Heterogeneous architectures

Heterogeneous architecture refers to a computing system or platform that employs different types of hardware components, such as processors and accelerator. These components are designed to work together efficiently, each contributing its strengths to achieve better overall performance, energy efficiency, or other desired characteristics. Supercomputers often utilize heterogeneous architectures to handle complex simulations, scientific calculations, and data analysis tasks. GPUs are frequently employed alongside traditional CPUs to accelerate computationally intensive workloads.

GPUs and CPUs have different strengths and are optimized for different types of tasks. CPUs are well-suited for tasks that require strong single-threaded performance and general-purpose computing, while GPUs excel at parallel processing tasks involving large datasets, such as graphics rendering, scientific simulations, and deep learning. In many applications, a combination of both CPUs and GPUs can provide a balanced approach to achieve optimal performance and efficiency.

NVIDIA Compiler

The NVIDIA compiler is a suite of compilers and tools designed for HPC and scientific computing. It is commonly used for compiling and optimizing code for parallel architectures, including CPUs and GPUs. NVIDIA compilers are known for their focus on performance optimization, parallelization, and vectorization to make the most of modern hardware capabilities. Key distinct features of the NVIDIA compiler are:

• Heterogeneous Computing: well-suited for heterogeneous computing environments where both CPUs and GPUs are utilized to accelerate computations,

• GPU Acceleration: the ability to compile CPU and GPU code within the same program, enabling seamless integration of parallel processing on GPUs,

• Directive-Based Parallelization: support OpenACC, a directive-based approach to parallel programming. Developers can annotate their code with directives to guide the compiler's parallelization and optimization efforts,

• Profiling and Debugging: tools for profiling and debugging parallel code which help to identify performance bottlenecks, analyze memory usage, and locate errors in parallel programs.

Compiler options 1.2.1 Debugging

Most modern compilers come equipped with a range of debugging options and tools that we can use to identify and resolve issues in our codes. Here are some common debugging options we might find in a compiler: 

Optimization

Optimization compiler options are settings that we can apply to our code during the compilation process to enable various levels of optimization. These options instruct the compiler to perform transformations on our code in order to improve its performance, reduce its memory usage, and make it execute more efficiently. However, optimization can sometimes introduce complexities and potential trade-offs, so it's important to understand the options available and their effects. Here are some common optimization compiler options: 

Vectorization

Vectorization is a technique used by compilers to optimize code by transforming scalar operations into vectorial operations. This takes advantage of the capabilities of modern CPUs and architectures that support Single Instruction Multiple Data (SIMD) instructions. Vectorization can significantly improve the performance of certain types of computations, especially those involving large datasets and repetitive calculations. Compiler options related to vectorization instruct the compiler to automatically identify and apply vectorization optimizations to our code. Here are some common vectorization compiler options: Enable/disable loop tiling

The -fast compiler's option is often used in various compilers to enable a combination of optimization flags that collectively aim to produce highly optimized and fast-running code. Here are some aspects to be aware of when using the -fast compiler option: Register spilling refers to the situation in which a compiler cannot allocate all the variables and values that need to be stored in the limited number of available CPU registers. As a result, some of these variables or values need to be "spilled" or stored in memory locations (usually on the stack) instead of being kept in registers.

To reduce register spilling, minimize the scope of variables and the distance between usage. Minimize the scope of variables and the gap between their utilization.

Register spilling

Factorization

The speed of program execution for numerical solutions is predominantly influenced by the quantity of function (subroutine) calls and arithmetic operations conducted within the program. Consequently, preference is given to algorithms demanding fewer function calls and arithmetic operations. For instance, when tasked with evaluating the value of a polynomial, such as:

p 4 (x) = a 1 x 4 + a 2 x 3 + a 3 x 2 + a 4 x + a 5
It is more efficient to utilize a factorized structure (as shown below) than to employ the original form:

p 4f (x) = (((a 1 x + a 2 )x + a 3 )x + a 4 )x + a 5
It's worth noting that the factorized multiplication in p 4f (x) involves 4 multiplications, whereas the original form p 4 (x) requires 4 + 3 + 2 + 1 = 9 multiplications. This concept is illustrated through the following example, where a polynomial N-1 i=0 a i x i is computed using both methods. The performance difference is evident, with the factorized multiplication approach being two times faster. 

SUBROUTINE nonestedm() PARAMETER (n = 10 ** 8 + 1, x = 1.) DIMENSION a(n), xi(0:n-1) DO k = 1, n a(k) = k ENDDO DO k = n-1, 0, -1 xi(k) = x ** k ENDDO p = SUM(a(:) * xi(:)) WRITE( * ,11) p 11 FORMAT('SUM =',2X,ES19.12) ENDSUBROUTINE nonestedm SUBROUTINE onnestedm() PARAMETER (n = 10 ** 8 + 1, x = 1.) DIMENSION a(n), xi(0:n-1) DO k = 1, n a(k) = k ENDDO p = a(

Loop ordering

Loop order pertains to the spatial locality within memory. Spatial locality implies that instructions located near the recently executed instruction have a higher probability of being executed. It involves utilizing data instructions that are closely situated to storage locations. For instance, consider the following Fortran code. The arrangement of array elements in memory follows the order in which the left-hand side dimension grows. Consequently, x(i + 1, j), y(i + 1, j), and z(i + 1, j) are stored next to x(i, j), y(i, j), and z(i, j), respectively. This arrangement enables the compiler to anticipate their usage in the subsequent loop iteration and prefetch them from memory to the cache.

