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What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":g(x) >0}
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What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):
inf  f(x)
st. xeX={xeR":g(x) >0}

V" But the input data f, gj are “SPARSE”!

Correlative sparsity: few products between each

variable and the others in f, g;
~ f(x) = x1x2 + X2X3 + . . . X99X100 D-©-6© - 99 - 100

Term sparsity: few termsin f, g;

~ f(x) = xPxp + x7 630

Ideal sparsity: constraints
~r X1Xp = XpX3 — 0

e -
PERFORMANCE gy{ VS ACCURACY
% g
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Where do we find sparse POPs?
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Where do we find sparse POPs?

Everywhere (almost)!

Hidden

Input

Output

Deep learning
~> robustness, computer vision

Power systems
~» AC optimal power-flow, stability

Quantum Systems
~~ condensed matter, entanglement
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

Theory

(Primal) , (Dual)
inf /fdy & sup A

with pproba = INFINITELP <with f—A>0
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

(Primal Relaxation) 'if ' (Dual Strengthening)
moments / x* dy f — A = sum of squares

finite number = SDP <« fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS T fiin
[Lasserre "01]

degree r & nvars = ("'2") SDP VARIABLES ’f/ﬁﬁ.‘
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

(Primal Relaxation) 'SE ' (Dual Strengthening)
moments / x* dy f — A = sum of squares

finite number = SDP <« fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS T fiin
[Lasserre "01]

degree r & nvars = ("'2") SDP VARIABLES f{ﬁ, = &

HOW TO OVERCOME THIS NO-FREE LUNCH RULE?‘
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An example

NP hard General Problem: f.,;, := mi)r(1f(x)
Xe

Semialgebraic set X = {x € R" : g;j(x) > 0}
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% % )
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NP hard General Problem: f.,;, := mi)r(1f(x)
Xe

Semialgebraic set X = {x € R" : g;j(x) > 0}
X=[0,12={x€R?:x(1—x1) =0, x(1—2x) >0}

f
=
X1Xp =
X A 02
> AN 81 ~ =~ 82
—1+1 x—Hc—1 + 1 x(l—x3+ 1 x(l—xs
) 2 1 2 2 2 1 1 2 2 2

Sums of squares (SOS) ¢;

Quadratic module: M(X), = { 00 + Y 0;8j, degojgj < 2r }
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = infycx f(x)
m space M (X) of probability measures supported on X
m quadratic module Q(X) = {(ro + Y058, with o SOS}

Infinite-dimensional linear programs (LP)

(Primal) (Dual)
inf /dey = sup A
st peMi(X) st. LeR
f-reQX)
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,i, = infyex f(x)

m Pseudo-moment sequences y up to order r
m Truncated quadratic module Q(X),

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf ) fava = sup A
o
st M,—(gy) =0 st. AeR
Yo=1 f—Ae QX),
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,i, = infyex f(x)

m Pseudo-moment sequences y up to order r
m Truncated quadratic module Q(X),

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf ) fava = sup A
o
st M,—(gy) =0 st. AeR
Yo=1 f—Ae QX),

] Primal-dual “SPARSE” variants?
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Sparse SDP
Correlative sparsity
Term sparsity

Ideal sparsity

Tutorial session



Sparse SDP



Sparse matrices

Symmetric matrices indexed by graph vertices
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Sparse matrices
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1 —2—3 o

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

cycle =

QN
|
W - N
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Sparse matrices

Symmetric matrices indexed by graph vertices

1 —2 —3 .

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle
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g2
cycle = !
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QN
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chordal graph = all cycles of length > 4 have at least one chord
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Sparse matrices

Symmetric matrices indexed by graph vertices

17273 |:

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length > 4 have at least one chord

clique = a fully connected subset of vertices
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Chordal extensions

W - N
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Chordal extensions
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Chordal extensions

Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

'¥" Chordal extension is not unique!

1 -2 1 -2 1 -2

L N L X

4 -3 4 -3 4 -3

approximately minimal maximal
Theorem [Gavril '72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]
For a chordal graph with maximal cliques I, . .

Iy

(RIP) |Vk<p Lan|JI; €I forsomei<k

j<k

(possibly after reordering)
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]
For a chordal graph with maximal cliques I, . .

Iy

(RIP) |Vk<p Lan|JI; €I forsomei<k

j<k

(possibly after reordering)

" RIP always holds for p = 2

V" RIP holds for chains D O © - 99 - 100
V" RIP holds for numerous applications!
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Semidefinite Programming (SDP)

. T
min cy
y

S.t. ZFi Yi = Fy
i

m Linear cost ¢
m Symmetric matrices F, F;

Spectrahedron

m Linear matrix inequalities “F = 0”
(F has nonnegative eigenvalues)

Victor Magron Exploiting sparsity in polynomial optimization 9/80



Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

What are P;, P,? P; € Rllx» P(i,j) =

100
L =(12) = P, =
1=02)=h <010>
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

1 ifI(i)=j
What are P, P,? P; € RInx" P(i,j) = (1) _ ]
0  otherwise

100 01 0
L = (12) = Py = L= (2 P, =
1=012)=h <010> 2=(23) =P <001>
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2 —3 1y —§2 2 — 3

1 ifI(i)=j
What are P, P,? P; € RInx" P(i,j) = (1) _ ]
0  otherwise

100 01 0
L = (12) = Py = L= (2 P, —
1=012)=h <010> 2=(23) =P <001>

VP, TQ, Py inflates a |I1| x |I| matrix Q; into a sparse n x n matrix
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Correlative sparsity



What is correlative sparsity?

s Exploit few links between variables [Lasserre, Waki et al. '06]

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

6 —————— 5
Correlative sparsity pattern (csp) graph G \ /
Vertices = {1,...,n} /
(i,j) € Edges < x;x; appears in f '

e EEm—
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What is correlative sparsity?

s Exploit few links between variables [Lasserre, Waki et al. '06]

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

Correlative sparsity pattern (csp) graph G

Vertices = {1,...,n} /
(i,j) € Edges < x;x; appears in f

Similar construction with constraints X = {x € R" : g;(x) > 0}
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What is correlative sparsity?

f(X) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

\ l/
Chordal graph after adding edge (3, 5) /
4
By ———————————————————————@
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What is correlative sparsity?

