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Semialgebraic set X = {x ∈ R n : g j (x) ⩾ 0} X = [0, 1] 2 = {x ∈ R 2 : x 1 (1 -x 1 ) ⩾ 0, x 2 (1 -x 2 ) ⩾ 0} f x 1 x 2 = - 1 8 + σ 0 1 2 x 1 + x 2 - 1 2 2 + σ 1 1 2 g 1 x 1 (1 -x 1 ) + σ 2 1 2 g 2 x 2 (1 -x 2 )
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NP hard General Problem:

f min := min x∈X f (x) Semialgebraic set X = {x ∈ R n : g j (x) ⩾ 0} X = [0, 1] 2 = {x ∈ R 2 : x 1 (1 -x 1 ) ⩾ 0, x 2 (1 -x 2 ) ⩾ 0} f x 1 x 2 = - 1 8 + σ 0 1 2 x 1 + x 2 - 1 2 2 + σ 1 1 2 g 1 x 1 (1 -x 1 ) + σ 2 1 2 g 2 x 2 (1 -x 2 )
Sums of squares (SOS) σ j
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NP hard General Problem:

f min := min x∈X f (x) Semialgebraic set X = {x ∈ R n : g j (x) ⩾ 0} X = [0, 1] 2 = {x ∈ R 2 : x 1 (1 -x 1 ) ⩾ 0, x 2 (1 -x 2 ) ⩾ 0} f x 1 x 2 = - 1 8 + σ 0 1 2 x 1 + x 2 - 1 2 2 + σ 1 1 2 g 1 x 1 (1 -x 1 ) + σ 2 1 2 g 2 x 2 (1 -x 2 )
Sums of squares (SOS) σ j

Quadratic module: M(X) r = σ 0 + ∑ j σ j g j , deg σ j g j ⩽ 2r
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The Moment-SOS Hierarchy for POP NP-hard NON CONVEX Problem f min = inf x∈X f (x) space M + (X) of probability measures supported on X quadratic module Q(X) = σ 0 + ∑ j σ j g j , with σ j SOS Infinite-dimensional linear programs (LP)

(Primal) (Dual) inf X f dµ = sup λ s.t. µ ∈ M + (X) s.t. λ ∈ R f -λ ∈ Q(X)
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The Moment-SOS Hierarchy for POP NP-hard NON CONVEX Problem f min = inf x∈X f (x)

Pseudo-moment sequences y up to order r Truncated quadratic module Q(X) r

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r-r j (g j y) ≽ 0 s.t. λ ∈ R y 0 = 1 f -λ ∈ Q(X) r
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The Moment-SOS Hierarchy for POP NP-hard NON CONVEX Problem f min = inf x∈X f (x)

Pseudo-moment sequences y up to order r Truncated quadratic module Q(X) r

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r-r j (g j y) ≽ 0 s.t. λ ∈ R y 0 = 1 f -λ ∈ Q(X) r
Primal-dual "SPARSE" variants? 

I 2 Q G ≽ 0 with nonzero entries corresponding to edges of G =⇒ Q G = P 1 T Q 1 P 1 + P 2 T Q 2 P 2 with Q k ≽ 0 indexed by I k 1 2 3 1 2 2 3
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Theorem [Griewank Toint '84,Agler et al. '88] Chordal graph G with n vertices & maximal cliques

I 1 , I 2 Q G ≽ 0 with nonzero entries corresponding to edges of G =⇒ Q G = P 1 T Q 1 P 1 + P 2 T Q 2 P 2 with Q k ≽ 0 indexed by I k 1 2 3 1 2 2 3
What are P 1 , P 2 ?
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Theorem [Griewank Toint '84,Agler et al. '88] Chordal graph G with n vertices & maximal cliques

I 1 , I 2 Q G ≽ 0 with nonzero entries corresponding to edges of G =⇒ Q G = P 1 T Q 1 P 1 + P 2 T Q 2 P 2 with Q k ≽ 0 indexed by I k 1 2 3 1 2 2 3 What are P 1 , P 2 ? P 1 ∈ R |I 1 |×n P(i, j) = 1 if I(i) = j 0 otherwise
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Theorem [Griewank Toint '84,Agler et al. '88] Chordal graph G with n vertices & maximal cliques 

I 1 , I 2 Q G ≽ 0 with nonzero entries corresponding to edges of G =⇒ Q G = P 1 T Q 1 P 1 + P 2 T Q 2 P 2 with Q k ≽ 0 indexed by I k 1 2 3 1 2 2 3 What are P 1 , P 2 ? P 1 ∈ R |I 1 |×n P(i, j) = 1 if I(i) = j 0 otherwise I 1 = (1, 2) ⇒ P 1 = 1 0 0 0 1 0
=⇒ Q G = P 1 T Q 1 P 1 + P 2 T Q 2 P 2 with Q k ≽ 0 indexed by I k 1 2 3 1 2 2 3 What are P 1 , P 2 ? P 1 ∈ R |I 1 |×n P(i, j) = 1 if I(i) = j 0 otherwise I 1 = (1, 2) ⇒ P 1 = 1 0 0 0 1 0 I 2 = (2, 3) ⇒ P 2 = 0 1 0 0 0 1
=⇒ Q G = P 1 T Q 1 P 1 + P 2 T Q 2 P 2 with Q k ≽ 0 indexed by I k 1 2 3 1 2 2 3 What are P 1 , P 2 ? P 1 ∈ R |I 1 |×n P(i, j) = 1 if I(i) = j 0 otherwise I 1 = (1, 2) ⇒ P 1 = 1 0 0 0 1 0 I 2 = (2, 3) ⇒ P 2 = 0 1 0 0 0 1 P 1 T Q 1 P 1 inflates a |I 1 | × |I 1 | matrix Q 1 into a sparse n × n matrix Victor Magron
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Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

f (x) = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 )
Correlative sparsity pattern (csp) graph G Vertices = {1, . . . , n} (i, j) ∈ Edges ⇐⇒ x i x j appears in f 
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f (x) = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 )
Correlative sparsity pattern (csp) graph G Vertices = {1, . . . , n} (i, j) ∈ Edges ⇐⇒ x i x j appears in f Similar construction with constraints X = {x ∈ R n : g j (x) ⩾ 0}

Victor Magron
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f (x) = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 )
Chordal graph after adding edge (3, 5) 

Victor Magron
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f (x) = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 )
Chordal graph after adding edge (3, 5) Convergence of the Moment-SOS hierarchy is based on:

Theorem [Putinar '93] Positivstellensatz If X contains a ball constraint N -∑ i x 2 i ⩾ 0 then f > 0 on X = {x : g j (x) ⩾ 0} =⇒ f = σ 0 + ∑ j σ j g j with σ j SOS Victor Magron
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Convergence of the Moment-SOS hierarchy is based on:

Theorem [Putinar '93] Positivstellensatz If X contains a ball constraint N -∑ i x 2 i ⩾ 0 then f > 0 on X = {x : g j (x) ⩾ 0} =⇒ f = σ 0 + ∑ j σ j g j with σ j SOS Theorem: Sparse Putinar's representation [Lasserre '06] f = ∑ k f k , f k depends on x(I k ) f > 0 on X Each g j depends on some I k RIP holds for (I k ) =⇒ ball constraints for each x(I k ) f = ∑ k (σ 0k + ∑ j∈J k σ j g j )
SOS σ 0k "sees" vars in I k σ j "sees" vars from g j
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Let X = {x : g j (x) ⩾ 0} be compact and f = ∑ k f k , with f k depends on x(I k ), and f > 0 on X Let X = {x : g j (x) ⩾ 0} be compact and f = ∑ k f k , with f k depends on x(I k ), and f > 0 on X For each subset I k , submatrix of M r (y) corresponding of rows & columns indexed by monomials in x(I k )

