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From moments to sparse representations, an algebraic, geometric and algorithmic viewpoint

Prony's method in one variables

One of the first work in this area is probably due to Gaspard-Clair-François-Marie Riche de Prony, mathematician and engineer of the École Nationale des Ponts et Chaussées. He was working on Hydraulics. To analyze the expansion of various gases, he proposed in [dP95] a method to fit a sum of exponentials at equally spaced data points in order to extend the model at intermediate points. More precisely, he was studying the following problem:

Given a function h ∈ C ∞ (R) of the form

x ∈ R → h(x) = r i=1 ω i e f i x ∈ C (1.1)
where f 1 , . . . , f r ∈ C are pairwise distinct, ω i ∈ \ {0}, the problem consists in recovering

• the distinct frequencies f 1 , . . . , f r ∈ C,

• the coefficients ω i ∈ \ {0},

Here is an example of such a signal, which is the superposition of several "oscillations" with different frequencies.

The approach proposed by G. de Prony can be reformulated into a truncated series reconstruction problem. By choosing an arithmetic progression of points in R, for instance the integers N, we can associate to h, the generating series:

σ h ( y) = a∈N h(a) y a a! ∈ C[[ y]],
where C[[ y]] is the ring of formal power series in the variable y. If h is of the form (1.1), then

σ h ( y) = r i=1 a∈N ω i ξ a i y a a! = r i=1
ω i e ξ i y (1.2)

where ξ i = e f i . Prony's method consists in reconstructing the decomposition (1.2) from a small number of coefficients h(a) for a = 0, . . . , 2r -1. It performs as follows:

• From the values h(a) for a ∈ [0, . . . , 2r -1] , compute the polynomial

p(x) = r i=1 (x -ξ i ) = x r - r-1 j=0 p j x j ,
which roots are ξ i = e f i , i = 1, . . . , r as follows. Since it satisfies the recurrence relations

∀ j ∈ [0, . . . , r -1], r-1 i=0 σ j+i p i -σ j+r = - r i=1 w i ξ j i p(ξ i ) = 0,
it is the unique solution of the system:

      σ 0 σ 1 . . . σ r-1 σ 1 . . . . . . . . . . . . . . . σ r-1 . . . σ 2r-2              p 0 p 1 . . . . . . p r-1        =        σ r σ r+1 . . . . . . σ 2r-1       
.

(1.3)

• Compute the roots ξ 1 , . . . , ξ r of the polynomial p(x).

• To determine the weight coefficients w 1 , . . . , w r , solve the following linear (Vandermonde) system:

    1 1 . . . 1 ξ 1 ξ 2 . . . ξ r . . . . . . . . . ξ r-1 1 ξ r-1 2 . . . ξ r-1 r         w 1 w 2 . . . w r     =     h 0 h 1 . . . h r-1     .
This approach can be improved by computing the roots ξ 1 , . . . , ξ r , directly as the generalized eigenvalues of a pencil of Hankel matrices. Namely, Equation (1.3) implies that 

H 0       σ 0 σ 1 . . . σ r-
     
, (1.4) so that the generalized eigenvalues of the pencil (H 1 , H 0 ) are the eigenvalues of the companion matrix M p of p(x), that is, its the roots ξ 1 , . . . , ξ r . This variant of Prony's method is also called the pencil method in the literature.

For numerical improvement purposes, one can also chose an arithmetic progression a T and a ∈ [0, . . . , 2r -1], with T ∈ R + of the same order of magnitude as the frequencies f i . The roots of the polynomial p are then ξ i = e f i T .

Symmetric tensor decomposition

Symmetric tensors of order d of a vector space V of dimension n + 1 over a field are the elements of the symmetric product S (d) (V ). Once we have chosen a basis of V , these elements can be identified with homogeneous polynomials of degree d in n + 1 variables x 0 , x 1 , . . . , x n . Let S = [x 0 , x 1 , . . . , x n ] = [x ] be the ring of polynomials in these variables. The set of symmetric tensors of degree d ∈ is the vector space S d of homogenous polynomials of degree d. An element ψ ∈ S d is of the form ψ = α where α = (α 0 , . . . ,

α n ) ∈ n+1 , x α = x α 0 0 • • • x α n n , d α = d! α 0 !•••α n ! for |α| = α 0 + • • • + α n = d.
The tensor decomposition problem is the following:

Problem 1.2.1 (Symmetric tensor decomposition)

Given a homogeneous polynomial

ψ(x ) = |α|=d σ α d α x
α of degree d in the variables x = (x 0 , x 1 , . . . , x n ), find a decomposition of ψ of the form

ψ(x ) = r i=1 ω i (ξ i,0 x 0 + ξ i,1 x 1 + • • • + ξ i,n x n ) d
where ξ i = (ξ i,0 , ξ i,1 , . . . , ξ i,n ), i = 1, . . . , r span distinct lines in

n+1
and ω i ∈ .

The minimal r in such a decomposition is called the rank of ψ.

In the decomposition, the vectors ξ i span distinct lines in n+1

, which means that they define distinct points in ( n+1 ). In particular, they are non-zero vectors.

Example 1.2.2 Consider a quadratic form q(x ) = 0 i, j n q i, j x i x j ∈ [x ] 2 with q i, j = q j,i . Using a classical reduction of quadratic forms into weighted sums of squares (e.g. ax 2 + 2b x y + c y 2 = a(x + b a y) 2 + (cb 2 a ) y 2 if a = 0), q can be written as

q(x ) = r i=1 ω i (ξ i,0 x 0 + • • • + ξ i,n x n ) 2
with ω i ∈ and ξ i = (ξ i,0 , . . . , ξ i,n ) are distinct in n . The minimal number of terms in this decomposition is known to be the rank of q, or equivalently, the rank of the symmetric matrix Q = (q i, j ).

Sylvester method

In [START_REF] Joseph | Essay on Canonical Form. The Collected Mathematical Papers of[END_REF], J.J. Sylvester proposed a method to decompose a binary form, that is, a homogeneous polynomial in two variables as a sum of powers of linear forms. This method is based on the following theorem. 

ω k p i α d-i-j k β i+ j k = r k=1 ω k α d-r k β j k p(α k , β k ) = 0
Conversely, assume that p = p 0 x r 0 + p 1 x r-1 0 x 1 + • • • + p r x r 1 = r k=1 (β k x 0 -α k x 1 ) with p = [p 0 , . . . , p r ] ∈ ker H d-r,r σ where

H d-r,r σ =     σ 0 σ 1 . . . σ r σ 1 σ r+1 . . . . . . σ d-r . . . σ d-1 σ d     .
By a generic change of coordinates in (x 0 , x 1 ), we can assume that p r = 0. As the directions (α k , β k ) are pairwise distinct, there exists ω 1 , . . . , ω r such that

  α 0 1 β d 1 • • • α 0 r β d r . . . . . . α d 1 β 0 1 • • • α d r β 0 r     ω 1 . . . ω r   =   σ 0 . . . σ r-1  
As p ∈ ker H σ , we deduce that 

p r σ r = - r-1 i=0 p i σ i = - r-1 i=0 r k=1 p i ω k α d-i k β i k = - r k=1 ω k r-1 i=0 p i α d-i k β i k = -

Apolarity Definition 1.2.4 (Apolar product)

For f = |α|=d f α d α x α , g = |α|=d g α d α x α ∈ [x ] d , 〈 f , g〉 d = |α|=d f α g α d α .
Proposition 1.2.5 〈 f , (ξ

0 x 0 + • • • + ξ n x n ) d 〉 d = f (ξ 0 , . . . , ξ n ).
Given an homogeneous polynomial ψ ∈ S d , we can define an element ψ of the dual space ω i e ξ i for ξ i = (ξ i,0 , ξ i,1 , . . . , ξ i,n ) distinct in ( n+1 ), ω i ∈ .

Secants of Veronese variety

Let us give here a geometric view on this decomposition problem.

The evaluation e ξ ∈ S d at a point ξ ∈ n+1 is represented in the dual basis of the monomial basis by the vector (ξ α ) |α|=d obtained by evaluation at ξ of the monomials x α which form a basis of S d . The set of these vectors for non-zero vectors ξ ∈ n+1 form a projective variety called the Veronese variety and denoted hereafter n d . This projective variety is defined by the equations x α x β -x α x β = 0 for α, α , β, β ∈ n+1 , 

Multilinear tensor decomposition

A multilinear tensor τ is an element of a space E 1 ⊗ • • • ⊗ E m where E i are vector spaces of dimension n i + 1. Fixing bases of E i , τ is represented by a multi-index array (τ i 1 ,...,i m ) 0 i l n l ∈ (n 1 +1)ו••×(n m +1) . Equivalently, τ can be represented by a multilinear polynomial τ(x 1 , . . . , x m ) =

0 i l n l t i 1 ,...,t m x 1,i 1 • • • x m,i m
in the variables x j = (x j,0 , . . . , x j,n j ), j = 1, . . . , m. Let S n 1 ,...,n m 1,...,1 be the vector space of multilinear polynomials in the variables x 1 , . . . , x m with coefficients in .

Problem 1.3.1 (Multilinear tensor decomposition)

Given a multilinear tensor τ(x 1 , . . . , x m ) = 0 i l n l t i 1 ,...,t m x 1,i 1 (ξ i j,0 x j,0 + • • • + ξ i j,n j x j,n j )

This decomposition means that τ is the sum of the tensor products of the vectors

ξ i j in E 1 ⊗ • • • ⊗ E m : τ = r i=1 ξ i 1 ⊗ • • • ⊗ ξ i m .
The minimal number of terms in such a decomposition is called the rank of τ.

Notice that we don't put a weight ω i in front of each term

ξ i 1 ⊗ • • • ⊗ ξ i m since
it can be integrated in the term by scaling one of the vectors ξ i l by ω i . However, in some cases, for instance when the vectors ξ i l are normalized, we will introduce these weights in the decomposition:

τ = r i=1 ω i ξ i 1 ⊗ • • • ⊗ ξ i m .

Apolarity

Similarly to symmetric tensors, an apolar product can be defined on multilinear tensors as follows.

Definition 1.3.2 For all τ = 0 i l n l τ i 1 ,...,i m x 1,i 1 • • • x m,i m , τ = 0 i l n l τ i 1 ,...,i m x 1,i 1 • • • x m,i m ∈ S n 1 ,...,n m 1,...,1 , 〈τ, τ 〉 = 0 i l n l τ i 1 ,...,i m τ i 1 ,...,i m . Proposition 1.3.3 For τ ∈ S n 1 ,...,n l 1,...,1 , ξ j = (ξ j,0 , . . . , ξ j,n j ) ∈ n j +1 for j = 1, . . . , m, 〈τ, m j=1 (ξ j,0 x j,0 + • • • + ξ j,m x j,m )〉 = τ(ξ 1 , . . . , ξ m ).

Dual tensor decomposition

For a tensor

ψ = ξ 1 ⊗ • • • ⊗ ξ m of rank 1 or equivalently a multilinear polynomial ψ = m j=1 (ξ j,0 x j,0 + • • • + ξ j,m x j,m ), and any f ∈ S n 1 ,...,n m 1,...,1
we have

〈ψ, f 〉 = f (ξ 1 , . . . , ξ m ) Therefore, ψ : f ∈ S n 1 ,...,n m 1,...,1 → 〈ψ, f 〉 ∈ is such that ψ = e ξ on S n 1 ,...,n m 1,...,1 where ξ = (ξ 1 , . . . , ξ m ) ∈ n 1 +•••+n m .
Using this duality, we can reformulation the decomposition problem as follows:

Given ψ ∈ (S n 1 ,...,n m 1,...,1 ) , find a decomposition of ψ of the form

ψ = r i=1 ω i e ξ i for distinct directions ξ i ∈ n 1 +•••+n m and ω i ∈ \ {0}.

Secant of Segre variety

The set of tensors

ψ = ξ 1 ⊗ • • • ⊗ ξ m = 0 of rank 1 is an algebraic variety of n 1 +•••+n m -1
, called the Segre variety. We denote it by n 1 ,...,n m . Decomposing a multilinear tensor τ as

τ = r i=1 ω i ξ i 1 ⊗ • • • ⊗ ξ i m
means we write τ as an point of the linear span of r points

ξ i = ξ i 1 ⊗ • • • ⊗ ξ i m ∈ n 1 ,.
..,n m . The closure of the points in the linear span of r linearly indenpendent points ξ i ∈ n 1 ,...,n m is called the r-th secant variety of n 1 ,...,n m .

Simultaneous decomposition

The problem of simultaneous decomposition of a set of tensors consists in finding common points, such that all the tensors can be decomposed in terms of these points. We illustrate it here for symmetric tensors.

Problem 1.4.1 (Simultaneous symmetric tensor decomposition)

Given symmetric tensors ψ 1 , . . . , ψ m of order d 1 , . . . , d m , find a simultaneous decomposition of the form

ψ l = r i=1 ω i,l (ξ i,0 x 0 + ξ i,1 x 1 + • • • + ξ i,n x n ) d l
where ξ l = (ξ l,0 , . . . , ξ l,n ) span distinct lines in n+1 and ω i,l ∈ for l = 1, . . . , m.

Binary forms

A method similar to Sylvester method can be applied for the simultaneous decomposition of binary forms, based on the following proposition (similar to Theorem 1.2.3).

Proposition 1.4.2 Let

ψ l = d l i=0 σ 1,i d l i x d l -i 0 x i 1 ∈ [x 0 , x 1 ] d l for l = 1, . . . , m. If there exists a polynomial p(x 0 , x 1 ) := p 0 x r 0 + p 1 x r-1 0 x 1 + • • • + p r x r 1 such that                σ 1,0 σ 1,1 . . . σ 1,r σ 1,1 σ 1,r+1 . . . . . . σ 1,d 1 -r . . . σ 1,d 1 -1 σ 1,d 1 . . . . . . σ m,0 σ m,1 . . . σ m,r σ m,1 σ r+1 . . . . . . σ m,d m -r . . . σ m,d m -1 σ m,d m                    p 0 p 1 . . . p r     = 0 and of the form p = c r k=1 (β k x 0 -α k x 1 ) with (α k , β k ) ∈ 2 pairewise distinct directions, then ψ l = r i=1 ω i,l (α l x 0 + β l x 1 ) d l
for ω i,l ∈ and l = 1, . . . , m.

Proof. We use the same proof as for Theorem 1.2.3 applied to the Hankel block associated to σ i (for i = 1, . . . , m).

Sparse interpolation

Given a black-box polynomial function f (x ) 

find r ∈ , ω i ∈ , α i ∈ n such that f (x ) = r i=1 ω i x α i .
σ k = f (ϕ k 1 , ϕ k 2 ) = (ϕ 33 1 ϕ 12 2 ) k -5(ϕ 1 ϕ 25 2 ) + 101 = ξ k 1 -5ξ k 2 + 101ξ k 3 ,
where ξ 1 = ϕ 33 1 ϕ 12 2 = e 47 2π 100 , ξ 2 = ϕ 1 ϕ 25 2 = e 78 2π 100 , ξ 3 = 1. We compute a non-zero element [p 0 , p 1 , . . . , p r ] in the kernel of the matrix

H σ =     σ 0 σ 1 . . . σ r σ 1 σ r+1 . . . . . . σ d-r . . . σ d-1 σ d    
for r = 3 and d ≥ 5. The roots of the polynomial p(x)

:= p 0 + p 1 x + • • • + p r x r are ξ 1 , ξ 2 , ξ 3 ∈ . Computing m i = -i 100 2π log(ξ i ), we get m 1 = 47 = 3 × 33 + 7 × 12 -100 × 7 m 2 = 78 = 3 × 1 + 7 × 25 -100 × 1 m 3 = 0
Decomposing m i = 3 a i + 5 b i + 100 c i modulo 3 × 7 × 100 = 2100, we recover the exponents of the terms of f : (33, 12), (1, 25), (0, 0). The coefficients ω i are recovered by solving the system

  1 1 1 ξ 1 ξ 2 ξ 3 ξ 2 1 ξ 2 2 ξ 2 3     ω 1 ω 2 ω 3   =   σ 0 σ 1 σ 2  
The solution of this system yields (ω 1 , ω 2 , ω 3 ) = (1, -5, 101). In this chapter, we consider polynomials and series with coefficients in a field of characteristic 0. In the applications, we are going to take = or = .

We are going to use the following notation: [x 1 , . . . , x n ] = [x ] = R is the ring of polynomials in the variable x 1 , . . . , x n with coefficients in the field , [[ y 1 , . . . ,

y n ]] = [[y]
] is the ring of formal power series in the variables y 1 , . . . , y n with coefficients in . The dual of the ring of polynomials is

[x ] = {σ : [x ] → linear} = Hom ( [x ], ). Given σ ∈ [x ] , p ∈ [x ],
we denote by 〈σ | p〉 the value of σ applied to p. The elements in [x ] will also be called linear functionals on [x ].

For any σ ∈ [x ] , the inner product associated to σ on [x ] is defined as follows:

[x ] × [x ] → (p, q) → 〈p, q〉 σ := 〈σ | p q〉.
The dual space [x ] has a natural structure of [x ]-module, defined as follows:

∀σ ∈ [x ] , ∀p, q ∈ [x ], 〈p σ | q〉 = 〈σ | p q〉. The operator σ ∈ [x ] → p σ ∈ [x ]
is, by definition, the transpose or adjoint of the multiplication by p: q ∈ [x ] → p q ∈ [x ].
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We check that ∀σ ∈ [[y]], ∀p, q ∈ [x ], (pq) σ = p (q σ). See e.g. [START_REF] Emsalem | Géométrie des points épais[END_REF], [START_REF] Elkadi | Introduction à la résolution des systèmes polynomiaux[END_REF] for more details.

Sequences

To describe a linear functional σ ∈ [x ] , it is enough to know it on a basis of [x ]. A natural basis is the monomial basis (x α ) α∈ n . The linear functional σ is uniquely defined by the sequence

(〈σ | x α 〉) α∈ n .
The values σ α := 〈σ | x α 〉 for α ∈ n are called the moments of σ.

Given a polynomial p = α∈A p α x α ∈ [x ] with A ⊂ n finite, the value of σ applied to p is by linearity

〈σ | p〉 = α∈A p α σ α .
This allows us to identify [x ] with the vector space of multi-index sequences n via the isomorphism:

i 0 : [x ] → n (2.1) σ → (〈σ | x α 〉) α∈ n
More generally, choosing a point ζ ∈ n and monomials ((x -ζ) α ) α∈ n as a basis of [x ], we define the isomorphism i

ζ : σ ∈ [x ] → (〈σ | (x -ζ) α 〉) α∈ n .
The structure of [x ]-module of [x ] in this representation is given by shift operators. Let i : (σ α ) α∈ n ∈ n → (σ e i +α ) α∈ n ∈ n be the shift operator by e i , where (e i ) i=1,...,n is the canonical basis of n . Then, we have

x i σ = (〈σ | x i x α 〉) α∈ n = (〈σ | x e i +α 〉) α∈ n = i (σ). More generally, for p ∈ [x ], p σ = p( 1 , . . . , n )(σ). For p = β p β x β ∈ [x ] and σ = α∈ n σ α y α α! ∈ [[y]], the series expansion of p σ is p σ = (ρ α ) α∈ n with ∀α ∈ n , ρ α = β p β σ α+β .
Identifying [x ] with the set 0 ( n ) of sequences p = (p α ) α∈ n of finite support (i.e. a finite number of non-zero terms), we see that p σ is the cross-correlation sequence of p and σ.

Taylor series

Assume here that char = 0. Elements in [x ] can also be represented by formal power series, using following the natural isomorphism between the ring of formal power series and the dual of [x ]:

[[ y 1 , . . . , y n ]] × [x 1 , . . . , x n ] → (y α , x β ) → 〈y α | x β 〉 = α! if α = β 0 otherwise . Namely, if σ ∈ Hom ( [x ], ) = R * is an element of the dual of [x ],
it can be represented by the series:

ι 0 : [x ] → [[y]] (2.2) σ → σ(y) = α∈ n σ(x α ) y α α! , so that we have 〈σ(y)|x α 〉 = σ(x α ). The map σ ∈ R * → α∈ n σ(x α ) y α α! ∈ [[y]
] is an isomorphism and any series σ(y) = α∈ n σ α

y α α! ∈ [[y]] can be interpreted as a linear form p = α∈A⊂ n p α x α ∈ [x ] → 〈σ | p〉 = α∈A⊂ n p α σ α .
Any linear form σ ∈ R is uniquely defined by its coefficients σ α = 〈σ | x α 〉 for α ∈ n , which are called the moments of σ.

From now on, we identify the dual R = Hom ( [x ], ) with [[y]]. Using this identification, the dual basis of the monomial basis (x α ) α∈ n is

y α α! α∈ n .
If is a subfield of a field , we have the embedding

[[y]] → [[y]], which allows to identify an element of [x ] * with an element of [x ] * .
The truncation of an element σ(y) = α∈ n σ α

y α α! ∈ [[y]] in degree d is |α| d σ α y α α! . It is denoted σ(y) + (y) d+1 , that is, the class of σ modulo the ideal ( y 1 , . . . , y n ) d+1 ⊂ [[y]]. The structure [x ]-module of [x ] is given as follows. Lemma 2.2.1 ∀p ∈ [x ], ∀σ ∈ [[y]], p(x ) σ(y) = p(∂ y 1 , . . . , ∂ y n )(σ).
Proof. We first prove the relation for p = x i (i ∈ [1, n]) and σ = y α (α ∈ n ). Let e i = (0, . . . , 0, 1, 0, . . . , 0) be the exponent vector of x i . ∀β ∈ n and ∀i ∈ [1, n], we have

〈x i y α |x β 〉 = 〈y α |x i x β 〉 = α! if α = β + e i and 0 otherwise = α i 〈y α-e i |x β 〉.
with the convention that y α-e i = 0 if α i = 0. This shows that x i y α = α i y α-e i = ∂ y i (y α ).