In the second part of the code, we have reversed the sequence of loops. In this scenario, between two consecutive iterations of the inner loops, the variables x(i, j +1), y(i, j +1), and z(i, j +1) are spaced apart by n variables from x(i, j), y(i, j), and z(i, j). Attempting to prefetch data from these arrays is more likely to result in cache misses.

In the given example, the version with the correct loop ordering exhibits performance that is nearly ten times faster than the version with the reversed loop order. This highlights the significant impact that loop ordering can have on computational efficiency. Upon incorporating the compiler's optimization option, the compiler generates the subsequent message concerning the nonconti routine. It appears that the compiler has inverted the sequence of loops, resulting in nearly identical execution times for the two loops. Is cache alignment always rectifiable by the compiler? To examine this scenario, we will assess execution on a GPU utilizing the OpenACC protocol. By employing the "PARALLEL LOOP" construct in conjunction with the "COLLAPSE" clause, which combines the two nested loops into a singular loop, we will observe the subsequent message from the compiler: ------------------------------------------- An alternative approach could involve using the "KERNELS" construct in lieu of the "PARALLEL" construct. The "KERNELS" construct affords the compiler maximum flexibility to parallelize and optimize the code according to the characteristics of the target accelerator. However, it also places a significant reliance on the compiler's inherent capability to autonomously parallelize the code. Consequently, variations might arise in terms of what different compilers can parallelize and their chosen methodologies for doing so. On the other hand, the "PARALLEL LOOP" directive serves as an explicit indication by the programmer that parallelizing the specific loop is both safe and advantageous. Meanwhile, adopting the "KERNELS" construct yields the ensuing output: ------------------------------------------- As evident from the output, it appears that the "KERNELS" construct potentially facilitates cache alignment, a feature that may not be as pronounced when employing the "PARALLEL" construct.

Placing the loop over the leftmost dimension as the innermost loop is consistently a safe practice. Furthermore, due to the faster growth of the innermost loop, it is imperative that the largest dimension of an array corresponds to the leftmost dimension.

Loop ordering

Array reductions

In certain scenarios, we compute the average of a multidimensional array to generate another array with reduced dimensions. On the CPU, when the loop ordering does not align with the spatial locality of the larger array, the compiler may reorganize the loops. However, the question arises: is this reordering beneficial in this context? Let's examine the subsequent example. Consider a 2D array where we compute an average along the second dimension. For the purpose of highlighting potential issues with compiler optimization, we assume that the second dimension is larger than the first dimension. Upon compiling the code on the CPU, the following messages are displayed: In the first version, there exists a perfect data locality concerning the x array. Consequently, the compiler produces a vector for the loop denoted by "i". In the subsequent version, we modify the loop order with the intent of observing whether the compiler generates a vector for the larger dimension, represented by the loop marked "j". However, the compiler's optimization process results in the reversal of the loop. Consequently, both versions exhibit identical performance outcomes. The issue becomes evident when considering the GPU. The loop labeled "j" cannot be parallelized due to the exposed use of the s array. In such a scenario, optimal performance can be attained by enclosing the sequential loop within the parallel loop, similar to the approach in the second version. Notably, the second version demonstrates a twofold increase in speed compared to the first version. When reducing multidimensional arrays to fewer dimensions, organizing the loops over the reduced array as the outermost loops results in improved performance.

:n)) Time(%) Total Time (ns) Name 0 --------------------------------------------
Loop ordering: Array reductions

Loop expressing

The loop expression pertains to temporal locality within memory. Temporal locality means that an instruction that is recently executed has a high chance of execution again. So the instruction is kept in cache memory such that it can be fetched easily and takes no time to search for the same instruction. Let's explore various methods of loop expression through the following example. x(:,j) = x(:,j) * t(:,j) 98 y(:,j) = x(:,j) ** 3. 99 z(:,j) = z(:,j) + y(:,j) 100 s(:,j) = s(:,j)/3. + z(:,j) 101 t(:,j) = t(:,j) * s(:,j) In the provided example, the code reuses the variable t(i, j) after three lines of instructions. The management of the cache in this context is optimized by considering the temporal locality of variables, prompting the compiler to retain these variables within the cache. Conversely, in the loop constructed using array notation, there exist (4n -1) × (4m -1) lines of instructions before the reuse of t(i, j). For a substantial loop, the array t may be evicted from the cache and subsequently reloaded. Consequently, the loop's execution might decelerate due to the overhead associated with data access. We also employed a combination of the two approaches. In terms of performance, the explicit loop expression proves to be the fastest, followed by the mixed approach, with the least optimal performance observed in the case involving array notation. Upon recompiling the code with the optimizer options enabled, the compiler generates the following messages:

45 SUBROUTINE expl(x, z, s, t, n, m) 46 DIMENSION y(n,m), z(n,m), x(n,m), s(n,m), t(n,m) 47 #IFDEF _OPENACC 48 #IF defined LOO 49 !$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,z,s,t) CREATE(y) 50 #ELIF defined KER 51 !$ACC KERNELS PRESENT(x,z,s,t) CREATE(y) 52 #ENDIF 53 #ENDIF 54 DO j = 1, m 55 DO i = 1, n 56 x(i,j) = x(i,j) * t(i,j) 57 y(i,j) = x(i,j) ** 3. 58 z(i,j) = z(i,j) + y(i,j) 59 s(i,j) = s(i,j)/3. + z(i,j) 60 t(i,j) = t(i,j) * s(i,
expl: 54, Loop not fused: function call before adjacent loop 55, Generated vector simd code for the loop impl:

76, Loop not fused: different loop trip count Generated vector simd code for the loop 77, Loop not fused: different loop trip count Generated vector simd code for the loop 78, Loop not fused: different loop trip count Generated vector simd code for the loop 79, Loop not fused: different loop trip count Generated vector simd code for the loop 80, Loop not fused: function call before adjacent loop Generated vector simd code for the loop miximex: 96, Loop not fused: function call before adjacent loop 97, Loop not fused: different loop trip count Generated vector simd code for the loop 98, Loop not fused: different loop trip count Generated vector simd code for the loop 99, Loop not fused: different loop trip count Generated vector simd code for the loop 100, Loop not fused: different loop trip count Generated vector simd code for the loop 101, Generated vector simd code for the loop As indicated in the compiler report, when employing the explicit loop construct wherein all calculations are consolidated within a single loop by the developer, the compiler engages vectorization for the innermost loop. In contrast, for both the array notation and mixed versions, while the compiler continues to vectorize the inner loops of each instruction, it encounters challenges in merging the instructions. The performance report underscores a notable distinction: the explicit loop outperforms the others by nearly twofold. When compiling the code for GPU utilization via OpenACC, the explicit loop version can be executed on the GPU using both the "KERNELS" and "PARALLEL" constructs. However, the "KERNELS" construct exclusively applies to the array notation. By employing the "KERNELS" construct for all three versions, insights from the compiler report emerge: The compiler launches a single kernel for the explicit loop version, collapsing the two loops into one while for the next two versions, the compiler initiates individual kernels for each instruction. In terms of performance, the anticipated outcome is evident: The explicit loop demonstrates the highest speed (30.8%). The mixed version follows suit as the second fastest (a cumulative 33.1%, comprising 24.3% and four instances of 2.2%). The array notation, representing the implicit loop, shows the slowest performance. The performance report on the GPU is given as Employing the "PARALLEL" construct with "COLLAPSE" for the explicit loop, utilizing "KER-NELS" for the array notation (as "PARALLEL" is not permitted), and employing "PARALLEL" for the mixed version yields the following observation: the explicit loop remains the fastest, while the performance of the mixed version experiences a decline. This reduction in performance for the mixed version is attributed to the compiler's challenge in determining the optimal distribution of instructions across gangs and vectors.

Time(%) Total Time (ns) Name 0 ------------------------------------------
During the computation phase, the utilization of the explicit loop construct consistently results in better performance, whether executed on a CPU or GPU.

Loop expressing

Initializing/Copying Arrays

In cases where a loop does not involve data reuse, as seen during the initialization phase of calculations, optimizing efforts should be directed toward enhancing spatial data locality. To cater to this goal, specialized functions are available for initialization and copying, denoted as msetN and mcopyN, where N corresponds to the calculation precision. It's important to emphasize that these functions are not native Fortran intrinsic functions. Consequently, the code should be structured in a manner that prompts the compiler to utilize them (if automatic utilization is not feasible).

Let's revisit the three approaches to expressing the loop construct: explicit, array, and mixed, as illustrated in the following example. Upon compiling the code with optimization options, the ensuing outcomes are evident: The explicit loop is vectorized by the compiler. For the array and mixed versions, the compiler employs optimized memory functions, mset and mcopy, resulting in enhanced performance. It's worth noting a potential drawback of the array notation: if the cache becomes saturated, it can lead to latencies that adversely affect overall performance. The mixed construct strategically confines the application of mset or mcopy to the first dimension of arrays, aligning with an optimal cache blocking strategy. When utilizing the "KERNELS" construct on the GPU, the explicit loop structure and array notation yield equivalent outcomes. In both instances, the compiler performs an auto-collapsed operation as illustrated below. Nevertheless, in the mixed version, the compiler treats the outer and inner loops distinctly, employing diverse gang, worker, and vector sets. Consequently, this approach results in inferior performance compared to the two preceding cases. ----------------------------------- For execution on the CPU, opting for a mixed loop and array approach consistently results in better performance. However, on the GPU, the explicit loop consistently ensures better performance.

Initializing/Copying Arrays

Loop fusion

Loop fusion involves the merging of neighboring or closely situated loops into a singular loop. The advantages of loop fusion mirror those of loop unrolling. Moreover, when the two pre-optimized loops access shared data, loop fusion enhances cache locality, furnishing the compiler with greater prospects for harnessing instruction-level parallelism. Let's examine the subsequent example to delve deeper into this concept. 

#IFDEF _OPENACC #IF defined KER !$ACC END KERNELS #ENDIF #ENDIF ENDSUBROUTINE fuseda SUBROUTINE fuseddo(x, y, z, s, v, n, m) DIMENSION x(n,m), y(n,m), z(n,m), s(n,m), v(n,m) #IFDEF _OPENACC #IF defined LOO !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT) #ELIF defined KER !$ACC KERNELS DEFAULT(PRESENT) #ENDIF #ENDIF DO j = 1, m DO i = 1, n t = x(i,j) * y(i,j) u = z(i,j) + s(i,j) v(i,j) = t / u ENDDO ENDDO #IFDEF _OPENACC #IF defined KER !$ACC END KERNELS #ENDIF #ENDIF ENDSUBROUTINE fuseddo
In this example, the dummy arguments are established through implicit shape declaration. The compiler notification indicates that three loops remain unfused. This outcome arises from the com-piler's lack of knowledge regarding the number of iterations (size) associated with each dummy argument.

nofused: 32, Loop not fused: different loop trip count Generated vector simd code for the loop 33, Loop not fused: different loop trip count Generated vector simd code for the loop 34, Loop not fused: function call before adjacent loop Generated vector simd code for the loop

We have the option to furnish the compiler with information regarding the size of the dummy argument. In such instances, the compiler gains the understanding that the subsequent three loops share the same number of iterations. Consequently, when employing the optimization option, the compiler is empowered to fuse these loops. Consequently, the compiler successfully merges loops 55, 56, and 57, as depicted. The process of loop fusion, in this case, contributes to enhanced performance.