X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } =
X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } =
f (x) = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 ) I 1 = {1, 4} =⇒ monomials in x 1 , x 4 M 1 (y, I 1 ) =      1
| y 1,0,0,0,0,0 y 0,0,0,1,0,0 --y 1,0,0,0,0,0 | y 2,0,0,0,0,0 y 1,0,0,1,0,0 y 0,0,0,1,0,0 | y 1,0,0,1,0,0 y 0,0,0,2,0,0

     Victor Magron
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For each subset I k , submatrix of M r (y) corresponding of rows & columns indexed by monomials in x(I k )

f (x) = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 ) I 1 = {1, 4} =⇒ monomials in x 1 , x 4 M 1 (y, I 1 ) =      1
| y 1,0,0,0,0,0 y 0,0,0,1,0,0 --y 1,0,0,0,0,0 | y 2,0,0,0,0,0 y 1,0,0,1,0,0 y 0,0,0,1,0,0 | y 1,0,0,1,0,0 y 0,0,0,2,0,0      same for each localizing matrix M r (g j y)
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Sparse primal-dual Moment-SOS hierarchy

f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0} Dense Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y) ≽ 0 s.t. λ ∈ R M r-r j (g j y) ≽ 0 f -λ = σ 0 + ∑ j σ j g j y 0 = 1 Victor Magron
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f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0} f = ∑ k f k , with f k depends on x(I k ) Each g j depends on some I k Sparse Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y, I k ) ≽ 0 s.t. λ ∈ R M r-r j (g j y, I k ) ≽ 0 , j ∈ J k , ∀k f -λ = ∑ k (σ k0 + ∑ j∈J k σ j g j ) y 0 = 1 Victor Magron
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f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0} f = ∑ k f k , with f k depends on x(I k ) Each g j depends on some I k Sparse Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y, I k ) ≽ 0 s.t. λ ∈ R M r-r j (g j y, I k ) ≽ 0 , j ∈ J k , ∀k f -λ = ∑ k (σ k0 + ∑ j∈J k σ j g j ) y 0 = 1
RIP holds for (I k ) + ball constraints for each x(I k ) =⇒ Primal and dual optimal value converge to f min by sparse Putinar

f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0, j ⩽ m} τ = max{|I 1 |, . . . , |I p |} Sparse Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y, I k ) ≽ 0 s.t. λ ∈ R M r-r j (g j y, I k ) ≽ 0 , j ∈ J k , ∀k f -λ = ∑ k (σ k0 + ∑ j∈J k σ j g j ) y 0 = 1 Victor Magron
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f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0, j ⩽ m} τ = max{|I 1 |, . . . , |I p |} Sparse Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y, I k ) ≽ 0 s.t. λ ∈ R M r-r j (g j y, I k ) ≽ 0 , j ∈ J k , ∀k f -λ = ∑ k (σ k0 + ∑ j∈J k σ j g j ) y 0 = 1 (m + p) SOS in at most τ vars of degree ⩽ 2r
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f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0, j ⩽ m} τ = max{|I 1 |, . . . , |I p |} Sparse Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y, I k ) ≽ 0 s.t. λ ∈ R M r-r j (g j y, I k ) ≽ 0 , j ∈ J k , ∀k f -λ = ∑ k (σ k0 + ∑ j∈J k σ j g j ) y 0 = 1 (m + p) SOS in at most τ vars of degree ⩽ 2r (m + p) O (r τ ) SDP vars f min = inf x∈X f (x) with X = {x : g j (x) ⩾ 0, j ⩽ m} τ = max{|I 1 |, . . . , |I p |} Sparse Moment-SOS hierarchy (Moment) (SOS) inf ∑ α f α y α = sup λ s.t. M r (y, I k ) ≽ 0 s.t. λ ∈ R M r-r j (g j y, I k ) ≽ 0 , j ∈ J k , ∀k f -λ = ∑ k (σ k0 + ∑ j∈J k σ j g j ) y 0 = 1 (m + p) SOS in at most τ vars of degree ⩽ 2r (m + p) O (r τ ) SDP vars vs (m + 1) O (r n ) in the dense SDP
In the dense setting:

f min = inf µ X f dµ s.t. µ ∈ M + (X)
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f min = inf µ X f dµ s.t. µ ∈ M + (X)
In the sparse setting: In the dense setting:

X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } =
f min = inf µ X f dµ s.t. µ ∈ M + (X)
In the sparse setting:

X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } = the
subspace of X which only "sees" variables indexed by I k X kj = only "sees" variables indexed by I k ∩ I j

Victor Magron
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f min = inf µ X f dµ s.t. µ ∈ M + (X)
In the sparse setting: In the dense setting:

X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } =
f min = inf µ X f dµ s.t. µ ∈ M + (X)
In the sparse setting:

X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } = the
subspace of X which only "sees" variables indexed by I k X kj = only "sees" variables indexed by I k ∩ I j one measure µ k for each I k → marginals π kj µ k on M + (X kj )

Sparse moment SDPs relax the sparse LP over measures:

f cs = inf µ k ∑ k X k f k dµ k s.t. π jk µ j = π kj µ k , µ k ∈ M + (X k ) Victor Magron
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Theorem [Lasserre '06] RIP holds for

(I k ) =⇒ f min = f cs = inf µ k ∑ k X k f k dµ k s.t. π jk µ j = π kj µ k µ k ∈ M + (X k )
Victor Magron Exploiting sparsity in polynomial optimization 21 / 80

RIP holds for (I k ) =⇒ f min = f cs = inf µ k ∑ k X k f k dµ k s.t. π jk µ j = π kj µ k µ k ∈ M + (X k ) Proof: there exists µ ∈ M + (X) with marginal µ k on X k M + (X) M + (X 1 ) M + (X 2 ) M + (X 12 ) π 1 π 2 π 21 π 12
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Theorem: dense extraction [Lasserre & Henrion '05] Assume that the moment SDP has an optimal solution y with cost f r and rank M r ′ (y) = rank M r ′ -r min (y) for some r ′ ⩽ r .

Then f r = f min and the LP over measures has an optimal solution µ ∈ M + (X) supported on t = rank M r ′ (y) points of X.

Victor Magron
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Theorem: dense extraction [Lasserre & Henrion '05] Assume that the moment SDP has an optimal solution y with cost f r and rank M r ′ (y) = rank M r ′ -r min (y) for some r ′ ⩽ r .

Then f r = f min and the LP over measures has an optimal solution µ ∈ M + (X) supported on t = rank M r ′ (y) points of X.

Extraction possible with the Gloptipoly software

Victor Magron

Exploiting sparsity in polynomial optimization 23 / 80 a k = max j∈J k r j = max half degree of g j depending on I k .

Theorem: sparse extraction [Lasserre '06] Assume that the sparse moment SDP has an optimal solution y with cost f r cs and

rank M r (y, I k ) = rank M r-a k (y, I k ) rank M r (y, I k ∩ I j ) = 1
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Extracting minimizers: the sparse case a k = max j∈J k r j = max half degree of g j depending on I k .

Theorem: sparse extraction [Lasserre '06] Assume that the sparse moment SDP has an optimal solution y with cost f r cs and

rank M r (y, I k ) = rank M r-a k (y, I k ) rank M r (y, I k ∩ I j ) = 1 Then f r cs = f min = f cs & sparse measure LP has optimal solution µ k ∈ M + (X k ) supported on t k = rank M r (y, I k ) points of X k .