By transitivity and bilinearity of the product , we deduce that ∀p ∈

[x ], ∀σ ∈ [[y]], CHAPTER 2. DUALITY p(x ) σ(y) = p(∂ y 1 , . . . , ∂ y n )(σ).
This property can be useful to analyze the solution of partial differential equations. Let p 1 (∂ y 1 , . . . , ∂ y n ), . . . , p s (∂ y 1 , . . . , ∂ y n ) ∈ [∂ 1 , . . . , ∂ n ] be a set of partial differential polynomials with constant coefficients ∈ . The set of solutions σ ∈ [[y]] of the system

p 1 (∂ y 1 , . . . , ∂ y n )(σ) = 0, . . . , p s (∂ y 1 , . . . , ∂ y n )(σ) = 0
is in correspondence with the elements σ ∈ (p 1 , . . . , p s ) ⊥ , which satisfy p i σ = 0 for i = 1, . . . , s (see Theorem 3.4.4). The variety (p 1 , . . . , p n ) ⊂ n is called the characteristic variety and I = (p 1 , . . . , p n ) the characteristic ideal of the system of partial differential equations.

Polynomial-Exponential series

Among the elements of [x ] ≡ [[y]], we have the evaluations at points of n : Definition 2.2.2 The evaluation at a point ξ = (ξ 1 , . . . , ξ n ) ∈ n is:

e ξ : [x 1 , . . . x n ] → p(x ) → p(ξ)
It corresponds to the series:

e ξ (y) = α∈ n ξ α y α α! = e ξ 1 y 1 +•••+ξ n y n = e 〈ξ,y〉 .
Using this formalism, the series σ(y) = r i=1 ω i e ξ i (y) with ω i ∈ can be interpreted as a linear combination of evaluations at the points ξ i with coefficients ω i ∈ , for i = 1, . . . , r. These series belong to the more general family of polynomial-exponential series, that we define now.

Definition 2.2.3 Let

ol x p( y 1 , . . . , y n ) = σ = r i=1 ω i (y)e ξ i (y) ∈ [[y]] | ξ i ∈ n , ω i (y) ∈ [y]
be the set of polynomial-exponential series. The polynomials ω i (y) are called the weights of σ and ξ i the frequencies.

Notice that the product of y α e ξ (y) with a monomial x β ∈ [x 1 , . . . x n ] is given by

〈y α e ξ (y) | x β 〉 = β! (β -α)! ξ β-α = ∂ α 1 x 1 • • • ∂ α n x n (x β )(ξ) if α i β i for i = 1, . . . , n(2.3) = 0 otherwise .
Therefore an element σ = r i=1 ω i (y)e ξ i (y) of ol x p(y) can also be seen as a sum of polynomial differential operators ω i (∂ ) "at" the points ξ i , that we call infinitesimal operators: ∀p ∈

[x ], 〈σ|p〉 = r i=1 ω i (∂ )(p)(ξ).
Lemma 2.2.4 The series y α i, j e ξ i (y) for i = 1, . . . , r and j = 1, . . . µ i with α i,1 , . . . , α i,µ i ∈ n and ξ i ∈ n pairwise distinct are linearly independent.

Proof. Suppose that there exist w i, j ∈ such that σ(y) = r i=1 µ i j=1 ω i, j y α i, j e ξ i (y) = 0 and let ω i (y) =

µ i j=1 ω i, j y α i, j . Then ∀p ∈ [x ], p σ = 0 = r i=1 p(ξ i + ∂ y )(ω i )e ξ i (y).
If the weights ω i (y) ∈ are of degree 0, by choosing for p an interpolation polynomial at one of the distinct points ξ i , we deduce that ω i = 0 for i = 1, . . . , r. If the weights ω i (y) ∈ are degree 1, by choosing p = l(x ) -l(ξ i ) ∈ [x ] for a separating polynomial l of degree 1 (l(ξ i ) = l(ξ j ) if i = j), we can reduce to a case where at least one of the non-zero weights has one degree less. By induction on the degree, we deduce that ω i (y) = 0 for i = 1, . . . , r. This proves the linear independency of the series y α i, j e ξ i (y) for any α i,1 , . . . , α i,µ i ∈ n and ξ i ∈ n pairwise distinct.

Lemma 2.2.5 ∀p ∈ [x ], ∀ω ∈ [[y]], ξ ∈ n , p(x ) (ω(y)e ξ (y)) = p(ξ 1 +∂ y 1 , . . . , ξ n + ∂ y n )(ω(y))e ξ (y).
Proof. By Lemma 2.2.1, x i (ω(y)e ξ (y)) = ∂ y i (ω)(y)e ξ (y) + ξ i ω(y)e ξ (y) = (ξ i + ∂ y i )(ω(y))e ξ (y) for i = 1, . . . , n. We deduce that the relation is true for any polynomial p ∈ [x ] by repeated multiplications by the variables and linear combination.

Dual series

For of any characteristic, another representation of elements of [x ] as formal power series, is based on the following isomorphism:

ι 0 : [x ] → [[z]] (2.4) σ → σ(z) = α∈ n 〈σ | z α 〉z α
where z = (z 1 , . . . , z n ) is a set of new variables, Using the following pairing:

[[z 1 , . . . , z n ]] × [x 1 , . . . , x n ] → (z α , x β ) → 〈z α | x β 〉 = 1 if α = β 0 otherwise .
we have, for any p = α∈A⊂ n p α x α with A finite and any σ ∈

[x ] , 〈σ(z) | p〉 = α∈A σ α p α .
In this representation, (z α ) α∈ n is the basis of [x ] dual to the monomial basis

(x α ) α∈ n of [x ].
The map, which associates to the sequence (σ α ) α∈ n , the formal power eries σ(z) = α∈ n σ α z α is the Z-transform of the sequence (σ(x α )) α∈ n [enc16]. It corresponds to the embedding in the ring of divided powers (z α =

y α α! ) [Eis94][Sec. A 2.4], [IK99][Appendix A]
. It allows to extend the duality properties to any field , which is not of characteristic 0.

The transformation of the series

α∈ n σ α z α ∈ [[z]] into the series α∈ n σ α y α α! ∈ [[y]] is known as the Borel transform [enc16].
In this representation, the structure of [x ]-module of [x ] is described as follow. For α, β ∈ n , we have x α z β = π + (z β-α ) where π + is projection on the formal power series with positive exponents, which are spanned by the monomials z α with α ∈ n . For

α ∈ n , π + (z α ) = z α if α ∈ n , 0 otherwise. More generally, for any p ∈ [x ], σ ∈ [x ] , p σ = π + (p(z -1 1 , . . . , z -1 n )σ(z)).
In this representation, z i plays the role of the inverse of x i . This explains the terminology of inverse system, introduced in [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF].

With this formalism, the variables x 1 , . . . , x n act on the series in [[z]] as shift operators:

x i α∈ n σ α z α = α∈ n σ α+e i z α
where e 1 , . . . , e n is the canonical basis of n . Therefore, for any p 1 , . . . , p n ∈ [x ], the system of equations p 1 σ = 0, . . . , p n σ = 0 corresponds to a system of difference equations on σ ∈ [[z]].

Rational series

In this setting, the evaluation e ξ at a point ξ ∈ n is represented in [[z]] by the rational fraction

1 n j=1 (1-ξ j z j ) . The series y β e ξ ∈ [[y]] corresponds to the series of [[z]] α∈ n (α + β)! α! ξ α z α+β = β!z β α∈ n α + β β ξ α z α = β!z β n j=1 (1 -ξ j z j ) 1+β j .
The reconstruction of truncated series consists then in finding points ξ 1 , . . . , ξ r ∈ n and finite sets A i of coefficients ω i,α ∈ for i = 1, . . . , r and α ∈ A i such that

α∈ n σ α z α = r i=1 α∈A i ω i,α z α n i=1 (1 -ξ i, j z j ) 1+α j = n i=1 zj r i=1 α∈A i ω i,α n i=1 (z j -ξ i, j ) 1+α j (2.5)
where zj = z -1 j . In the univariate case, this reduces to computing polynomials ω(z), δ(z

) = r i=1 (1 - ξ i z) µ i ∈ [z] with deg(ω) < deg(δ) = i µ i = r such that k∈ σ k z k = w(z) δ(z) .
The decomposition can thus be computed from the Padé approximant of order (r -1, r) of the sequence (σ k ) k∈ (see e.g. [START_REF] Von | Modern Computer Algebra[END_REF][chap. 5]).

Unfortunately, this representation in terms of Padé approximant does not extend so nicely to the multivariate case. The series σ = α∈ n σ α z α with a decomposition of the form (2.5) correspond to the series α∈ n σ α z -α , which is rational of the form z 1 p(z) q i (z i ) with a splitable denominator where deg(q i ) 1 are univariate polynomials (see e.g. [START_REF] Stephen | Finite rank multivariable Hankel forms[END_REF], [START_REF] Barachart | Sur la réalisation de Nerode des systèmes multi-indiciels[END_REF]). Though Padé approximants could be computed in this case by "separating" the variables (or by relaxing the constraints on the Padé approximants [START_REF] Cuyt | How well can the concept of Padé approximant be generalized to the multivariate case[END_REF]), the rational fraction z 1 p(z) q i (z i ) is mixing the coordinates of the points ξ 1 , . . . , ξ r ∈ n and the weights ω i,α .

As the duality between multiplication and differential operators is less natural in [[z]], we will use hereafter the identification (2.2) of R * with [[y]], when is of characteristic 0.

Inverse systems

For a vector space

V ⊂ [x ], let V ⊥ = {σ ∈ [x ] | 〈σ | v〉 = 0, ∀v ∈ V }. Similarly, for a vector space D ⊂ [x ] , D ⊥ = {p ∈ [x ] | 〈δ | p〉 = 0, ∀δ ∈ D}.
The set of formal power series [[y]] is a topological space for the m-adic topology where m = ( y 1 , . . . , y n ). The dual space [x ] , equipped with topology of simple convergence is also a topological space. For these topologies, the isomorphism (2.2) between [[y]] and [x ] is an isomorphism of topological vector spaces. In particular,

D ⊂ [x ] is closed iff D ⊥⊥ = D.
Given an ideal I ⊂ [x ], stable by multiplication by x i ∈ [x ], i = 1, . . . , n, the orthogonal I ⊥ is stable by the transpose multiplication, which is the derivation (see Lemma 2.2.1):

∀σ ∈ I ⊥ , i = 1, . . . , n, x i σ = ∂ y i σ ∈ I ⊥ .
Thus, the map

I ⊂ [x ] → I ⊥ ⊂ [[y]
] defines a correspondence between the ideals I of [x ] and the vector spaces of [[y]] which are closed for the m-adic topology and stable by derivation with respect to y i . See e.g. [START_REF] Emsalem | Géométrie des points épais[END_REF] for more details. This leads to the following definitions:

Definition 2.4.1 For a subset D ⊂ [x ] , the inverse system generated by D is the vector space spanned by the elements p δ for δ ∈ D, p ∈ R.

For D ⊂ [[y]], the inverse system generated by D is the vector space spanned by the elements in D and all their derivatives.

For ω 1 , . . . , ω m ∈ [y], we denote by (ω 1 , . . . , ω m ) the inverse system of ω 1 , . . . , ω m , generated by ω i and all the derivatives ∂ α y (ω i ), α ∈ n , i = 1, . . . , m. Let µ(ω 1 , . . . , ω m ) denote its dimension.

Lemma 2.4.2 For ω ∈ [y] and ξ = (ξ 1 , . . . , ξ n ) ∈ n , (ωe ξ (y)) = (ω)e ξ Proof. We have, for i = 1, . . . , n, ∂ y i (ωe ξ (y)) = ∂ y i (ω)e ξ + ξ i ωe ξ ∈ (ω)e ξ (y). This shows, on one hand, that (ωe ξ (y)) ⊂ (ω) e ξ . Since ∂ y i (ω) e ξ = ∂ y i (ωe ξ ) -ξ i ω e ξ , this shows on the other hand, that (ω)e ξ ⊂ (ωe ξ ) and the equality.

Example 2.4.3 Let I = ((x 1 -1) 2 , (x 2 -1) 2 ) ⊂ [x 1 , x 2 ]. Then, I ⊥ = 〈e (1,1)
, y 1 e (1,1) , y 2 e (1,1) , y 1 y 2 e (1,1) 〉 = ( y 1 y 2 e (1,1) ) = ( y 1 y 2 )e (1,1) . and µ( y 1 y 2 ) = 4. This is the multiplicity of the unique point (1, 1) defined by I. Notice that if is a subfield of a field , we denote by = [x ]/I = ⊗ where I = I ⊗ is the ideal of [x ] generated by the elements in I. As the dimension does not change by extension of the scalars, we have dim ( [x ]/I) = dim ( [x ]/I ) = dim ( ). In particular, is artinian if and only if ¯ is artinian, where ¯ is the algebraic closure. For the sake of simplicity, we are going to assume hereafter that is algebraically closed.

Univariate polynomials

Let us analyze first, the ring R = [x] of univariate polynomials in the variable x and coeficient in . Let I be the ideal of R generated by the polynomial

f = f d x d + • • • + f 0 of degree d ( f d = 0).
The vector space = [x]/( f ) is of dimension d, and admit as basis (1, x, . . . , x d-1 ). Assume that the field is algebraically closed and that the roots of f are simple:

f = f d d i=1 (x -ζ i ), with ζ i = ζ j si i = j.
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Let M x be the operator of multiplication by x in :

M x : → a → a x.
The matrix of M x in the basis (1, x, . . . , x d-1 ) is the compagnon matrix 

M x =      0 • • • 0 - f 0 f d 1 . . . . . . . . . . . . 0 . . . 0 1 - f d-1 f d      . The last
u i (x) = d j=1, j =i x -ζ j ζ i -ζ j
the i th Lagrange interpolation polynomial of f . The elements u i (u i -1), (xζ i ) u i , u i u j for j = i vanish at all the roots of f . Thus they are divisible by f and we have in ,

u 2 i ≡ u i , x u i ≡ ζ i u i , u i u j ≡ 0 si i = j. As 1 = u 1 + • • • + u d , we have for any a ∈ [x] a ≡ a(ζ 1 ) u 1 + • • • + a(ζ d ) u d (3.1)
in . This implies that

≡ u 1 ⊕ • • • ⊕ u d .
The family u = (u 1 , . . . , u d ) is a basis of . The elements u i are called orthogonal idempotents since they satisfy the relations:

u 2 i ≡ u i , u i u j ≡ 0 i f i = j. Moreover, as M x (u i ) = x u i ≡ ζ i u i and u i is an eigenvector of M x for the eigenvalue ζ i .
Let us consider now the dual of , that is, the vector space of linear forms on the vector space . It is a vector space of dimension d = dim . The dual basis of the basis (1, x, . . . , x d-1 ) of is denoted d = (d 0 , . . . , d d-1 ). The decomposition of an element σ ∈ in this basis is of the form

σ = σ(1)d 0 + • • • + σ(x d-1 )d d-1 . Let p ∈ [x] and r = r 0 + • • • + r d-1 x d-1
its representative in the quotient algebra , that is, the remainder in the Euclidean division of f by p: p = f q + r with deg(r) < d.

For σ ∈ , we have

σ(p) = σ(r) = r 0 σ(1) + • • • + r d-1 σ(x d-1
).

Among the elements of , we have the evaluations e ζ : p → p(ζ) at the roots σ i of f . The identity (3.1) shows that e = (e ζ 1 , . . . , e ζ d ) is the basis of dual to the basis u of .

The transpose M t x of the operator on multiplication M x is by definition

M t x : → σ → σ • M x .
The matrix of M t

x in the basis d of is tthe transpose of the matrix of M x in the basis

(1, x, . . . , x d-1 ) of .
As for all a ∈ , We are going to see that many of these properties generalize to Artinian algebra associated to polynomials in several variables.

M t x (e ζ i ) (a) = e ζ i (x a) = (ζ i e ζ i )(a), we have M t x (e ζ i ) = ζ i e ζ i and

Algebraic structure

A classical result states that the quotient algebra = [x ]/I is Artinian (i.e. of finite dimensional), if and only if, ¯ (I) is finite, that is, I defines a finite number of (isolated) points in ¯ n (see e.g. [CLO92][Theorem 6] or [START_REF] Elkadi | Introduction à la résolution des systèmes polynomiaux[END_REF][Theorem 4.3]). Moreover, we have the following structure theorem (see [START_REF] Elkadi | Introduction à la résolution des systèmes polynomiaux[END_REF][Theorem 4.9]):

Theorem 3.2.1 Let = [x ]/I be an artinian algebra of dimension r defined by an ideal I. Then we have a decomposition into a direct sum of subalgebras

= ξ 1 ⊕ • • • ⊕ ξ r (3.2)
where

• (I) = {ξ 1 , . . . , ξ r } ⊂ ¯ n with r r. • I = Q 1 ∩ • • • ∩ Q r is a minimal primary decomposition of I where Q i is m ξ i -primary with m ξ i = (x 1 -ξ i,1 , . . . , x n -ξ i,n ). • ξ i ≡ [x ]/Q i and ξ i • ξ j ≡ 0 if i = j.
We check that localized at m ξ i is the local algebra ξ i . The dimension of ξ i is the multiplicity of the point ξ i in (I).

The projection of 1 on the sub-algebras ξ i as

1 ≡ u ξ 1 + • • • + u ξ r
with u ξ i ∈ ξ i yields the so-called idempotents u ξ i associated to the roots ξ i . By construction, they satisfy the following relations in , which characterize them:

• 1 ≡ u ξ 1 + • • • + u ξ r , • u 2 ξ i ≡ u ξ i for i = 1, . . . , r ,
• u ξ i u ξ j ≡ 0 for 1 i, j r and i = j.

Roots from the algebraic structure

The solutions (I) = {ξ 1 , . . . , ξ r } can be recovered by linear algebra, from the multiplicative structure of , using the properties of the following operators:

Definition 3.3.1 Let g be a polynomial in . The g-multiplication operator g is defined by g : → h → g (h) = gh. The transpose application t g of the g-multiplication operator g is defined by

t g : * → * σ → t g (σ) = σ • g = g σ.
Let B = {b 1 , . . . , b r } be a basis in and B * its dual basis in * . We denote by M B g (or simply M g when there is no ambiguity on the basis) the matrix of g in the basis B.

As the matrix (M B g ) t of the transpose application t g in the dual basis B * in * is the transpose of the matrix M B g of the application g in the basis B in , the eigenvalues are the same for both matrices.

The main property we will use is the following (see e.g. [START_REF] Elkadi | Introduction à la résolution des systèmes polynomiaux[END_REF]):

Proposition 3.3.2 Let I be an ideal of R = [x ] and suppose that (I) = {ξ 1 , ξ 2 , . . . , ξ r }. Then

• for all g ∈ , the eigenvalues of g and t g are the values g(ξ 1 ), . . . , g(ξ r ) of the polynomial g at the roots with multiplicities µ i = dim x i .

• The eigenvectors common to all t g with g ∈ are -up to a scalar -the evaluations e ξ 1 , . . . , e ξ r .

Remark 3.3.3 If B = {b 1 , . . . , b r } is a

basis of , then the coefficient vector of the evaluation

e ξ i = β∈ n ξ β i y β β! + • • • in the dual basis of * is e ξ i |b j β∈B = [b j (ξ i )] i=1...r = B(ξ i ).
The previous proposition says that if M g is the matrix of g in the basis B of , then

M t g B(ξ i ) = g(ξ i )B(ξ i ).
If moreover the basis B contains the monomials 1, x 1 , x 2 , . . . , x n , then the common eigenvectors of M t g are of the form

v i = c[1, ξ i,1 , . . . , ξ i,n , .
. .] and the root ξ i can be computed from the coefficients of v i by taking the ratio of the coefficients of the monomials x 1 , . . . , x n by the coefficient of 1:

ξ i,k = v i,k+1 v i,1 .

Thus computing the common eigenvectors of all the matrices M t

g for g ∈ yield the roots ξ i (i = 1, . . . , r). In practice, it is enough to compute the common eigenvectors of M t x 1 , . . . ,

M t x n , since ∀g ∈ [x ], M t g = g(M t x 1 , . . . , M t x n ).

The dual of an Artinian algebra

The dual * = Hom ( , ) of = [x ]/I is naturally identified with the sub-space

I ⊥ = {σ ∈ [x ] * = [[y]] | ∀p ∈ I, σ(p) = 0} of [x ] * = [[y]]
As I is stable by multiplication by the variables x i , the orthogonal I ⊥ = * is stable by the derivations d dy i

. In the case of a primary ideal, the orthogonal has a simple form [START_REF] Macaulay | The Algebraic Theory of Modular Systems[END_REF], [START_REF] Emsalem | Géométrie des points épais[END_REF], [START_REF] Mourrain | Isolated points, duality and residues[END_REF]: Proposition 3.4.1 Let Q be a primary ideal for the maximal ideal m ξ of the point ξ ∈ n and let

ξ = [x ]/Q. Then Q ⊥ = * ξ = ξ (Q) • e ξ (y), where ξ (Q) = {ω(y) ∈ [y] | ∀q ∈ Q, ω(∂ 1 , . . . , ∂ n )(q)(ξ) = 0}
is the set of differential polynomials that vanish on Q at the point ξ.

The vector space

ξ (Q) ⊂ [y] is called the inverse system of Q. As Q is an ideal, Q ⊥ = ξ (Q) • e ξ (y) is stable by the derivations d dy i
, and so is ξ (Q).

