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Abstract—The spiking neural networks (SNN) have been
considered as the third generation of neural networks, since it
better mimics the biological behavior of the brain cortex which
processes spike trains. This paper proposes to revisit electronic
neuron implementations in a novel way able to deal with SNN
limitations in deep learning. Post-layout simulation results prove
that non-linear action function is able to shift from right to left
considering a reference sizing to create excitation and inhibition
synaptic current. Proposed model is extended to handle up to
three neurons in a parallel association, i.e. SNN with a fan-
in/fan out of 3 synaptic branches. Revisited electronic neuron
achieves an area of 10.8×9.7 μm2 for a energy efficiency below
10 fJ/spike, while including synapse circuitry. Relative standard
deviation of synapse current is below 1.8% and synapses weight
mismatch leads to less than 4 pA current error.

Index Terms—ultra-low-power, neuromorphic circuits, spiking
neural networks

I. INTRODUCTION

Neuromorphic computing is an established complementary

to von Neumann systems exploring the Artificial Intelligence

(AI) paradigm in electronics [1]. Digital implementations have

often been proposed in FPGAs and GPUs [2] due to their

advantages of reconfigurability, reusability and reduced imple-

mentation costs. Feed-forward neural networks (FNN) are the

most common architecture for Deep Learning. FNNs present

interneuron connections with a linear scaling controlled by the

weight coefficients (synapses). The spiking neural networks

(SNN) have been considered as the third generation of neural

networks. Different from conventional FNNs which process

digital data, the SNN better mimics the biological behavior of

the brain cortex which processes spike trains [3].

A biological cortex neuron membrane potential (Vm) is

excited by a current pulse (Iex) of few hundreds of pico-

Amps. Thus, it operates in an average firing rate ( fspike) of

few Hz with an energy efficiency (Ee f f = Prms/ fspike) of 2.45

pJ/spike. Such neurons have an average membrane capacitance

(Cm) of 245 pF and operate with an action potential (Vd) of

100 mV [4]. Analog electronic neurons (eN) cannot afford

to work on such low fspike and having such high Cm. eN
have been implemented in the literature [5], [6] with fspike
of a few hundreds of kHz, using weak inverted transistors

to save power and Cm dozens of fF to save area. However,

recent neuromorphic hardware is often single neuron circuits

[7], [5], [8], or small neural networks [9], [6]. Ou and

Ferreira have proved that the spiking frequency variability

may be compensated for ±10% of supply voltage variation

while providing a tradeoff counterbalance for temperature and

process variations [10].

In previous work [11], the authors have already questioned

if eN are usable on analog SNN using deep neural network

training tools and tried and narrow the gap between hardware

and software AI in [11]. Assumptions were made considering

analog electronic synapse (eSyn) implementation originally

published in [12] and its ultra-low-power version from [9].

Published eSyn presents a neuron output fspike (the pre-

synaptic signal) conversion to an output (the post-synaptic

signal) isyn controlled by the trained synaptic weight. However,

published eSyn implementation have presented a behavior

which does not mimic the biological functionality of synapses.

Besides, published models fails in implementing the neuron

plasticity and training only found in memristor’s synapses [13].

SNN scalability is a challenge without a bio-inspired synapses

in silicon-based solution.

To establish a silicon-based SNN competitive to memristor’s

based, this paper proposes to revisit eN and eSyn implemen-

tations in a novel way able to deal with SNN scalability

from a bio-inspired connection between neurons. Figure 1(a)

illustrates the biological neuron model composed of soma,

axon, and few dendrites. Figure 1(b) mimics biological behav-

ior considering: an eN soma using a biomimetic Moris-Lecar

model according to [5] implementation; an eN Axon having

propagation delays from M0 and C and a transconductance gain

from M2; eN dendrites exciting the Vm to spike accordingly.

The eSyn circuit topology is considered from [11], but here it is

redefined as the connection between eN axon and dendrites on

the following layer. Revisited eN now considers the presence

of one to three dendrites, which are connected to the different

eN axons of the previous layer. The eSyn weights (ωh, j) is

then the current mirror gain from M3 presented in eN axon

and Mh+1, j dendrite transistors in the kth eN in the h+ 1th

layer.