Victor Magron
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Theorem: sparse extraction [Lasserre '06] Assume that the sparse moment SDP has an optimal solution y with cost f r cs and

rank M r (y, I k ) = rank M r-a k (y, I k ) rank M r (y, I k ∩ I j ) = 1 Then f r cs = f min = f cs & sparse measure LP has optimal solution µ k ∈ M + (X k ) supported on t k = rank M r (y, I k ) points of X k . RIP is not required! Extract x(k) from M r (y, I k ) =⇒ minimizer x with (x i ) i∈I k = x(k) Victor Magron
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f min = inf x∈X ∑ i p i (x) q i (x)
, q i > 0 on X , p i , q i depends only on I i

Victor Magron
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Application to rational functions

f min = inf x∈X ∑ i p i (x) q i (x)
, q i > 0 on X , p i , q i depends only on I i

Theorem: dense measure LP [Bugarin et al. '16]

f min = inf µ i ∈M + (X) ∑ i X p i dµ i s.t. X x α q i dµ i = X x α q 1 dµ 1 , α ∈ N n X q 1 dµ 1 = 1 Victor Magron
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Application to rational functions

f min = inf x∈X ∑ i p i (x) q i (x)
, q i > 0 on X , p i , q i depends only on I i

Theorem: dense measure LP [Bugarin et al. '16] 

f min = inf µ i ∈M + (X) ∑ i X p i dµ i s.t. X x α q i dµ i = X x α q 1 dµ 1 , α ∈ N n X q 1 dµ 1 = 1 Theorem: sparse measure LP [Bugarin et al. '16] f min = f cs = inf µ i ∈M + (X i ) ∑ i X i p i dµ i s.t. π ij (q i dµ i ) = π ji (q j dµ j ) X i q i dµ i = 1 Victor Magron Exploiting sparsity in polynomial optimization Exact f (x) = x 1 x 2 + x 3 x 4 Floating-point f (x, e) = [x 1 x 2 (1 + e 1 ) + x 3 x 4 (1 + e 2 )](1 + e 3 ) x ∈ X , | e i |⩽ 2 -δ δ = 24 (single) or 53 (double) 1: Error f (x) -f (x, e) = ℓ
(x) = x 1 x 2 + x 3 x 4 Floating-point f (x, e) = [x 1 x 2 (1 + e 1 ) + x 3 x 4 (1 + e 2 )](1 + e 3 ) x ∈ X , | e i |⩽ 2 -δ δ = 24 ( 
f = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 )
x ∈ [4.00, 

f = x 2 x 5 + x 3 x 6 -x 2 x 3 -x 5 x 6 + x 1 (-x 1 + x 2 + x 3 -x 4 + x 5 + x 6 )
x ∈ [4.00, 

f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -b 1 -2b 1 -b 2 with a 1 a 2 ̸ = a 2 a 1 , involution (a 1 b 3 ) ⋆ = b 3 a 1 Constraints X = {(a, b) : a 2 i = a i , b 2 j = b j , a i b j = b j a i } MINIMAL EIGENVALUE OPTIMIZATION λ min = inf {⟨ f (a, b)v, v⟩ : (a, b) ∈ X, ∥v∥ = 1} = sup λ s.t. f (a, b) -λI ≽ 0 , ∀(a, b) ∈ X Victor Magron
Exploiting sparsity in polynomial optimization 29 / 80

Extension to noncommutative optimization

Ball constraint N -∑ i x 2 i ≽ 0 in X Theorem: NC Putinar's representation [Helton & McCullough '02] f ≻ 0 on X =⇒ f = ∑ i s ⋆ i s i + ∑ j ∑ i t ⋆ ji g j t ji with s i , t ji ∈ R⟨x⟩ Victor Magron
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Extension to noncommutative optimization

Ball constraint N -∑ i x 2 i ≽ 0 in X Theorem: NC Putinar's representation [Helton & McCullough '02] f ≻ 0 on X =⇒ f = ∑ i s ⋆ i s i + ∑ j ∑ i t ⋆ ji g j t ji with s i , t ji ∈ R⟨x⟩
NC variant of Lasserre's Hierarchy for λ min :

replace " f -λI ≽ 0 on X" by f -λI = ∑ i s ⋆ i s i + ∑ j ∑ i t ⋆ ji g j t ji with s i , t ji of bounded degrees = SDP

Victor Magron
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Self-adjoint noncommutative (NC) variables x = (x 1 , . . . , 

x n ) Theorem [Helton & McCullough '02] f ≽ 0 ⇔ f SOS (
f = ∑ k f k , f k depends on x(I k ) f > 0 on {x : g j (x) ⩾ 0} chordal graph with cliques I k =⇒ ball constraints for each x(I k ) f = ∑ k,i (s ⋆ ki s ki + ∑ j∈J k t ji ⋆ g j t ji )
s ki "sees" vars in I k t ji "sees" vars from g j

Victor Magron
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f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b :

a 2 i = a i b 2 i = b i a i b j = b j a i } Victor Magron
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f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b :

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } Victor Magron
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f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b :

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } level sparse dense [Pál & Vértesi '18] 2 0.2550008 0.2509397
Victor Magron Exploiting sparsity in polynomial optimization

f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b : 

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } level sparse dense [Pál & Vértesi '
f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b : 

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } level sparse dense [Pál & Vértesi '
f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b : 

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } level sparse dense [Pál & Vértesi '
f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b : 

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } level sparse dense [Pál & Vértesi '
f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2 -b 3 ) + a 3 (b 1 -b 2 ) -a 1 -2b 1 -b 2
Maximal violation levels → upper bounds on λ max of f on {a, b : 

a 2 i = a i b 2 i = b i a i b j = b j a i } I k → {a k , b 1 , b 2 , b 3 } level sparse dense [Pál & Vértesi '
=⇒ f = σ ∥x∥ 2r pd form f =⇒ f = σ ∥x∥ 2r 2 with σ SOS, r ∈ N Sparse f ∑ k f k , with f k only depends on I k RUNNING INTERSECTION PROPERTY (RIP) ∀k I k ∩ j<k I j Îk ⊆ I s k for some s k < k Victor Magron
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pd form f =⇒ f = σ ∥x∥ 2r 2 with σ SOS, r ∈ N Sparse f ∑ k f k , with f k only depends on I k RUNNING INTERSECTION PROPERTY (RIP) ∀k I k ∩ j<k I j Îk ⊆ I s k for some s k < k Theorem: sparse Reznick [Mai Lasserre Magron '20] RIP =⇒ f = ∑ k σ k H k r with σ k SOS only depends on I k Uniform H k involve products ∥x(I)∥ 2 2 for I ∈ {I k , Îk , Îi : s i = k}
Term sparsity via Newton polytope