fuseda:

49, Array assignment / Forall at line 50,51 fused Loop not fused: function call before adjacent loop Generated vector simd code for the loop

As previously emphasized, utilizing an explicit loop is preferable over employing an array notation. Furthermore, in the provided example, the arrays t and u are local variables that could potentially be substituted with scalars. Adopting scalars in place of arrays has yielded an improvement in performance. Upon compiling the code for GPU execution, a comparable pattern emerges: loop fusion is achievable when we explicitly declare the shape of the arrays. However, the explicit loop maintains an advantage by employing scalars within the loop. Looking at the performance on GPU reveals the following: when utilizing an implicit array, the compiler initiates three KERNELS, contributing to approximately 43.2% of all calculations. In contrast, the explicit loop with scalars demonstrates a significantly reduced workload, accounting for only 23% of the total calculations.

Time(%) Total Time (ns)

Name 0 --------------------------------------- Merging identical loops into a singular loop enhances vectorization on the CPU and improves KERNEL occupancy on the GPU. This yields improved performance in both cases.

Loop fusion

Loop tiling

To mitigate cache misses and paging activity, it is effective to divide extensive matrices into smaller rectangular blocks. This partitioning is achieved by segmenting the "iteration space" into blocks. An illustrative case is the multiplication of square matrices. According to its definition, every entry in the product matrix x necessitates the inclusion of an entire row and column from the matrices undergoing multiplication. When implemented in a straightforward manner, as demonstrated above, this implies that one of the matrices will always be accessed along its less-efficient direction (such as row-wise in Fortran). Furthermore, given that each row of y and each column of z are used N times, there could potentially be as many as N repeated fetches of both matrices in their entirety, as seen in the conventional matrix multiplication approach. This poses a significant performance drawback and prompts an exploration for an improved approach to define the memory layout for this operation.

A viable strategy involves tailing a conventional loop, wherein an outer loop iterates over the tails, while the inner loop traverses each tail sequentially. The selection of the tile size should be made carefully to ensure it fits within the cache. This optimization technique aims to mitigate the mentioned performance challenges. The scenario on the GPU presents a contrast. In the GPU context, the compiler exclusively parallelizes loops 62 and 63, leaving the rest of the loops as sequential. Consequently, the manual loop tailing approach is anticipated to perform significantly slower on the GPU compared to the conventional implementation. Nonetheless, there exists a means to direct the GPU compiler towards implementing loop tailing. This is achieved through the utilization of the TILE clause, demonstrated as follows:

SUBROUTINE mmontailingGPU (x, y, z, n) DIMENSION x(n,n), y(n,n), z(n,n) #IFDEF _OpenACC #IF defined LOO !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT) #ELIF defined KER !$ACC KERNELS DEFAULT(PRESENT) #ENDIF #ENDIF x(:,:) = 0. !$ACC LOOP TILE(64,64) DO i = 1, n DO j = 1, n DO k = 1, n x(i,j) = x(i,j) + y(i,k) * z(k,j) END DO END DO END DO #IFDEF _OpenACC #IF defined KER !$ACC END KERNELS 100 #ENDIF 101 #ENDIF 102 ENDSUBROUTINE mmontailingGPU
The profile report indicates that compiler-induced tailing enhances GPU performance, while manual tailing results in inferior performance on the GPU.

Time(%) Total Time (ns)

Name 0 ------------------------------------------------- Loop tailing enhances performance on both the CPU and GPU. On the CPU, this optimization needs to be manually implemented by the developer (with directives available in the Cray compiler). Conversely, on the GPU, loop tailing is achieved using the "TILE" clause within the loop construct.

Loop tiling

Repeated array accesses

There are cases inside a loop where multiple accesses are made to the same index of an array. Let's revisit the matrix multiplication example discussed in the preceding section:

32 DO j = 1, n 33 DO i = 1, n 34 x(i,j) = 0. 35 DO k = 1, n 36 x(i,j) = x(i,j) + y(i,k) * z(k,j) 37 END DO 38
END DO 39 END DO When dealing with x(i, j) in each iteration, the compiler is required to access cache memory repeatedly, resulting in inefficiency. A potential remedy for addressing repeated array accesses involves substituting them with temporary scalar variables, as demonstrated below: This approach prompts the compiler to allocate the variable tem within a register, ensuring rapid accessibility for the floating-point unit's operations.

Substitute the repeated array accesses with temporary scalar variables.

Repeated array accesses

Vectorization/Parallelization

Vectorization involves the process of converting an algorithm that initially operates on individual scalar values, processing one pair of operands at a time, into a vector operation. In a vector operation, a single instruction can operate on a group of data elements simultaneously, known as SIMD. Examples of operations that can be vectorized include tasks such as Linear Algebra, Fast Fourier Transforms, and Vector Math. Various approaches can be employed to vectorize code, including automatic vectorization by the compiler, using SIMD constructs, utilizing Array notation, and more. When dealing with nested loops, it's important to note that the compiler typically vectorizes the inner loop. Compiler-generated vectorization reports contain valuable insights. These reports highlight which loops were vectorized and, importantly, provide explanations for loops that were not vectorized. The lack of successful vectorization can stem from various facts.

I/O

Vectorization of a loop can be broken by I/O operations, such as leaving a debugging "WRITE" statement. In the following example, a debugging break point is situated within the loops. x(i,j) = 2. * x(i,j) * z(i,j) + x(i,j) * x(i,j) + x(i,j) * x(i,j) 23 y(i,j) = Upon examining the compiler message, it is evident that the loop is not subject to vectorization owing to an external function call.