f(X) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

\ l/
Chordal graph after adding edge (3, 5) /
4
By ———————————————————————@

maximal cliques I = {1,4} L, =1{1,2,3,5} I3=1{1,3,56}
f = f1+ f2 + f3 where f; involves only variables in I

V" Let us index moment matrices and SOS with the cliques I
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N — }; xi2 > 0 then

f>00nX={x:gj(x) >0} = f=o00+)_0;g with o; SOS
j
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N — }; xi2 > 0 then

f>00nX={x:gj(x) >0} = f=o00+)_0;g with o; SOS
j

Theorem: Sparse Putinar’s representation [Lasserre '06]

f = Yk fr» fr depends on x(Ij)

f>0o0nX f:;(UOkJrZUjgj)
Each g; depends on some I SOS “sees]”E\I/;rs inI
RIP holds for (I) = o '

o; “sees” vars from g;

ball constraints for each x(Iy)
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A first key message

“?”SUMS OF SQUARES PRESERVE SPARSITY | V

Victor Magron Exploiting sparsity in polynomial optimization 14 /80



A proof of sparse Putinar’s Positivstellensatz

Let X = {x: gj(x) > 0} be compact and f = Y fi, with f;
depends on x(Ii), and f > 0on X
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A proof of sparse Putinar’s Positivstellensatz

Let X = {x: gj(x) > 0} be compact and f = Y fi, with f;
depends on x(Ii), and f > 0on X

X = {x(I) : gj(x) = 0:j € Ji} = the subspace of X which only
“sees” variables indexed by I

Lemma [Grimm et al. *07]

If RIP holds for (Ij) then
f = Yk hy, with i, depends on x(Ii), and /. > 0 on X

V" Prove this lemma by induction on the number of subsets I,

V" Then apply Putinar to each 7

Victor Magron Exploiting sparsity in polynomial optimization 15/80



Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
L = {1,4} = monomials in x1, x4

1 | Y¥1,00000 ¥0,001,00

Mi(y, ) =
Y1,00000 | Y200000 ¥100,1,00

Y000100 | Y1,00100 ¥000200
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
L = {1,4} = monomials in x1, x4

1 | Y¥1,00000 ¥0,001,00

Mi(y, ) =
Y1,00000 | Y200000 ¥100,1,00
Y000100 | Y1,00100 ¥000200

V" same for each localizing matrix M, (g;y)
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Sparse primal-dual Moment-SOS hierarchy

frmin = infeex f(x) with X = {x: g;(x) > 0}

Dense Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
14
st. Mi(y) =0 st. AeR
Mrfrj(gj)’) =0 f—/\:0’0+20’]'gj
)
Yo=1
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Sparse primal-dual Moment-SOS hierarchy

frin = infyex f(x) with X = {x: g;(x) > 0}
f = Yk fr, with f, depends on x(Ij)
Each ¢; depends on some I

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Y fuva = sup A
14
st. My (y, Ix) =0 st. 1eR
Mrfr,'(gjy’lk) 70,j € Jx, Vk f_)‘:Z(UkO‘F Z‘Tjgj)
k J€k
Yo =1 )

Victor Magron Exploiting sparsity in polynomial optimization 18 /80



Sparse primal-dual Moment-SOS hierarchy

frin = infyex f(x) with X = {x: g;(x) > 0}
f = Y% fr, with f; depends on x(I;)
Each g; depends on some I

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, I;) =0 st. 1 e€R
M:—(8j ¥, Ix) = 0,j € Ji, Vk f=A=) (0+ ) 0gj)
k J€Ik
Yo =1 )

RIP holds for (I) + ball constraints for each x(Iy) = Primal
and dual optimal value converge to fin by sparse Putinar
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Computational cost

fin = infyex F(x) with X = {x : g;(x) > 0, < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf‘" Ya = sup A
st My(y, I;) =0 st. 1 e€R
M, (8, 1) =0, € Ji, Vk f=A=) (o0+ ) 0ig)
k j€lk
vo=1 )
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Computational cost

fmin = infyex f(x) with X = {x: gj(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, I;) =0 st. 1 e€R
Mi’*rj(gjy'Ik) %O,].Efk,Vk f_/\:Z(UkO+ ZO’]g»
k J€Tk
vo=1 )

(m + p) SOS in at most 7 vars of degree < 2r
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(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, I;) =0 st. 1 e€R
Mi’*rj(gjy'Ik) %O,].Efk,Vk f_/\:Z(UkO+ ZO’]g»
k J€Tk
vo=1 )

(m + p) SOS in at most 7 vars of degree < 2r
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Computational cost

fmin = infyex f(x) with X = {x: g;(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
;fa Ya = sup A
st. M.(y,Ix) =0 st. 1eR
M (gjy, Ix) = 0,j € ], Vk f-A= Z ko +]€Z]k 7;8;)
Yo=1 )

(m + p) SOS in at most 7 vars of degree < 2r
V" (m+p) O (r7) SDP vars vs (m +1) O (+") in the dense SDP
19/80
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Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
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min — inf / d
fi inf [ fdp
s.t. U S M+(X)
In the sparse setting:

Xi = {x(I) : gj(x) = 0:j € Jx} = the subspace of X which only
“sees” variables indexed by I

Victor Magron Exploiting sparsity in polynomial optimization 20/80



Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
s.t. U S M+(X)
In the sparse setting:

X = {x(Ix) : gj(x) = 0:j € Jx} = the subspace of X which only
“sees” variables indexed by I

Xij = only “sees” variables indexed by Iy N I;

Victor Magron Exploiting sparsity in polynomial optimization 20/80



Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
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Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
s.t. U S M+(X)
In the sparse setting:

X = {x(Ix) : gj(x) = 0:j € Jx} = the subspace of X which only
“sees” variables indexed by I

Xij = only “sees” variables indexed by Iy N I;

V" one measure y for each Iy — marginals 7tz on M (Xy;)

Sparse moment SDPs relax the sparse LP over measures:

fes = inf Z/ Fediy

S-t- Tkt = Ttk e € M (Xx)
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The dual of sparse Putinar’s Positivstellensatz

Theorem [Lasserre ’06]
RIP holds for (Iy) = fmin = fos = ill;lf 2/ fredpy
k k Xk

s.t. TCikpj = TTkjHk
pe € My (Xi)
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The dual of sparse Putinar’s Positivstellensatz

Theorem [Lasserre ’06]
RIP holds for (Iy) = fmin = fos = i{lf 2/ fiedpix
Lk k Xk

s.t. TCikpj = TTkjHk
pe € My (Xi)

V" Proof: there exists i € M (X) with marginal j; on X,

M (X)

M (Xq) M (Xz)

N A

M (Xq2)
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A first (dual) key message

‘?"THE MEASURE LP PRESERVES SPARSITY |V
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Extracting minimizers: the dense case

Let rin be the minimal relaxation order.
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Extracting minimizers: the dense case

Let rin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]

Assume that the moment SDP has an optimal solution y with cost
f"and

rank M,/ (y) = rankM,._, . (y) for some r’ <r.
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Assume that the moment SDP has an optimal solution y with cost
f"and

rank M,/ (y) = rankM,._, . (y) for some r’ <r.