II. REVISITED ELECTRONIC NEURON

Let’s consider two eNs connected together: j,k of layer h,

h+ 1 in Fig. 1(b) The electronic Soma (eSoma) of eN(h)
j is

driven by an input current iin,h, j and the electronic dendrite

eD(h+1)
j,k making the interneuron connection have an output
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Fig. 1. (a) Biological inspired neural network topology. Each soma is connected to one axon and make connections through dendrites. (b) Schematic for
an analog neuron and dendrites (VDD = 100 mV , VSS = −100 mV ). For each new connection, a single PMOS transistor (dendrite) is added to form a new
synapse. Transistor sizing is obtained from [11]. Modified sizing are: M0 with 810/60 nm; M2, j with 2100/60, C = 16.88 fF, M1 with 135/60 nm.

current iout,h, j,k. The neuron behavior (H) of this set eSoma,

eAxon, and eDendrite referred as eND is defined as:

iout,h, j,k = H(ωh, j,k,WK , iin,h, j) (1)

where WK is the width of the MNK transistor responsible for H
bias shift; ωh, j,k is the synaptic weight between the two eNs,

controlled by the sizing ratio from M(h)
2, j and M(h+1)

DEN,k. Besides,

software-based NN have the corresponding behavior

iout,h, j,k = AFso f tware(iin,h, j)×ωh, j,k (2)

where AFso f tware is the activation function of the neuron (i.e.

the neuron behavior) and the synaptic weight is implemented

through a product.

The revisited eN must achieve a non-linear iin,h, j to iout,h, j,k
relationship. Moreover the eN should be able to be inhibited,

i.e behave like if its input current was lower: iin becoming

iin − itr, where itr is a positive threshold current. A exitation

correspond to iin + itr. This operation results in a shift of the

plot H(iin) to the rigth for inhibition or the left for exitation

(see 4(a)).

For clarity, as ω is dependent on the width W of the

dendrite, (1) is simplified to iout = H(W,WK , iin) for an eND.

Then, the contribution of the eD and the eN is separated as

H(W,WK , iin) = f (W,AF(WK , iin)), (3)

where f is the function of the dendrite; AF is the activation

function of the eN. As the voltage between aAxon and eDen-

drite is complex, the AF is introduced for a specific synapse

weight as AF(WK , iin) = H(Wre f ,WK , iin) to get a current-to-

current function.

The model is extended to handle up to three neurons in a

parallel association. To test the influence of an eN connected

in parallel to an eND eN1, the following cases are studied:

1) The eN1 is alone to simulate its characteristic re-

sponse. Another eNload is connected to eN1 as an output

impedance through a dendrite having a width WDEN,1.

2) A second eN2 is connected to the input of eNload in

parallel of eN1, with a constant medium current excita-

tion iN2. The dendrite used to connect eN2 has a width

WDEN,2 = 0.135μm.

3) Same circuit as case 2, but with WDEN,2 = 1.35μm.

4) eN3 is added to the input of eNload with a constant cur-

rent excitation iN3. WDEN,2 = WDEN,3 = 0.675 μm. iN3 is

chosen to avoid beat phenomenon using | fspike,eN2
(iN2)−

fspike,eN3
(iN3)| >> 1

τ where τ is the simulation time.

Moreover, iN2 ≈ iN3 to get roughly the same excitation

level.