f = 4x 4 1 x 6 2 + x 2 1 -x 1 x 2 2 + x 2 2 spt( f ) = {(4, 6), (2, 0), (1, 2), (0, 2)} Newton polytope B = conv (spt( f )) Squares in SOS decomposition ⊆ B 2 ∩ N n [Reznick '78] f = x 1 x 2 x 1 x 2 x 1 x 2 2 x 2 1 x 3 2 Q ≽0        x 1 x 2 x 1 x 2 x 1 x 2 2 x 2 1 x 3 2        f = x 2 1 -2x 1 x 2 + 3x 2 2 -2x 2 1 x 2 + 2x 2 1 x 2 2 -2x 2 x 3 + 6x 2 3 + 18x 2 2 x 3 -54x 2 x 2 3 + 142x 2 2 x 2 3 [Reznick '78] → f = 1 x 1 x 2 x 3 x 1 x 2 x 2 x 3 Q ≽0          1 x 1 x 2 x 3 x 1 x 2 x 2 x 3          ⇝ 6×7 2 = 21 "unknown" entries in Q f = x 2 1 -2x 1 x 2 + 3x 2 2 -2x 2 1 x 2 + 2x 2 1 x 2 2 -2x 2 x 3 + 6x 2 3 + 18x 2 2 x 3 -54x 2 x 2 3 + 142x 2 2 x 2 3 [Reznick '78] → f = 1 x 1 x 2 x 3 x 1 x 2 x 2 x 3 Q ≽0          1 x 1 x 2 x 3 x 1 x 2 x 2 x 3          ⇝ 6×7 2 = 21 "unknown" entries in Q Term sparsity pattern graph G x 1 x 2 x 3 x 1 x 2 1 x 2 x 3
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f = x 2 1 -2x 1 x 2 + 3x 2 2 -2x 2 1 x 2 + 2x 2 1 x 2 2 -2x 2 x 3 + 6x 2 3 + 18x 2 2 x 3 -54x 2 x 2 3 + 142x 2 2 x 2 3 [Reznick '78] → f = 1 x 1 x 2 x 3 x 1 x 2 x 2 x 3 Q ≽0          1 x 1 x 2 x 3 x 1 x 2 x 2 x 3          ⇝ 6×7 2 = 21 "unknown" entries in Q Term sparsity pattern graph G + chordal extension G ′ x 1 x 2 x 3 x 1 x 2 1 x 2 x 3
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f = x 2 1 -2x 1 x 2 + 3x 2 2 -2x 2 1 x 2 + 2x 2 1 x 2 2 -2x 2 x 3 + 6x 2 3 + 18x 2 2 x 3 -54x 2 x 2 3 + 142x 2 2 x 2 3 [Reznick '78] → f = 1 x 1 x 2 x 3 x 1 x 2 x 2 x 3 Q ≽0          x 1 x 2 x 3 x 1 x 2 x 2 x 3          ⇝ 6×7 2 = 21 "unknown" entries in Q Term sparsity pattern graph G + chordal extension G ′ x 1 x 2 x 3 x 1 x 2 1 x 2 x 3 Replace Q by Q G ′ with
Nodes V = monomials of degree ⩽ r Edges E with {α, β} ∈ E ⇔ α + β ∈ supp f supp g j |α|⩽r 2α
An example with r = 2

f = x 4 1 + x 1 x 2 2 + x 2 x 3 + x 2 3 x 2 4 g 1 = 1 -x 2 1 -x 2 2 -x 2 3 g 2 = 1 -x 3 x 4 1 x 2 1 x 2 2 x 2 3 x 2 4 x 1 x 2 x 3 x 4 x 1 x 2 x 1 x 3 x 1 x 4 x 2 x 3 x 2 x 4 x 3 x 4
Victor Magron Exploiting sparsity in polynomial optimization

Term sparsity: support extension

α ′ + β ′ = α + β and (α, β) ∈ E ⇒ (α ′ , β ′ ) ∈ E 1 x 1 x 2 x 3 x 2 x 3 x 1 x 3 x 1 x 2
Victor Magron Exploiting sparsity in polynomial optimization 39 / 80 

C i -→ M C i (y)
In the moment relaxation,

M r (y) ≽ 0 -→ M C i (y) ≽ 0
Similarly for the localizing matrices M r-r j (g j y)

Each constraint G j ⇝ G (s) j ⇝ cliques C (s) j,i
Victor Magron Exploiting sparsity in polynomial optimization 41 / 80

Term sparsity: primal moment relaxations A two-level hierarchy of lower bounds

Let C (s) j,i be the maximal cliques of G (s) j . For each s ≥ 1 f r,s ts = inf ∑ α f α y α s.t. M C (s) 0,i (y) 
f r min ,1 ts ≤ f r min ,2 ts ≤ • • • ≤ f r min ≥ ≥ ≥ f r min +1,1 ts ≤ f r min +1,2 ts ≤ • • • ≤ f r min +1 ≥ ≥ ≥ . . . . . . . . . . . . ≥ ≥ ≥ f r,1 ts ≤ f r,2 ts ≤ • • • ≤ f r ≥ ≥ ≥ . . . . . . . . . . . . x 1 x 2 x 3 x 1 x 2 1 x 2 x 3
Victor Magron Exploiting sparsity in polynomial optimization

x 1 x 2 x 3 x 1 x 2 1 x 2 x 3 x 1 x 2 x 3 x 1 x 2 1 x 2 x 3
Victor Magron Exploiting sparsity in polynomial optimization

Theorem [Lasserre Magron Wang '21] Fixing a sparse order s, the sequence ( f r,s ts ) r≥r min is monotonically non- decreasing.

Fixing a sparse order s, the sequence ( f r,s ts ) r≥r min is monotonically non- decreasing.

Fixing a relaxation order r, the sequence ( f r,s ts ) s≥1 ↑ f r in finitely many steps if the maximal chordal extension is used.

Theorem [Lasserre Magron '21] Fixing a sparse order s, the sequence ( f r,s ts ) r≥r min is monotonically non- decreasing.

Fixing a relaxation order r, the sequence ( f r,s ts ) s≥1 ↑ f r in finitely many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension and monomial basis are used.

Victor Magron

Exploiting sparsity in polynomial optimization

Fixing a sparse order s, the sequence ( f r,s ts ) r≥r min is monotonically non- decreasing.

Fixing a relaxation order r, the sequence ( f r,s ts ) s≥1 ↑ f r in finitely many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension and monomial basis are used.

f = 1 + x 2 1 x 4 2 + x 4 1 x 2 2 + x 4 1 x 4 2 -x 1 x 2 2 -3x 2 1 x 2 2 Newton polytope ⇝ B = (1 x 1 x 2 x 1 x 2 2 x 2 1 x 2 x 2 1 x 2 2 )
Fixing a sparse order s, the sequence ( f r,s ts ) r≥r min is monotonically non- decreasing.

Fixing a relaxation order r, the sequence ( f r,s ts ) s≥1 ↑ f r in finitely many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the sign symmetries if the maximal chordal extension and monomial basis are used.

f = 1 + x 2 1 x 4 2 + x 4 1 x 2 2 + x 4 1 x 4 2 -x 1 x 2 2 -3x 2 1 x 2 2 Newton polytope ⇝ B = (1 x 1 x 2 x 1 x 2 2 x 2 1 x 2 x 2 1 x 2 2 ) x 2 → -x 2 Sign-symmetries blocks (1 x 1 x 2 2 x 2 1 x 2 2 ) (x 1 x 2 x 2 1 x 2 ) TSSOS blocks (1 x 1 x 2 2 x 2 1 x 2 2 ) (x 1 x 2 ) (x 2 1 x 2 )
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f = 1 + ∑ 6 i=1 x 4 i + x 1 x 2 x 3 + x 3 x 4 x 5 + x 3 x 4 x 6 + x 3 x 5 x 6 + x 4 x 5 x 6 csp graph 1 2 3 4 5 6
Victor Magron Exploiting sparsity in polynomial optimization 49 / 80

f = 1 + ∑ 6 i=1 x 4 i + x 1 x 2 x 3 + x 3 x 4 x 5 + x 3 x 4 x 6 + x 3 x 5 x 6 + x 4 x 5 x 6
tsp graph for the first clique

1 x 2 3 x 2 2 x 2 1 x 1 x 2 x 3 x 2 x 3 x 1 x 3 x 1 x 2 Victor Magron
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f = 1 + ∑ 6 i=1 x 4 i + x 1 x 2 x 3 + x 3 x 4 x 5 + x 3 x 4 x 6 + x 3 x 5 x 6 + x 4 x 5 x 6
tsp graph for the second clique

1 x 2 6 x 2 5
x 2 4

x 2 3

x 3 x 5 x 6 x 4 x 6

x 4 x 5

x 3 x 6

x 3 x 5 x 3 x 4

x 6

x 4

x 5
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f = 1 + ∑ 6 i=1 x 4 i + x 1 x 2 x 3 + x 3 x 4 x 5 + x 3 x 4 x 6 + x 3 x 5 x 6 + x 4 x 5 x 6
tsp graph without correlative sparsity