Then " = fnin and the LP over measures has an optimal solution
1 € My (X) supported on ¢ = rank M,/ (y) points of X.
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Extracting minimizers: the dense case

Let rin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]

Assume that the moment SDP has an optimal solution y with cost
f"and

rank M,/ (y) = rankM,._, . (y) for some r’ <r.

Then " = fnin and the LP over measures has an optimal solution
1 € My (X) supported on ¢ = rank M,/ (y) points of X.

Extraction possible with the Gloptipoly software
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Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.
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Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution y with
cost fls and

rank M, (y, Iy) = rank M, g, (y, Ir)
rankM,(y, [N ;) =1

Victor Magron Exploiting sparsity in polynomial optimization 24/80
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Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution y with
cost f{s and

rank M, (y, Iy) = rank M, g, (y, Ir)
rank M, (y, N I;) =1
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Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution y with
cost f{s and

rank M, (y, Iy) = rank M, g, (y, Ir)
rank M, (y, N I;) =1

Then fls = fmin = fos & sparse measure LP has optimal solution y; €
M (X) supported on t; = rank M, (y, I;) points of X.

V" RIP is not required!
V" Extract x(k) from M, (y, I,) = minimizer x with (xi)ier, = x(k)
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Application to rational functions

s pid) . .
fonin = ;g)f(zl: el >0o0nX, p;q;depends onlyon I;
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Application to rational functions

Fmin = 1nf Z Zl j: , g;>0o0nX, p;,q;depends only on I;
i 1

Theorem: dense measure LP [Bugarin et al. ’16]
fmin - " E/l\l;llfr Z/ pi d,ut
s.t. /Xx qidyi:/xx”‘qldyl,aE]N"

/)(qld}"‘l =1
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Application to rational functions

Fmin = in)f(z pi((x) , gi>0onX, pjq;dependsonlyon I;
X€e ;

q:(x)

Theorem: dense measure LP [Bugarin et al. ’16]

fmin = i EJI\I;E / pi d,ut

s.t. /x gidy; = /x“qldyl,aE]N"

qrdp =1

Theorem: sparse measure LP [Bugarin et al. *16]

fmin = fcs ,E./gllf Z/ pi d,uz
st nz](qldu ) = mji(g;du;)

X gidp; =1

><\><
: |
<
.
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f(x) = x1x2 + x3x4
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Application to roundoff errors
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]
Exact f(x) = x1x2 + x3x4

Floating-point f(x, e) = [x1x2(1 4 e1) + x3x4(1 +e2)](1 + €3)
x€X, |e|<27° & =24 (single) or 53 (double)

1: Error f(x) — f(x,e) = £(x,e) + h(x,e), ¢ linear in e
2: Bound h(x, e) with interval arithmetic

3: Bound /(x, e) with SPARSE SUMS OF SQUARES

V= {x e} = ‘mr"“ instead of """ | SDP vars
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

Victor Magron

X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory

Sparse SDP Real2Float tool: 15(°(17%) = 4950 ~» 759¢

Interval arithmetic: 922¢ (10 x less CPU)

Symbolic Taylor FPTaylor tool: 721e (21 x more CPU)

SMT-based rosa tool: 762¢ (19 x more CPU)

Exploiting sparsity in polynomial optimization 27/80



Application to roundoff errors

1,000 %
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Extension to noncommutative optimization

Self-adjoint noncommutative variables a;, b; € B(H)
f= a1(by + by + b3) + ax(by + by — b3) +az(by — by) — by —2b1 — by

with aja; 75 a»aq, involution ([llbg,)* = b3£l1

Victor Magron Exploiting sparsity in polynomial optimization 29/80



Extension to noncommutative optimization

Self-adjoint noncommutative variables a;,b; € B(H)
f= a1(by + by + b3) + ax(by + by — b3) +az(by — by) — by —2b1 — by

with aja; 75 a»aq, involution ([llbg)* = bsm

Constraints X = {(a,b) : a? = ul,b = bj,a;b; = bja;}

Victor Magron Exploiting sparsity in polynomial optimization 29/80



Extension to noncommutative optimization

Self-adjoint noncommutative variables a;, b; € B(H)
f= a1(by + by + b3) + ax(by + by — b3) +az(by — by) — by —2b1 — by

with aja; 75 a»aq, involution ([llbg,)* = b3£l1
Constraints X = {(a,b) : a? = ul,b = bj,a;b; = bja;}
MINIMAL EIGENVALUE OPTIMIZATION

Amin = Inf {(f(a,b)v,v) : (a,b) € X, ||v|] =1}

Victor Magron Exploiting sparsity in polynomial optimization 29/80



Extension to noncommutative optimization

Self-adjoint noncommutative variables a;, b; € B(H)
f= a1(by + by + b3) + ax(by + by — b3) +az(by — by) — by —2b1 — by

with aja; 75 a»aq, involution ([llbg,)* = b3£l1
Constraints X = {(a,b) : a? = ul,b = bj,a;b; = bja;}
MINIMAL EIGENVALUE OPTIMIZATION

Amin = Inf {(f(a,b)v,v) : (a,b) € X, ||v| =1}
=sup A
st f(a,b)—AL=0, V(ab)eX
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Extension to noncommutative optimization

Ball constraint N — Y_; x? »= 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough '02]

f=0onX = |f= ZS?SZ' + Zzt;g]tﬂ with s;, tji € R({x)
i 7
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Extension to noncommutative optimization

Ball constraint N — Y_; x? »= 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough '02]

f=0onX = |f= ZS?S[ + Ezt;g]t], with s;, tji € R({x)
i 7

NC variant of Lasserre’s Hierarchy for Apin:

¥ replace “f — AL = 00on X" by f — AI = ¥ stsi+ L i tigjtji
with s;, t;; of bounded degrees = SDP &/
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Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1,...,x;,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)
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Extension to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1,...,x;,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 + x3)?