A. Negative bias proposition and impact on AF
In the literature, analog eN inhibition is a challenge in

circuit design trade-offs. However, in machine learning the

use of negative bias can strongly increase the performance of

the network [14]. For software-based NN, bias is implemented

using (4) [14]. Choosing ibiais ≤ 0 causes a right shift of the

activation function, which models neuron inhibition.

iout = Hso f tware(ω,iin + ibias). (4)

Changing the gate width (WK) of the discharging transistor

MNK (Fig. 1(b)), enables the eN to emulate the function

H(W0,WK , iin) =
{

imin f or iin ≤ itr
G ·H(W0,WK,re f , iin − itr) f or iin > itr

(5)

where G and itr are respectively a constant gain and a threshold

current depending on the value of WK ; WK,re f being a fixed

value of WK ; imin the minimal eN’s RMS output current
Two effects can be noticed. First, H is shifted to the

right and starts increasing after a threshold current. Indeed,
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increasing WK causes a greater discharging current of the

capacitor Ck (see Fig. 1(b)). This capacitor will require a

greater current iin to increase the spike frequency above the

rest frequency (spiking due to eN’s noise in the power line).

The second effect is attenuation (G ≤ 1) of iout post-

threshold. Since a bigger discharging current change the

spike’s wave form by reducing the voltage drop time, the

average voltage of the spike decreases while the high pass

characteristic of the synapse selects <VGK> causing iout to be

less than the reference for a fixed frequency. G is assumed

independent of iin to keep the model simple in order to be

efficiently trainable by digital frameworks such as TensorFlow.

B. f (W,AF) dependency for a single dendrite

The case 1 is used to model the behaviors of a h+1th layer

dendrite. Adding a dendrite after an eN at the node VP create

a current mirror. Using classical current mirror equation in

weak inversion region from [15], and by assuming that the

load effect of dendrites in VP (see Fig. 1(b)) is negligible, the

output current of the mirror iout is

iout =
Ire fW
Wre f

1− e
VDS
φT

1− e
VDS,re f

φT

. (6)

where Ire f is the output current of the mirror at W = Wre f ;

Vth is the threshold voltage; n·φT the slope factor and thermal

voltage taken as constants; VDS the drain to source voltage

since bulk is connected to source in 1(b). Ire f (iin) is defined

as Ire f (iin) = AF(WK , iin): the output current for the reference

width and VDS,re f , VDS in this situation. Thus, one can deduce

from (6)

iout = gideal(W ) ·AF(WK , iin), (7)

assuming gideal(W ) independent of the input current iin. To in-

clude analog defects, leakage currents are considered. Leakage

depending on the excitation rate of the eN will be handled in a

non-ideal g(W ) term. Besides, constant leakage in the dendrite

is described by a current iL(W ). Finally, the dendrite effect is

summarized in

H(W,WK , iin) = g(W ) ·AF(WK , iin)+ iL(W ), (8)

f (W,x) = g(W ) · x+ iL(W ), (9)

where by definition, g(Wre f ) = 1, iL(Wre f ) = 0. f is then ob-

tained via (3). iL(W ) is mainly due to band-to-band-tunneling

current between the substrate bias at VDD to the drain. This

leakage is proportional to the electrical field of the dendrite’s

transistor junction [16]. Assuming side effects negligible, this

field is proportional to +W then positive value of iL(W ) is

expected for W >Wre f .

C. eN’s environment influence

To simulate the eND behavior as it would be in a neural

network, the electrical environment of the (h−1)th and (h+
1)th layer should be considered. Moreover, a key parameter of

a neural network is the weights of the synapses. Thus a model

of the analog response of eND should only take as parameters

the weight of its neighbors and omit their excitation to use the

same paradigms as software-based networks.

The model of the eND should consider: 1) the impact of the

inputs dendrites, 2) the influence of the output connections

number (see VP in Fig. 1(b)) and 3) the dependency for

the same layer eNs (connected together on the next layer

dendrites).
1) Input dendrite impact on H: The model is established

for only one input dendrite. In a complete network scenario,

a dendrite should be driven by a complete eN. To simplify

the study, the dendrite is replaced by a PMOS impedance

controlled by a constant gate voltage. Notice that a group of

input dendrites can be approximate by PMOS transistors in

parallel with the supply voltage line.
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Fig. 2. Energy efficiency and eND behavior for two driving methods. Blue
represent those functions for a eND driving circuit and green in a case of a
constantly biased PMOS driving circuit.