21, Loop not vectorized/parallelized: contains call

To benefit from vectorization, the above code can be adjusted by relocating all debugging options outside of the calculation loop. It's important to mention that the conditional statement could also be eliminated using a reduction construct. The revised code is as follows: Now, the compiler generates a vectorized version of the inner loop, along with vectorizing the required reduction for the termination condition.

iov: 47, Loop not fused: different loop trip count 48, Generated vector simd code for the loop 53, maxval reduction inlined Loop not fused: function call before adjacent loop Generated vector simd code for the loop containing reductions

The primary issue arising from incorporating debugging options within the loop becomes more pronounced when compiling the code for GPU execution. On the GPU, calling the compiler runtime function is unsupported. Hence, all instances of "PRINT" and "WRITE" must be positioned outside the computational kernel. Conversely, in the second version, the "KERNELS" construct effectively collapses and parallelizes the loops, as indicated below: 

Procedures

Calling a procedure (function or subroutine) within a loop hinders the compiler's ability to vectorize the loop. An example is provided below, demonstrating a situation where the "IOIPSL" routine is called within a loop. If a certain condition is met, the "IOIPSL" routine will terminate the code. x(i,j) = 2. * x(i,j) * z(i,j) + x(i,j) * x(i,j) + z(i,j) * z(i,j) 75 y(i,j) = x(i,j) = 2. * x(i,j) * z(i,j) + x(i,j) * x(i,j) + z(i,j) * z(i,j) 100 y(i,j) = In this scenario, the compiler performs subroutine inlining and successfully vectorizes the loop, as indicated by the compiler message.

23, proyv inlined, size=25, file Vectorization.f90 (88) 97, Loop not fused: different loop trip count 98, Generated vector simd code for the loop FMA (fused multiply-add) instruction(s) generated 99, Loop not fused: function call before adjacent loop Generated vector simd code for the loop containing reductions

By implementing this adjustment, the code becomes well-suited for GPU execution as well. The loop is executed on the GPU, and a scalar variable can be conveniently copied from the GPU to the CPU. The stop condition is examined, and if the condition evaluates to true, the code halts. To optimize vectorization when running on the CPU and parallelization when on the GPU, it is advisable to refrain from embedding any I/O procedures and debugging within the loops.

I/O

Function

Functions can be called within loops while maintaining loop vectorization, employing three approaches: (i) calling an external function with enforced inlining, (ii) encapsulating the function in an external file and including it within the main program, and (iii) defining the function as an internal entity within the program. These techniques are illustrated in the following example: 

ENDIF DO j = 1, m DO i = 1, n a = 2. * x(i,j) * z(i,j) + x(i,j) * x(i,j) + z(i,j) * z(i,j) y(i,j) = fu(a) ENDDO ENDDO #IFDEF _OPENACC #IF defined KER !$ACC END KERNELS #ENDIF #ENDIF ENDSUBROUTINE profyv2 SUBROUTINE profyv3(x, y, z, n, m) DIMENSION z(n,m), y(n,m), x(n,m) fu(t) = 1.-EXP(-t) #IFDEF _OPENACC #IF defined LOO !$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT) #ELIF defined KER !$ACC KERNELS DEFAULT(PRESENT) #ENDIF #ENDIF DO j = 1, m DO i = 1, n a = 2. * x(i,j) * z(i,j) + x(i,j) * x(i,j) + z(i,j) * z(i,j) y(i,j) = fu(a) ENDDO ENDDO #IFDEF _OPENACC #IF defined KER !$ACC END KERNELS #ENDIF #ENDIF ENDSUBROUTINE profyv3 SUBROUTINE profyv4(x, y, z, n, m) !$ACC ROUTINE(funva) vector DIMENSION z(n,m), y(n,m), x(n,m), a(n) #IFDEF _OPENACC #IF defined LOO !$ACC PARALLEL LOOP GANG PRESENT(x,y,z) CREATE(a) #ELIF defined KER !$ACC KERNELS PRESENT(x,y,z) CREATE(a) #ENDIF #ENDIF DO j = 1, m
a(:) = 2. * x(:,j) * z(:,j) + x(:,j) * x(:,j) + z(:,j) * z(:,j) y(:,j) = funva(a(:

),n) ENDDO #IFDEF _OPENACC #IF defined KER !$ACC END KERNELS #ENDIF #ENDIF ENDSUBROUTINE profyv4
Upon compiling the code for CPU execution, even when employing the aggressive inline option, the first version of the code yields the following message: profyv1: 144, Loop not vectorized/parallelized: contains call 145, FMA (fused multiply-add) instruction(s) generated profyv2:

166, FMA (fused multiply-add) instruction(s) generated 167, Generated vector simd code for the loop FMA (fused multiply-add) instruction(s) generated profyv3:

189, FMA (fused multiply-add) instruction(s) generated 190, Generated vector simd code for the loop FMA (fused multiply-add) instruction(s) generated profyv4:

212, Loop not vectorized/parallelized: contains call FMA (fused multiply-add) instruction(s) generated 213, Loop not fused: function call before adjacent loop Generated vector simd code for the loop FMA (fused multiply-add) instruction(s) generated

As evident from the results, the compiler does not vectorize loop 144. The function is called n times, corresponding to the number of iterations in the loops. The cumulative execution time is also displayed in the performance profile. Now, let's explore the compiler's behavior when we incorporate the function into the program.

There are distinct advantages to employing the "INCLUDE" approach. Firstly, the compiler vectorizes the most interior loop (167), resulting in an execution time that is nearly one-third of the previous case. However, an even more optimized situation arises when defining the function as an internal function within the code. Here, the compiler vectorizes the most inner loop, leading to a reduced execution time compared to the "INCLUDE" approach.