GooD NEWwS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar *78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

f =Y fr fr depends on x(I;) =Y (siisei + Y ti"gjtii)
f>00n{x:gj(x) >0} ki j€Jk
chordal graph with cliques Iy = s;; “sees” vars in I

ball constraints for each x(Ij) t;; “sees” vars from g;
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f =ay(by + by + b3) + ax(by + by — b3) +az(by — by) —a; —2by — by

Maximal violation levels — upper bounds on A, of f on
{a,b : a? = 4a; blz = b,‘ aibj = b]‘al'}
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f= a1(b1 + by + b3) + ax(by + by — b3) +as(by —by) —a; —2by — by
Maximal violation levels — upper bounds on A, of f on
{a,b : af = 4a; blz = b,‘ aibj = b]‘al'}
\‘QI— Ik — {llk, bl/ bZ/ b3}
level sparse dense [Pal & Vértesi '18]
2 0.2550008 0.2509397
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level sparse dense [Pal & Vértesi '18]
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f =ay(by + by + b3) + ax(by + by — b3) +az(by — by) —a; —2by — by

Maximal violation levels — upper bounds on A, of f on
{a,b : af = 4a; blz = b,‘ aibj = b]‘al'}
\‘QI— Ik — {ak/ bl/ bZ/ b3}

level sparse dense [Pal & Vértesi '18]
2 0.2550008 0.2509397

3 0.2511592 0.2508756

3 0.2508754 (1 day)
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f =ay(by + by + b3) + ax(by + by — b3) +az(by — by) —a; —2by — by

Maximal violation levels — upper bounds on A, of f on
{a,b : af = 4a; blz = b,‘ aibj = b]‘al'}
\‘QI— Ik — {ak/ bl/ bZ/ b3}

level sparse dense [Pal & Vértesi '18]
2 0.2550008 0.2509397

3 0.2511592 0.2508756

3 0.2508754 (1 day)

4 0.2508917
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f =ay(by + by + b3) + ax(by + by — b3) +az(by — by) —a; —2by — by

Maximal violation levels — upper bounds on A, of f on
{a,b : af = 4a; blz = b,‘ aibj = b]‘al'}
\‘QI— Ik — {ak/ bl/ bZ/ b3}

level sparse dense [Pal & Vértesi '18]
2 0.2550008 0.2509397

3 0.2511592 0.2508756

3 0.2508754 (1 day)

4 0.2508917

5 0.2508763
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Application to violation of Bell inequalities

I3320 Bell inequality (entanglement in quantum information)
f =ay(by + by + b3) + ax(by + by — b3) +az(by — by) —a; —2by — by

Maximal violation levels — upper bounds on A, of f on
{a,b : af = 4a; blz = b,‘ aibj = b]‘al'}
\‘QI— Ik — {llk, bl/ bZ/ b3}

level sparse dense [Pal & Vértesi '18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)
PERFORMANCE j%w VS - ACCURACY
NS
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Application to SOS of bounded degrees

Theorem: sparse BSOS representation [Weisser et al. '18]

If0< g <lonX, f>0onX&RIP holds for (I;) then

f= Z<Uk+20kaﬁl_[8] (1-g) )

IS

with 0 SOS of degree < 2r
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Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pd form f —

f

with ¢ SOS, r € N

o (o
13"

Victor Magron
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Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pdform f = |f with ¢ SOS, r € N

o (o
13"

Sparse f Y fx, with f; only depends on I;
RUNNING INTERSECTION PROPERTY (RIP)

vk Ln|JIj €I, forsomes; <k
j<k
| S —
I
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Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pdform f = |f with ¢ SOS, r € N

o (o
13"

Sparse f Y fx, with f; only depends on I;
RUNNING INTERSECTION PROPERTY (RIP)

vk Ln|JIj €I, forsomes; <k
j<k
| S —
I

Theorem: sparse Reznick [Mai Lasserre Magron *20]

RIP = |f=)" ngf with ;. SOS only depends on I
k k

Uniform H, involve products ||x(I)|3 for I € {I}, I, [; : s; = k}
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]
Polynomial matrix inequalities [Zheng & Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. '21]
Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. '21]
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Term sparsity



Term sparsity via Newton polytope

— Ayha6 g 42 2, .2
f = 4x7x3 4+ x7 — x1x5 + x5

spt(f) = {(4,6),(2,0),(1,2),(0,2)}

Newton polytope % = conv (spt(f))

Squares in SOS decomposition C % NIN"
[Reznick ’78]

X1

X2

f:<x1 Xp  X1X2 xlx% x%x%) Q | x1xo
=0 X1X%
X3
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Term sparsity: the unconstrained case

f= x% —2x1x2 + 3x§ — Zx%xz + zx%x% —2xX3 .

+ 633 + 18x3x3 — 54x5x3 + 1423323 %1

[Reznick 78] = f = (1 x1 x2 x3 x1x2 2xx3) Q fé
~~ 857 = 21 *unknown” entries in Q N
XpXx3
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Term sparsity: the unconstrained case

f — xl 2x1X2 + 3x2 2x1X2 + lexz 2x2X3 1
+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1
X2

[Reznick 78] = f = (1 x1 x x3 x1x2 2xx3) Q
~~| X3
~~ 857 = 21 “unknown” entries in Q 20 xx

| ()
¥" Term sparsity pattern graph G ‘
E——)

X2X3
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Term sparsity: the unconstrained case

f=x2 —2x1x + 3x3 — 2x3xy 4+ 2x3x3 — 22013 1
+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1
X2

[Reznick 78] = f = (1 x1 x x3 x1x2 2xx3) Q
~~| X3
~~ 857 = 21 “unknown” entries in Q 20 xx

V" Term sparsity pattern graph G
+ chordal extension G’ ° @ @

X2X3
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Term sparsity: the unconstrained case

f=x2 —2x1x + 3x3 — 2x3xy 4+ 2x3x3 — 22013 1

+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1

[Reznick 78] = f = (1 x1 x x3 x1x2 XpX3) \%, 2
~~ 857 = 21 “unknown” entries in Q 70| xyxo
X2X3