To justify this approximation, the characteristic values H
and Ee f f of an eND are plotted in Fig. 2 for a PMOS approx-

imation driven method as H1 in green, and for a complete eN
driving circuit H2, shows in blue. The eND is connected to a

second eN (with an output dendrite to ground) to emulate a

realistic output load impedance. Figure 2 illustrates the eND’s

root main square (RMS) output current iout (continuous line)

and the energy efficiency Ee f f (dashed line) as a function of

the RMS value iin. In the two driving method, the eND has the

same results with a relative root mean square error σe = 0.34%

on Ee f f and σe = 1.9% on iout .

As the results are similar, all the analysis of Sec. III shall

consider a PMOS input impedance as dendrites. In the Fig.

2 the input current domain [0, imax] isn’t totally solicited for

H2. This is the case because the dendrite width WDEN is set to

0.675 μm, but any input current in [0, imax] is accessible by

using the correct WDEN between Wmin and Wmax. Consequently

the author will assume that the eND’s response for the domain

[0, imax] can be evaluated using a PMOS driving method.
2) (h+ 1)th layer’s connection influence on AF: For each

connection of an eN to another one in the (h+ 1)th layer, a
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dendrite is connected to the axon. Since the input impedance

of a dendrite is equal to the gate impedance of PMOS, the

load of the dendrite on the axon is low. As a result, only the

case with one output dendrite connected is studied.

3) Parallel association: Finally, the effect of a parallel as-

sociation is quantified on AF and f . The result is obtained for

a single bias WK , then WK will be omitted from notations. The

function ÂFi(W, iin) of (10) is introduced to track the effect of

the ith environment on the activation function. This represents

a estimated activation function based on the response H(W, iin)
for the i-th case and a dendrite width equal to W by decoupling

the influence of the dendrite from the eN.

ÂFi(W, iin) =
H(W, iin)−bi(W )

ai(W )
and (10)

Hreal(W, iin)≈ ai(W ) ·AF(iin)+bi(W ), (11)

where ai(W ) and bi(W ) for (11) is fitted using least square

method on the whole range [0, imax] (imax = 0.9 nA). As

the coupling between axon and dendrite is low, results are

expected to validate ÂFi(W )≈ AF . In this situation ai(W ) =
g(W ) and bi(W ) = iL(W ) for the case i. The impact of the

environment on the dendrite is shown by the influence of i on

ai(W ),bi(W ).

III. RESULTS AND DISCUSSIONS

The circuits are implemented using the BiCMOS SiGe 55

nm technology from ST Microelectronics. Figure 3 illustrates

the layout of an eNeuron, occupying a 10.8× 9.7 μm2 area.

For the next sections, all simulation results are based on

Cadence Virtuoso analysis post-layout simulation (PLS). For

each variation of a transistor’s width, the layout of the whole

circuit was redesigned to obtain a correct post-layout result.

VPiin

eS
o

m
a

A
x

o
n

WK

Fig. 3. Layout of an eN without dendrites in the maximum area configuration
for WK = 10 μm (on the top right corner). Area is 10.8 × 9.7 μm2.

A. Negative bias PLS validation

To simulate the behavior of an eND constantly inhibited,

the eN is connected to a PMOS dendrite, with constant gate

voltage V0 ∈ [0,120] mV. Another eN is connected as a load.

iin and iout are obtained by the RMS input and output current

of the eN computed on 300 μs after a transitory regime.

Figure 4(a) shows the influence of the gate width WK of

MNK on the eND’s response H(W,WK , iin). Two effects are

observed: H is shifted to the right by a threshold current itr;
the response is attenuated for wide WK . For a current lower

than itr, iout(iin ≤ itr)≈ imin, validating the (i < itr) part of (5).

Concerning the energy efficiency, Fig. 4(b) summarizes how

Ee f f is affected by the bias, i.e. the modification of WK . The

dashed line corresponds to the efficiency having WK set to

his original value (2 μm, first used in [11]) for the same

layout technology. Adding a constant negative bias increase the

energy efficiency near the non-linearity point (often solicited

in a deep learning process) with a maximum increase of

68.0% higher than Ee f f (imax ≈ 2nA). However, in the high

excitation zone, Ee f f is 24.5% lower than in the standard

configuration. In a power perspective, PeN decrease for iin
less than itr making a silicon area trade-off rather than a

consumption issue, between deep-learning abilities and analog

implementation.