1 x 2 1 x 2 2 x 2 3 x 2 4 x 2 5 x 2 6 x 1 x 2 x 3 x 2 x 3 x 1 x 3 x 1 x 2 x 3 x 5 x 6 x 4 x 6 x 4 x 5 x 3 x 6
x 3 x 5 x 3 x 4

x 6

x 4

x 5
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Optimal Powerflow n ≃ 10 3 [Josz et al. '18] 

                           inf V i ,S g s ,S ij ∑ s∈G (c 2s (ℜ(S g s )) 2 + c 1s ℜ(S g s ) + c 0s ) s.t. ∠V ref = 0, S gl s ≤ S g s ≤ S gu s ∀s ∈ G, υ l i ≤ |V i | ≤ υ u i ∀i ∈ N ∑ s∈G i S g s -S d i -Y s i |V i | 2 = ∑ (i,j)∈E i ∪E R i S ij , ∀i ∈ N S ij = (Y * ij -i b c ij 2 ) |V i | 2 |T ij | 2 -Y * ij V i V j * T ij , S ji = • • • |S ij | ≤ s u ij , θ ∆l ij ≤ ∠(V i V j * ) ≤ θ ∆u ij , ∀(i, j) ∈ E
CLASSICAL WORLD ψ * (A 1 ⊗ B 1 + A 1 ⊗ B 2 + A 2 ⊗ B 1 -A 2 ⊗ B 2 )ψ ⩽ 2 for separable states ψ ∈ C k ⊗ C k and matrices A j , B j satisfying A * j = A j , A 2 j = I, B * j = B j , B 2 j = I CLASSICAL WORLD ψ * (A 1 ⊗ B 1 + A 1 ⊗ B 2 + A 2 ⊗ B 1 -A 2 ⊗ B 2 )ψ ⩽ 2 for separable states ψ ∈ C k ⊗ C k and matrices A j , B j satisfying A * j = A j , A 2 j = I, B * j = B j , B 2 j = I TSIRELSON'S BOUND: 2 → 2 √ 2 for maximally entangled states ψ * (A ⊗ B)ψ = tr(AB)
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CLASSICAL WORLD ψ * (A 1 ⊗ B 1 + A 1 ⊗ B 2 + A 2 ⊗ B 1 -A 2 ⊗ B 2 )ψ ⩽ 2 for separable states ψ ∈ C k ⊗ C k and matrices A j , B j satisfying A * j = A j , A 2 j = I, B * j = B j , B 2 j = I TSIRELSON'S BOUND: 2 → 2 √ 2 for maximally entangled states ψ * (A ⊗ B)ψ = tr(AB) 2 √ 2 = tr max {a 1 b 1 + a 1 b 2 + a 2 b 1 -a 2 b 2 : a 2 j = b 2 j = 1}
Victor Magron Exploiting sparsity in polynomial optimization 57 / 80

cov ψ (A, B) = ψ * (A ⊗ B)ψ -ψ * (A ⊗ I)ψ • ψ * (I ⊗ B)ψ cov ψ (A 1 , B 1 ) + cov ψ (A 1 , B 2 ) + cov ψ (A 1 , B 3 ) + cov ψ (A 2 , B 1 ) + cov ψ (A 2 , B 2 ) -cov ψ (A 2 , B 3 ) + cov ψ (A 3 , B 1 ) -cov ψ (A 3 , B 2 ) ⩽ 9 2
for separable states but . . .

Victor Magron
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cov ψ (A, B) = ψ * (A ⊗ B)ψ -ψ * (A ⊗ I)ψ • ψ * (I ⊗ B)ψ cov ψ (A 1 , B 1 ) + cov ψ (A 1 , B 2 ) + cov ψ (A 1 , B 3 ) + cov ψ (A 2 , B 1 ) + cov ψ (A 2 , B 2 ) -cov ψ (A 2 , B 3 ) + cov ψ (A 3 , B 1 ) -cov ψ (A 3 , B 2 ) ⩽ 9 2
for separable states but . . . 5 for one maximally entangled state

Victor Magron
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cov ψ (A, B) = ψ * (A ⊗ B)ψ -ψ * (A ⊗ I)ψ • ψ * (I ⊗ B)ψ cov ψ (A 1 , B 1 ) + cov ψ (A 1 , B 2 ) + cov ψ (A 1 , B 3 ) + cov ψ (A 2 , B 1 ) + cov ψ (A 2 , B 2 ) -cov ψ (A 2 , B 3 ) + cov ψ (A 3 , B 1 ) -cov ψ (A 3 , B 2 ) ⩽ 9 2
for separable states but . . . 5 for one maximally entangled state 2nd dense SDP relaxation of the corresponding trace problem outputs 5

Lyapunov function

f = N ∑ i=1 a i (x 2 i + x 4 i ) - N ∑ i,k=1 b ik 2 i x 2 k a i ∈ [1, 2] b ik ∈ [ 0.5 N , 1.5 N ] ⇝ ( N+2 2 )(( N+2 2 ) + 1)/2 "unknown" entries in Q = 231 for N = 5 tsp graph G 1 x 2 1 x 2 2 x 2 3 x 2 4 x 2 5 x 1 x 2 x 5 • • • x 1 x 2 x 1 x 3 x 4 x 5 • • • Victor Magron
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Lyapunov function

= N ∑ i=1 a i (x 2 i + x 4 i ) - N ∑ i,k=1 b ik x 2 i x 2 k a i [1, 2] b ik ∈ [ 0.5 N , 1.5 N ] ⇝ ( N+2 2 )(( N+2 2 ) + 1)/2 "unknown" entries in Q = 231 for N = 5 tsp graph G 1 x 2 1 x 2 2 x 2 3 x 2 4 x 2 5 x 1 x 2 x 5 • • • x 1 x 2 x 1 x 3 x 4 x 5 • • • ⇝ (N + 1) 2 "unknown" entries in Q G = 36 for N = 5 Proof that f ⩾ 0 for N = 80 in ∼ 10 seconds! Victor Magron sparsity in polynomial optimization Duffing oscillator Hamiltonian V = N ∑ i=1 a i ( x 2 2 - x 4 i 4 ) + 1 8 N ∑ i,k=1 b ik (x i -x k ) 4 On which domain V > 0? f = V - N ∑ i=1 λ i >0 x 2 i (g -x 2 i ) ⩾ 0 =⇒ V > 0 when x 2 i < g tsp graph G x 2 j x 2 k x 2 i x i x j x i x k x j x k x 1 x 2 x N • • • Duffing oscillator Hamiltonian V = N ∑ i=1 a i ( x 2 i 2 - x 4 i 4 ) + 1 8 N ∑ i,k=1 b ik (x i -x k ) 4 On which domain V > 0? f = V - N ∑ i=1 λ i >0 x 2 i (g -x 2 i ) ⩾ 0 =⇒ V > 0 when x 2 i < g tsp graph G x 2 j x 2 k x 2 i x i x j x i x k x j x k x 1 x 2 x N • • • ⇝ N(N+1) 2 + 6( N 2 ) + N "unknown" entries in Q G = 80 for N = 5 Proof that f ⩾ 0 for N = 50 in ∼ 1 second! Victor Magron
Exploiting sparsity in polynomial optimization