V" Term sparsity pattern graph G

+ chordal extension G’ @ @ @
Replace Q by Q. with nonzero entries at edges of G’
~+ 6 + 9 =15 “unknown” entries in Q¢
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
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Term sparsity: the constrained case
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Nodes V = monomials of degree < r
Edges E with

{a,} € E= a+pcsuppf|Jsuppyg |J 2«

la|<r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{a,} € E= a+pcsuppf|Jsuppyg |J 2«

la|<r

An example with » = 2
f = xt+x1x3 + xpx3 + x3x3
91 :1—x%—x2—x§ 0 =1—1x3x4

Victor Magron Exploiting sparsity in polynomial optimization 38/80



Term sparsity: support extension

o' +p =a+pand (x,f) € E= («/,p') € E

QO OO
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
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laf<r

~> support extension

Victor Magron Exploiting sparsity in polynomial optimization 40/80



Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r

~ support extension ~» chordal extension G’
By iteratively performing support extension & chordal extension

GOV =G c...cG® cgtth c...

V" Two-level hierarchy of lower bounds for f,..i, indexed by
sparse order s and relaxation order r
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)

Ci — Mc,(y)
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,
M, (y) =0 — Mc,(y) =0

Similarly for the localizing matrices M,—_,,(g;y)
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,
M, (y) =0 — Mc,(y) =0

Similarly for the localizing matrices M,—_,,(g;y)

V" Each constraint G; ~ G](S) ~~ cliques C](j)
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Term sparsity: primal moment relaxations

Let C](j.) be the maximal cliques of G](S). Foreachs > 1

t’:és = inf Y fﬂyﬂé
s.t. Mcéfl.) (y) =0
MC/(? (8y) 70

yo=1

V" dual yields the TSSOS hierarchy

Victor Magron Exploiting sparsity in polynomial optimization
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A two-level hierarchy of lower bounds

Tmin,1 Tmin,2 Tmin
ts < ts < g f
Al N Al
Tmin+1,1 Tmin+1,2 Tmin+1
fts < fts < g f
Al N Al
Al N Al
r,1 r,2 r
g S i S < f
Al N A
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Different choices of chordal extensions

X1X2
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Different choices of chordal extensions
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang °21]

Fixing a sparse order s, the sequence (fi¢")r>r.;, iS monotonically non-
decreasing.
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y rs . .
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Vv Fixing a relaxation order r, the sequence (ftgs)szl T f7 in finitely
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symmetries if the maximal chordal extension and monomial basis are
used.
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

y rs . .
Fixing a sparse order s, the sequence (f");>r,, iS monotonically non-
decreasing.

Vv Fixing a relaxation order r, the sequence (ftgs)szl T f7 in finitely
many steps if the maximal chordal extension is used.

'¥" The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f =1+ x3x3 + xjx3 + xjx§ — x1x3 — 3x3x3
Newton polytope ~» % = (1 x1x2 x1x¥3 x3xp x3x3)
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

y rs . .
Fixing a sparse order s, the sequence (f");>r,, iS monotonically non-
decreasing.

Vv Fixing a relaxation order r, the sequence (ftgs)szl T f7 in finitely
many steps if the maximal chordal extension is used.

'¥" The block structures converge to the one determined by the sign
symmetries if the maximal chordal extension and monomial basis are
used.

f =1+ x3x3 + xjx3 + xjx§ — x1x3 — 3x3x3
Newton polytope ~» % = (1 x1x2 x1x¥3 x3xp x3x3)

Xy = —Xp
Sign-symmetries blocks (1 x5 23x3)  (xxa x3x))
TSSOS blocks (1 xx3 x3x3) (xx2) (¥3x2)
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A second key message

Victor Magron

TSSOS preserves the block structure|

related to sign-symmetries

Exploiting sparsity in polynomial optimization
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Comparison with (S§)DSOS

Let f be a nonnegative polynomial of degree 24
fis SOS & f = v Qv with Q = 0 ~» semidefinite program

where v contains 1, x1, ..., X, x2,..., x4
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Comparison with (S§)DSOS

Let f be a nonnegative polynomial of degree 24

fis SOS & f = v Qv with Q = 0 ~» semidefinite program

where v contains 1, x1, ..., X, x2,..., x4

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]
Q diagonally dominant: Q;; > }_;+; Q;; ~~ linear program

Q ~ to a diag. dominant matrix ~~» second-order program

Victor Magron Exploiting sparsity in polynomial optimization 47/80



Comparison with (S§)DSOS

Let f be a nonnegative polynomial of degree 24

fis SOS < f = v Qv with Q 3= 0 ~~ semidefinite program

where v contains 1, x1, ..., X, x2,..., x4

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]
Q diagonally dominant: Q;; > Yi#i Qij ~ linear program

Q ~ to a diag. dominant matrix ~~» second-order program

Theorem [Lasserre Magron Wang '21]

The first TSSOS relaxation is always more accurate than the SDSOS
relaxation

Victor Magron Exploiting sparsity in polynomial optimization 47/80



Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph

For each subsystem involving variables from one maximal
clique, apply TSSOS
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph

For each subsystem involving variables from one maximal
clique, apply TSSOS

V" a two-level CS-TSSOS hierarchy of lower bounds for fiin
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Combining correlative & term sparsity

f=1+ 2?21 x?‘ 4+ x1X2X3 + X3X4X5 + X3X4Xe + X3X5X¢ + X4X5X6

csp graph
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Combining correlative & term sparsity

6
f=1+%74 x? + X1X0X3 + X3X4X5 + X3X4X6 + X3X5X + X4X5X6

tsp graph for the first clique
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Combining correlative & term sparsity

f =1+ 216:1 X? + X1X2X3 4+ X3X4X5 + X3X4Xg + X3X5X6 + X4X5X6

tsp graph for the second clique

(1) &
X5X6 X4

X4X6 X5

"‘@ @@@f
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Combining correlative & term sparsity

f =1+ Zle x? + X1X2X3 4+ X3X4X5 + X3X4X6 + X3X5X6 + X4X5X6

tsp graph without correlative sparsity
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Application to optimal power-flow

p%cn +j q(lgcn

Optimal Powerflow 1 ~ 103
[Josz et al. '18]