Lemma 3.4.2 If

I = Q 1 ∩• • •∩Q r is a minimal primary decomposition of an ideal I ⊂ [x ] with = [x ]/I artinian and Q i m ξ i -primary, then = I ⊥ = Q ⊥ 1 ⊕ • • • ⊕ Q ⊥ r = * ξ 1 ⊕ • • • ⊕ * ξ r with ξ i = u ξ i . Proof. As I = Q 1 ∩ • • • ∩ Q r , I ⊥ = r i=1 Q ⊥ i . As Q ⊥ i ∩ Q ⊥ j = (Q i + Q j ) ⊥ = (1) ⊥ = {0} for i = j,
we have the decomposition of as a direct sum:

= I ⊥ = r i=1 Q ⊥ i = r i=1 i Since r i=1 u ξ i ≡ 1 in , any element σ ∈ * decomposes as σ = u ξ 1 σ + • • • + u ξ r σ. (3.3) As we have u ξ i σ( ξ j ) = σ(u ξ i ξ j ) = 0 for i = j, we deduce that u ξ i σ ∈ * ξ i = Q ⊥ i . The decomposition (3.3) for any σ ∈ implies that ξ i = u ξ i .
As we have

Q ⊥ i = ξ i (Q i ) e ξ i ⊂ ξ (I) e ξ i ⊂ I ⊥ ∩ ( [y] e ξ i ), we deduce from the previous lemma that Q ⊥ i = ξ i (I) e ξ where ξ i (I)
is the set of differential polynomials that vanish on I at the point ξ. This can be exploited to compute efficiently the inverse system of a multiple point ξ i from the generators of the ideal I (see e.g. [START_REF] Mourrain | Isolated points, duality and residues[END_REF]).

From Proposition 3.4.1 and Lemma 3.4.2, we deduce the following result: Proof. For any polynomial ω(y)

∈ [y], such that ∀ξ ∈ (I), ∀p ∈ I, ω(∂ 1 , . . . , ∂ n )(p)(ξ) = 0 ω(∂ 1 , . . . , ∂ n )(p)(ξ) = 0, the element ω(y)e ξ (y) is in I ⊥ . Thus an element of the form (3.4) is in I ⊥ = * .
Let us prove that any element σ ∈ * is of the form (3.4). By the relation (3.3),

σ decomposes as σ = r i=1 u ξ i σ with u ξ i σ ∈ * ξ i = Q ⊥ i . By Proposition 3.4.1, Q ⊥ i = D i e ξ i (y), where D i = ξ i (Q i ) is the set of differential polynomials which vanish at ξ i , on Q i and thus on I. Thus u ξ i σ is of the form u ξ i σ = ω i (y)e ξ i (y) with ω i (y) ∈ D i ⊂ [y]
. By Lemma 2.2.4, its decomposition as a sum of polynomial exponentials σ(y) = r i=1 ω i (y)e ξ i (y) is unique. This concludes the proof. Theorem 3.4.3 can be reformulated in terms of solutions of partial differential equations, using the relation between Artinian algebras and polynomial-exponentials ol x p. This duality between polynomials equations and partial differential equations with constant coefficients goes back to [START_REF] Riquier | Les Systèmes d'équations Aux Dérivées Partielles[END_REF] and has been further studied and extended for instance in [Grö], [START_REF] Emsalem | Géométrie des points épais[END_REF], [START_REF] Pedersen | Basis for Power Series Solutions to Systems of Linear, Constant Coefficient Partial Differential Equations[END_REF], [START_REF] Oberst | The Constructive Solution of Linear Systems of Partial Difference and Differential Equations with Constant Coefficients[END_REF], [START_REF] Hakop | Partial differential analogs of ordinary differential equations and systems[END_REF]. In the case of a non-Artinian algebra, the solutions on an open convex domain are in the closure of the set of polynomialexponential solutions (see e.g. [START_REF] Malgrange | Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution[END_REF][Théorème 2] or [Hor90][Theorem 7.6.14]).

The following result gives an explicit description of the solutions of partial differential equations associated to Artinian algebras, as special elements of ol x p, with polynomial weights in the inverse systems of the points of the characteristic variety of the differential system:

Theorem 3.4.4 Let p 1 , . . . , p s ∈ [x 1 , . . . , x n ] be polynomials such that [x ]/(p 1 , . . . , p s ) is finite dimensional over . Let Ω ⊂ n be a convex open domain of n . A function f ∈ C ∞ (Ω) is a solution of the system of partial differential equations p 1 (∂ 1 , . . . , ∂ n )( f ) = 0, . . . , p s (∂ 1 , . . . , ∂ n )( f ) = 0 (3.5) if and only if it is of the form f (y) = r i=1 ω i (y)e ξ i •y with (p 1 , . . . , p s ) = {ξ 1 , . . . , ξ r } ⊂ n and ω i (y) ∈ D i ⊂ [y] where D i = ξ i ((p 1 , . . . , p s ))
is the space of differential polynomials, which vanish on the ideal (p 1 , . . . , p s ) at ξ i .

Proof. By a shift of the variables, we can assume that Ω contains 0. A solution of f of (3.5) in C ∞ (Ω) has a Taylor series expansion f (y) ∈ [[y]] at 0 ∈ Ω, which defines an element of [x ] * . By Lemma 2.2.1, f is a solution of the system (3.5) if and only if we have p 1 f (y) = 0, . . . , p s f (y) = 0. Equivalently, f (y) ∈ I ⊥ where I = (p 1 , . . . , p s ) is the ideal of [x ] generated by p 1 , . . . , p s . If = [x ]/I is finite dimensional, i.e. Artinian, Theorem 3.4.3 implies that the Taylor series f (y) is in I ⊥ , if and only if, it is of the form:

f (y) = r i=1 ω i (y)e ξ i •y (3.6) with (p 1 , . . . , p s ) = {ξ 1 , . . . , ξ r } ⊂ n and ω i (y) ∈ D i = ξ i (I) ⊂ [y]
where D i is the space of differential polynomials which vanish on I = (p 1 , . . . , p s ) at ξ i . The polynomialexponential function (3.6) is an analytic function with an infinite radius of convergence, which is a solution of the partial differential system (3.5) on Ω. By unicity of the solution with given derivatives at 0 ∈ Ω,

r i=1 ω i (y)e ξ i •y coincides with f on all the domain Ω ⊂ n .
Here is another reformulation of Theorem 3.4.3 in terms of convolution or crosscorrelation of sequences: Theorem 3.4.5 Let p 1 , . . . , p s ∈ [x 1 , . . . , x n ] be polynomials such that [x ]/(p 1 , . . . , p s ) is finite dimensional over . The generating series of the sequences σ = (σ α ) ∈ n which satisfy the system of difference equations

p 1 σ = 0, . . . , p s σ = 0 (3.7)
are of the form

σ(y) = α∈ n σ α y α α! = r i=1 ω i (y)e ξ i •y with (p 1 , . . . , p s ) = {ξ 1 , . . . , ξ r } ⊂ n and ω i (y) ∈ D i ⊂ [y] such that D i = ξ i ((p 1 , . . . , p s ))
is the space of differential polynomials, which vanish on the ideal (p 1 , . . . , p s ) at ξ i .

Proof. The sequence σ is a solution of the system (3.7) if and only if σ(y) = α∈ n σ α y α α! ∈ I ⊥ where I = (p 1 , . . . , p s ) is the ideal of [x ] generated by p 1 , . . . , p s . We deduce the form of σ(y) ∈ ol x p(y) from Theorem 3.4.3.

Roots from the dual structure

Notations

Let be the set of monomials in the variables x 1 , . . . , x n . An element of is of the form

x α = x α 1 1 • • • x α n n with α = (α 1 , . . . , α n ) ∈ n . Its degree is |α| = α 1 + • • • + α n . Let R = [x
] be the ring of polynomials in the variables x 1 , . . . , x n with coefficients in a field . For p = α∈A p α x α with p α = 0, A is the support of p and deg(p) = max α∈A |α|.

For d ∈ and F ⊂ R, let F d (resp. F d ) be the set of polynomials in F of degree d (resp. d).

For f ∈ R, let f be the homogeneous component of f of highest degree. Similarly for a set

S ⊂ R, S = { f | f ∈ S}.
For F ⊂ R, let 〈F 〉 be the -vector space spanned by F . Let

F + = F ∪ x 1 F ∪ • • • x n F and ∂ F = F + \ F . For d ∈ + , let F d = {m f | m ∈ , f ∈ F, deg(m f ) d} and F d = F d \ F d-1 . A set B ⊂ is connected to 1 if 1 ∈ B and ∀m ∈ B \ {1}, there exists 1 i n and m ∈ B, such that m = x i m .
For F ⊂ R and B ⊂ , (F |B) is the matrix of coefficients of the polynomials for the monomials in B.

Truncated normal forms

As in the introduction, let R = [x 1 , . . . , x n ] be the ring of polynomials in the variables x 1 , . . . , x n with coefficients in the field and take I ⊂ R defining δ < ∞ points, counting multiplicities. This is equivalent to the assumption that dim (R/I) = δ < ∞. A normal form, which in [START_REF] De | Ideal interpolation[END_REF] is also called an ideal projector, is a map characterized by the following properties. 

Example 3.5.2 (Euclidean division)

Take R = [x 1 ], f = f 0 + • • • + f d x d
1 with f i ∈ and f d = 0. By euclidean division, for all p ∈ R there exists a unique polynomial r ∈ R of degree < d and a unique q ∈ R, such that p = q f + r.

The remainder r belongs to the vector space B spanned by the monomials 1, . . . , x d-1 1 . The map which associates to every polynomial p ∈ R its remainder r = (p) by euclidean division by f is such that

0 → ( f ) → R → B → 0 is exact. In other words, we have ker = ( f ), im = B ∼ R/( f ).
Since we want to find a representation of R/I using numerical linear algebra techniques, we will work with linear maps that can be represented by a matrix. That is, we will work with restricted or truncated versions of normal form maps [START_REF] Telen | Solving Polynomial Systems via a Stabilized Representation of Quotient Algebras[END_REF].

Definition 3.5.3 (Truncated normal form) Let B ⊂ V ⊂ R with x i • B ⊂ V, i = 1, . . . , n. A Truncated Normal Form (TNF) on V w.r.t. I is a linear map : V → B such that |B = id B and ker = I ∩ V . That is, is a projector such that 0 I ∩ V V B 0 is exact.
In the case B is of finite dimension δ, let P : B → δ be an isomorphism defining coordinates on B.

Denote N = P • . The linear map N is of the form N : f ∈ V → N ( f ) = (η 1 ( f ), . . . , η δ ( f )) ∈ δ with η i ∈ V * ∩ I ⊥ = {λ ∈ V * | ∀p ∈ I ∩ V, λ(p) = 0}.
It is given by δ linear forms, which kernel is I ∩ V and such that N |B is invertible. Conversely, a map N : V → δ such that ker N = I ∩ V and N |B = P invertible, defines a truncated normal form = N -1 |B • N . Such a map N will also be called a truncated normal form on V , with respect to B.

Let us give conditions under which a projector is the truncated normal form of an ideal, showing that a truncated normal form is the restriction of a normal form.

We consider B, V ⊂ R such that B + ⊂ V and N : V → B a projector such that ker N ⊂ I ∩ V . We assume that V is connected to 1.

Let us define the operator of multiplication by the variable x i as

M i : B -→ B, b → N (x i • b).
To check that N is a truncated normal form, we use the following set of commutation polynomials: Definition 3.5.4 For F ⊂ R and B ⊂ R, let V (F ) be the set of polynomials in V which are of the form

1. x i f with f ∈ F , or 2. x i f -x j f with f , f ∈ F , 1 i < j n. The set V (F ) is called the set of commutation polynomials of F . The subset of V (F ) satisfying condition 1 (resp. 2) is denoted 1 V (F ) (resp. 2 V (F )). Notice that V (F ) ⊂ 〈F + 〉.
For F i ⊂ R, 0 i d, let

F 〈d〉 = 〈 p f | p ∈ R l , f ∈ F d-l 〉
The next theorem describes different equivalent conditions for a normal form in degree d. It summarizes results which can be deduced from results in [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF], [START_REF] Mourrain | Generalised normal forms and polynomial system solving[END_REF], [START_REF] Mourrain | Stable normal forms for polynomial system solving[END_REF].

Theorem 3.5.5 Let B, V ⊂ R such that B + ⊂ V , V is connected to 1, N : V → B be a projector on B along K = ker N . Let V 0 = 〈1〉, B 0 = 〈N (1)〉, and for l ∈ , V l+1 = B + l , B l+1 = N (V l+1 ) and K l = ker N ∩ V l .
Then for d 2 the following points are equivalent:

1. (M i • M j -M j • M i ) |B d-2 = 0 for 1 i, j n; 2. there exists a unique truncated normal form Ñ : R d → B d such that Ñ|V d = N |V d and ker Ñ = K 〈d〉 ; 3. K + d-1 ∩ V d ⊂ K d ; 4. V d (K d-1 ) ⊂ K d ;
Proof. 1) ⇒ 2) : By construction, we have

V l+1 = B + l ⊂ V , N (B + l ) = B l+1 so that M i : B l → B l+1 . Let u = N (1) and define Ñ : R d → B d p → p(M)(u).
This construction is well defined since it is independent of the order in which we compose the operators M i since they are commuting, and u ∈ B 0 and since for p ∈ R d , we have

p(M)(u) ∈ B d .
Let us show that Ñ is a projection of R d on B d , which extends N and such that ker Ñ = K 〈d〉 .

We first prove by induction on k ∈ that for b ∈ V k , Ñ (b) = N (b). For l = 0, V 0 = 〈1〉 and Ñ (1) = u = N (1), which shows that the hypothesis is true for l = 0. Let us assume that the property is true for 0

l d. Any b ∈ B l+1 is of the form b = i x i b i with b i ∈ B l . Then Ñ (b) = i M i (b i (M)(u)) = i M i (N (b i )) = i N (x i b i ) = N ( i x i b i ) = N (b)
by the induction hypothesis and since

N |B i = id |B i .
In the next step, we prove that K 〈d〉 ⊂ ker Ñ . For k ∈ K l and p ∈ R d-l with 0 l d, we have

Ñ (p k) = p(M) • k(M)(u) = p(M)( Ñ (k)) = p(M)(N (k)) = p(M)(0) = 0 since Ñ|V l = N |V l .
Finally, we prove by induction that R d = B d ⊕ K 〈d〉 . For any p ∈ R of degree 1 l d, there exist p i ∈ R of degree l -1 such that p = i x i p i . We have

p -Ñ (p) = i x i (p i -Ñ (p i )) + i x i Ñ (p i ) -Ñ (x i N (p i )) + i Ñ (x i ( Ñ (p i ) -p i )).
By induction on the degree, we have

(p i -Ñ (p i )) ∈ K 〈l-1〉 . Then i x i (p i -Ñ (p i )) ∈ K 〈l〉 and Ñ ( i x i (p i -Ñ (p i ))) = 0 since K 〈l〉 ⊂ ker Ñ . Moreover, b i = Ñ (p i ) ∈ B l-1 , thus x i b i ∈ B + l-1 = V l and x i b i -Ñ (x i b i ) = x i b i -N (x i b i ) ∈ ker N ∩ V l = K l . This shows that p -Ñ (p) ∈ K 〈l〉 . As for any p ∈ R d , p = Ñ (p) + p -Ñ (p), we deduce that R d = B d + K 〈d〉 . As K 〈d〉 ⊂ ker Ñ and Ñ|B d = id, we have R d = B d ⊕ K 〈d〉 , with K 〈d〉 = ker Ñ|R d . 2) ⇒ 3) : Since K + d-1 ∩ V d ⊂ K 〈d〉 ∩ V d ⊂ ker Ñ ∩ V d = ker N ∩ V d = K d since Ñ coincides with N on V d . 3) ⇒ 4) : Clear, since (K d-1 ) ⊂ K + d-1 ∩ V d . 4) ⇒ 1) : Let b ∈ B d-2 , b 1 = x i b ∈ V d-1 , b 2 = x j b ∈ V d-1 with 1 i < j n, k 1 = b 1 -N (b 1 ) ∈ K d-1 and k 2 = b 2 -N (b 2 ) ∈ K d-1 . As x i b 2 = x j b 1 = x i x j b, we have (M i • M j -M j • M i )(b) = N (x i N (b 2 )) -N (x j N (b 1 )) = N (x i (b 2 -k 2 ) -x j (b 1 -k 1 )) = N (x j k 1 -x i k 2 ). As x j k 1 -x i k 2 = x i N (b 2 ) -x j N (b 1 ) ∈ B + d-1 = V d is an element of V d (K d-1 ), Hypothesis (4) implies that N (x j k 1 -x i k 2 ) = 0. Consequently, (M i • M j -M j • M i ) |B d-2 = 0. Theorem 3.5.6 Let B, V ⊂ R such that W := B + ⊂ V , V is connected to 1 and let N : V → B
be a projector such that K := ker N ⊂ I ∩ W . Then the following points are equivalent:

1. (M i • M j -M j • M i ) = 0 for 1 i, j n;
2. there exists a unique normal form Ñ : R → B such that Ñ|W = N |W and ker Ñ = (K);

3. K + ∩ W ⊂ K; 4. W (K) ⊂ K;
Proof. Apply Theorem 3.5.5 for all d ∈ . Corollary 3.5.7 Let B, V ⊂ R such that W := B + ⊂ V , V is connected to 1 and let N : V → B be a truncated normal form with respect to I and K = ker N ∩W . Then there exists a unique normal form Ñ modulo (K) ⊂ I such that Ñ|W = N .

Proof. Since N is a truncated normal form, ker N = I ∩ V for some ideal I ⊂ R. W (K) ⊂ I ∩ W = ker N ∩ W = K, Theorem 3.5.6(4) implies that there exists a unique normal form Ñ modulo (K) such that Ñ|W = N and ker = (K).

Border basis

Border basis are special types of normal forms associated to sets of monomials. In some works like [KR05, KK05, KK06, CM07, Kas11], the set is finite and stable by division (called an order ideal). Hereafter we consider a more general case where = {x β 1 , . . . , x β r } is finite and connected to 1 = x β 1 .

We take V = 〈 + 〉 and B = 〈 〉 and a projector N : V → B.

For any

x α ∈ ∂ , f α = x α -N (x α ) = x α - x β ∈ c α,β x β (3.8) is an element of K = ker N . Conversely, a family F of polynomials f α of form (3.8) for x α ∈ ∂ defines a unique projector N : V → B such that N (x β ) = x β for x β ∈ and N (x α ) = x β ∈ c α,β x β for x α ∈ ∂ .
Such a family will be called a rewriting family for .

A border basis for is a rewriting family for such that R = 〈 〉 ⊕ (F ) and the projection on 〈 〉 along (F ) is a normal form.

By Theorem 3.5.6, if any of the following points is satisfied:

• M i • M j -M j • M i = 0 where M i : b ∈ B → N (x i b) ∈ B. • 〈F + 〉 ∩ V = 〈F 〉. • ∀ f ∈ V (F ), N ( f ) = 0.
then N extends to a unique normal form such that |V = N and ker = (F ). That is R = B ⊕ (F ) and F is a border basis.

We will not assume that B is known apriori or that the projection is compatible with a monomial ordering as in [START_REF] Kreuzer | Computational Commutative Algebra 2[END_REF][START_REF] Chen | Border bases of positive dimensional polynomial ideals[END_REF], since this leads to the construction of Gröbner bases, with well-developed monomial rewriting techniques but also with numerical instability problems that we want to avoid.

For the sake of simplicity, we restrict the present article to projections compatible with the usual degree. This is not a conceptual limitation.

So far, border bases have been developed essentially for zero-dimensional ideals, except in [START_REF] Chen | Border bases of positive dimensional polynomial ideals[END_REF] where the projection is compatible with a monomial ordering and thus leads to Gröbner basis computation.

The main contribution of this paper is to provide a new criteria of border basis for any projection compatible with the degree on a vector space spanned by a set B of monomials connected to 1. This criteria which applies to any ideal is based on the persistence and regularity theorems of G. Gotzmann [START_REF] Gotzmann | Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes[END_REF].

We describe an algorithm, which exploits a new characterization of border basis up to a given degree, and proceeds incrementally degree by degree until the regularity criteria is satisfied. This algorithm is an extension of the algorithm in [START_REF] Mourrain | Generalised normal forms and polynomial system solving[END_REF] for zerodimensional ideals. It is complete and has no possible case of "failure" as the algorithm for zero-dimensional ideals in [START_REF] Kaspar | Computing border bases without using a term ordering[END_REF]. As a byproduct, we obtain the Hilbert polynomial of the graded part of the ideal and thus the dimension and the degree of the solution set.

Let B ⊂ be a set of monomials connected to 1 and let d ∈ . In this section, we assume that we are given a projection π :

〈B + 〉 d → 〈B〉 d (ie. satisfying π • π = π) which is compatible with the degree: ∀b ∈ 〈B + 〉 d , deg(π(b)) deg(b).
As π |〈B〉 d is the identity map, ker π is spanned by the elements:

f α = x α -π(x α ), α ∈ (∂ B) d .
We denote by F this generating set of polynomials of ker π and call it the rewriting family of ker π.

Our objective is to characterize the projections π which are the restriction of a projection π : R → 〈B〉 such that I := ker π is the ideal generated by ker π. In such a case, we have R = 〈B〉 ⊕ I and π is a normal form modulo the ideal I.

The main idea behing border basis techniques is to relate this normal form property to commutation properties of multiplication operators [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF]. We define the operator of multiplication by x i associated to π as:

M i : 〈B〉 d-1 → 〈B〉 d b → π(x i b).
As π is compatible with the degree, the image by M i of an element of degree k is of degree k + 1 for 0 k < d.

For a monomial However, if the operators M i commute in degree d-2, then this projection π is uniquely defined.

x α = x α 1 1 • • • x α n n ∈ of degree d, we define x α (M) := M α 1 1 • • • • • M α n n .

Characterization of TNFs

Given a linear map N : V → δ with V ⊂ R a finite dimensional subvector space, what are the conditions on N , V such that N covers a TNF w.r.t I? Also, which subspaces B ⊂ V such that x i •B ∈ V, i = 1, . . . , n can we identify with R/I? That is, the map N : V → δ might cover different TNFs : V → B and : V → B . Theorem 3.5.10 gives an answer to these questions.