Given A = {A 1 , . . . , A m } ⊆ R n×n , the JSR is ρ(A) := lim k→∞ max σ∈{1,...,m} k ||A σ 1 A σ 2 • • • A σ k || 1 k
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Given A = {A 1 , . . . , A m } ⊆ R n×n , the JSR is ρ(A) := lim k→∞ max σ∈{1,...,m} k ||A σ 1 A σ 2 • • • A σ k || 1 k
Tons of applications: stability of switched linear systems continuity of wavelet functions trackability of graphs Given A = {A 1 , . . . , A m } ⊆ R n×n , the JSR is

ρ(A) := lim k→∞ max σ∈{1,...,m} k ||A σ 1 A σ 2 • • • A σ k || 1 k
Tons of applications: stability of switched linear systems continuity of wavelet functions trackability of graphs Given A = {A 1 , . . . , A m } ⊆ R n×n , if a positive definite form f of degree 2r satisfies

f (A i x) ⩽ γ 2r f (x) ∀i, x Then ρ(A) ⩽ γ ρ(A) ⩽ ρ r (A) = inf f ∈R[x] 2r ,γ γ s.t. f (x) -||x|| 2r 2 SOS γ 2r f (x) -f (A i x) SOS Victor Magron
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Given A = {A 1 , . . . , A m } ⊆ R n×n , if a positive definite form f of degree 2r satisfies

f (A i x) ⩽ γ 2r f (x) ∀i, x Then ρ(A) ⩽ γ ρ(A) ⩽ ρ r (A) = inf f ∈R[x] 2r ,γ γ s.t. f (x) -||x|| 2r 2 SOS γ 2r f (x) -f (A i x) SOS Bisection on γ + SDP Victor Magron
Exploiting sparsity in polynomial optimization 62 / 80

At fixed r, replace f by a "term sparse" f f 0 = ∑ n j=1 c j x 2r j with support A (0) Recursively, f s-1 = ∑ α∈A (s-1) c α x α and

A (s) = A (s-1) ∪ i supp( f s-1 (A i x)) A (s) i = A (s) ∪ supp( f s (A i x)) Victor Magron
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f 0 = ∑ n j=1 c j x 2r j with support A (0) Recursively, f s-1 = ∑ α∈A (s-1) c α x α and A (s) = A (s-1) ∪ i supp( f s-1 (A i x)) A (s) i = A (s) ∪ supp( f s (A i x)) Theorem: Sparse JSR [Maggio Magron Wang '21] ρ(A) ⩽ ρ r (A) ⩽ ρ r,s (A) = inf f ∈R[A (s) ],γ γ s.t. f (x) -||x|| 2r 2 SOS(A (s) ) γ 2r f (x) -f (A i x) SOS(A (s) i ) Victor Magron
Exploiting sparsity in polynomial optimization = sup{λ : f (x 1 , x 2 )λ ⩾ 0 whenever x 1 x 2 = 0} = sup{λ : f (x 1 , 0)λ ⩾ 0 , f (0, x 2 )λ ⩾ 0} replace f (x 1 , 0)λ ⩾ 0 by f (x 1 , 0)λ = σ 1 (x 1 ) with SOS σ 1
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= sup{λ : f (x 1 , x 2 )λ ⩾ 0 whenever x 1 x 2 = 0} = sup{λ : f (x 1 , 0)λ ⩾ 0 , f (0, x 2 )λ ⩾ 0} replace f (x 1 , 0)λ ⩾ 0 by f (x 1 , 0)λ = σ 1 (x 1 ) with SOS σ 1

General ideal constraints x i x j = 0 ∀(i, x 1

x 2

x 3

x 4

x 5

x 6
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Support extension

1 x 1 x 2 x 3
x 2 x 3 x 1 x 3 x 1 x 2

Victor Magron Exploiting sparsity in polynomial optimization f = f 1 + f 2 , f k depends on I k , X compact & each g j depends either on I 1 or I 2 . Prove that How big is TSSOS?

f min = inf µ∈M + (X) X f dµ = f cs = inf µ 1 ,µ 2 X 1 f 1 dµ 1 + X 2 f
(1/2)

f = N ∑ i=1 (x 2 i + x 4 i ) - N ∑ i,k=1
x 2 i x 2 k How many entries in the dense & sparse SOS/moment matrices?
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How big is TSSOS?

(1/2)

f = N ∑ i=1 (x 2 i + x 4 i ) - N ∑ i,k=1
x How big is TSSOS?

(2/2)

f = N ∑ i=1 ( x 2 i 2 - x 4 i 4 ) + N ∑ i,k=1 (x i -x k ) 4
How many entries in the dense & sparse SOS/moment matrices?
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How big is TSSOS?

(2/2)

f = N ∑ i=1 ( x 2 i 2 - x 4 i 4 ) + N ∑ i,k=1 (x i -x k ) 4
How many entries in the dense & sparse SOS/moment matrices?

tsp graph G x 2 j x 2 k x 2 i x i x j x i x k x j x k x 1 x 2 x N • • • Victor Magron
Exploiting sparsity in polynomial optimization 78 / 80

FactRIPRIP

  edge between 1 and 3 ⇐⇒ 0 entry in the (1, edge between 1 and 3 ⇐⇒ 0 entry in the (1, edge between 1 and 3 ⇐⇒ 0 entry in the (1, between two nonconsecutive vertices in a cycle chordal graph = all cycles of length ⩾ 4 have at least one chord edge between 1 and 3 ⇐⇒ 0 entry in the (1, between two nonconsecutive vertices in a cycle chordal graph = all cycles of length ⩾ 4 have at least one chord Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges Fact Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges Chordal extension is not unique! Fact Any non-chordal graph can always be extended to a chordal graph, by adding appropriate edges Chordal extension is not unique! '72, Vandenberghe & Andersen '15] The maximal cliques of a chordal graph can be enumerated in linear time in the number of nodes and edges. RIP Theorem for chordal graphs [Blair & Peyton '93] For a chordal graph with maximal cliques I 1 , . . . , I p : (RIP) ∀k < p I k+1 ∩ j⩽k I j ⊆ I i for some i ⩽ k (possibly after reordering) RIP always holds for p = 2 chordal graphs [Blair & Peyton '93] For a chordal graph with maximal cliques I 1 , . . . , I p : (RIP) ∀k < p I k+1 ∩ j⩽k I j ⊆ I i for some i ⩽ k (possibly after reordering) RIP always holds for p = 2 Toint '84, Agler et al. '88] Chordal graph G with n vertices & maximal cliques I 1 ,

  cliques I 1 = {1, 4} I 2 = {1, 2, 3, 5} I 3 = {1, 3, 5, 6} f = f 1 + f 2 + f 3 where f k involves only variables in I kLet us index moment matrices and SOS with the cliques I kVictor MagronExploiting sparsity in polynomial optimization

  the subspace of X which only "sees" variables indexed by I k Lemma [Grimm et al. '07] If RIP holds for (I k ) then f = ∑ k h k , with h k depends on x(I k ), and h k > 0 on X k Prove this lemma by induction on the number of subsets I k Victor Magron Exploiting sparsity in polynomial optimization Let X = {x : g j (x) ⩾ 0} be compact and f = ∑ k f k , with f k depends on x(I k ), and f > 0 on X X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } = the subspace of X which only "sees" variables indexed by I k Lemma [Grimm et al. '07] If RIP holds for (I k ) then f = ∑ k h k , with h k depends on x(I k ), and h k > 0 on X k Prove this lemma by induction on the number of subsets I k Then apply Putinar to each h k Victor Magron Exploiting sparsity in polynomial optimization

  the subspace of X which only "sees" variables indexed by I k

  the subspace of X which only "sees" variables indexed by I k X kj = only "sees" variables indexed by I k ∩ I j one measure µ k for each I k → marginals π kj µ k on M + (X kj )

  single) or 53 (double) 1: Error f (x) -f (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e 2: Bound h(x, e) with interval arithmetic 3: Bound ℓ(x, e) with SPARSE SUMS OF SQUARES I k → {x, e k } =⇒ m r n+1 instead of r n+m SDP vars Victor Magron Exploiting sparsity in polynomial optimization x ∈ [4.00, 6.36] 6 , e ∈ [-ϵ, ϵ] 15 , ϵ = 2 -53 Dense SDP: ( 6+15+4 6+15 ) = 12650 variables ; Out of memory Sparse SDP Real2Float tool: 15( 6+1+4 6+1 ) = 4950 ; 759ϵ Victor Magron Exploiting sparsity in polynomial optimization