Furthermore, we should consider the function call scenario when the function returns an array instead of a scalar. In this scenario, the number of function calls is reduced, potentially leading to improved performance. Remarkably, the compiler manages to vectorize the inner loop in this case, and the operations within the function are also optimized.

In terms of performance, the most favorable outcome is achieved by explicitly incorporating the function within the routine. The second-best approach is employing the "INCLUDE" method. Notably, calling an external function in the vectorized case (profyv4) demonstrates enhanced performance compared to calling an external scalar function. When compiling the code for GPU execution, the benefits of employing "INCLUDE" or an internal function over the CALL become even more evident. Calling a procedure within a GPU kernel necessitates the explicit definition of the level of parallelism for the procedure. This entails specifying how the loops are to be distributed across the GPU threads. In the provided example, the two loops are parallelized on the GPU using the "GANG" and "VECTOR" levels of parallelism (representing two layers of parallel execution on the GPU). Therefore, we guide the compiler to utilize a sequential version of the function, as demonstrated below: By providing this clarification to the compiler, the execution times for the first three versions will converge to nearly identical values when employing either the PARALLEL or KERNELS constructs. The compiler treats all three versions similarly due to the specified adjustments: When executing on a GPU, it's necessary to explicitly denote the vectorial operation within the function. Despite this declaration, the performance doesn't match that of the previous cases.

Time(%) Total Time (ns)

Name 0 --------------------------------------------- To enhance vectorization during CPU execution and parallelization on a GPU, it is advisable to refrain from calling external functions within loops. Instead, consider utilizing "IN-CLUDE" or internal functions.

Function

Indirect addressing

Indirect addressing involves using a variable or pointer that holds the memory address. This scenario arises when dealing with an unstructured mesh or sorting an array, where memory access tends to be non-sequential. This poses a challenge to the compiler since it cannot predict the memory addresses to be accessed due to potential randomness, striding, proximity, or distance. Such access patterns often lead to suboptimal performance. To address this issue, one potential solution involves incorporating a contiguous dimension within the indirect addressing. By doing so, a significant portion of memory accesses can remain contiguous, thereby improving performance. The following example illustrates this concept: y(i,inx(j)) = 2. * x(i,j) * z(i,inx(j)) + x(i,j) * x(i,j) + z(i,inx(j)) * z(i,inx(j)) 286 ENDDO 287 ENDDO 288 ENDSUBROUTINE indirect2

In the provided example, memory access occurs randomly due to the shuffled indexes. In the first version, the loop does not get vectorized by the compiler because the array reference does not have a stride-1 pattern, which implies that threads will not access contiguous data from the arrays. However, introducing an extra dimension as the leftmost dimension in the array preserves memory contiguity, allowing the compiler to utilize vectorization. 

IFs

Straightforward computations within simple "DO" loops can often be efficiently mapped to vector instructions. However, the presence of branching and conditionals, such as an "IF" statement within a loop, can hinder vectorization. This is because vector instructions struggle to represent branching operations. Nevertheless, compilers can sometimes circumvent this limitation by employing masked assignments for basic conditionals. In this approach, the compiled code employs vector instructions to execute both branches of the conditional ("THEN" and "ELSE" clauses). The branching condition itself is also evaluated using vectorized operations. Ultimately, a mask is applied during the final assignment to determine which results to retain from each branch. Despite this masking technique, loops containing "IF" statements tend to have longer execution times. Let's explore this with an example: In the first scenario, the compiler managed to vectorize loop 251 even in the presence of the "IF" condition. However, it's often possible for developers to circumvent the need for conditional statements through the use of mathematical expressions. In the provided example, the inclusion of the conditional statement led to a nearly twofold slowdown in the code's performance. ---------------------------------------------- Avoid introducing branches within loops whenever possible. Aim to maintain a single, coherent control flow within the loop.

IFs

Dependence

Loop-carried dependence refers to a situation where the execution of iterations in a loop is influenced by the values computed in previous iterations, e.g., in time/space marching. It arises when the correct order of execution is necessary to obtain accurate results, and changing the order could lead to incorrect or unpredictable outcomes. One example is given below: A potential solution for this issue involves precomputing all major calculations into a temporary array using SIMD processing. Then, isolate the sequential operations to the minimum workload feasible, as depicted below: 

301 DO j = 1, m 302 t(j) = fu(x(j- 1 

Management of memory

Fortran provides several mechanisms for managing memory, especially through intrinsic functions, array declarations, and dynamic memory allocation. Here are some key aspects of memory management in Fortran.

Dynamic memory allocation

Dynamic memory allocation in Fortran allows for precise control over the creation and destruction of workspaces. This can be achieved by declaring allocatable arrays, which are essentially placeholders without assigned memory until they are specifically allocated within the program or subprogram. Once their purpose is fulfilled, these arrays can be deallocated to free up memory resources. 