We consider a 0-dimensional ideal I = ( f 1 , . . . , f s ) ⊂ R generated by s polynomials in n variables with δ < ∞ solutions in n , counting multiplicities. For any ideal J ⊂ R and p ∈ R, we denote (J : p) = {q ∈ R | pq ∈ J} and (J :

p * ) = {q ∈ R | ∃k ∈ s.t. p k q ∈ J}.
Theorem 3.5.10 Let V ⊂ R be a finite dimensional subvector space and let W = { f ∈ V :

x i f ∈ V, i = 1, . . . , n}. Suppose we have a -linear map N : V → δ such that 1. ∃u ∈ V such that u + I is a unit in R/I, 2. ker(N ) ⊂ I ∩ V , 3. N |W is onto δ .
Then for any δ-dimensional vector subspace B ⊂ W such that N |B is invertible we have: 

m x i • m x j = m x j • m x i for 1 i < j n).
Proof.

(i) It follows from the fact that N |B is invertible that V = B ⊕ ker(N ). Let π : V → B be the projection onto B along ker(N ) and define

m x i : B -→ B, b -→ π(x i • b).
Then ∀b ∈ B,

m x i (b) = x i • b mod ker(N ) (3.9) = x i • b mod I (3.10)
where the last equality follows from ker(N ) ⊂ I ∩ V .

For α ∈ n , we write

m α = m α 1 x 1 • • • • • m α n x n and for f = p i=1 c i x α i ∈ R we define f (m) = p i=1 c i m α i : B → B.
Replacing u by π(u) which is also invertible in R/I, we can assume that u ∈ B. We will show that the sequence

0 J R B 0 f f (m)(u) φ with J = ker(φ) is exact. From (3.10), we deduce that ∀ f ∈ R, φ( f ) = f u mod I so that J = ker φ ⊂ I. If π I : R → R/I is the map that sends f to its residue class in R/I, we have π I (φ( f )) = π I ( f u). Hence π I (φ(R)) = π I (R u) = R/I since u is invertible in R/I and dim (φ(R)) ≥ dim (R/I) = δ. But also φ(R) ⊂ B means dim (φ(R)) ≤ dim (B) = δ.
We deduce that φ is surjective and π I : B → R/I is an isomorphism. It follows that the induced map φ : R/J → B R/I is an isomorphism of -vector spaces, which implies J = I since J ⊂ I. We conclude that φ is an isomorphism of R-modules between R/I and B and its inverse is u -1 • π I . This proves the first point. (iii) From Equation (3.10) and the isomorphism φ between R/I and B, we deduce that the operators m x i correspond to the multiplications by the variables x i in the quotient algebra R/I. Thus they are commuting. By construction, we have

N i (b) = N (x i • b) = N (π(x i • b)) = (N |B • m x i )(b)
, where the second equality follows from ker(π) = ker(N ). This concludes the proof of the third point. By the normal form characterization proved in [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF][START_REF] Mourrain | Generalized normal forms and polynomial system solving[END_REF], if the set B is connected to 1 (1 ∈ B and there exists vector spaces

B l ⊂ R such that B 0 = 〈(〉1) = ⊂ B 1 ⊂ • • • ⊂ B k = B with B l+1 ⊂ B + l where B + l = B l + x 1 B l + • • • + x n B l )
, then the commutation property (point (iv)) implies that B R/I (point (ii)).

Constructing truncated normal forms

In some interesting cases, a map N : V → δ covering a TNF can be computed as the cokernel of a resultant map. Such a map is defined as follows.

Definition 3.5.12 (Resultant map)

Let f = [ f 1 , . . . , f s ] ∈ R s . A resultant map w.r.t. f is a map M : V 1 × • • • × V s -→ V : (q 1 , . . . , q s ) -→ q 1 f 1 + • • • + q s f s . with V i , V ⊂ R finite dimensional vector subspaces.
Note that all resultant maps with respect to f share the property that im(M ) ⊂ I ∩V where I = ( f 1 , . . . , f s ). Hence, if N = coker(M ), we have ker(N ) ⊂ I ∩ V . In the following sections, we show how TNFs are covered by the cokernel of a specific resultant map in the affine, toric, homogeneous and multihomogenous setting when I is a complete intersection.

We now show how the cokernel of a particular resultant map gives a map N and a subspace V satisfying the conditions of Theorem 3.5.10. Consider a zero-dimensional ideal I = 〈 f 1 , . . . , f n 〉 ⊂ R such that the f i define a system of polynomial equations that has no solutions at infinity. That is, denoting deg( f i ) = d i , we assume that the f i are generic in the sense that there are δ = n i=1 d i solutions, counting multiplicities, in n . We denote these solutions by (I) = {z 1 , . . . , z δ 0 } ⊂ n , where δ 0 ≤ δ is the number of distinct solutions. Next, we consider a generic linear polynomial f 0 . We use the classical Macaulay resultant matrix construction defined as follows. Let ρ = n i=1 d i -n + 1, let V = R ≤ρ be the space of polynomials of degree ≤ ρ and V i = R ≤ρ-d i . The associated resultant map is

M 0 : V 0 × V 1 × • • • × V n -→ V (q 0 , q 1 , . . . , q n ) -→ q 0 f 0 + q 1 f 1 + • • • + q n f n .
There is a square submatrix M of the matrix of M 0 such that det(M ) is a nontrivial multiple of the resultant Res(

f 0 , f 1 , . . . , f n ) [CLO97, Mac02]. The monomial multiples of f 0 involved in M have exponents in Σ 0 = {α ∈ n : α i < d i , i = 1, . . . , n}.
The set 0 of monomials with exponents in Σ 0 corresponds generically to a basis (the so-called Macaulay basis) of R/I: B 0 = 〈 0 〉 R/I. The matrix M decomposes as

M = M 00 M 01 M 10 M 11
where the rows and columns of the first block M 00 are indexed by 0 . The matrix M = M 01 M 11 representing monomial multiples of f 1 , . . . , f n is such that im( M ) ⊂ I ∩ V . Since for generic systems f 1 , . . . , f n , the matrix M 11 is invertible (see [START_REF] Macaulay | Some formulae in elimination[END_REF], [CLO97, Chapter 3]), the rank of M is dim Vδ. Let N be the coefficient matrix of a basis of the left nullspace of M so that N M = 0. Then N corresponds to a linear map V → δ of rank δ such that its kernel is im( M ) ⊂ I. In fact, denoting

M = (M 0 ) |V 1 ו••×V n (i.e. M (q 1 , . . . , q n ) = q 1 f 1 + . . . + q n f n ) it satisfies ker(N ) = im( M ) = im(M ) = I ∩ V = I ≤ρ , since B 0 ∩ I = {0} and M 11 is invertible, so that any element in im(M ) can be projected in B 0 ∩ I along im( M ) (i.e. im(M ) ⊂ im( M ) ⊂ im(M )).
In order to apply Theorem 3.5.10, we need to restrict N to a subset W ⊂ V , such that

x i • W ⊂ V and N |W is surjective. Let us take W = R ≤ρ-1 . Since M 11 is invertible, N is equivalent to the matrix id -M 01 M -1 11
where the columns of the δ × δ identity block are indexed by the monomials in 0 . Since B 0 ⊂ W , we deduce that N |W is surjective.

This leads to Algorithm 3.5.1 for computing the algebra structure of R/I. Note that in step 5 of the algorithm we make a choice of monomial basis for R/I. In order to have accurate multiplication matrices, N |B should be 'as invertible as possible'. A good choice here is to use QR with optimal column pivoting on the matrix N |W , such that corresponds to a well-conditioned submatrix. We use M instead of M for numerical reasons. It leads to a more accurate computation of the null space. Algorithm 3.5.1: Computes the structure of the algebra R/I (affine, dense case) 

1: procedure ALGEBRASTRUCTURE( f 1 , . . . , f n ) 2: M ← the resultant map on V 1 × • • • × V n 3: N ← null(M )
= 〈 f 1 , f 2 〉 ⊂ [x 1 , x 2 ] given by f 1 = 7 + 3x 1 -6x 2 -4x 2 1 + 2x 1 x 2 + 5x 2 2 , f 2 = -1 -3x 1 + 14x 2 -2x 2 1 + 2x 1 x 2 -3x 2 2 .
As illustrated in Figure 3.1, the solutions are z 1 = (-2, 3), z 2 = (3, 2), z 3 = (2, 1), z 4 = (-1, 0). The dense Macaulay matrix M of degree

ρ = d 1 + d 2 -n + 1 = 3 is M =        1 x 1 x 2 x 2 1 x 1 x 2 x 2 2 x 3 1 x 2 1 x 2 x 1 x 2 2 x 3 2 f 1 7 3 -6 -4 2 5 x 1 f 1 7 3 -6 -4 2 5 x 2 f 1 7 3 -6 -4 2 5 f 2 -1 -3 14 -2 2 -3 x 1 f 2 -1 -3 14 -2 2 -3 x 2 f 2 -1 -3 14 -2 2 -3       
.

Since all solutions are simple, a basis for the left null space of M is given by v (3) (z i ), i = 1, . . . , 4, where

v (3) (x 1 , x 2 ) = 1 x 1 x 2 x 2 1 x 1 x 2 x 2 2 x 3 1 x 2 1 x 2 x 1 x 2 2 x 3 2 .
These are the linear functionals η i , i = 1, . . . , 4 in V * ∩ I ⊥ representing 'evaluation in z i '. We find

N =    1 x 1 x 2 x 2 1 x 1 x 2 x 2 2 x 3 1 x 2 1 x 2 x 1 x 2 2 x 3 2 v (3) (-2,3) 1 -2 3 4 -6 9 -8 12 -18 27 v (3) (3,2)
1 3 2 9 6 4 27 18 12 8

v (3) (2,1) 1 2 1 4 2 1 8 4 2 1 v (3) (-1,0) 1 -1 0 1 0 0 -1 0 0 0    . For = {x 1 , x 2 , x 2 1 , x 1 x 2 }
, the submatrices we need are

N |B =    -2 3 4 -6 3 2 9 6 2 1 4 2 -1 0 1 0    , N 1 =    4 -6 -8 12 9 6 27 18 4 2 8 4 1 0 -1 0    , N 2 =    -6 9 12 -18 6 4 18 12 2 1 4 2 0 0 0 0    ,
corresponding to , x 1 • and x 2 • respectively. The vector space B in this example is the space of polynomials supported in . One can check that N |B is invertible. Using Matlab, we find the eigenvalues of N 2 v = λN |B v via the command eig. The eigenvalues are 0, 1, 2, 3 as expected. Of course, in practice we do not know the solutions and we cannot construct the nullspace in this way. Any basis will do, since using another basis comes down to left multiplying N and the N i by an invertible matrix. Note that does not correspond to any monomial order and it is not connected to one, so it does not correspond to a Groebner or a border basis. If the rank r of σ is finite, then the quotient σ of R by the kernel I σ is of dimension r < ∞, i.e. dim σ = rank H σ = rank σ and σ is Artinian.

Since ∀p(x ), q(x ) ∈ [x ], 〈p(x ) + I σ , q(x ) + I σ 〉 σ = 〈p(x ), q(x )〉 σ , we see that 〈•, •〉 σ induces an inner product on σ . The Hankel operator can be interpreted as an operator on sequences:

H σ : 0 ( n ) → ( n ) m p = (p β ) β∈B⊂ n → β∈B p β σ 1 α+β α∈ n , . . . , β∈B p β σ m α+β α∈ n
where 0 ( n ) is the set of sequences ∈ n with a finite support and (σ i α ) α∈ n is the sequence in n associated to the element σ ∈ R (see chap. 2). This definition applies for a field of any characteristic.

Given sequences σ = (σ 1 , . . . , σ m ) with σ i = (σ i α ) α∈ n ∈ n for i = 1, . . . , m, the kernel of H σ is the set of polynomials p = β∈B p β x β such that p = β∈B p β σ i α+β for all α ∈ n and i = 1, . . . , m. This kernel is also called the set of (simultaneous) linear recurrence relations of the sequences (σ i α ) α∈ n , i = 1, . . . , m. The operator H σ can also be interpreted, via the Z-transform of the sequence p σ (see Section 2.3), as the following operators on series:

H σ : [x ] → [[z]] m p = β∈B p β x β → α∈ n β∈B p β σ i α+β z α , . . . , α∈ n β∈B p β σ m α+β z α .
In the terms of series in y, the operator H σ is operating as follows:

H σ : [x ] → [[y]] m p → p(∂ y )(σ 1 ), . . . , p(∂ y )(σ m ) .
Its 

r i i=1 ω k,i (∂ )(pq)(ξ i ) = 0, k = 1, . . . , m.

Truncated Hankel operators

In the sparse reconstruction problem, we are dealing with truncated series with known coefficients σ α for α in a subset a of n . This leads to the definition of truncated Hankel operators.

Definition 4.1.6 For vector spaces

V ⊂ R, W = (W 1 , . . . , W m ) ⊂ R m and σ = (σ 1 , . . . , σ m ) with σ i ∈ 〈V • W i 〉 where V • W i = 〈v • w | v ∈ V, w ∈ W i 〉 ⊂ R we denote by H V,W σ the follow- ing map: H V,W σ : V → W * = m i=1 W i p → (p σ 1 ) |W 1 , . . . , (p σ m ) |W m

It is called the truncated Hankel operator on (V, W ).

When m = 1, σ ∈ R and W = V , the truncated Hankel operator is also denoted H V σ . When V (resp. W i ) is the vector space of polynomials of degree d ∈ (resp. d i ∈ ), the truncated operator is denoted

H d,d σ where d = (d 1 , . . . , d m ). If B = {b 1 , . . . , b r } (resp. C i = {c i 1 , . . . , c i r }
) is a basis of V (resp. W i ), then the matrix of the operator H V,W σ in B and the dual basis of C = (C 1 , . . . , C m ) has a block structure of the form

[H B,C σ ] =             〈σ 1 |b 1 c 1 1 〉 • • • 〈σ 1 |b r c 1 1 〉 . . . . . . 〈σ 1 |b 1 c 1 r 1 〉 • • • 〈σ 1 |b r c 1 r 1 〉 . . . 〈σ 1 |b 1 c m i 〉 • • • 〈σ 1 |b r c m 1 〉 . . . . . . 〈σ 1 |b 1 c m r m 〉 • • • 〈σ 1 |b r c m r m 〉            
.

Hereafter, we will use the notation

[H B,C σ ] = [〈σ k | b j c k i 〉] c k i ∈C,b j ∈B . Example 4.1.7 Let σ = (e (1,0) , e (1,2) ) ∈ ( [x 1 , x 2 ] ) * , B = [1, x 1 , x 2 , x 2 1 , x 1 x 2 , x 2 2 ], C = (C 1 , C 2 ) = ([1, x 1 , x 2 ], [1, x 1 , x 2 ]). Then H B,C
σ is composed of two blocks, which (i, j) entry is obtained by evaluating σ k on the product of the i th monomial of C k and the j th monomials in B for k = 1, 2:

H B,C σ =       
1 1 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 1 2 1 2 4 2 2 4 2 4 8 4 4 8 4 8 16

      
.

It is a matrix of rank 2 composed of two blocks of rank 1 (which rows are multiples of the first row of the block).

If m = 1, σ ∈ [x ] , B = {x β } β∈b and C = {x γ } γ∈c are monomial sets, we obtain the following truncated moment matrix of σ:

[H B,C σ ] = (〈σ | x β+γ 〉) γ∈c,β∈b .
Its coefficients depend only on the sum of the indices indexing the rows and columns. This is a characterization of the classical structure of Hankel matrices when n = 1 and B = {1, x, x 2 , . . . , x d }, C = {1, x, . . . , x d } (see e.g. [START_REF] Bini | Polynomial and Matrix Computations[END_REF]). When n 2, we have a similar family of structured matrices, which rows and columns are indexed by exponents in n (or monolials) and which entries depends on the sum of the row and column indices. These structured matrices called quasi-Hankel matrices have been studied for instance in [START_REF] Mourrain | Multivariate Polynomials, Duality, and Structured Matrices[END_REF].

Artinian Gorenstein Algebra

In this section, we analyse the properties of Artinian algebras associated to Hankel operators, in the case m = 1.

Given σ ∈ [[y]], we consider its Hankel operator

H σ : p ∈ [x ] → p σ ∈ [[y]]. The kernel I σ of H σ is an ideal and the elements p σ of im H σ for p ∈ [x ] are in I ⊥ σ = * σ where σ = [x ]/I σ : ∀q ∈ I σ , 〈p σ | q〉 = 〈q σ | p〉 = 0. If σ is artinian of dimension r, then im H σ = {p σ | p ∈ R} ⊂ I ⊥ σ = * σ is of dimension r. Therefore, the injective map σ : σ → * σ p(x ) → p(x ) σ(y)
induced by H σ is an isomorphism, and we have the exact sequence: 〈p(x ), q(x )〉 σ = 〈p σ(y) | q(x )〉 = 0, then p σ(y) = 0 and p ∈ I σ . We deduce that the inner product 

0 → I σ → [x ] H σ -→ * σ → 0. ( 4 
= I ⊥ = 〈1, y 1 , y 2 , y 1 y 2 〉 = ( y 1 y 2 ).
The inverse system I ⊥ = is generated by the element y 1 y 2 . It is a free -module of rank 1, since p y 1 y 2 = 0 with p ∈

[x 1 , x 2 ] implies that p(0, 0) = 0, ∂ 1 (p)(0, 0) = 0, ∂ 2 (p)(0, 0) = 0, ∂ 1 ∂ 2 (p)(0, 0) = 0. and that p ∈ (x 2 1 , x 2 2 ) or p ≡ 0 in . A basis of is B = {1, x 1 , x 2 , x 1 x 2 }. The matrix of 〈., .〉 y 1 y 2 in this basis is    0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0    .
It is invertible and 〈., .〉 y 1 y 2 is non-degenerate. These two equivalent properties mean that is a Gorenstein Artinian algebra.

Example 4.2.4 Here is an example of a non-Gorenstein Artinian algebra. Let I

= (x 1 , x 2 ) 2 ⊂ [x 1 , x 2 ]. Then = [x 1 , x 2 ]/I is an Artinian algebra of dimension 3. A basis of is B = {1, x 1 , x 2 }. Its dual is = I ⊥ = 〈1, y 1 , y 2 〉 = ( y 1 , y 2 ).
The inverse system I ⊥ = is generated by the two elements y 1 , y 2 . For any element σ ∈ of the form σ = σ 0 + σ 1 y 1 + σ 2 y 2 ∈ , with σ i ∈ , the matrix of 〈., .〉 σ in the basis B = {1,

x 1 , x 2 } of is   σ 0 σ 1 σ 2 σ 1 0 0 σ 2 0 0   .
It is of rank 2. Thus 〈., .〉 σ is degenerate and is not a Gorenstein Artinian algebra.

Proposition 4.2.1 and Theorem 4.2.2 implies that for σ = [x ] σ = 0, σ = 0, H σ of finite rank, I σ = ker H σ , the Artinian algebra σ = [x ]/I σ is Gorenstein. Conversely, any Artinian Gorenstein algebra is of this type. Proof. As = [x ]/I is Artinian Gorenstein, by Theorem 4.2.2 there exists σ ∈ such that σ is a basis of the free -module :

= I ⊥ = σ
This implies that the map

H σ : [x ] → p → p σ
is surjective and that it induces an isomorphism between [x ]/I σ and where I σ = ker H σ . As I ⊂ I σ and dim = dim < ∞, we deduce that I = I σ . This construction defines a correspondence between series σ ∈ [[y]] of finite rank = 0 or Hankel operators H σ of finite rank = 0 and Artinian Gorenstein Algebras.

Hankel operators of finite rank

Hankel operators of finite rank play an important role in functional analysis. In one variable and m = 1, they are characterized by Kronecker's theorem [START_REF] Kronecker | Zur Theorie der Elimination Einer Variabeln aus Zwei Algebraischen Gleichungen[END_REF] as follows (see e.g. [START_REF] Peller | An excursion into the theory of Hankel operators. Holomorphic spaces[END_REF] for more details). Let 0 ( ) be the vector space of sequences ∈ of finite support and let σ = (σ k ) k∈ ∈

. The Hankel operator H σ : (p l ) l∈ ∈ 0 ( ) → l σ k+l p l k∈ ∈ is of finite rank r, if and only if, there exist polynomials ω 1 (u), . . ., ω r (u) ∈ [u] and ξ 1 , . . . , ξ r ∈ distinct such that

σ k = r i=1 ω i (k)ξ k i , with r i=1 deg(ω i ) + 1 = rank H σ .
Rewriting it in terms of generating series, we have

H σ : p = l p l x l ∈ [x] → k∈ l σ k+l p l y k k! = p σ is of finite rank, if and only if, σ( y) = k∈ σ k y k k! = r i=1 ω i ( y)e ξ i y
with ω 1 , . . . , ω r ∈ [ y] and ξ 1 , . . . , ξ r ∈ distinct such that r i=1 deg(ω i )+1 = rank H σ . Notice that deg(ω i ) + 1 is the dimension of the vector space spanned by ω i ( y) and all its derivatives.