The function M(WK , iin) defined by

M(WK , iin) =
H(W0,WK , iin − itr(WK))

H(W0,WK,model re f , iin − itr,model re f ))
, (12)

is introduced to quantify the representative of the model (5).

itr(WK) is the threshold current of H(W0,WK , iin); itr,model re f =
itr(WK,model re f ); WK,model re f a width arbitrarily chosen. M

represents the ratio of the shifted activation function from the

reference one (WK,model re f ), assumed constant to G(WK) by

the model in (5).

Figure 4(c) plots M using the simulation results of Fig. 4(a).

The maximum relative gap from a constant G(WK) is 21 %

and 14.5 % for WK,model re f of 2.5 and 8 μm respectively. The

deviation of M to G is wider near the threshold point. However,

the model’s accuracy has to be related to the transitor’s

width variability of the manufacturing process. The model

has a better correspondence for WK ≈Wmodel re f . In a training

process, the network can be trained by a midrange Wmodel re f
at first, and then, by a refined model with Wmodel re f adapted

near the values of width corresponding to each itr obtained.

Figure 5 represents itr (solid line) and G (dashed line) as

a function of WK . The two functions are monotonous with a

fairly constant slope, which makes those values less sensitive

to the variability of WK during manufacturing. High inhibition

would use more silicon area.

B. f (W,x) PLS results for a single dendrite

The activation function used in the four cases is obtained

for WDEN,1 = 0.135 μm and WK set to 2.5 μm as it provided

the minimal inhibition while presenting AF(iin ≈ 0)≈ imin.

Figure 6 shows ÂF1(W, iin) in the environment of case 1 for

8 evenly spaced widths from Wmin = 0.135 μm to Wmax = 1.35

μm. The blue line represents the typical activation function

ÂFtyp(W, iin) computed as the average on the width of all

estimated AF . The surface colored in light blue represents the

maximal deviation of ÂF1(W, iin) from the typical one.

On this first environment, all ÂFi(W, iin) match the reference

with a σe = 1.8 %, and a maximum absolute error of 0.8 pA.

This validates the model HW = f (W,AF) where the influence

of the dendrite is decoupled from the eN behavior. Indeed, the

AUTHOR VERSION



iin [nA]

i o
ut

[n
A

]
WK [μm]

inhibition

exitation

itr(10μm)

(a)

iin [nA]

Ee f f [fJ/spike]

2.01.00.0

101

2×100

4×100

(b)

iin [nA]

M
fo

r
W

re
f

=
8

μ
m

M
fo

r
W

re
f

=
2
.5

μ
m

(c)

Fig. 4. (a) Activation function for 8 values of WK . Reference activation function has WK = 2.5μm (b) energy efficiency against the input current iin of the
eN. (c) present the variable M(iin), representing the post-threshold gain. In continuous line, M is computed for Wre f = 8 μm and 2.5 μm for the dashed one.

itr(W)G(W)

WK [μm]

G
fo

r
W

re
f

=
2

.5
μ

m

4 1086

0.1

0.3

0.5

0.4

0.6

0.8

1.0

Fig. 5. Variation of the threshold current itr in black line and post-threshold
activation function gain G with the width of MNK

iin [nA]

Typ. CASE 1

i o
ut

[p
A

]

0.0 0.80.4

50

10

30

Fig. 6. Activation function of the eN1. Changing the width WDEN,1 of the
next-layer dendrite cause the AF to slightly deform, as it’s plotted by the blue
surface (functions AF((W ), iin)). Relative standard deviation is σ = 1.8 % and
the maximum deviation is 0.8 pA

AF is independent of dendrites’ width (i.e. synaptic gain) as

the deviation of ÂFi(W, iin) is low. Besides, the linear fitting

of f validate that VDS in (6) marginally depend on iin, i.e

g(W, iin)≈ g(W ).