Pointers

Pointer variables provide a higher level of control, offering even more flexibility than allocatable arrays. Similar to allocatable arrays, pointers can be allocated memory as needed. However, pointers offer an added advantage -they can also serve as references to existing targets that are named separately. This allows pointers to act as dynamic aliases for other variables and arrays, enhancing their versatility. Consider a practical scenario involving the "Diffusive" problem in a one-dimensional context. In this context, a tridiagonal system of equations can be efficiently solved. However, the complexity increases when dealing with implicit problems in two-dimensional or three-dimensional settings, where the coefficient matrix takes on a Pentadiagonal or Heptadiagonal form. To address this challenge, an effective strategy is to employ the alternating direction implicit (ADI) method. This approach transforms the original problem into a sequence of tridiagonal systems for each direction: x, y, and z. Nonetheless, when utilizing ADI, it's necessary to update the coefficient matrix for each direction. To facilitate this process, a promising approach is to utilize pointer variables to represent the coefficients. This allows for greater flexibility in handling the evolving coefficient matrices in different directions. b => gridvar%data(2:grid%n1,j,2 ) c => gridvar%data(2:grid%n1,j,3 )

x => gridvar%data(2:grid%n1,j,12) g => gridvar%data(2:grid%n1,j,7 ) CALL trdiag(grid%n1-1,a,b,c,x,g) gridvar%data(2:grid%n1,j,12) = x(:) ENDDO ! Y Sweep DO i=2,grid%n1 a => gridvar%data(i,2:grid%n2,4 ) b => gridvar%data(i,2:grid%n2,5 ) c => gridvar%data(i,2:grid%n2,6 )

x => gridvar%data(i,2:grid%n2,11) g => gridvar%data(i,2:grid%n2,8 ) CALL trdiag (grid%n2-1,a,b,c,x,g) gridvar%data(i,2:grid%n2,11) = x(:) ENDDO Opt for pointer variables instead of array copying. Pointers provide the most effective approach in Fortran for array manipulation.

Management of memory

Errors in floating-point computations

Errors in floating-point computations can arise due to the limitations of representing real numbers with finite precision in binary. Here are some common types of errors:

• Truncation error: when a continuous mathematical process is approximated by a discrete process, leading to a difference between the exact mathematical solution and the approximate numerical solution

• Rounding Errors: Floating-point numbers can't represent all real numbers exactly, leading to rounding errors when converting between decimal and binary representations.

• Overflow and Underflow Errors: When the magnitude of a number exceeds the range that can be represented, overflow occurs (resulting in infinity), or underflow occurs (leading to zero or denormalized numbers).

• Cancellation Errors: Subtracting two nearly equal numbers can lead to a significant loss of precision, as the significant digits "cancel out."

• Precision Errors: Repeated arithmetic operations can lead to loss of precision. The more operations you perform, the more the result might deviate from the actual value.

• Representation Errors: Some decimal numbers can't be represented exactly in binary, resulting in small discrepancies between the actual value and its floating-point representation.

• Propagation of Errors: Errors can propagate through calculations, potentially magnifying inaccuracies in complex computations or iterative algorithms.

• Loss of Associativity: Floating-point arithmetic doesn't always follow the associative property due to rounding. Changing the order of operations might yield slightly different results.

• Numerical Instability: Certain algorithms can amplify small errors, causing inaccurate results. This is particularly relevant in iterative methods and simulations.

Here are some tips to avoid errors in floating-point computations:

• Choose the Right Data Type: Select the appropriate floating-point data type based on the required precision and range. For example, consider using REAL for faster computation and REAL(8) or DOUBLE PRECISION for higher precision.

• Understand the Algorithms: Be aware of the numerical characteristics of the algorithms you're using. Some algorithms are more prone to numerical instability or cancellation than others.

• Minimize Accumulated Errors: Avoid excessive accumulation of rounding errors by reordering operations or using compensated algorithms to reduce the loss of precision.

• Utilize established libraries and programming languages that provide robust implementations of floating-point arithmetic.

• Normalize Inputs: When possible, normalize inputs to a range that minimizes precision loss. This can help prevent underflow or overflow.

• Avoid Subtraction of Nearly Equal Numbers: In situations where subtracting nearly equal numbers is necessary, consider using alternative methods that preserve precision.

• Perform Error Analysis: Analyze the error propagation in your computations. This can help you anticipate where errors might accumulate and take measures to mitigate them.

• Use Robust Algorithms: Some algorithms are designed to be more robust in the presence of floating-point errors. Research and choose algorithms that are well-suited for your specific problem.

• Implement Error Handling: Handle exceptional cases like overflow, underflow, and NaN values gracefully in your code. Make sure your program doesn't crash due to these scenarios.

• Avoid Unnecessary Conversions: Minimize conversions between floating-point and integer types, as they can introduce rounding errors.

• Keep Scale in Mind: Scaling your problem to a range that works well with the floating-point format can help maintain accuracy.

  > Many lines that do not use x x = a + b * c + d / e y = x + other_stuff

  SUBROUTINE nofused(x, y, z, s, v) DIMENSION x(:,:), y(:,:), z(:,:), s(:,:), v(:,:) DIMENSION t(SIZE(x, DIM=1),SIZE(x, DIM=2)) DIMENSION u(SIZE(x, DIM=1),SIZE(x, DIM=2)) #IFDEF _OPENACC #IF defined KER !$ACC KERNELS PRESENT(x,y,z,s,v) CREATE(t,u) #ENDIF #ENDIF t(:,:) = x(:,:) * y(:,:) u(:,:) = z(:,:) + s(:,:) v(:,:) = t(:,:) / u(:,:)#IFDEF _OPENACC #IF defined KER !$ACC END KERNELS #ENDIF #ENDIF ENDSUBROUTINE nofused SUBROUTINE fuseda(x, y, z, s, v, n, m) DIMENSION x(n,m), y(n,m), z(n,m), s(n,m), t(n,m), u(n,m), v(n,m) #IFDEF _OPENACC#IF defined KER !$ACC KERNELS PRESENT(x,y,z,s,v) CREATE(t,u) #ENDIF #ENDIF t(:,:) = x(:,:) * y(:,:) u(:,:) = z(:,:) + s(:,:) v(:,:) = t(:,:) / u(:,:)