In the case of several variables, extensions of Kronecker's theorem have been developed [START_REF] Fliess | Séries reconnaissables, rationnelles et algébriques[END_REF], [START_REF] Stephen | Finite rank multivariable Hankel forms[END_REF], [START_REF] Andersson | On the structure of positive semidefinite finite rank general domain Hankel and Toeplitz operators in several variables[END_REF], [START_REF] Andersson | On General Domain Truncated Correlation and Convolution Operators with Finite Rank[END_REF], but without connecting the rank of the Hankel operator with the decomposition of the associated symbol. The following result generalizes Kronecker's theorem, by establishing a correspondence between Hankel operators of finite rank and polynomial-exponential series and by connecting the rank of the Hankel operator with the decomposition of the associated series. ,ω m,i ) where µ(ω 1,i , . . . , ω m,i ) is the dimension of the inverse system (ω 1,i , . . . , ω m,i ) spanned by ω k,i (y) and all their derivatives

∂ α 1 y 1 • • • ∂ α n y n ω k,i (y) for α = (α 1 , . . . , α n ) ∈ n , k = 1, . . . , m. Proof. If H σ is of finite rank ρ, then σ = [x ]/I σ = [x ]/ ker H σ ∼ Im(H σ )
is of dimension ρ and σ is an artinian algebra. By Theorem 3.2.1, it can be decomposed as a direct sum of sub-algebras

σ = ξ 1 ⊕ • • • ⊕ ξ r where I σ = Q 1 ∩ • • • ∩ Q r is
a minimal primary decomposition, (I σ ) = {ξ 1 , . . . , ξ r } and ξ i is the local algebra for the maximal ideal m ζi defining the root ξ i ∈ n , such that

ξ i ≡ [x ]/Q i where Q i is a m ξ i -primary component of I σ .
By Theorem 3.4.3, for k = 1, . . . , m, the series σ k ∈ * σ = I ⊥ σ can be decomposed as

σ k = r i=1 ω k,i (y) e ξ i (y) (4.2) with ω k,i (y) ∈ [y] and ω k,i (y) e ξ i (y) ∈ * ξ i = Q ⊥ i , i.e. σ k ∈ ol x p(y).
Conversely, let us show that if, for k = 1, . . . , m, σ k (y) = r i=1 ω k,i (y) e ξ i (y) with ω i (y) ∈ [y] \ {0} and ξ i ∈ n pairwise distinct, the rank of H σ is finite. Using Lemma 2.2.5, we check that

I σ = ker H σ contains ∩ r i=1 m d i+1
ξ i where d i = max k {deg(ω k,i )}. Thus (I σ ) ⊂ {ξ 1 , . . . , ξ r }, σ is an artinian algebra and rank

H σ = dim(Im(H σ )) = dim( [x ]/I σ ) = dim( σ ) < ∞.
Let us show now that rank

H σ = r i=1 µ(ω 1,i , . . . , ω m,i ). By construction, rank H σ = dim(R/ ker H σ ) = dim((ker H σ ) ⊥ ) = dim((∩ m k=1 ker H σ k ) ⊥ ) = dim( m k=1 I ⊥ σ k )
where

H σ k : p ∈ R → p σ k ∈ R and I σ k = ker H σ k for k = 1, . . . , m.
Consider the Artinian algebra σ k = R/I σ k and its decomposition (3.3) as a direct sum of local algebras:

σ k = ⊕ r i=1
k,ξ i . Thus, we have the dual decomposition:

I ⊥ σ k = σ k = ⊕ r i=1 k,ξ i .
By the exact sequence (4.1), *

σ k = Im(H σ k ) = {p σ k | p ∈ [x ]}. From Lemma 3.4.2, we deduce that * k,ξ i is spanned by the elements u k,ξ i (p σ k ) = p (u k,ξ i σ k ) = p ω k,i (y) e ξ i (y) for p ∈ [x ]
, that is, by ω i (y) e ξ i (y) and all its derivatives with respect to d d y i . This shows that * ξ i = (ω k,i ) e ξ i (y) where (ω k,i ) ⊂ [y] is the inverse system spanned by ω k,i (y). It implies that

I ⊥ σ = k k=1 I ⊥ σ k = r i=1 m k=1 (ω k,i ) e ξ i = r i=1 (ω 1,i , . . . , ω m,i ) e ξ i
We deduce that rank H σ = r i=1 dim (ω 1,i , . . . , ω m,i ) = r i=1 µ(ω 1,i , . . . , ω m,i ). This concludes the proof of the theorem. Here are some direct consequences of this result. Proposition 4.3.2 If σ = (σ 1 , . . . , σ m ) with σ k (y) = r i=1 ω k,i (y)e ξ i (y) and ω k,i (y) ∈ [y] not all zero for k = 1, . . . , m and ξ i ∈ n pairwise distinct, then we have the following properties:

• The points ξ 1 , ξ 2 , . . . , ξ r ∈ n are the common roots of the polynomials in

I σ = ker H σ = {p ∈ [x ] | ∀q ∈ [x ], 〈σ|pq〉 = 0}. • The inverse system of Q i is (ω 1,i , . . . , ω m,i )
, where Q i is the primary component of I σ associated to ξ i .

Proof. From the previous proof of Theorem 4.3.1, we have

I ⊥ σ = r i=1 Q ⊥ i = r i=1 (ω 1,i , . . . , ω m,i ) e ξ i with Q ⊥ i = (ω 1,i , . . . , ω m,i ) e ξ i . This shows that • Q i is m ξ i -primary and (I σ ) = {ξ 1 , . . . , ξ r }, • the inverse system of Q i is (ω 1,i , . . . , ω m,i ) e ξ i .
A special case of interest is when the roots are simple. We characterize it as follows:

Proposition 4.3.3 Let σ(y) ∈ ( [[y]]) m .
The following conditions are equivalent:

1. σ k (y) = r i=1 ω k,i e ξ i (y), with {ω 1,i , . . . , ω m,i } ⊂ not all zero and ξ i ∈ n pairwise distinct.

2. The rank of H σ is r = # (I σ ) and the multiplicity of the roots ξ 1 , . . . , ξ r ∈ (I σ ) is 1.

A basis of *

σ is e ξ 1 , . . . , e ξ r .

Proof. 1 ⇒ 2. By theorem 4.3.1, the rank of H σ is r i=1 µ(ω 1,i , . . . , ω m,i ) the dimension of the space spanned by ω k,i and their derivatives. As {ω 1,i , . . . , ω m,i } ⊂ are not all zero, rank H σ = r and the multiplicity of the root ξ i is µ(ω 1,i , . . . , ω m,i ) = 1.

2 ⇒ 3. As the multiplicity of the roots ξ i is 1 and

σ k ∈ I ⊥ σ , by Theorem 3.4.3 σ k = r i=1 ω k,i e ξ i with ω k,i = 0 or deg(ω k,i ) = 0. By Theorem 4.3.1, we have * σ = I ⊥ σ = r i=1 (ω 1,i , . . . , ω m,i )e ξ i = r i=1 e ξ i .
This shows that e ξ 1 , . . . , e ξ r is a basis of * σ . 3 ⇒ 1. As e ξ 1 , . . . , e ξ r is a basis σ , the points ξ i ∈ n are pairwise distinct. As σ k ∈ σ , there exists ω k,i ∈ such that σ k = r i=1 ω k,i e ξ i . If all the coefficients ω 1,i , . . . , ω m,i vanish then dim( σ ) < r, which is contradicting point 3. Thus ω 1,i , . . . , ω m,i are not all zero.

Given a Hankel operator H σ of finite rank r, it is clear that the truncated operators will have at most rank r. We have a converse property, so-called flat extension property, which gives conditions under which a truncated Hankel operator of rank r can be extended to a Hankel operator of the same rank (see [START_REF] Laurent | A generalized flat extension theorem for moment matrices[END_REF] and extensions [START_REF] Brachat | Symmetric tensor decomposition[END_REF], [START_REF] Bernardi | General tensor decomposition, moment matrices and applications[END_REF], [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]). We will use this property in a decomposition method to test when to stop (see section 4.6).

Theorem 4.3.4 Let V, V ⊂ K[x ] be vector spaces connected to 1, such that x 1 , . . . , x n ∈ V and let σ ∈ 〈V • V 〉 * . Let B ⊂ V , B ⊂ V such that B + ⊂ V, B + ⊂ V . If rank H V,V σ = rank H B,B σ = r,

Decomposition of series

The sparse decomposition problem of series σ ∈ [[y]] consists in computing points {ξ 1 , . . . , ξ r } ⊂ n and weights ω i (y) ∈ [y] such that σ = r i=1 ω i (y) e ξ i (y). In this section, we describe how to compute this decomposition from the Hankel operator H σ .

We recall classical results on the resolution of polynomial equations by eigenvalue and eigenvector computation, that we will use to compute the decomposition. Hereafter, = [x ]/I is the quotient algebra of [x ] by any ideal I and * = Hom ( , ) is the dual of . It is naturally identified with the orthogonal

I ⊥ = {Λ ∈ [[y]] | ∀p ∈ I, 〈Λ, p〉 = 0}.
In the reconstruction problem, we will take I = I σ .

In the first step of method, we will determine a basis of σ = [x ]/I σ . We will use the following result:

Lemma 4.4.1 Let B = {b 1 , . . . , b r } ⊂ [x ], C = {C 1 , . . . , C m } ⊂ ( [x ]) m . If the matrix H B,C σ = (〈σ k |b j c i,k 〉) c i,k ∈C,b j ∈B is invertible, then B is linearly independent in σ . Proof. Suppose that H B,C
σ is invertible. If there exist p = j p j b j (p j ∈ ) such that p ≡ 0 in σ . Then p σ = 0 and ∀q ∈ R, k = 1, . . . , m 〈σ k |pq〉 = 0. In particular, we have r j=1 〈σ|b j c k, j 〉p j = 0.

As H B,C σ is invertible, p j = 0 for j = 1, . . . , r and B is a family of linearly independent elements in σ .

Notice that this result depend only on the classes of b j , c k, j modulo I σ (i.e. in σ ) since

〈σ k |(b i + p)(c k, j + p )〉 = 〈σ k |b i c k, j 〉
for any p, p ∈ I σ . The converse of Lemma 4.4.1 is not necessarily true, as shown by the following example in one variable: if m = 1, σ = y, then

I σ = (x 2 ), σ = [x]/(x 2 ) and B = C = {1} are linearly independent in σ , but H B,C σ = (〈σ|1〉) = (0) is not invertible. This lemma implies that if dim σ < +∞, |B| = |C| = dim σ and H B,C σ is invertible, then B is a basis of σ . If m = 1 and B, C ⊂ [x ] such that |B| = |C| and H B,C
σ invertible, we can also deduce from Lemma 4.4.1 that C is linearly independent in σ since H C,B σ = (H B,C σ ) t is invertible. By quotient by I σ = ker H σ , the Hankel operator H σ induces the map

σ : σ → ( σ ) m p → p σ.
For g ∈ [x ], the operator of multiplication by g in σ is

g : σ → σ p → g p.
Lemma 4.4.2 For any g ∈ [x ], we have

g σ = σ • g . (4.3)
Proof. This is a direct consequence of the definitions of g σ , σ and g . The transpose operator of multiplication by g is (by definition of the tranposition)

t g : σ → σ σ → g σ.
When m = 1, we have an additional relation: Proof. This is also a direct consequence of the commutativity of the product in σ and the definitions of g σ , σ and t g . From Relation (4.3) and Proposition 3.3.2, we have the following property.

Proposition 4.4.4 If σ(y) = r i=1 ω i (y)e ξ i (y)with ω i ∈ [y]\{0} and ξ i ∈ n distinct, then
• for all g ∈ , the generalized eigenvalues of ( g σ , σ ) are g(ξ i ) with multiplicity

µ i = µ(ω i ), i = 1 . . . r,
• the generalized eigenvectors common to all ( g σ , σ ) with g ∈ are -up to a scalar --1 σ (e ξ 1 ), . . . , -1 σ (e ξ r ).

Remark 4.4.5 If we take g = x i , then the eigenvalues are the i-th coordinates of the points ξ j .

The case of simple roots

We consider the case where m = 1 and I σ defines simple roots, that is σ is of the form σ(y) = r i=1 ω i e ξ i (y) with ω i ∈ \ {0} and ξ i ∈ n distinct, computing the decomposition reduces to a simple eigenvector computation, as we will see.

By Proposition 4.3.3, {e ξ 1 , . . . , e ξ r } is a basis of * σ . We denote by {u ξ 1 , . . . , u ξ r } the basis of σ , which is dual to {e ξ 1 , . . . , e ξ r }, so that ∀a ∈ σ ,

a(x ) ≡ r i=1 〈e ξ i | a〉 u ξ i (x ) ≡ r i=1 a(ξ i ) u ξ i (x ).
(4.5)

From this formula, we easily verify that the polynomials u ξ 1 , u ξ 2 , . . . , u ξ r are the interpolation polynomials at the points ξ 1 , ξ 2 , . . . , ξ r , and satisfy the following relations in σ :

•

u ξ i (ξ j )= 1 if i = j, 0 otherwise . • u ξ i (x ) 2 ≡ u ξ i (x ). • r i=1 u ξ i (x ) ≡ 1.
Proposition 4.4.6 Let σ = r i=1 ω i e ξ i (y) with ξ i pairwise distinct and ω i ∈ \ {0}. The basis {u ξ 1 , . . . , u ξ r } is an orthogonal basis of σ for the inner product 〈., .〉 σ and satisfies

〈u ξ i , 1〉 σ = 〈σ | u ξ i 〉 = ω i for i = 1 . . . , r. Proof. For i, j = 1 . . . r, we have 〈u ξ i , u ξ j 〉 σ = 〈σ | u ξ i u ξ j 〉 = r k=1 ω k u ξ i (ξ k )u ξ j (ξ k ). Thus 〈u ξ i , u ξ j 〉 σ = ω i if i = j 0 otherwise
and {u ξ 1 , . . . , u ξ r } is an orthogonal basis of σ . Moreover,

〈u ξ i , 1〉 σ = 〈σ | u ξ i 〉 = r k=1 ω k u ξ i (ξ k ) = ω i .
Proposition 3.3.2 implies the following result:

Corollary 4.4.7 If g ∈ [x ] is separating the roots ξ 1 , . . . , ξ r (i.e. g(ξ i ) = g(ξ j ) when i = j), then

• the operator g is diagonalizable and its eigenvalues are g(ξ 1 ), . . . , g(ξ r ),

• the corresponding eigenvectors of g are, up to a non-zero scalar, the interpolation polynomials u ξ 1 , . . . , u ξ r .

• the corresponding eigenvectors of t g are, up to a non-zero scalar, the evaluations e ξ 1 , . . . , e ξ r .

A simple computation shows that H σ (u ξ i ) = ω i e ξ i (y) for i = 1, . . . , r. This leads to the following formula for the weights of the decomposition of σ: Proposition 4.4.8 If σ = r i=1 ω i e ξ i (y) with ξ i pairwise distinct and ω i ∈ \ {0} and g ∈ [x ] is separating the roots ξ 1 , . . . , ξ r , then there are r linearly independent generalized eigenvectors v 1 , . . . , v r of ( g σ , σ ), which satisfy the relations:

〈σ | x j v i 〉 = ξ i, j 〈σ | v i 〉 for j = 1, . . . , n, i = 1, . . . , r σ(y) = r i=1 1 v i (ξ i ) 〈σ | v i 〉 e ξ i (y)
Proof. By Lemma 4.4.2 and Corollary 4.4.7, the eigenvectors u ξ 1 , . . . , u ξ r of g are the generalized eigenvectors of ( g σ , σ ). By Corollary 4.4.7, v i is a multiple of the interpolation polynomial u ξ i , and thus of the form

v i (x ) = v i (ξ i )u ξ i (x ) since u ξ i (ξ i )=1. We deduce that u ξ i (x ) = 1 v i (ξ i ) v i (x )
. By Proposition 4.4.6, we have

ω i = 〈σ | u ξ i 〉 = 1 v i (ξ i ) 〈σ | v i 〉,
from which, we deduce the decomposition of σ = r i=1

1 v i (ξ i ) 〈σ | v i 〉 e ξ i (y). It implies that 〈σ | x j u ξ i 〉 = r k=1 ω k ξ k, j u ξ i (ξ k ) = ξ i, j ω i = ξ i, j 〈σ | u ξ i 〉.
Multiplying by v i (ξ i ), we obtain the first relations.

The case of multiple roots

We consider now the more general case where m = 1 and σ is of the form

σ = r i=1 ω i (y)e ξ i (y)
with ω i (y) ∈ [y] and ξ i ∈ n pairwise distinct. By Theorem 3.2.1, we have

σ = σ,ξ 1 ⊕ • • • ⊕ σ,ξ r
where σ,ξ i [x ]/Q i is the local algebra associated to the m ξ i -primary component Q i of I σ . The decomposition (3.3) and Proposition 3.4.1 imply that σ,ξ i is a local Artinian Gorenstein Algebra such that u ξ i σ is a basis of * σ,ξ i . The operators x j of multiplication by the variables x j in σ for j = 1, . . . , n are commuting and have a block diagonal decomposition, corresponding to the decomposition of σ .

It turns out that the operators x j have common eigenvectors v i (x ) ∈ σ,ξ i . Such an eigenvector is an element of the socle (0 :

m ξ i ) = {v ∈ σ,ξ i | (x j -ξ i, j )v ≡ 0, j = 1, . . . , n} = (Q i : m ξ i )/Q i .
In the case of an Artinian Gorenstein algebra σ,ξ i , the socle (0 : m ξ i ) is a vector space of dimension 1 (see e.g. [START_REF] Elkadi | Introduction à la résolution des systèmes polynomiaux[END_REF] [Sec. 7.1.5 and Sec. 9.5] for a simple proof). A basis element can be computed as a common eigenvector of the commuting operators x j . The corresponding eigenvalues are the coordinates ξ i,1 , . . . , ξ i,n of the roots ξ i , i = 1, . . . , r.

For a separating linear form l(x

) = l 1 x 1 + • • • + l n x n (such that l(ξ i ) = l(ξ j ) if i = j
), the eigenspace of l for the eigenvalue l(ξ i ) is the local algebra ξ i associated to the root ξ i . Let B i = {b i,1 , . . . , b i,µ i } be a basis of this eigenspace. It spans the elements of ξ i , which are of the form u ξ i a for a ∈ σ where u ξ i is the idempotent associated to ξ i (see Theorem 3.2.1). In particular, the eigenspace of l(x ) associated to the eigenvalue l(ξ i ) contains the idempotent u ξ i , which can be recovered as follows: Lemma 4.4.9 Let B i = {b i,1 , . . . , b i,µ i } be a basis of ξ i and

U i = (〈σ | b i,k 〉) k=1,...,µ i . Then (H B i ,B i σ ) -1 U i is the coefficient vector of the idempotent u ξ i in the basis B i of ξ i .
Proof. As the idempotent u ξ i satisfies the relation u 2 ξ i ≡ u ξ i in σ and ξ i = u ξ i σ , we have

〈u ξ i σ | b i,k 〉 = 〈σ | u ξ i b i,k 〉 = 〈σ | b i,k 〉,
and

U i = (〈σ | 〉b i,k ) k=1,...,µ i is the coefficient vector of u ξ i σ in the dual basis of B i in * ξ i . By Lemma 4.4.1, as B i is a basis of ξ i , H B i ,B i σ is invertible and (H B i ,B i σ ) -1 U i is the coefficient vector of u ξ i in the basis B i of ξ i .
Using the idempotent u ξ i , we have the following formula for the weights ω i (y) in the decomposition of σ: Proposition 4.4.10 The polynomial coefficient of e ξ i (y) in the decomposition of σ is

ω i (y) = α∈ n 〈u ξ i σ | (x -ξ i ) α 〉 y α α! . (4.6)
Proof. By Theorem 4.2.2 and relation (3.3), we have

u ξ i σ = ω i (y)e ξ i (y). As 〈y β e ξ i (y) | (x -ξ i ) α 〉 = α! if α = β 0 otherwise
, we deduce the decomposition (4.6), which is a finite sum since ω i (y) ∈ [y].

Decomposition algorithm

The results of the previous section show that the decomposition of σ can be deduced from the generalized eigenvectors of ( g σ , σ ). This is summarized in the following algorithm, which computes the decomposition of σ, assuming a basis B of σ is known. 

Construct the matrices H

0 = (〈σ | b i b j 〉) 1 i, j r (resp. H k = (〈σ | x k b i b j 〉) 1 i, j r ) of σ (resp. x k σ ) in the basis B of σ ; 2. Take a separating linear form l(x ) = l 1 x 1 + • • • + l n x n and construct H l = n i=1 l i H i = (〈σ | l b i b j 〉) 1 i, j r ; 3. Compute bases B i , i = 1, .
. . , r of the generalized eigenspaces of (H l , H 0 );

For each basis

B i = {b i,1 , . . . , b i,µ i }, compute U i = (〈σ | b i,k 〉) k=1,...,µ i and u i = (H B i ,B i σ ) -1 U i ; 5. Compute common eigenvectors v i ∈ 〈B i 〉 i = 1, . . . , r of all the pencils (H k , H 0 ), k = 1, . . . , n and ξ i = (ξ i,1 , . . . , ξ i,n ) such that (H k -ξ i,k H 0 )v i = 0; 6. Compute ω i (y) = α∈ n 〈u i σ | (x -ξ i ) α 〉 y α α! ;
Output: the decomposition σ(y) = r i=1 ω i (y)e ξ i (y). To apply this algorithm, one need to compute a basis B of σ such that σ is defined on B • B + where B + = ∪ n i=1 x i B ∪ B. In Section 4.6, we will detail an efficient method to compute such a basis B and a characterization of the sequences (σ α ) α∈A , which admits a decomposition of rank r.

The second step of the algorithm consists in taking a linear form l(x ) = l 1 x 1 + • • • + l n x n , which separates the roots in the decomposition (l(ξ i ) = l(ξ j ) if i = j). A generic choice of l yields a separating linear form. This separating property can be verified a posteriori, by checking that there are r distinct generalized eigenvalues. Notice that we only need to compute the matrix H l of l σ in the basis B of σ and not necessarily all the matrices H k .

The third step is the computation of generalized eigenvectors of a Hankel pencil. The other steps involve the application of σ on polynomials in B + .

The fifth step computes eigenvectors v 1 , . . . , v r common to all the pencil of matrices. Efficient methods as in [START_REF] Graillat | A new algorithm for computing certified numerical approximations of the roots of a zero-dimensional system[END_REF] can be used to computed them from 〈B i 〉 when the eigenvalue is not simple. In the case of a simple eigenvalue, step 5 can be removed since the vector u i computed in step 4 or the element b i,1 in the basis B i is a common eigenvector.