Figure 7(a) represents the estimated standardized gain

Ci(W ) = ai(W )
W for the four cases. The dashed black line repre-

sents C1(W ) for case 1. According to (6) in traditional current

mirror assumption, C1(W ) should be a constant equal to 1
Wre f

.

However, Fig. 7 shows that C1(W ) changes significantly with a

factor of 2.12 between small (0.135 μm) and large geometries

(1.35 μm). This illustrates the impact of small geometries on

the constants Vth and n, studied in [17]. Dissipative phenomena

are put in evidence for small width. Because C1(W )> 1
Wre f

for

W >Wre f , a positive drain leakage appears for big widths. This

leakage is proportional to the excitation level of the eN as it

impacts the gain C1(W ).
Figure 7(b) represents the bias current b1(W ) in dashed

black line. Two things can be observed: b1(W ) is positive

and tend to a linear asymptote. Indeed, b1(W ) is the constant

(of iin) drain’s leaking current of the dendrite iL in relation

to the leaking of the reference dendrite. Since the reference

dendrite has the minimal width, all dendrites considered in-

crease leakage so b1(W )> 0. The linear asymptote highlights

the proportional dependency of il on W for band-to-band-

tunneling leakage current. Notice that b1(W ) is in the same

order of magnitude as iin so cannot be neglected for high gain.

Associating eNs in parallel would produce an extra excitation

to the following eN.

C. Parallel association impact

To evaluate the impact of the parallel association on the

behavior H of the eND, cases 2,3 and 4 are considered. ΔW,i
is introduced as:

ΔW,i = ÂFi(W, iin)−AFd,1,typ. (13)

to quantify the dependency of the activation function on the

i-th case environment.

Figure 7(c) represents the typical value of ΔW,i (solid line)

and its maximum deviations (in transparent surfaces), showing

a slight modification of ÂF . The deviation of ÂFi(W, iin) seems

to increase with a complex environment but remains small (pA

<< nA for iin). However, the typical ΔW,i is constantly bias

and can be partially corrected by adapting the model of AF
for each layer depending on the eN’s number.
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Figure 7(a) presents how the gain of the current mirror is

affected by the gain of the other dendrites. The fact that Ci(W )
decreases with the gain of the other neurons on the same layer

can be understood by the apparition of a leakage current from

the eD to the other ones (because C2,C3,C4 ≤C1), depending

on their width. For instance, C3(W ) of case 3 is the same

as C4(W ) of case 4, while WN2,case 3 =WN2,case 4 +WN3,case 4.

The shift of C(W) seems to depend on the sum of the width of

the other synapses of the same layer. This effect is dominant

with wide WDEN,k>1, as the gain C2(W ) is close to C1(W ),
while WN2,case 2 is small, equal to Wmin.

Figure 7(b) shows the dependency of bi(W ) to the environ-

ment. An offset of positive current going from the synapse

to his environment can be observed. Like C3(W ) ≈ C4(W ),
b3(W ) ≈ b4(W ), the shift of bi(W ) seems to increases with

the sum of the other dendrites’ width of the same layer.

IV. CONCLUSION

Proposed eNeuron review considered the implementation of

a biomimetic model of biological soma, axon, and dendrites

to enable a novel way dealing with SNN limitations. Post-

layout simulation results proved a non-linear action function

shift from excitation and inhibition synaptic current. Proposed

model is extended to handle up to three neuron connections

in a parallel association. Therefore, SNN deep learning is

feasible for a fan-in/fan out of 3 synaptic branches. Revisited

electronic neuron achieves an area of 10.8× 9.7 μm2 for an

energy efficiency below 10 fJ/spike. Moreover, such a result

considers the total power consumption (soma, axon, dendrites),

while literature presented eNeurons and synapses separately.

Relative standard deviation of synapse current below 1.8%

and synapse weight mismatch ≤ 4 pA current error are in

agreement with deep learning training requirements.
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