel operators
	Real positive series

	Applications
	Sparse decomposition from generating series
	Convolution of finite rank
	Dirac measures from Fourier coefficients
	Polynomial-exponential sums from values
	Sparse interpolation

	Bibliography