In step 6, only a finite number of terms 〈u i σ|(xξ i ) α 〉 need to be computed. If the weight ω i is are constant, its computation in the last step can be replaced by ω i = 〈σ|u i 〉.

Notice that the weights ω i are recovered directly from the polynomials u i and that it is not necessary to solve a Vandermonde linear system to compute them as in the pencil method (see Section 1.1).

Example

We illustrate the method on a sequence σ α obtained by evaluation of a sum of exponentials on a grid.

We consider the function h(u 1 , We compute B = {1, x 1 , x 2 }. The generalized eigenvalues of (H x 1 σ , H σ ) are [1, 2, 3] and corresponding eigenvectors are represented by the columns of

u 2 ) = 2 + 3 • 2 u 1 2 u 2 -3 u 1 . Its associated generating series is σ = α∈ 2 h(α) y α α! . Its (truncated) moment matrix is H [1,x 1 ,x 2 ,x 2 1 ,x 1 x 2 ,x 2 2 ] σ =        h(0, 0) h(1, 0) h(0, 1) • • • h(1, 0) h(2, 0) h(1, 1) • • • h(0, 1) h(1, 1) h(0, 2) • • • . . . . . . . . . . . . . . . . . .        =        4 
u :=   2 -1 0 -1 2 0 1 2 -1 2 1 -1 2   , associated to the polynomials u(x) = [2-1 2 x 1 -1 2 x 2 , -1+ x 2 , 1 2 x 1 -1 2 x 2 ]
. By computing the Hankel matrix

H [1,x 1 ,x 2 ],u σ =   〈σ|u 1 〉 〈σ|u 2 〉 〈σ|u 3 〉 〈σ|x 1 u 1 〉 〈σ|x 1 u 2 〉 〈σ|x 1 u 3 〉 〈σ|x 2 u 1 〉 〈σ|x 2 u 2 〉 〈σ|x 2 u 3 〉   =   2 3 -1 2×1 3×2 -1×3 2×1 3×2 -1×1  
we deduce the weights 2, 3, -1 and the frequencies (1, 1), (2, 2), (3, 1), which corresponds to the decomposition σ = e y 1 + y 2 + 3e 2 y 1 +2 y 2 -e 2 y 1 + y 2 and h(u 1 ,

u 2 ) = 2 + 3 • 2 u 1 +u 2 -3 u 1 .

Example

Consider the following symmetric tensor of order d = 4, that is in the vector space

[x 0 , x 1 , x 2 ] [4]
of homogeneous polynomials of degree d :

ψ = -x 0 4 -24 x 0 3 x 2 -8 x 0 3 x 1 -60 x 0 2 x 2 2 -168 x 0 2 x 1 x 2 -12 x 0 2 x 1 2 -96 x 0 x 2 3 -240 x 0 x 1 x 2 2 -384 x 0 x 1 2 x 2 + 16 x 0 x 1 3 -46 x 2 4 -200 x 1 x 2 3 -228 x 1 2 x 2 2 -296 x 1 3 x 2 + 34 x 1 4
By apolarity (see Section 1.2.2), we associate to ψ the dual element

ψ * : p → 〈ψ, p〉 d ∈ [x ] [d]
. The Hankel matrix associated to ψ * in degree 2, 2 for the set

B = {1, x 1 , x 2 , x 2 1 , x 1 x 2 , x 2 2 }
indexing the rows and columns is 

H 2,2 ψ * :=                -1 -2 -6 -2 -14 -10 -2 -2 -
               For B = {1, x 1 , x 2 }, H B,B ψ * =    -1 -2 -6 -2 -2 -14 -6 -14 -10    H B,x 1 B ψ * =    -2 -2 -14 -2 4 -32 -14 -32 -20    H B,x 2 B ψ * =   
-6 -14 -10 -14 -32 -20 -10 -20 -24

  
The matrix of multiplication by

x 2 in B = {1, x 1 , x 2 } is M 2 = (H B,B ψ * ) -1 H B,x 2 B ψ * =    0 -2 -2 0 1 2 3 2 1 5 2 3 2    .
Its eigenvalues are [-1, 1, 2] and the eigenvectors:

U :=    0 2 -1 1 4 -3 4 1 2 -1 4 -1 4 1 2    .
that is the polynomials

U(x) = 1 4 x 1 -1 4 x 2 2 -3 4 x 1 -1 4 x 2 -1 + 1 2 x 1 + 1 2 x 2 .
We deduce the weights and the frequencies:

H [1,x 1 ,x 2 ],U ψ * =    1 1 -3 1 × 3 1 × 1 -3 × 2 1 × -1 1 × 1 -3 × 2    .
This gives the weights 1, 1, -3 and the frequency points (3, -1), (1, 1), (2, 2) corresponding to the decomposition ψ * (y) = e (3,-1) (y) + e (1,1) -3 e (2,2) (y) + (y) 4 and the tensor decomposition

ψ = (x 0 + 3 x 1 -x 2 ) 4 + (x 0 + x 1 + x 2 ) 4 -3 (x 0 + 2 x 2 + 2 x 2 ) 4

Border basis, orthogonal polynomials

An important step in the decomposition method consists in computing a basis B of σ .

In this section, we describe how to compute a monomial basis B = {x β } and two other bases p = (p β ) and q = (q β ), which are pairwise orthogonal for the inner product 〈•, •〉 σ :

〈p β , q β 〉 σ = 1 if β = β 0 otherwise .
Such pairwise orthogonal bases of σ exist, since σ is an Artinian Gorenstein algebra and 〈•, •〉 σ is non-degenerate (Proposition 4.3.2).

To compute these pairwise orthogonal bases, we will use a projection process, similar to Gram-Schmidt orthogonalization process. The main difference is that we compute pairs p β , q β of orthogonal polynomials. As the inner product 〈•, •〉 σ may be isotropic, the two polynomials p β , q β may not be equal, up to a scalar.

The method proceeds inductively starting from b = [], extending the monomials basis b with new monomials x α , projecting them onto the space spanned by b:

p α = x α - β∈b 〈x α , q β 〉 σ p β
and computing q α , if it exists, such that 〈p α , q α 〉 σ = 1 and 〈x β , q α 〉 σ = 0 for β ∈ b. Here

The following properties are also satisfied at the end of the algorithm:

Theorem 4.6.1 Let b = [β 1 , . . . , β r ], b = [β 1 , . . . , β r ], p = [p β 1 , . . . , p β r ], q = [q β 1 , . . . , q β r
] be the output of Algorithm 4.6.1. Let V = 〈x b + 〉. If there exists a vector space V connected to 1 such that x (b ) + ⊂ V and V • V = 〈x a 〉. Then σ coincides on 〈x a 〉 with the unique series σ ∈ [[y]] such that σ|〈x a 〉 = σ and rank H σ = r and we have the following properties:

• (p, q) are pairwise orthogonal bases of σ for the inner product 〈•, •〉 σ.

• The family p

α = x α - r i=1 〈x α , q β i 〉 σ p β i , α ∈ d is a border basis of the ideal I σ, with respect to x b .
• The matrix of multiplication by x k in the basis p (resp. q) of σ is M k := (〈σ|x k p β j q 

β i 〉) 1 i, j r (resp. M t k ). Proof. By construction, V = 〈x b + 〉 is connected to 1 and x b contains 1, otherwise σ = 0. As V contains x b and V • V = 〈x a 〉, we have ∀α ∈ ∂ b, x α • x b ⊂ x a .
p α = x α -β∈b 〈x α , q β 〉 σ p β are orthogonal to 〈q β | β ∈ b〉 = 〈x b 〉. As α ∈ d, for each v ∈ V , we have moreover 〈p α , v 〉 σ = 0.
A basis of V is formed by the polynomials

p α for α ∈ b + since 〈p β | β ∈ b〉 = 〈x b 〉 and p α = x α + b α with b α ∈ 〈x b 〉 for α ∈ d = ∂ b. The matrix of H V,V
σ in this basis of V and in a basis of V , which first elements are q β 1 , . . . , q β r , is of the form This shows that rank H σ = dim σ = |b| = r. By construction, (p, q) are pairwise orthogonal for the inner product 〈•, •〉 σ , which coincides with 〈•, •〉 σ on 〈x a 〉. Thus they are pairwise orthogonal bases of σ for the inner product 〈•, •〉 σ.

H V,V
As we have x k p β j ≡ r i=1 〈x k p β j , q β i 〉 σ p β i , the matrix of multiplication by x k in the basis p of σ is M k := (〈x k p β j , q β i 〉 σ ) 1 i, j r = (〈σ|x k p β j q β i 〉) 1 i, j r . Exchanging the role of p and q, we obtain M t k for the matrix of multiplication by x k in the basis q.

Remark 4.6.2 If the polynomials p α , q α are at most of degree d, then only the coefficients of σ of degree 2d + 1 are involved in this computation. In this case, the border basis and the decomposition of the series σ as a sum of exponential polynomials can be computed from these first coefficients.

Example 4.6.6 We consider the function h(u 1 , p x 2 ] and q = 1 4 p 1 , -4 5 p x 1 , 5 24 p x 2 . At the third step, d = [x 2 1 , x 1 x 2 , x 2 2 ] and the algorithm stops. We obtain the following generators of ker H σ : 

u 2 ) = 2 + 3 • 2 u 1 2 u 2 -3 u 1 . Its associated generating series is σ = α∈ 2 h(α) y α α! . Its (truncated) moment matrix is H [1,x 1 ,x 2 ,x 2 1 ,x 1 x 2 ,x 2 2 ] σ =        h(0, 0) h(1, 0) h(0, 1) • • • h(1, 0) h(2, 0) h(1, 1) • • • h(0, 1) h(1, 1) h(0, 2) • • • . . . . . . . . . . . . . . . . . .        =        4 
b = [1, x 1 , x 2 ], p = [1, x 1 -5 4 , x 2 + 9 5 x 1 -4] = [p 1 , p x 1 ,
p x 2 1 = x 2 1 + x 2 -4x 1 + 2 p x 1 x 2 = x 1 x 2 -2x 2 -x 1 + 2 p x 2 2 = x 2 2 -3x 2 + 2 We have modulo ker H σ : x 1 p 1 ≡ i 〈x 1 p 1 , q i 〉 σ p i = 5 4 p 1 + p 2 x 1 p 2 ≡ i 〈x 1 p 2 , q i 〉 σ p i = - 5 16 p 1 + 91 20 p 2 -p 3 x 1 p 3 ≡ i 〈x 1 p 3 , q i 〉 σ p i = 96 
U :=   1 2 3 4 -1 4 2 5 -9 5 7 5 -1 2 1 -1 2   , that is, the polynomials U(x) = [2 -1 2 x 1 -1 2 x 2 , -1 + x 2 , 1 2 x 1 -1 2 x 2 ]
. By computing the Hankel matrix

H U,[1,x 1 ,x 2 ] σ =   2 3 -1 2×1 3×2 -1×3 2×1 3×2 -1×1  
we deduce the weights 2, 3, -1 and the frequencies (1, 1), (2, 2), (3, 1), which corresponds to the decomposition σ = e y 1 + y 2 +3e 2 y 1 +2 y 2 -e 2 y 1 + y 2 associated to h(u 1 , u 2 ) = 2+3•2 u 1 +u 2 -3 u 1 .

Structured low rank decomposition of Hankel operators

In this section, m = 1 and we consider Hankel operators associated to symbols σ ∈ [x ] .

Simple roots

Let σ = r i=1 ω i e ξ i with ω i ∈ \{0}. Let us recall other relations between the structured matrices involved in this decomposition problem, that are useful to analyse the numerical behavior of the method. For more details, see e.g. [START_REF] Mourrain | Multivariate Polynomials, Duality, and Structured Matrices[END_REF]. Such decompositions, referred as Carathéodory-Fejér-Pisarenko decompositions in [START_REF] Yang | Generalized Vandermonde decomposition and its use for multi-dimensional super-resolution[END_REF]. They can be used to recover the decomposition of the series in Pencil-like methods. Proposition 4.7.2 Suppose that σ = r k=1 ω k e ξ k (y) with ξ 1 , . . . , ξ r ∈ n pairwise distinct and ω 1 , . . . , ω r ∈ \ {0}. Let D ω = diag(ω 1 , . . . , ω r ) be the diagonal matrix associated to the weights ω i and for g ∈ [x ], let D g = diag(g(ξ 1 ), . . . , g(ξ r )) be the diagonal matrices associated to g(ξ 1 ), . . . , g(ξ r ). For any family B, B of [x ], we have

H B,B σ = V B ,ξ D ω V t B,ξ H B,B g σ = V B ,ξ D ω D g V t B,ξ = V B ,ξ D g D ω V t B,ξ
If moreover B is a basis of σ , then V B,ξ is invertible and 

(M B g ) t = V B,ξ D g V -1 B,ξ Proof. If σ =
H B,B σ = r k=1 ω k b i (ξ k )b j (ξ k ) i, j=1,...,r = V B ,ξ D ω V t B,ξ .
By a similar explicit computation, we check that

H B,B g σ = V B ,ξ D ω D g V t B,ξ . Equation (4.3) implies that (M B g ) t = H B,B g σ (H B,B σ ) -1 = V B,ξ D g V -1 B,ξ .

Multiple roots

The relations between Vandermonde matrices and Hankel matrices (Proposition 4.7.2) can be generalized to the case of multiple roots. Let σ = 

W B,Γ ,ξ = 1 γ j ! ∂ γ j (b i )(ξ) 1 i r,1 j s .
For a collection Γ = {Γ 1 , . . . , Γ r } with Γ 1 , . . . , Γ r ⊂ n and points ξ = {ξ 1 , . . . , ξ r } ⊂ n let

W B,Γ ,ξ = [W B,Γ 1 ,ξ 1 , . . . , W B,Γ r ,ξ r ]
be the matrix obtained by concatenation of the columns of W B,Γ k ,ξ k , k = 1, . . . , r . We consider the monomial decomposition ω k (y) = α∈A k ω k,α (xξ k ) α with ω k,α = 0. We denote by Γ k the set of all the exponents α ∈ A k in this decomposition and all their divisors β = (β 1 , . . . , β n ) with β α. Let us denote by γ 1 , . . . , γ s k the elements of Γ k . Let ∆ Γ k ω k = [(γ i + γ j )!ω k,γ i +γ j ] 1 i, j s k with the convention that ω k,γ i +γ j = 0 if γ i + γ j ∈A k is not a monomial exponent of ω k (y). Let ∆ Γ ω be the block diagonal matrix, which diagonal blocks are ∆ Γ k ω k , k = 1, . . . , r . The following decomposition generalizes the Carathéodory-Fejér decomposition in the case of multiple roots (it is also implied by rank deficiency conditions):

Proposition 4.7.3 Suppose that σ = r k=1 ω k (y)e ξ k (y) with ξ 1 , . . . , ξ r ∈ n pairwise distinct, ω 1 (y), . . . , ω r (y) ∈ [y]\{0}. For g ∈ [x ], g ω = [g(ξ 1 +∂ y )(ω 1 ), . . . , g(ξ r + ∂ y )(ω r )]. For any set B, B ⊂ [x ] of size l, we have H B,B σ = W B ,Γ ,ξ ∆ Γ ω W t B,Γ ,ξ H B,B g σ = W B ,Γ ,ξ ∆ Γ g ω W t B,Γ ,ξ
If moreover B is a basis of σ , then W B ,Γ ,ξ and ∆ Γ ω are invertible and the matrix of multiplication by g in the basis B of σ is

M B g = W -t B,Γ ,ξ (∆ Γ ω ) -1 ∆ g ω W -t B,Γ ,ξ .
Proof. By the relation (2.3), we have

H B,B σ = r k=1 ω k (∂ x 1 , . . . , ∂ x n )(b i b j )(ξ k ) 1 i, j l
.

By expansion, we obtain

ω k (∂ x 1 , . . . , ∂ x n )(b i b j )(ξ k ) = α∈A k ω k,α ∂ α x (b i b j )(ξ k ).
By Leibniz rule, we have

∂ α x (b i b j ) = β α α! β!(α -β)! ∂ β x (b i )∂ α-β x (b j ) = α! β α ∂ β x (b i ) β! ∂ α-β x (b j ) (α -β)! .
We deduce that

ω k (∂ x 1 , . . . , ∂ x n )(b i b j )(ξ k ) = α∈A k ω k,α ∂ α x (b i b j )(ξ k ) = α∈A k α!ω k,α β α ∂ β x (b i ) β! (ξ k ) ∂ α-β x (b j ) (α -β)! (ξ k ) = W B ,Γ k ,ξ k ∆ Γ k ω k W t B,Γ k ,ξ k .
By concatenation of the columns of W B,Γ k ,ξ k and W B ,Γ k ,ξ k , using the block diagonal matrix ∆ Γ ω , we obtain the decomposition of

H B,B σ = W B ,Γ k ,ξ k ∆ Γ k ω k W t B,Γ k ,ξ k . By Lemma 2.2.5, we have g σ = r k=1 g(ξ k + ∂ y )(ω k )e ξ k = r k=1 (g ω) k e ξ k .
Thus, a similar computation yields the decomposition:

H B,B g σ = W B ,Γ ,ξ ∆ Γ g ω W t B,Γ ,ξ . If B is a basis of σ , then by Proposition 4.3.2, H B,B
σ is invertible, which implies that W B ,Γ ,ξ and ∆ Γ ω are invertible. By Relation (4.3), we have

M B g = (H B,B σ ) -1 H B,B g σ = W -t B,Γ ,ξ (∆ Γ ω ) -1 ∆ g ω W -t B,Γ ,ξ .

Real positive series

In the case where all the coefficients of σ are in , we can consider the following property of positivity:

Definition 4.8.1 An element σ ∈ [[y]] = [x ] * is semi-definite positive if ∀p ∈ [x ], 〈p, p〉 σ = 〈σ|p 2 〉 0. It is denoted σ 0.
The positivity of σ induces a nice property of its decomposition, which is an important ingredient of polynomial optimisation. It is saying that a positive measure on n with an Hankel operator of finite rank r is a convex combination of r distinct Dirac measures of n . See e.g. [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF] for more details. For the sake of completeness, we give here a simple proof (see also [LLM + 13][prop. 3.14]). 

σ = r i=1 ω i e ξ i with ω i > 0, ξ i ∈ n . Proof. If σ = r i=1 ω i e ξ i with ω i > 0, ξ i ∈ n , then clearly ∀p ∈ [x ], 〈σ | p 2 〉 = r i=1 ω i p 2 (ξ i ) 0 and σ 0.
Conversely suppose that ∀p ∈ [x ], 〈σ | p 2 〉 0. Then p ∈ I σ , if and only if, 〈σ | p 2 〉 = 0. We check that I σ is real radical: If p 2k + j q 2 j ∈ I σ for some k ∈ , p, q j ∈ [x ] then

〈σ | p 2k + j q 2 j 〉 = 〈σ | p 2k 〉 + j 〈σ | q 2 j 〉 = 0
which implies that 〈σ | (p k ) 2 〉 = 0 , 〈σ | q 2 j 〉 = 0 and that p k , q j ∈ I σ . Let k = k 2 . We have 〈σ | (p k ) 2 〉 = 0, which implies that p k ∈ I σ . Iterating this reduction, we deduce that p ∈ I σ . This shows that I σ is real radical and (I σ ) ⊂ n . By Proposition 4.3.3, we deduce that σ = r i=1 ω i e ξ i with ω i ∈ \ {0} and ξ i ∈ n . Let u i ∈ [x ] be a family of interpolation polynomials at

ξ i ∈ n : u i (ξ i ) = 1, u i (ξ j ) = 0 for j = i. Then 〈σ | u 2 i 〉 = ω i ∈ + . This proves that σ(y) = r i=1 ω i e ξ i (y) with ω i > 0, ξ i ∈ n .
Chapter 5

Applications 

Sparse decomposition from generating series

To exploit the previous results in the context of functional analysis or signal processing, we need to transform functions into series or sequences in n . Here is the general context that we consider, which extends the approach of [START_REF] Peter | A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators[END_REF] to multi-index sequences. We assume that is algebraically close.

• Let be a functional space (in which "leaves the functions, distributions or signals").

• Let S 1 , . . . , S n : → be linear operators of , which are commuting:

S i • S j = S j • S i . • Let ∆ : h ∈ → ∆[h] ∈ be a linear functional on .
We associate to an element h ∈ , its generating series: Definition 5.1.1 For h ∈ , the generating series associated to h is

σ h (y) = α∈ n 1 α! ∆[S α (h)]y α (5.1) where S α = S α 1 1 • • • • • S α n n for α = (α 1 , . . . , α n ) ∈ n . 69 Definition 5.1.2 We say that the regularity condition is satisfied if the map h ∈ → σ h (y) ∈ [[y]] is injective.
We are interested in the decomposition of a function h ∈ in terms of (generalized) eigenfunctions of the operators S i . An eigenfunction of the operators S i is a function E ∈ such that S j (E) = ξ j E for j = 1, . . . , n with ξ = (ξ 1 , . . . , ξ n ) ∈ n . Generalized eigenfunctions of the operators S i are functions E 1 , . . . , E µ ∈ such that S j (E k ) = ξ j E k + k <k m j,k E k for k = 1, . . . , µ and ξ 1 , . . . , ξ n ∈ . The following proposition shows that if a function is a linear combination of generalized eigenfunctions, then its generating series is a sum of polynomial-exponential series.

Theorem 5.1.3 Let S 1 , . . . , S n be commuting operators of . Let E 1,1 , . . . , E 1,µ 1 , . . . , , E r,1 , . . . , E r,µ r ∈ be generalized eigenfunctions of S 1 , . . . , S n such that for i = 1, . . . , r, j = 1, . . . , n, k = 1, . . . , µ i ,

S j (E i,k ) = ξ i, j E i,k + k <k m i, j k ,k E i,k with ξ i = (ξ i,1 , . . . , ξ i,n ) ∈ n pairwise distinct. If h = r i=1 µ i k=1 h i,k E i,k ,

then the generating series σ h has a unique decomposition as:

σ h (y) = r i=1 ω i (y) e ξ i (y)
where ω i (y) ∈ [y]. If the regularity condition is satisfied, the decomposition uniquely determines the coefficients h i,k of the decomposition of h ∈ .