130 + 20§ 130 + 20j
3 2

65 + 10j

inf ZseG(CZs(%(STE))Z + s R(SF) + cos)
VI,Sé,Sll
st. LVt =0,
s§lgs§<sg”vSeG <V <vivieN

Yeeg, S5 =S =X5|ViP =1 eruek Siip EN
Vi « ViVi* _

Sij = (Y}; — *)|‘Ti].‘|z G Si=

Sy <spi, 03 < Z(ViVy*) <63, V(ij) €E
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Application to optimal power-flow

mb = the maximal size of blocks

m = number of constraints

" - CS(r=2) CS+TS (r=2,s=1)
mb | time(s) | gap | mb | time(s) | gap
114 315 66 5.59 0.39% | 31 2.01 0.73%
348 | 1809 | 253 — - 34 278 0.05%
766 3322 153 585 0.68% | 44 33.9 0.77%
1112 | 4613 496 — — 31 410 0.25%
4356 | 18257 | 378 . - 27 934 0.51%
6698 | 29283 | 1326 — - 76 1886 0.47%

Victor Magron
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (xixj+yiyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome by w) VVL{/}/*
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (Xixj‘+]/iyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome R ﬁ,} V*L% 4/4

First neighbors interactions : H = Y!' | xixj 11 + YiVit1 + ZiZit1

periodic boundary conditions =
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (xixj+yiyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome R ﬁ,} ﬁ,ﬂ; 4/4

First neighbors interactions : H = Y!' | xixj 11 + YiVit1 + ZiZit1

periodic boundary conditions =

Existing + efficient techniques: quantum Monte Carlo & variational
algorithms = upper bounds on minimal energy
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Application to noncommutative optimization

Lower bounds of the energy 1D lattice + * ; ; ;
—oaas | SETTE p-—io-it Apiplei-Hpisipi il Sl
I = o e e 3
:;;r—r" .
0450 i
f
i
—0.455 [
)
|I -e- r=2
)
~0.460 - cenor=3
-e- r=4
—-e- DMRG
-0.4654 -—.- Extra r=2
7
4 -e- Extrar=3
6| -o- Extra r=4
—0.470 A . . . . .
20 40 60 80 100

Dense r = 4, n = 10%> = 10! variables (solvers handle ~ 10%)
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Application to noncommutative optimization

Lower bounds of the energy

1D lattice + * ; $
- - ——————— ———mm .
~0.445 S E TR e e -
P i o ol g 1
IJ,/
-04504 U
-0.455
—e- r =2
-0.460 -e-  r=3
-~ r=4
-e-  DMRG
—0.465 4 51, -e- Extra r=2
d - Extra r=3
" - Extra r=4
-0.470 1
20 40 60 80 100

Dense r = 4, n = 10%> = 10! variables (solvers handle ~ 10%)
Sparse solved within 1 hour on PFCALCUL at LAAS

Victor Magron

Exploiting sparsity in polynomial optimization
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Application to noncommutative optimization

CLASSICAL WORLD
P (A1®B1+A1 @B+ A2 ®B1 — Ay ®Ba)p < 2

for separable states y € CF ® C* and matrices A;, B; satisfying
Ar=A, A =1,B =B, B =1
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TSIRELSON’S BOUND: 2 — 24/2 for maximally entangled states
" (A® B)p = tr(AB)
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Application to noncommutative optimization

CLASSICAL WORLD
P (A1®B1+A1 @B+ A2 ®B1 — Ay ®Ba)p < 2

for separable states y € CF ® C* and matrices A;, B; satisfying
Ar=A, A =1,B =B, B =1

TSIRELSON’S BOUND: 2 — 24/2 for maximally entangled states
" (A® B)p = tr(AB)

2\6 = trmax{a1b1 + a1by + arby — a»by : {/1]2 = b]2 = 1}
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covy(A,B) =y (A@B)Y — " (A Dy p*(I® B)yp
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(A,B) =¢*(A@B)p —¢p* (A )y - " (I B)y

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . ..
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V" 2nd dense SDP relaxation of the corresponding trace
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(A,B) =¢*(A@B)p —¢p* (A )y - " (I B)y

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . . .5 for one maximally entangled state

V" 2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

V" 2nd sparse SDP gives also 5 ... 10 times faster
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Application to networked systems stability

Lyapunov function

05 15

N N
f= Zﬂi(x?ﬂf) - Z bz‘kxllef a; € [1,2] by € [W’W]
i=1

ik=1
~ (MIB)((N3?) 4+ 1) /2 “unknown” entries in Q = 231 for N = 5
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Application to networked systems stability

Lyapunov function

N 2 4 a ) 05 15
f = Zai<xi + xi) - Z bikxi xk [11' S [1;2] bik - [W, W]
i=1 k=1

~ (MIB)((N3?) 4+ 1) /2 “unknown” entries in Q = 231 for N = 5

¥ tsp graph G
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Application to networked systems stability

Lyapunov function

. A 05 15
f=Yald +xf) = ) baxixg ai € [L2] by €[5, 7]
i=1 if=1 N°N

~ (MIB)((N3?) 4+ 1) /2 “unknown” entries in Q = 231 for N = 5

¥ tsp graph G

~ (N +1)2 “unknown” entries in Q¢ = 36 for N =5

Proof that f > 0 for N = 80 in ~ 10 seconds!
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Application to networked systems stability

N
Duffing oscillator Hamiltonian V =) " a;(
i=1

=

.
2 4

N
3 Y bye(xi — x)*

ik=1

) +

Z

2 2
On which domain v > 02 /=7 ; Ai x7(8§—x7) =0

>0
= V>0whenx? <g
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Application to networked systems stability

N 2 4 N \
Duffin illator Hamiltonian V = (L= 4= bir(x; —
uffing oscillator Hamiltonia l;al( 5 4)+8ik§l (X — xp)

=

Z

2 2
On which domain v > 02 /=7 ; Ai x7(8§—x7) =0

>0

@ = V>0whenx? <g

FD 066

W
(e~

V" tsp graph G
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Application to networked systems stability

N x.2 _‘)C‘.L 1 N
Duffing oscillator Hamiltonian V = Zai(jl — Zl) +3 Y bi(xi — x)*
=~ =
1 N 2 i 2
H . = — . “ J— 4 >
On which domain V > 0? f=v Z\ Ai x7(8§—x7) =0

i=1 )