2 i x 2 k

 2 How many entries in the dense & sparse SOS/moment matrices?

with h k depends on x(I k ), and h k > 0 on X k

  

		the subspace of X which only	
	"sees" variables indexed by I k	
	Lemma [Grimm et al. '07]	
	If RIP holds for (I k ) then	
	f = ∑ k h k , Victor Magron	Exploiting sparsity in polynomial optimization	15 / 80

  6.36] 6 , e ∈ [-ϵ, ϵ] 15 , ϵ = 2 -53

Dense SDP: ( 6+15+4 6+15 ) = 12650 variables ; Out of memory Sparse SDP Real2Float tool: 15( 6+1+4 6+1 ) = 4950 ; 759ϵ Interval arithmetic: 922ϵ (10 × less CPU) Victor Magron Exploiting sparsity in polynomial optimization

  6.36] 6 , e ∈ [-ϵ, ϵ] 15 , ϵ = 2 -53 [4.00, 6.36] 6 , e ∈ [-ϵ, ϵ] 15 , ϵ = 2 -53

	Dense SDP: ( 6+15+4 6+15 ) = 12650 variables ; Out of memory Sparse SDP Real2Float tool: 15( 6+1+4 6+1 ) = 4950 ; 759ϵ Interval arithmetic: 922ϵ (10 × less CPU) Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU) Exploiting sparsity in polynomial optimization Victor Magron Victor Magron R e a l 2 F l o a t r o s a F P T a y l o r 0 200 800 1,000 759 762 721 CPU Time Exploiting sparsity in polynomial optimization Application to roundoff errors 400 600 Error Bound ( )

x ∈ Dense SDP: ( 6+15+4 6+15 ) = 12650 variables ; Out of memory Sparse SDP Real2Float tool: 15( 6+1+4 6+1 ) = 4950 ; 759ϵ Interval arithmetic: 922ϵ (10 × less CPU) Symbolic Taylor FPTaylor tool: 721ϵ (21 × more CPU) SMT-based rosa tool: 762ϵ (19 × more CPU) Victor Magron Exploiting sparsity in polynomial optimization
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GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction & amalgamation

[Blackadar '78, Voiculescu '85] 

GOOD NEWS: there is an NC analog of the sparse Putinar's Positivstellensatz! Based on GNS construction & amalgamation

[Blackadar '78, Voiculescu '85] 

Theorem: Sparse NC Positivstellensatz

[Klep Magron Povh '21] 

  At step r of the hierarchy, tsp graph G hasNodes V = monomials of degree ⩽ r Edges E with {α, β} ∈ E ⇔ α + β ∈ supp f supp g j

		2α	
	Victor Magron Victor Magron	Exploiting sparsity in polynomial optimization |α|⩽r Exploiting sparsity in polynomial optimization	38 / 80

nonzero entries at edges of G ′ ⇝ 6 + 9 = 15 "unknown" entries in G ′

  At step r of the hierarchy, tsp graph G hasNodes V = monomials of degree ⩽ r Edges E with {α, β} ∈ E ⇔ α + β ∈ supp f supp g j At step r of the hierarchy, tsp graph G has Nodes V = monomials of degree ⩽ r Edges E with {α, β} ∈ E ⇔ α + β ∈ supp f supp g j

		2α	
		|α|⩽r	
	⇝ support extension		
	Victor Magron Victor Magron	Exploiting sparsity in polynomial optimization Exploiting sparsity in polynomial optimization	40 / 80 40 / 80

|α|⩽r 2α ⇝ support extension ⇝ chordal extension G ′

  j) ∈ E SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radii FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR Combine correlative & term sparsity for problems with n = 10 3 SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize polynomials, eigenvalue/trace, joint spectral radii FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR Combine correlative & term sparsity for problems with n = 10 3 Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Comp., 1972 Griewank & Toint. Numerical experiments with partially separable optimization problems. Numerical analysis, 1984 Agler, Helton, McCullough & Rodman. Positive semidefinite matrices with a given sparsity pattern. Linear algebra & its applications, 1988 Blair & Peyton. An introduction to chordal graphs and clique trees. Graph theory & sparse matrix computation, 1993 Vandenberghe & Andersen. Chordal graphs and semidefinite optimization. Foundations & Trends in Optim., 2015

	SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize	
	polynomials, eigenvalue/trace, joint spectral radii polynomials, eigenvalue/trace, joint spectral radii	
	FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR	
	Victor Magron Victor Magron Victor Magron Victor Magron Victor Magron	Exploiting sparsity in polynomial optimization Exploiting sparsity in polynomial optimization Exploiting sparsity in polynomial optimization Exploiting sparsity in polynomial optimization Exploiting sparsity in polynomial optimization	65 / 80 68 / 80 68 / 80 68 / 80 68 / 80

  2 dµ 2 s.t. π 12 µ 1 = π 21 µ 2 µ 1 ∈ M + (X 1 ) , µ 2 ∈ M

	π 1	π 2	
	π 21	π 12	
	Victor Magron	Exploiting sparsity in polynomial optimization	76 / 80

+ (X 2 ) (µ k ) feasible for f cs =⇒ ∃µ ∈ M + (X) with marginal µ k on X k M + (X) M + (X 1 ) M + (X 2 ) M + (X 12 )

X k = {x(I k ) : g j (x) ⩾ 0 : j ∈ J k } = the subspace of X which only "sees" variables indexed by I kVictor MagronExploiting sparsity in polynomial optimization

f (x) = x 2 x 5 + x 3 x 6x 2 x 3x 5 x 6 + x 1 (-x 1 + x 2 + x 3x 4 + x 5 + x 6 ) Victor MagronExploiting sparsity in polynomial optimization

[Magron Constantinides Donaldson '17] Exactf (x) = x 1 x 2 + x 3 x 4 Floating-point f (x, e) = [x 1 x 2 (1 + e 1 ) + x 3 x 4 (1 + e 2 )](1 + e 3 ) x ∈ X , | e i |⩽ 2 -δ δ = 24 (single) or 53 (double) Victor MagronExploiting sparsity in polynomial optimization

[Magron Constantinides Donaldson '17] Exactf (x) = x 1 x 2 + x 3 x 4 Floating-point f (x, e) = [x 1 x 2 (1 + e 1 ) + x 3 x 4 (1 + e 2 )](1 + e 3 ) x ∈ X , | e i |⩽ 2 -δ δ = 24 (single) or 53 (double) 1: Error f (x) -f (x, e) = ℓ(x, e) + h(x, e), ℓ linear in e Victor MagronExploiting sparsity in polynomial optimization

f = x 2 x 5 + x 3 x 6x 2 x 3x 5 x 6 + x 1 (-x 1 + x 2 + x 3x 4 + x 5 + x 6 ) x ∈ [4.00, 6.36] 6 , e ∈ [-ϵ, ϵ] 15 , ϵ = 2 -53Dense SDP: ( 6+15+4 6+15 ) = 12650 variables ; Out of memory

f = a 1 (b 1 + b 2 + b 3 ) + a 2 (b 1 + b 2b 3 ) + a 3 (b 1b 2 )b 1 -2b 1b 2 with a 1 a 2 ̸ = a 2 a 1 , involution (a 1 b 3 ) ⋆ = b 3 a 1 Victor MagronExploiting sparsity in polynomial optimization

with σ SOS, r ∈ NVictor MagronExploiting sparsity in polynomial optimization

Victor MagronExploiting sparsity in polynomial optimization

Partition the variables w.r.t. the maximal cliques of the csp graph Victor Magron Exploiting sparsity in polynomial optimization