Proof. By Lemma 2.2.4, in a decomposition of series as a polynomial-exponential function r i=1 ω i (y) e ξ i (y), the polynomials ω i (y) ∈ [y] and the support {ξ 1 , . . . , ξ r } are unique. Let N i, j = S j -ξ i, j Id be the linear operator of e

i = 〈E i,1 , . . . , E i,µ i 〉 such that N i, j (E j,k ) = k <k m i j,k E j,k . By construction, N i, j is nilpotent of order µ i + 1 and its matrix in the basis {E i,1 , . . . , E i,µ i } of e i is (m i, j k,k ) k,k (with m i, j k,k = 0 if k k ).
As the operators S j restricted to e i are ξ i, j Id +N i, j and commute, we deduce that the operators N i, j commute for j = 1, . . . , n. By the binomial expansion of

S α = S α 1 1 • • • S α n
n for α = (α 1 , . . . , α n ) ∈ n and the commutation of the matrices N i, j , we have

S α (E i,k ) = β α,β j µ j α β ξ α-β i N β i (E i,k ),
where

α β = α 1 β 1 • • • α n β n and N β i = N β 1 i,1 • • • N β n i,n .
As N i, j is nilpotent of order µ i +1, this sum involves at most (µ i + 1) n terms such that β j µ j , j = 1, . . . , n.

The generating series of E i,k is then

σ E i,k (y) = α∈ n β α,β j µ j ∆[N β i (E i,k )] α β ξ α-β i y α α! = β i µ i ∆[N β i (E i,k )] y β β! α ∈ n ξ α i y α α ! = β i µ i ∆[N β i (E i,k )] y β β! e ξ i (y) = ω i,k (y)e ξ i (y), using the relation 1 α! α β = 1 β! 1 (α-β)!
, exchanging the summation order and setting α = αβ. We deduce that if h = r i=1

µ i k=1 h i,k E i,k , then σ h (y) = r i=1 ω i (y)e ξ i (y) with ω i (y) = k h i,k ω i,k (y) ∈ [y]. If the regularity condition is satisfied, the map h ∈ → σ h (y) ∈ [[y]
] is injective and the polynomials ω i,k (y) k = 1, . . . , µ i are linearly independent. Therefore, the coefficients h i,k , k = 1, . . . , µ i are uniquely determined by the polynomial ω i (y) = k h i,k ω i,k (y). Definition 5.1.4 We say that the completness condition is satisfied if for any polynomialexponential series ω(y)e ξ (y) with ω(y) ∈ [y] and ξ ∈ n , there exists a linear combination h ∈ of generalized eigenfunctions of the operators S i , such that its generating function is ω(y)e ξ (y).

Under the completness condition and the regularity condition, any function h ∈ with a generating series of finite rank can be decomposed into a linear combination of eigenfunctions. We analyse several cases, for which this framework applies.

Convolution of finite rank

Let = C ∞ (R n ),
be the set of functions in with fast decrease at infinity (∀ f ∈

, ∀p ∈ C[x ], |p f | is bounded on R n ), M be the set of functions in with slow increase at infinity (∀ f ∈ M , | f (x )| < C(1 + |x |) N for some C ∈ R, N ∈ N)
, be the set of distributions with compact support (dual to ), be the set of tempered distribution (dual to ) and C be the space of distributions with rapid decrease at infinity (see [START_REF] Schwartz | Théorie des distributions[END_REF]).

In this problem, we consider the following space and operators: • = C is the space of distributions with rapid decrease at infinity;

• S i : h(x ) ∈ C → x i h(x ) ∈ C is the multiplication by x j ; • ∆ : h(x ) ∈ C → h(x )d x ∈ C. For any h ∈ C , for any α ∈ N n , ∆[S α (h)] = x α h(x )d x
is the α th moment of h. For h ∈ C and σ h = α∈N n h(x )x α y α α! d x its generating series, we verify that ∀p ∈ C[x ], 〈σ h | p〉 = h(x )p(x )d x (i.e. the distribution h applied to p).

We check that

• the operators S j are well defined and commute

• a Dirac measure δ ξ with ξ = (ξ 1 , . . . , ξ n ) ∈ C n is an eigenfunction of S j : S j (δ ξ ) = ξ j δ ξ . Similarly for α = (α 1 , . . . , α n ) ∈ N n and

• the Dirac derivation δ

(α) ξ (∀ f ∈ C ∞ (Ω), 〈δ (α) ξ , f 〉 = (-1) |α| ∂ α 1 x 1 • • • ∂ α n x n ( f )(ξ)) satis- fies S i (δ (α) ξ ) = x i δ (α) ξ = ξ i δ (α) ξ + δ (α-e i ) ξ
with the convention that δ

(α-e i ) ξ = 0 if α i = 0.
It is a generalized eigenfunction of the operators S j .

By the relation (5.2), the generating series of δ

(α) ξ is σ δ (α) ξ = 〈δ (α)
ξ , e x •y 〉 = y α e ξ (y).

This shows that the completeness condition is satisfied.

To check the regularity condition, we use the Fourier transform

: f ∈ M → f (x )e -i x •z d x ∈ C . It is a bijection between M and C (see [Sch66][Théorème XV]). Its inverse is -1 : f ∈ C → (2π) n f (x )e i x •z d x ∈ M . Let ι : f (y) ∈ C[[y]] → f (i y) ∈ C[[y]]. The generating series of f ∈ C is σ f (i y) = ι • σ f (y) = α∈N n f (x )x α i |α| y α α! d x = f (x )e i x •y d x = (2π) n -1 ( f ). (5.2) This shows that the map f ∈ C → σ f ∈ C[[y]
] is injective and the regularity condition is satisfied.

For f ∈ C , the Hankel operator

H σ f is such that ∀g ∈ C[x ], H ι•σ f (g) = α∈N n f (x )g(x )x α i |α| y α α! d x = f (x )g(x )e i x •y d x = (2π) n -1 ( f g).
Using Relation (5.2), we rewrite it as ∀g ∈ C[x ],

H -1 ( f ) (g) = -1 ( f g) (5.3) with ϕ = -1 ( f ) ∈ M .
From this relation, we see that the operator H -1 ( f ) can be extended by continuity to an operator H -1 ( f ) : M → M .

The Hankel operator H ι•σ (or H -1 ( f ) ) can be related to integral operators on functions defined in terms of convolution products or cross-correlation. For ϕ ∈ , the convolution with a distribution ψ ∈ C is well-defined [START_REF] Schwartz | Théorie des distributions[END_REF]. The convolution operator associated to ϕ on C is:

H ϕ : ψ ∈ C → ϕ ψ = ϕ(x -t )ψ(t )d t ∈ .
The image of an element ψ ∈ C is a tempered distribution in . The distribution ϕ is the symbol of the operator H ϕ .

Using the property that ∀ϕ ∈ , ∀ψ ∈ C , (ϕ ψ) = (ϕ) (ψ) ∈ and the relation (5.3), we have for any ψ ∈ C ,

H -1 ( f ) (g) = -1 ( f g) = ϕ ψ = H ϕ (ψ), with f = (ϕ) ∈ , g = (ψ) ∈ M . We deduce that H ϕ = H ϕ • (5.4)
with H ϕ : g ∈ M → -1 ( (ϕ)g) ∈ . In the case where ϕ ∈ ol x p ∩ M , the operator is of finite rank: Proposition 5.2.1 Let ϕ = ω(y)e iξ (y) with ω ∈ C[y] and ξ ∈ R n . Then rank H ϕ µ(ω).

Proof. By Taylor expansion of the polynomial

ω at x , we have ∀ψ ∈ C H ϕ (ψ) = ω(x -t )e iξ•(x -t ) ψ(t )d t = α∈N n ∂ α (ω)(x )e iξ•x (-1) α t α α! ψ(t )e -iξ•t d t .
This shows that H ϕ (ψ) belongs to the space spanned by ∂ α (ω)(x )e ξ•x for α ∈ N n , which is of dimension µ(ω) and thus rank H ϕ µ(ω).

The converse is also true:

where ξ i = (ξ i,1 , . . . , ξ i,n ) ∈ C n , ω i (y) ∈ C[y]
. The rank r of H ϕ is the sum of the dimensions µ(ω i ) of the vector spaces spanned by ω i (y) and all the derivatives ∂ γ y ω i (y), γ ∈ N n .

Proof. Using the relations ∀ϕ ∈ (Ω), ψ ∈ (Ξ), (ϕ ψ) = (ϕ) (ψ), and (5.3), we still have the decomposition Similar results also apply for the cross-correlation operator defined as

H ϕ = H ϕ • . with H ϕ : g ∈ (Ξ) → -1 ( (ϕ)g) ∈ (Υ ).
Hϕ : ψ ∈ → ϕ * ψ = ϕ(x + t) ψ(t) dt ∈ .
Using the relation (ϕ * ψ) = (ϕ) ¯ (ψ) (with ¯ = ς • where ς : z ∈ C → z ∈ C is the complex conjugation), we have Hϕ = H ϕ • ¯ . As ¯ -1 = -1 • ς, we deduce that Hϕ and H ϕ have the same rank and the same type of decomposition of the symbol ϕ holds when Hϕ is of finite rank.

Remark 5.2.4

To compute the decomposition of ϕ ∈ (resp. ϕ ∈ (Ω)) as a polynomial exponential function, we first compute the Taylor coefficients of σ (ϕ) = H ϕ (1), that is, the values σ α = (-i) |α| (x α ϕ)(0) for some α ∈ a ⊂ N n and apply the decomposition algorithm 4.6.2 to the (truncated) sequence (σ α ) α∈a .

Dirac measures from Fourier coefficients

We consider here the problem of reconstruction of functions or distributions from Fourier

coefficients. Let T = (T 1 , . . . , T n ) ∈ R n + and Ω = n i=1 - 2πT i 2 , 2πT i 2 ⊂ R n . We take: • = L 2 (Ω); • S i : h(x ) ∈ L 2 (Ω) → e 2π x i T i h(x ) ∈ L 2 (Ω) is the multiplication by e 2π x i T i ; • ∆ : h(x ) ∈ C → h(x )d x ∈ C. For f ∈ (Ω) with a support in Ω and γ = (γ 1 , . . . , γ n ) ∈ Z n , the γ-th Fourier coefficient of f is σ γ = 1 n j=1 T j ( f ) 2π γ 1 T 1 , . . . , 2π γ n T n = 1 n j=1 T j f (x )e -2πi n j=1 γ j x j T j d x
Let σ = (σ γ ) γ∈Z n be the sequence of the Fourier coefficients. The discrete convolution operator associated to σ is

Φ σ : (ρ β ) β∈Z n ∈ L 2 (Z n ) → β σ α-β ρ β α∈Z n ∈ L 2 (Z n ). The discrete cross-correlation operator of σ is Γ σ : (ρ β ) β∈Z n ∈ L 2 (Z n ) → β σ α+β ρ β α∈Z n ∈ L 2 (Z n ). It is obtained from Γ σ by composition by : (r β ) β∈Z n ∈ L 2 (Z n ) → (ρ -β ) β∈Z n ∈ L 2 (Z n ): Γ σ = Φ σ • .
A decomposition similar to the previous section also holds: 

Theorem 5.3.1 Let f ∈ L 2 (Ω)
= r i=1 α∈A i ⊂N n ω i,α δ (α) ξ i where • ξ i = (ξ i,1 , . . . , ξ i,n ) ∈ Ω, ω i,α ∈ C, A i ⊂ N n is finite,
• the rank of Γ σ is the sum of the dimensions µ(ω i ) of the vector spaces spanned by ω i (y) = α∈A i ω i,α y α and all the derivatives ∂ γ

y (ω i ), γ ∈ N n . Proof. Let S : f ∈ L 2 (Ω) → (σ γ ) γ∈Z n ∈ L 2 (Z n ) be the discrete Fourier transform where σ γ = 1 n j=1 T j ( f ) 2π γ 1 T 1 , . . . , 2π γ n T n . Its inverse is S -1 : σ = (σ γ ) γ∈Z n ∈ L 2 (Z n ) → α∈Z n σ γ 1 Ω e 2πi n j=1
γ j x j T j ∈ L 2 (Ω). As the discrete Fourier transform exchanges the convolution and the product, using Relation (5.3), we have ∀σ,

ρ ∈ L 2 (Z n ), Φ σ (ρ) = S(S -1 (σ)S -1 (ρ)) = S( f g) = S • • -1 ( f g) = S • • H -1 ( f ) (g) where f = S -1 (σ), g = S -1 (ρ) ∈ L 2 (Ω) and H -1 ( f ) : g ∈ L 2 (Ω) → -1 ( f g) ∈ (Ω). We deduce that Φ σ = S • • H -1 •S -1 (σ) • S -1 .
As S is an isometry between L 2 (Z n ) and L 2 (Ω) and is an isomorphism between L 2 (Ω) and

(Ω),

Φ σ = S • • H -1 •S -1 (σ) • S -1 and H -1 •S -1 (σ)
have the same rank.

As C[x ] ⊂ PW(Ω), we deduce from Theorem 4.2.2 that As the support of f is in Ω, we have ξ i = i ξi ∈ Ω. We deduce the decomposition of f with ω i = (2π) n r i=1 α∈A i ⊂N n i |α| ωi,α y α . The dimension µ( ωi ) of the vector space spanned by ωi (y) = α∈A i ω i,α y α and all its derivatives is the same as the dimension µ(ω i ) of the space spanned by ω i (y) = (2π) n α∈A i ω i,α i |α| y α and all its derivatives, since ω i (y) = (2π) n ωi (i y). Therefore, rank Φ σ = r = r i=1 µ( ωi ) = r i=1 µ(ω i ). This concludes the proof of the theorem. 

-1 • S -1 (σ) =

Polynomial-exponential sums from values

In this problem, we are interested in reconstructing a function in C ∞ (R n ) from sampled values. We take

• = C ∞ (R n ),
• S j : h(x) → h(x 1 , . . . , x j-1 , x j + 1, x j+1 , . . . , x n ) the shift operator of x j by 1,

• ∆ : h(x) → ∆[h] = h(0) the evaluation at 0. The operators S j are commuting and we have S j (e f •x ) = ξ j e f •x where f = ( f 1 , . . . , f n ) ∈

The generating series of h is

C n and ξ j = e f j . The generating series associated to e f •x is e ξ (y) where ξ = (ξ 1 , . . . , ξ n ) = (e f 1 , . . . , e f n ).

Similarly for any α = (α 1 , . . . , α n ) ∈ N, S j (x α e f •x ) = ξ j α j i=0 α j i x i j i = j x α i i e f •x , which shows that the function x α e f •x is a generalized eigenfunction of the operators S j . Its generating series is α n be the Macaulay binomial polynomial with y i α i = 1 α i ! y i ( y i -1) • • • ( y i -α i + 1), which roots are 0, . . . , α i -1. It satisfies the following relations: • r(x ) ∈ C ∞ (R n ) such that r(α) = 0, ∀α ∈ N n ,

σ x α e f •x (y) =
• The rank of Γ h is the sum of the dimension µ(g i ) of the vector space spanned by g i (x ) and all its derivatives ∂ α

x g i , α ∈ N n .

Proof. Since H h is of finite rank, Theorem 4.2.2 implies that

σ h = α∈N n h(α) y α α! = r i=1
ω i (y)e ξ i (y)

where ξ i ∈ C n , ω i (x ) ∈ C[x ] and rank H σ h = r i=1 µ(ω i ). Let f i = ( f i,1 , . . . , f i,n ) ∈ C n such that ξ i = (e f i,1 , . . . , e f i,n ) and g i,α ∈ C for α ∈ A i ⊂ N n such that ω i (y) = α∈A i g i,α ω α (y).

By the relation (5.6), the generating series of r(x ) = h-r i=1 α∈A i g i,α x α e f i •x is 0, which implies that r is a function in C ∞ (R n ) such that r(α) = 0, ∀α ∈ N n .

It remains to prove that the inverse systems spanned by ω i (y) = α∈A i g i,α ω α (y) and by g i (x ) = α∈A i g i,α x α have the same dimension. The polynomials ω α are of the form ω α (y) = y α + α =α,α α ω α,α y α , with ω α,α ∈ Q. Let ρ denotes the linear map of C[y] such that ρ(y α ) = ω α (y) -y α . We choose a monomial ordering , which is a total ordering on the monomials compatible with the multiplication. Then, the initial in(ω α ) of ω α , that is the maximal monomial of the support of ω α , is y α since y α in(ρ(y α )). As the support of ω α is in {α , α α}, the support of ∂ β ω α (β ∈ N n ) is {α , α α -β} and the initial of ∂ β ω α is ∂ β (x α ). By linearity, for any g ∈ C[y], we have in(g) in(ρ(g)). We deduce that ω i (y) = α∈A i g i,α ω α (y) = α∈A i g i,α (y α + ρ(y α )) = g i (y) + ρ(g i )

and the initial in(∂ β ω i ) is also the initial of ∂ β g i (β ∈ N n ). Therefore the initial of the vector space spanned by ω i (y) = g i (y) + ρ(g i ) and all its derivatives coincides with the vector space spanned by the initial of ω i (y) = g i (y) and all its derivatives. Therefore, the two vector spaces have the same dimension. This concludes the proof.

Remark 5.4.2 Instead of a shift by 1 and the generating series of h computed on the unitary grid N n , one can consider the shift S j (h) = h x 1 , . . . , x j-1 , x j + 1 T i , x j+1 , . . . , x n for T j ∈ R + and the generating series of the sequence h α 1 T 1 , . . . ,

α n T n
α∈N n . The previous results apply directly, replacing the function h by h T : (x 1 , . . . , x n ) → h x 1 T 1 , . . . ,

x n T n where T = (T 1 , . . . , T n ).

Remark 5.4.3 Using Lemma 2.2.4, we check that the map h ∈ ol x p → σ h ∈ C[[y]]

is injective and the regularity condition is satisfied on ol x p. Thus, in Theorem 5.4.1 if h ∈ ol x p then we must have r(x ) = 0. Remark 5.4.4 By applying Algorithm 4.6.2 to the sequence of evaluations of a function h ∈ ol x p on the (first) points of a regular grid in R n , we obtain a method to decompose functions in ∈ ol x p as a sum of products of polynomials by exponentials.

Sparse interpolation

For β = (β 1 , . . . , β n ) ∈ N n and x ∈ C n , we denote log β x = n i=1 (log(x i )) β i where log(x) is the principal value of the complex logarithm C \ {0}. Let ol og(x 1 , . . . , x n ) = α,β p α,β x α log β (x ), p α,β ∈ C be the set of functions, which are the sum of products of polynomials in x and polynomials in log(x ).

For h = α,β h α,β x α log β (x ) ∈ ol og(x ), we denote by (h) the set of exponents α ∈ N n such that h α,β = 0.

The sparse interpolation problem consists in computing the decomposition of a function p of ol og(x ) as a sum of terms of the form p α,β x α log β (x ) from the values of p. We apply the construction introduced in Section 5.1 with

•

= ol og(x ),

• S j : h(x 1 , . . . , x n ) → h(x 1 , . . . , x j-1 , λ j x j , x j+1 , . . . , x n ) the scaling operator of x j by λ j ∈ C,

• ∆ : h(x 1 , . . . , x n ) → ∆[h] = h(1, . . . , 1) the evaluation at 1 = (1, . . . , 1).

We easily check that

• the operators S j are commuting,

• for α = (α 1 , . . . , α n ) ∈ N n , the monomial x α is an eigenfunction of S j : S j (x α ) = λ α j j x α .

• for α = (α 1 , . . . , α n ) ∈ N n , β = (β 1 , . . . , β n ) ∈ N n , x α log β (x ) is a generalized eigenfunction of S j :

S j (x α log β (x )) = Proof. Let α, β ∈ N n . As x α is an eigenfunction of the operators S j , its generating series associated to x α is e ξ (y) where ξ = (λ α 1 1 , . . . , λ α n n ). From the relations (5.5) and (5.6), we deduce that the generating series of x α log β (x ) is This result leads to a new method to decompose an element h ∈ ol og(x ) with an exponent set (h) ⊂ A ⊂ N n . By choosing λ 1 , . . . , λ n ∈ C \ {1} such that the points (λ α 1 , . . . , λ α n ) for α ∈ A are distinct and by computing the decomposition of the generating series as a polynomial-exponential series r i=1 ω i (y)e ξ i (y) (Algorithm 4.6.2), we deduce the exponents α i = (log λ 1 (ξ i,1 ), . . . , log λ n (ξ i,n )) and the coefficients h i,β in the decomposition h = r i=1 β∈B i h i,β x α i log β (x ) from the weight polynomials ω i (y). This method generalizes the sparse interpolation methods of [START_REF] Ben | A deterministic algorithm for sparse multivariate polynomial interpolation[END_REF], [START_REF] Zippel | Probabilistic algorithms for sparse polynomials[END_REF], [START_REF] Giesbrecht | Symbolic-numeric sparse interpolation of multivariate polynomials[END_REF], where a single operator S : h(x 1 , . . . , x n ) → h(λ 1 x 1 , . . . , λ n x n ) is used for some λ 1 , . . . , λ n ∈ C and where only polynomial functions are considered. The monomials x α (α ∈ N n ) are eigenfunctions of S for the eigenvalue λ α = n i=1 λ α i i . For h = r i=1 ω i x α i , the corresponding univariate generating series σ h defines an Hankel operator, which kernel is generated by the polynomial p(x) = r i=1 (xλ α i ) when λ α 1 , . . . , λ α r are distinct.