@ = V>0whenx? <g
@eg OJIORNC,
(e~
N(N+1)

s MEEL L 6(0) + N “unknown” entries in Qg = 80 for N =5

V" tsp graph G

Proof that f > 0 for N = 50 in ~ 1 second!
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Application to joint spectral radius (JSR)

Given A ={A4,..., Ay} CR"™" the JSR is

p(A):=lim max |[|AgAg, - Ag ||t

k—ooge{1,...,m}k
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Application to joint spectral radius (JSR)

Given A ={A4,..., Ay} CR"™" the JSR is

o(A):=lim max ||AgAg, - Ag ||t

k—ooge{1,...,m}k

Tons of applications:
m stability of switched linear systems
m continuity of wavelet functions
m trackability of graphs
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Application to joint spectral radius (JSR)

Given A ={A4,..., Ay} CR"™" the JSR is

o(A):=lim max ||AgAg, - Ag ||t

k—ooge{1,...,m}k

Tons of applications:
m stability of switched linear systems
m continuity of wavelet functions
m trackability of graphs

... NP-hard to compute/approximate
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Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie '08]
Given A = {A;,..., Ay} € R™", if a positive definite form f of
degree 2r satisfies

FAX) <Y¥f(x) Vi x

Then p(A) <o
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Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie '08]
Given A = {A;,..., Ay} € R™", if a positive definite form f of
degree 2r satisfies

FAX) <Y¥f(x) Vi x

Then p(A) <o

Vo(A) <p (A= inf
p(A) <p"(A) ant

" {f(X) ~lIxi3 808
7f(x) = f(Ax) SOS
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Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie '08]
Given A = {A;,..., Ay} € R™", if a positive definite form f of
degree 2r satisfies

FAX) <Y¥f(x) Vi x

Then p(A) <o

Vo(A) <p (A= inf
p(A) <p"(A) ant

" {f(X) ~lIxi3 808
7f(x) = f(Ax) SOS

Bisection on v + SDP
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f

fo = Xj-q cjx" with support <)
Recursively, f, 1 = ¥, 1) caXx* and

) = 77y U supp(fs—1(Aix)) @71(5) = /%) Usupp(fs(Aix))
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f

fo=YiL 1ij " with support .7 (¥)
Recursively, fS 1= Yoe. 61 Cax* and

) = VU supp(fii(Ax)) " = /9 Usupp(fu(Ax))

Theorem: Sparse JSR [Maggio Magron Wang '21]

P p(A) < ' (A) <P (A) = inf

fER[Z )]y

" {f(X)—IIXII%rSOS( )
() — f(Ax) SOS(7")

v
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Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}
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System asymptotically stable < p(A) < 1
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Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}

System asymptotically stable < p(A) < 1

(un)stability test with 10 matrices & n = 25 or 2 matrices &
n = 100 intractable with the dense JSR
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Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}

System asymptotically stable < p(A) < 1
(un)stability test with 10 matrices & n = 25 or 2 matrices &

n = 100 intractable with the dense JSR
V" takes less than 10 seconds with the Sparse JSR!
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Ideal sparsity

fmin = Inf{ f(x1,x2) : X120 = 0}
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Ideal sparsity

fmin = Inf{ f(x1,x2) : X120 = 0}

= sup{A : f(x1,x2) — A > 0 whenever x;x, =0}
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Ideal sparsity

fmin = Inf{ f(x1,x2) : X120 = 0}
= sup{A : f(x1,x2) — A > 0 whenever x;x, =0}

=sup{A:f(x1,0) —A >0, f(0,x2)—A >0}
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Ideal sparsity

fmin = Inf{ f(x1,x2) : X120 = 0}
= sup{A : f(x1,x2) — A > 0 whenever x;x, =0}

=sup{A:f(x1,0) —A >0, f(0,x2)—A >0}
¥ replace f(x1,0) —A > 0by f(x1,0) — A = o7 (x7) with SOS
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= sup{A : f(x1,x2) — A > 0 whenever x;x, =0}

=sup{A:f(x1,0) —A >0, f(0,x2)—A >0}
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General ideal constraints x;x; =0 V(i,j) € E
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Ideal sparsity

fmin = Inf{ f(x1,x2) : X120 = 0}
= sup{A : f(x1,x2) — A > 0 whenever x;x, =0}

=sup{A:f(x1,0) —A >0, f(0,x2)—A >0}
¥ replace f(x1,0) —A > 0by f(x1,0) — A = o7 (x7) with SOS

General ideal constraints x;x; =0 V(i,j) € E
~» max. cliques of the graph with vertices {1,...,n} & edges E
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Ideal sparsity

fmin = Inf{ f(x1,x2) : X120 = 0}
= sup{A : f(x1,x2) — A > 0 whenever x;x, =0}

=sup{A:f(x1,0) —A >0, f(0,x2)—A >0}
¥ replace f(x1,0) —A > 0by f(x1,0) — A = o7 (x7) with SOS

General ideal constraints x;x; =0 V(i,j) € E
~» max. cliques of the graph with vertices {1,...,n} & edges E

Theorem [Korda-Laurent-Magron-Steenkamp °22]
Ideal-sparse hierarchies provide better bounds than the dense ones

ﬁ ACCURACY

Exploiting sparsity in polynomial optimization 65/ 80
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r; s.t.
I+
A= ZQKQ[T fOI’aé >0
=1

r is called the completely positive rank
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r; s.t.
I+
A= ZQKQ[T fOI’aé >0
=1

r is called the completely positive rank
X hard to compute
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r; s.t.
I+
A= ZHKH[T fOI’a[ >0
=1

r is called the completely positive rank
X hard to compute
v Relax/convexify with a linear program over measures

ry > inf{/ ldy : / xixidp = Aj; (i,j € V), supp(p) € Ka}
woJK, K4
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Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r; s.t.
I+
A= ZHKH[T fOI’a[ >0

r is called the completely positive rank
X hard to compute
v Relax/convexify with a linear program over measures

> inf{/ ldy : / xixidp = Aj; (i,j € V), supp(p) € Ka}
woJK, K4

KA_{X VAixi—x; 20, Ai]’ x]>0(l,])€EA,
xix; =0 (i,j) € Ea, A—xxT =0}
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Application to matrix ranks

Random instances, order 2
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Application to matrix ranks

Random instances, order 2
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Size and nonzero densitv of the matrix
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Application to matrix ranks

Random instances, order 2
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Size and nonzero densitv of the matrix

PERFORMANCE 374‘3’ AND ﬁ ACCURACY
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radii
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radii

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

'¥" Combine correlative & term sparsity for problems with n = 103
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Further topics

Correlative sparsity: Convergence rate?
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Ideal sparsity: tensor (nonnegative, symmetric) ranks?
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Further topics

Correlative sparsity: Convergence rate? 7‘5’“ E
m e

Term sparsity: Smart solution extraction?
Ideal sparsity: tensor (nonnegative, symmetric) ranks?