Partition the variables w.r.t. the maximal cliques of the csp graph

For each subsystem involving variables from one maximal clique, apply TSSOSVictor MagronExploiting sparsity in polynomial optimization

Partition the variables w.r.t. the maximal cliques of the csp graph

For each subsystem involving variables from one maximal clique, apply TSSOS a two-level CS-TSSOS hierarchy of lower bounds for f minVictor MagronExploiting sparsity in polynomial optimization

f = f 1 + f 2 , f k depends on I k , X compact & each g j depends either on I 1 or I 2 . Prove that

Chen, Lasserre, Magron & Pauwels. Semialgebraic Optimization for Bounding Lipschitz Constants of ReLU Networks. NIPS, 2020 Chen, Lasserre, Magron & Pauwels. Semialgebraic Representation of Monotone Deep Equilibrium Models and Applications to Certification. arxiv:2106.01453 Mai, Lasserre & Magron. A sparse version of Reznick's Positivstellensatz. arxiv:2002.05101 Tacchi, Weisser, Lasserre & Henrion. Exploiting sparsity for semi-algebraic set volume computation. Foundations of Comp. Math., 2021 Tacchi, Cardozo, Henrion & Lasserre. Approximating regions of attraction of a sparse polynomial differential system. IFAC, 2020 Schlosser & Korda. Sparse moment-sum-of-squares relaxations for nonlinear dynamical systems with guaranteed convergence. arxiv:2012.05572 Zheng & Fantuzzi. Sum-of-squares chordal decomposition of polynomial matrix inequalities. arxiv:2007.11410

Let r min be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion '05] Assume that the moment SDP has an optimal solution y with cost f r and rank M r ′ (y) = rank M r ′ -r min (y) for some r ′ ⩽ r .

Victor Magron

Exploiting sparsity in polynomial optimization

Exploiting sparsity in polynomial optimization

Exploiting sparsity in polynomial optimization

Application to SOS of bounded degrees

Theorem: sparse BSOS representation [Weisser et al. '18] If 0 ⩽ g j ⩽ 1 on X, f > 0 on X & RIP holds for (I k ) then

with σ k SOS of degree ⩽ 2r

Victor Magron Exploiting sparsity in polynomial optimization

⇝ support extension ⇝ chordal extension G ′

By iteratively performing support extension & chordal extension

Two-level hierarchy of lower bounds for f min , indexed by sparse order s and relaxation order r

Victor Magron

Exploiting sparsity in polynomial optimization

Let G ′ be a chordal extension of G with maximal cliques (C i )

In the moment relaxation,

Exploiting sparsity in polynomial optimization

Term sparsity: primal moment relaxations

Let G ′ be a chordal extension of G with maximal cliques (C i )

In the moment relaxation,

Similarly for the localizing matrices M r-r j (g j y)

Victor Magron Exploiting sparsity in polynomial optimization

A second key message TSSOS preserves the block structure related to sign-symmetries

Victor Magron

Exploiting sparsity in polynomial optimization

Comparison with (S)DSOS

Let f be a nonnegative polynomial of degree 2d 

Theorem [Lasserre Magron Wang '21] The first TSSOS relaxation is always more accurate than the SDSOS relaxation

Victor Magron Exploiting sparsity in polynomial optimization

Ground-state energy ⇔ minimal eigenvalue of an Hamiltonian

x i x j + y i y j + z i z j spin states (x i , y i , z i ), constraints Lattices: 1D 2D Kagome

Victor Magron Exploiting sparsity in polynomial optimization 55 / 80

Victor Magron Exploiting sparsity in polynomial optimization 55 / 80
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for separable states but . . . 5 for one maximally entangled state 2nd dense SDP relaxation of the corresponding trace problem outputs 5 = max value for all maximal entangled states

Victor Magron

Exploiting sparsity in polynomial optimization

for separable states but . . . 5 for one maximally entangled state 2nd dense SDP relaxation of the corresponding trace problem outputs 5 = max value for all maximal entangled states 2nd sparse SDP gives also 5 . . . 10 times faster

Victor Magron

Exploiting sparsity in polynomial optimization

Application to networked systems stability

Lyapunov function

Victor Magron Exploiting sparsity in polynomial optimization 59 / 80

Application to networked systems stability

On which domain V > 0?

Exploiting sparsity in polynomial optimization

Theorem [Parrilo & Jadbabaie '08] Given A = {A 1 , . . . , A m } ⊆ R n×n , if a positive definite form f of degree 2r satisfies

Exploiting sparsity in polynomial optimization At fixed r, replace f by a "term sparse" f f 0 = ∑ n j=1 c j x 2r j with support A (0) 

General ideal constraints x i x j = 0 ∀(i, j) ∈ E ⇝ max. cliques of the graph with vertices {1, . . . , n} & edges E

Victor Magron

Exploiting sparsity in polynomial optimization 

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r + s.t.

called the completely positive rank

Victor Magron Exploiting sparsity in polynomial optimization

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r + s.t.

Victor Magron Exploiting sparsity in polynomial optimization

Application to matrix ranks

Given a symmetric nonnegative matrix A, find the smallest r + s.t.

for a ℓ ⩾ 0 r + is called the completely positive rank ✗ hard to compute ✓ Relax/convexify with a linear program over measures

Exploiting sparsity in polynomial optimization 66 / 80

for a ℓ ⩾ 0 r + is called the completely positive rank ✗ hard to compute ✓ Relax/convexify with a linear program over measures

Exploiting sparsity in polynomial optimization Sparse SDP

Correlative sparsity

Term sparsity

Ideal sparsity

Tutorial session

Newton polytope

Exploiting sparsity in polynomial optimization

Chordal graph after adding edge (3, 5) 

Victor Magron
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Chordal graph after adding edge (3, 5) How many SDP variables in the dense and sparse relaxation at order r = 1, 2, 3?

Victor Magron

Exploiting sparsity in polynomial optimization 74 / 80

Moment matrix

Write the first (correlative) sparse moment relaxation of

(1/2)

Exploiting sparsity in polynomial optimization

Compute the dense relaxation f 2 Compare with the correlative sparse relaxation f 2 cs Compare with the term sparse relaxation f 2,s ts for s = 1, 2, . . .

Victor Magron
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Compute the dense relaxation f 2 Compare with the correlative sparse relaxation f 2 cs Compare with the term sparse relaxation f 2,s ts for s = 1, 2, . . .

Install and run TSSOS:

] add https://github.com/wangjie212/TSSOS using TSSOS, DynamicPolynomials

Victor Magron

Exploiting sparsity in polynomial optimization 79 / 80 Exploiting sparsity in polynomial optimization 

Exploiting sparsity in polynomial optimization 80 / 80 Download from https://homepages.laas.fr/vmagron/ncball: 

Compute λ min ( f ) on B nc with 2nd dense relaxation cs_nctssos_first([f;ncball],x,2,CS=false, TS=false, obj="eigen");

Victor Magron Exploiting sparsity in polynomial optimization 80 / 80 Download from https://homepages.laas.fr/vmagron/ncball:

Compute λ min ( f ) on B nc with 2nd dense relaxation cs_nctssos_first([f;ncball],x,2,CS=false, TS=false, obj="eigen");

Compare with the correlative and term sparse relaxations

Victor Magron

Exploiting sparsity in polynomial optimization 80 / 80