σ x α log β (x ) = log β (λ)
If λ 1 , . . . , λ n ∈ C are chosen adequately (for instance distinct prime integers [START_REF] Ben | A deterministic algorithm for sparse multivariate polynomial interpolation[END_REF], [START_REF] Zippel | Probabilistic algorithms for sparse polynomials[END_REF] or roots of unity of different orders [START_REF] Giesbrecht | Symbolic-numeric sparse interpolation of multivariate polynomials[END_REF]), the roots of p yield the exponents

of h ∈ C[x ].
The multivariate approach allows to use moments h(λ α 1 1 , . . . , λ α n n ) with α = (α 1 , . . . , α n ) ∈

N n of degree |α| = α 1 + • • • + α n less than the degree 2r -1 needed in the previous sparse interpolation methods. Sums of products of polynomials and logarithm functions can also be recovered by this method, the logarithm terms corresponding to multiple roots.
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Theorem 1.2. 3

 3 The binary form ψ(x 0 , x 1 ) = decomposed as a sum of r distinct powers of linear formsψ = r k=1 ω k (α k x 0 + β k x 1 ) d iff there exists a polynomial p(x 0 , x 1 ) := p 0 x r 0 + p 1 x r-1 0 x 1 + • • • + p r x r 1 s.t. form p = c r k=1 (β k x 0 -α k x 1 ) with (α k , β k ) ∈ 2 \ {0} pairewise distinct directions. Proof. If ψ = r k=1 ω k (α k x 0 + β k x 1 ) d then σ i = r k=1 ω k α d-ik β i k and for j = 0, . . . , d -

ω

  k p(α k , β k ) -p r α d-r k β r k = p r r k=1 ω k α d-r k β r k and p r = 0 implies that σ r = r k=1 ω k α d-r k β r k .By induction on j, using the relations p r σ r+ j = -r-1 i=0 p i σ i+ j , we prove similarly thatσ r+ j = r k=1 ω k α d-r-j k β r+ j kfor j = 0, . . . , dr. This implies that ψ = r k=1 ω k (α k x 0 + β k x 1 ) d .

  S d = Hom (S d , ) as follows ψ : S d → p → 〈ψ, p〉 d By Proposition 1.2.5, (ξ 0 x 0 + • • • + ξ n x n ) d is the evaluation e ξ : S d → p → p(ξ 0 , . . . , ξ n ) Since the map ψ ∈ S d → ψ ∈ S d is linear, the tensor decomposition problem can be reformulated as follows: Problem 1.2.6 (Dual symmetric tensor decomposition) Given ψ ∈ S d , find a decomposition of ψ of the form ψ = r i=1

Figure 1

 1 Figure 1.1: A (green) point on the 3 th secant of 1 3 ⊂ 3 , which is on the (blue) plane spanned by 3 (orange) points of the (red) curve 1 3 .

  Consider the polynomial f (x 1 , x 2 ) = x 33 1 x 12 2 -5 x 1 x 25 2 + 101. Let us choose ϕ 1 = e 6iπ 100 , ϕ 2 = e 14iπ 100 . We evaluate f at the points (ϕ k 1 , ϕ k 2 ) for k = 0, . . . , d and get the sequence

  polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Algebraic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Roots from the algebraic structure . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 The dual of an Artinian algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Roots from the dual structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 In this section, we recall the properties of Artinian algebras. Let I ⊂ [x ] be an ideal and let = [x ]/I be the associated quotient algebra. Definition 3.0.4 The quotient algebra is artinian if dim ( ) < ∞.

Theorem 3.4. 3

 3 Assume that is algebraically closed. Let be an Artinian algebra of dimension r with (I) = {ξ 1 , . . . , ξ r } ⊂ n . Let D i = ξ i (I) ⊂ [y] be the vector space of differential polynomials ω(y) ∈ [y] such that ∀p ∈ I, ω(∂ 1 , . . . , ∂ n )(p)(ξ i ) = 0. Then D i is stable by the derivations d dy i , i = 1, . . . , n. It is of dimension µ i with r i=1 µ i = r. Any elements σ of * has a unique decomposition of the form σ(y) = r i=1 ω i (y)e ξ i (y), (3.4) with ω i (y) ∈ D i ⊂ [y], which is uniquely determined by values 〈σ|b i 〉 for a basis B = {b 1 , . . . , b r } of . Moreover, any element of this form is in * .

  Definition 3.5.1 (Normal form) A normal form on R w.r.t. I is an R-map : R → B where B ⊂ R is a vector space such that 0 I R B 0 is exact and |B = id B . From this definition, it follows that B R/I and that the algebraic structure of = R/I is completely determined by . Since |B = id B , we have • = and is a projector with kernel I and image B.

  It is an operator from 〈B〉 d-|α| to 〈B〉 d . We extend this construction by linearity and for any p ∈ R d , we define p(M) : 〈B〉 d-deg(p) → 〈B〉 d . Remark 3.5.8 As a border basis in degree d is a border basis in degree k for 0 k d, this theorem implies that the restriction of π to R k is the projection onto 〈B〉 k along F 〈 k〉 . Remark 3.5.9 We can define the projection π : R d → 〈B〉 d such that for any x α ∈ d , π(x α ) = M α (1) ∈ 〈B〉 d and we extend it by linearity on R d . Any order in the composition of the operators M i can be used to define a projection π on a specific monomial of degree d. For any of these choices, we have a projection such that ∀p ∈ R d , pπ(p) ∈ F 〈 d〉 .

  (i) there is an isomorphism of R-modules B R/I, (ii) V = B ⊕ (I ∩ V ) and I = (〈ker(N )〉 : u), (iii) the maps N i given by N i : B -→ δ , b -→ N (x i • b) for i = 1, . . . , n can be decomposed as N i = N |B • m x i where m x i : B → B define the multiplications by x i in B modulo I and are commuting (

(

  ii) Moreover, B ∩ I = {0} since π I : B → R/I is an isomorphism; As B is supplementary to ker(N ) in V and ker(N ) ⊂ I ∩ V by hypothesis, we deduce that I ∩ V = ker(N ). It follows that V = B⊕ker(N ) = B⊕(I ∩V ). We have ker(N ) ⊂ I and thus 〈ker(N )〉 ⊂ I. Therefore (〈ker(N ) : u) ⊂ (I : u) = I since u is a unit in R/I. To prove the reverse inclusion, notice that if f ∈ I = J = ker φ then by the relation (3.9), f u ∈ 〈ker(N )〉. This implies that I ⊂ (〈ker(N )〉 : u) ⊂ I, which proves the second point.

  Corollary 3.5.11 A linear map N : V → δ covers a TNF with respect to I if and only if N , V satisfy the conditions of Theorem 3.5.10.Proof. For the if direction, take any B ⊂ W for which N |B is invertible and (N |B ) -1 • N is a TNF by Theorem 3.5.10. For the other implication, if N covers a TNF, then N = P • for some isomorphism P : B → δ , B ⊂ W . Hence N |B = P and N |W is onto δ . It is clear from the properties of TNFs that ker(N ) = I ∩ V . For the first condition, if the isomorphism R/I B is given by φ, we can take u = φ(1 + I) ∈ B ⊂ V and we're done. It follows from Theorem 3.5.10 that once we have a matrix representation of N , N |B and the N i , i = 1, . . . , n, the matrices m x i are given by (N |B ) -1 N i . The eigenvalues z ji , j = 1, . . . , δ of the m x i can be computed as the generalized eigenvalues ofN i v = λN |B v.As detailed in Section 3.3, computing the eigenvalues and eigenvectors of the operators of multiplication yields the solution of the polynomial equations. When u = 1 ∈ V , then ∀b ∈ B, φ(b) = b mod I. Since B ∩ I = {0}, we have ∀b ∈ B, φ(b) = b and φ is the normal form or ideal projector on B along its kernel I. Moreover, (iii) implies that 〈ker(N )〉 = I.

N

  |W ← columns of N corresponding to monomials of degree < ρ 5: N |B ← columns of N |W corresponding to an invertible submatrix 6: ← monomials corresponding to the columns of N |B for i = 1, . . . , n do 7: end N i ← columns of N corresponding to x i • 8: m x i ← (N |B ) -1 N i 9: 10: return m x 1 , . . . , m x n 11: end procedure Example 3.5.13 Consider the ideal I

Figure 3 . 1 :

 31 Figure 3.1: Picture in 2 of the algebraic curves ( f 1 ) () and ( f 2 ) ( ) from Example 3.5.13.

Definition 4.1. 3

 3 The variety (I σ ) is called the characteristic variety of σ.

Proposition 4.2. 5

 5 For any Artinian Gorenstein algebra = [x ]/I with I an ideal of [x ], there exists σ ∈ [x ] , such that I = ker H σ .

Theorem 4.3. 1

 1 Let σ = (σ 1 , . . . , σ m ) ∈ (R ) m . Then rank H σ < ∞, if and only if, σ k (y) ∈ ol x p(y) for k = 1, . . . , m. If σ k (y) = r i=1 ω k,i (y)e ξ i (y) with ω k,i (y) ∈ [y] and ξ i ∈ n pairwise distinct, then rank H σ = r i=1 µ(ω 1,i , . . .

  then there is a unique extension σ ∈ K[[y]] such that σ coincides with σ on 〈V • V 〉 and rank H σ = r. In this case, σ ∈ with r = µ( σ) and I σ = (ker H B + ,B σ ).

Lemma 4.4. 3

 3 For any g ∈ [x ] and σ ∈ [x ] , we have g σ = t g • σ .(4.4)

Algorithm 4.5. 1 :

 1 Decomposition of polynomial-exponential series Input: the (first) coefficients σ α of a series σ ∈ [[y]] for α ∈ a ⊂ n and bases B = {b 1 , . . . , b r }, B = {b 1 , . . . , b r }, of σ such that 〈B • B + 〉 ⊂ 〈x a 〉.

  Thus when the algorithm stops, we have n = and ∂ b = d. By construction, for α ∈ d the polynomials

  r is the identity matrix of size r. The kernel of H V,V σ is generated by the polynomials p α for α ∈ d. By Theorem 4.3.4, σ coincides on V • V = 〈x a 〉 with a series σ such that x b is a basis of σ = [x]/I σ and I σ = (ker H V,V σ ) = (p α ) α∈d . As p α = x α + b α with α ∈ ∂ b and b α ∈ 〈x b 〉, (p α ) α∈∂ b is a border basis with respect to x b for the ideal I σ, since x b is a basis of of σ.

.

  At the first step, we have b = [1], p = [1], q = 1 4 . At the second step, we compute

25 p 2 + 1 5 p 3 

 3 The matrix of multiplication by x 1 in the basis p is M Its eigenvalues are [1, 2, 3] and the corresponding matrix of eigenvectors is

Definition 4.7. 1

 1 Let B = {b 1 , . . . , b r } be a family of polynomials. We define the B-Vandermonde matrix of the points ξ 1 , . . . , ξ r ∈ n asV B,ξ = (〈e ξ j |b i 〉) 1≤i, j≤r = (b i (ξ j )) 1≤i, j≤r .By remark 3.3.3, if {e ξ 1 , . . . , e ξ r } is a basis of * σ and B is a basis of σ , then V B,ξ is the matrix of coefficients of e ξ 1 , . . . , e ξ r in the dual basis of B in * σ and it is invertible. Conversely, if {e ξ 1 , . . . , e ξ r } is a basis of * σ , we check that V B,ξ is invertible and that B = {b 1 , . . . , b r } is a basis of σ .

r k=1 ω k

  e ξ k (y) and B = {b 1 , . . . , b r }, B = {b 1 , . . . , b r } are bases of σ , then

r

  k=1 ω k (y)e ξ k (y) with ξ 1 , . . . , ξ r ∈ n pairwise distinct, ω 1 (y), . . . , ω r (y) ∈ [y] \ {0}. To deduce a decomposition of H B,B σ similar to the decomposition of Proposition 4.7.2 for multiple roots, we introduce the Wronskian of a set B = {b 1 , . . . , b l } ⊂ [x ] and a set of exponents Γ = {γ 1 , . . . , γ s } ⊂ n at a point ξ ∈ n :

Proposition 4.8. 2

 2 Let σ ∈ [[y]] of finite rank. Then σ 0, if and only if,

  r i=1 ωi (y)e ξi (y)where ξi = ( ξi,1 , . . . , ξi,n ) ∈ C n , ωi (y) = α∈A i ωi,α y α ∈ C[z]. Using a result similar to Proposition 5.2.1 for the elements ψ ∈ L 2 (Ω), we deduce that the rank r of Φ σ is r = r i=1 µ( ωi ). Consequently,f = S -1 (σ) =r i=1 α∈A i ωi,α y α e ξi (y) = (2π) n r i=1 α∈A i ⊂N n i |α| ωi,α δ

Remark 5.3. 2

 2 To compute the decomposition of f ∈ L 2 (Ω) as a weighted sum of Dirac measures and derivates, we apply the decomposition algorithm 4.6.2 to the (truncated) sequence of Fourier coefficients (σ α ) α∈a for some subset a ⊂ N n . The polynomial-exponential decomposition ϕ = r i=1 α∈A i ωi,α y α e ξi (y), from which we deduce the decomposition f = (2π) n r i=1 α∈A i ⊂N n i |α| ωi,α δ (α) i ξi .

  α e ξ (y).As y α = α α m α ,α b α (y) for some coefficients m α ,α ∈ Q such that m α,α = 1, we haveσ x α e f •x (y) = α α m α ,α ξ α y αα ! e ξ (y) = ω α (y)e ξ (y).(5.6)The monomials of ω α (y) are among the monomials y α = yα 1 1 • • • y α n n such that 0 α i α i , which divide y α . As the coefficient of y α in ω α (y) is 1, we deduce that (ω α ) α∈N n is a basis of C[y] and the completeness property is satisfied. Let h = (h(α)) α∈N n . The Hankel operator H h is such that ∀p = β p β x β ∈ C[x ], H h (p) = α∈N n β h(α + β)p β y α α! Identifying the series σ(y) = α∈N n σ α y α α! ∈ C[[y]] with the multi-index sequence (σ α ) α∈N n and a polynomial p = α∈A p α x α with the sequence (p α ) α∈N n L 0 (N n ) of finite support, the operator H h corresponds to the discrete cross-correlation operator by the sequence h. This operator can be extended to sequences h, p are in L 2 (N n ).Theorem 5.4.1 Let h ∈ C ∞ (R n ). The discrete cross-correlation operator Γ h : p ∈ L 2 (N n ) → h p = β h(α + β)p β α∈N n ∈ L 2 (N n ) is of finite rank, if and only if, h(x ) = r i=1 g i (x )e f i •x + r(x )where• f i = ( f i,1 , . . . , f i,n ) ∈ C n , g i (x ) ∈ C[x ],

0 β β j λ α j j β jβ= ξ γ x α β β β β γ β log

  log β j -β λ j log β (x j )x α k = j log β k (x k ).More generally, for γ ∈ N n , we haveS γ (x α log β (x )) = log(λ i ) + log(x i )) β i β (λ) log β-β (x )where ξ = (λα 1 1 , . . . , λ α n n ). We deduce that, ∆[S γ (x α log β (x ))] = ξ γ γ β log β (λ).(5.7)Theorem 5.5.1 Let h ∈ ol og(x ). For λ 1 , . . . , λ n ∈ C, the generating seriesσ h = γ∈N n h(λ γ 1 1 , . . . , λ γ n n ) y γ γ! of h is of the form σ h (y) = r i=1 ω i (y)e ξ i (y) with • (h) = {α 1 , . . . , α r }, • ξ i = (λ α i,1 1 , . . . , λ α i,n n ) ∈ C n , • ω i (y) = β∈B i ω i,β y β ∈ C[y].If moreover λ i = 1 and the points ξ i = (λα i,1 1 , . . . , λ α i,n n ), α i ∈ (h) are distinct, then h = r i=1β∈B i ω i,β x α i log β (x ).

  γ∈N n γ β ξ γ y γ γ! = log β (λ)ω β (y)e ξ (y)where ω β (y) is the polynomial obtained from the expansion of y β in terms of the Macaulay binomial polynomials b α (y). As in Section 5.4, this shows that the completeness property is satisfied.If h = r i=1 β∈B i h i,β x α i log β (x ), λ i = 1 and the points ξ i = (λ β log β (λ)ω β (y) e ξ i (y) = r i=1 ω i (y)e ξ i (y) with ξ i = (λ α i,1 1 , . . . , λ α i,n n ) and ω i (y) ∈ C[x ]. By Lemma 2.2.4 and the linear independency of the polynomials ω β , we deduce that the coefficients h i,β are uniquely determined from the coefficients of the decomposition of ω i (y) in terms of the Macaulay binomial polynomials ω β , since log β (λ) = 0.

  

  • • • x m,i m

	find vectors ξ i 1 ∈	n 1 +1	, . . . , ξ i m ∈	n m +1	such that
				r	m
		τ(x 1 , . . . , x m ) =		
				i=1	j=1

  column of M x corresponds of the Euclidean division of x d by f . The characteristic polynomial of M x is f and the eigenvalues of M x are the roots ζ 1 , . . . , ζ d of f . As these eigenvalues are assumed to be distinct, the matrix M x is diagonalisable.Let p be an element of [x]. The eigenvalues of the multiplication by p in are p(ζ 1 ), . . . , p(ζ d ) since they are the diagonal terms of M p in the basis of eigenvectors of M x . Let us describe this basis of common eigenvectors of the operators M p , p ∈ [x].

	Let

  kernel is spanned by the differential polynomials p(∂ y ), which cancel simultaneously σ 1 , . . . , σ m . If σ = e ξ ∈ R is the evaluation at a point ξ ∈ n , then H e If σ = (σ 1 , . . . , σ m ) with σ i = r i i=1 ω i (y)e ξ i (y) then, by Lemma 2.2.1, the kernel I σ is the set of polynomials p ∈ [x ] such that ∀q ∈ [x ], p is a solution of the following system of partial differential equations:

	Example 4.1.4 Example 4.1.5

ξ : p ∈ R → p(ξ)e ξ (y) ∈ R . We easily check that rank H e ξ = 1 since the image of H e ξ is spanned by e ξ (y) and that I e ξ = (x 1 -ξ 1 , . . . , x n -ξ n ).

  The inner product 〈., .〉 σ is non-degenerate on σ = [x ]/I σ .

.1) Proposition 4.2.1 Proof. By definition of I σ , if p ∈ [x ] is such that ∀q ∈ [x ],
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  Thus H ϕ is of finite rank r, if and only if, H ϕ is of finite rank r. As the rank of the restriction of H ϕ to C[x ] ⊂ (Ξ) is at most r, we conclude by using Theorem 4.2.2, a result similar to Proposition 5.2.1 for elements ψ ∈ (Ξ) and the relation -1 ( (ϕ)) = ϕ on Ω.

In this chapter, we use the algebraic tools and the properties of Artinian algebras to recover the decomposition of moment series as polynomial-exponential series.

Hankel operators

The external product allows us to define a Hankel operator as a multiplication operator by dual elements ∈ R where R = [x ]:

Hereafter, we will also denote

As ∀p, q ∈ R, pq σ = p (q σ), we easily check that I σ = ker H σ is an ideal of R and that σ = R/I σ is an algebra. 

b) find the first α ∈ s such that x α p α ∈ 〈a〉 and 〈x α , p α 〉 σ = 0; c) if such an α exists then 

The algorithm manipulates the ordered lists b, d, s, s of exponents, identified with monomials. The monomials are ordered according to a total order denoted ≺. The index l is the loop index.

The algorithm uses the function next(b, d, s), which computes the set of monomials α in ∂ b ∩ s, which are not in d and such that α + b ⊂ a.

We verify that at each loop of the algorithm, the lists b and s (resp. b and s ) are disjoint and b ∪ s = a (resp. b ∪ s = a).

We also verify by induction that at each loop,

Remark 4.6.3 When the monomials in s are chosen according to a monomial ordering ≺, the polynomials p α = x α + b α , α ∈ d are constructed in such a way that their leading term is x α . They form a Gröbner basis of the ideal I σ. To construct a minimal Gröbner basis of I σ for the monomial ordering ≺, it suffices to keep the elements p α with α ∈ d minimal for the division.

Remark 4.6.4 The computation can be simplified, when 〈•, •〉 σ is semi-definite, that is, when for all p ∈ 〈x a 〉 such that p 2 ∈ 〈x a 〉, we have 〈p, p〉 σ = 0 implies that ∀α ∈ a with x α p ∈ 〈x a 〉, 〈p, x α 〉 σ = 0. In this case, the algorithm constructs a family of orthogonal polynomials p = [p β 1 , . . . , p β r ] and q = [q β 1 , . . . , q β r ] with q β i = 1 〈p β i ,p β i 〉 σ p β i and we have b = b . Indeed, in the while loop for each α ∈ n, either 〈p α , p α 〉 σ = 0, which implies that ∀α ∈ t with

If = and σ is semi-definite positive, then the polynomials

We can now describe the decomposition algorithm of polynomial-exponential series, obtained by combining the algorithm for computing bases of σ and the algorithm for computing the frequency points and the weights: Output: the polynomial-exponential series r i=1 ω i (y)e ξ i (y) with ω i (y) ∈ [y], ξ i ∈ n with the same Taylor coefficients σ α as σ for α ∈ a ⊂ n . In the first step of the algorithm, we take p 1 = 1 and compute the first i such that

Examples

In a second step, we have p

In the following step, we have p

The algorithm stops and outputs

Theorem 5.2.2 Suppose that ϕ ∈ is such that the convolution operator H ϕ is of finite rank r. Then its symbol ϕ is of the form ϕ = r i=1 ω i (y)e iξ i (y).

. The rank r of H ϕ is the sum of the dimension of the vector spaces spanned by ω i (y) and all its derivatives ∂ γ

Proof. Since is a bijection between C and M , the relation (5.4) implies that H ϕ is of finite rank r, if and only if,

with ξ i ∈ C n distincts, A i ⊂ N n finite and r = r i=1 µ(ω i ) where µ(ω i ) is the dimension of the inverse system of ω i = α∈A i ω i,α y α , spanned by ω i (y) and all its derivatives. As ϕ ∈ is a distribution with slow increase at infinity, we have