Numerical conditioning of sparse SDP?
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Further topics

Correlative sparsity: Convergence rate? E _4"_(

=e

L

e

Term sparsity: Smart solution extraction?
Ideal sparsity: tensor (nonnegative, symmetric) ranks?
Numerical conditioning of sparse SDP?

Combination with symmetries?
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Further topics

~

if}f

- 0 v ‘ q
Correlative sparsity: Convergence rate? i 554 ‘ K

Term sparsity: Smart solution extraction?

Ideal sparsity: tensor (nonnegative, symmetric) ranks?
Numerical conditioning of sparse SDP?

Combination with symmetries?

V" Tons of applications!
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Thank you for your attention!

https://homepages.laas.fr/vmagron

GITHUB:TSSOS


https://homepages.laas.fr/vmagron
https://github.com/wangjie212/TSSOS
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Newton polytope

Motzkin f = x{x3 + x3x5 — 3x2x3 + 1
Compute the Newton polytope of f
Show that f is not SOS

Victor Magron Exploiting sparsity in polynomial optimization
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Chordal or not chordal?

6 ————————— 5
\1/
1 ——2
4 /
N 4
1 — 2
/
3 —MM—— 2

4 —— 3 3
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Chordal extension
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Support extension

Y de
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How big is CS?

f(X) = XpX5 + X3Xg — X2X3 — X5Xg +x1(—x1 + Xxp + X3 — Xgq + X5+ x6)
O6— &

Chordal graph after adding edge (3,5) //
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How big is CS?

f(X) = XpX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + Xxp + X3 — Xgq + X5+ x6)
6—

Chordal graph after adding edge (3,5) //

How many SDP variables in the dense and sparse relaxation at order
r=1,2,37
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Moment matrix

Write the first (correlative) sparse moment relaxation of

inf  xpxp + x1x3 + x1x4
X

st x+x3<1
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Measure LP preserves sparsity

f = f1+ fa2, fr depends on I}, X compact & each g; depends either
on I or Ip.
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Measure LP preserves sparsity

f = fi+ fa, fc depends on I;, X compact & each g; depends either
on I; or I,. Prove that
min — inf / du = = inf d d
f ;ze/gll+(x) xf # = fos o fxl frdpm + fxz fadpa
s.t. Ty = Moy
€ Mi(Xq), 2 € M4y(Xp)
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Measure LP preserves sparsity

f = fi+ f2, fx depends on I, X compact & each g; depends either
on I or I,. Prove that

min — inf / du = = inf d d

f ;ze/gll+(x) xf # = fos o fxlfl P‘l‘f'fxsz 2
s.t. Ty = Moy

€ Mi(Xq), 2 € M4y(Xp)

v (yk) feasible forfCS = Ju € M4 (X) with marginal ;. on X;

/\

M+ Xz

N A

M, (Xq2)
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How big is TSSOS? (1/2)

N
f=Y (x7+xf) - Zxxk
i=1 ik=1

How many entries in the dense & sparse SOS/moment matrices?
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How big is TSSOS? (1/2)

N N
f=Y (+xH)— Y xixf
i=1 ik=1
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How big is TSSOS? (2/2)

N 42 44 N A
f=Y(5—73)+ X (xi—x)
-2 4 ik=1

How many entries in the dense & sparse SOS/moment matrices?
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How big is TSSOS? (2/2)

x N
-t (x; — x)*

ik=1

N[5,

f=2

i=1

How many entries in the dense & sparse SOS/moment matrices?

(=)
V" tsp graph G @e@ OIOR:
(=) @‘@
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SOS + sparse + RIP =% sparse SOS (1/2)

A=xi+nn-17? h=¥3+x-1 f=fi+f
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SOS + sparse + RIP =% sparse SOS (1/2)

A=xi+nn-17? h=¥3+x-1 f=fi+f

Compute the dense relaxation 2
Compare with the correlative sparse relaxation fZ

Compare with the term sparse relaxation f° fors = 1,2, ...
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SOS + sparse + RIP =% sparse SOS (1/2)

A=xi+nn-17? h=¥3+x-1 f=fi+f

Compute the dense relaxation 2

Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...
¥ Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S

using TSS0S, DynamicPolynomials
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SOS + sparse + RIP =% sparse SOS (1/2)

A=xi+nn-17? h=¥3+x-1 f=fi+f

Compute the dense relaxation 2
Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...

¥ Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S

using TSS0S, DynamicPolynomials

@polyvar x1 x2 x3; x=[x1;x2;x3];

f1l = x174+(x1%x2-1)"2; £2 = x272%x372+(x372-1)"2;
f = f1+£2
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=xi+(ax—1?2 fHh=x3x3+(3-1)° f=fi+h

Compute the dense relaxation 2

Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...
¥ Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S

using TSS0S, DynamicPolynomials

@polyvar x1 x2 x3; x=[x1;x2;x3];

f1 = x174+(x1%x2-1)"2; £2 = x272*%x372+(x372-1) "2;
f = f1+£2

dense2,so0l,data=cs_tssos_first([f], x, 2,
CS=false,TS=false);
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:

f=fA+f ]Bnc:{x:1—x%—x§—x%kO,l—x%—xé—xi#O}
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:
f=fa+1f IBnc:{x:1—x%—x§—x%kO,l—x%—x%—xﬁ;O}

Compute Anin(f) on Bpe with 2nd dense relaxation
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:
f=fitfr Bpe={x:1-x2—-x3—x3>0,1—x5—x3—x25>0}
Compute Anin(f) on Bpe with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:
f=fitfr Bpe={x:1-x2—-x3—x3>0,1—x5—x3—x25>0}
Compute Anin(f) on Bpe with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations
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