  18 SUBROUTINE iononv(x, y, z, n, m) 19 DIMENSION z(n,m), y(n,m), x(n,m) 20 DO j = 1, m 21 DO i = 1, n 22

  70 SUBROUTINE pronov(x, y, z, n, m) 71 DIMENSION z(n,m), y(n,m), x(n,m

  default present(x(:n,:m),z(:n,:m),y(:n,:m)) profyv2: 161, Generating Tesla code 166, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x 167, ! blockidx%x threadidx%x collapsed 161, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m)) profyv3: 184, Generating Tesla code 189, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x 190, ! blockidx%x threadidx%x collapsed 184, Generating default present(x(:n,:m),z(:n,:m),y(:n,:m)) profyv4: 207, Generating present(x(:,:),z(:,:),y(:,:)) Generating create(a(:)) [if not already present] Generating Tesla code 212, !$acc loop gang ! blockidx%x 213, !$acc loop seq 213, Loop is parallelizable

  268 SUBROUTINE indirect1(x, y, z, m) 269 DIMENSION z(m), y(m), x(m), yy(m(j)) = 2. * x(j) * z(inx(j)) + x(j) * x(j) + z(inx(j)) * z(inx(j)) 275 ENDDO 276 ENDSUBROUTINE indirect1 277 278 SUBROUTINE indirect2(x, y, z, n, m) 279 DIMENSION z(n,m), y(n,m), x(n,m), yy(n,m

  not vectorized: data dependency Loop unrolled 2 times FMA (fused multiply-add) instruction(s) generated

  REAL(KIND=dp_t), POINTER, DIMENSION (:) :: a => NULL(), b => NULL(), c => NULL(), g => NULL(), x => NULL()Then we can update the coefficients as follows. The coefficients are in principle different in shape.

Table 1 :

 1 Debuging options

	Option	Description
	-O0	Hinder any optimizations
	-C/-Mbounds	Generate code to check array bounds
	-g	Generate information for debugger + [-O0]
	-Ktrap=fp	Controls on the floating-point exceptions
	-Kieee	Floating-point operations with the IEEE 754 standard
	-traceback	Add debug information for runtime traceback
	-Mchkptr	Check for NULL pointers
	-Mchkfpstk	Check the consistency of floating point stack at procedures call
	-Mdepchk	Check dependence relations for vector or parallel code
	-Mchkstk	Check for sufficient stack space upon subprogram entry
	-Minfo	Print compiler feedback messages

Table 2 :

 2 Optimization control.

	Level	Description
	-O0	No optimization, Compiler generates a basic block for each language statement.
	-O1	Scheduling of basic blocks + Register allocation
	-O	Scalar optimization + Induction recognition + Loop invariant motion. No SIMD vectorization
	-O2	[-O1] + [-O] + SIMD vectorization + Cache alignment + Partial redundancy elimination
	-O3	[-O1] + [-O2] + Aggressive hoisting + Scalar replacement optimizations
	-O4	[-O1] + [-O2] + [-O3] + hoisting of guarded invariant floating point expressions

Table 3 :

 3 Vectorization control.

	Option	Description
	-Mvect=[no]altcode	Enable/disable alternate code generation for vectorization
	-Mvect=cachesize:n	Assume a cache size of n when performing cache tiling
	-Mvect=[no]fuse	Enable/disable loop fusion
	-Mvect=partial	Generate partial vectorization
	-Mvect=prefetch	Generate prefetch instructions
	-Mvect=[no]sse	Enable/disable vectorize the loops with SSE/SSE2 + prefetch instructions
	-Mvect=simd:n	Vectorize using SIMD either 128/256/512 bits wide
	-Mvect=[no]assoc	Enable/disable associativity conversions
	-Mvect=[no]tile	

Table 4 :

 4 -fast control.

	Option	Description
	-O2	See Table2
	-Mvect=simd	See Table3
	-Munroll=c:1	Unroll loops with a loop count of 1
	-Mautoinline	Enable automatic function inlining
	-Mflushz	Set SSE to flush-to-zero mode if a floating-point underflow occurs
	-Mlre	Loop-carried redundancy elimination
	-Mcache_align	Align large objects on cache-line boundaries

  Running the code without applying any optimization options results in a significant tenfold decrease in the performance of the loop.

	41	#ENDIF				
	42 #ENDIF				
	43 ENDSUBROUTINE conti			
	44					
	45 SUBROUTINE nonconti(x, y, z, n, m)	
	46 DIMENSION z(n,m), y(n,m), x(n,m)	
	47 #IFDEF _OpenACC			
	48	#IF defined LOO			
	49	!$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
	50	#ELIF defined KER			
	51	!$ACC KERNELS DEFAULT(PRESENT)	
	52	#ENDIF				
	53 #ENDIF				
	54 DO i = 1, n				
	55	DO j = 1, m			
	56	x(i,j) = x(i,j) + y(i,j) * z(i,j)	
	57	ENDDO				
	58 ENDDO				
	59 #IFDEF _OpenACC			
	60	#IF defined KER			
	61	!$ACC END KERNELS			
	62	#ENDIF				
	63 #ENDIF				
	64 ENDSUBROUTINE nonconti			
	%	cumulative	self		self	total
	time	seconds	seconds	calls	s/call	s/call name
	68.72	6.68	6.68	1	6.68	6.68 locality_nonconti_
	28.05	9.41	2.73	1	2.73	9.78 locality_locality_
	3.83	9.78	0.37	1	0.37	0.37 locality_conti_
	0.00	9.78	0.00	1	0.00	9.78 MAIN_
	24 SUBROUTINE conti(x, y, z, n, m)		
	25 DIMENSION z(n,m), y(n,m), x(n,m)	
	26 #IFDEF _OpenACC			
	27	#IF defined LOO			
	28	!$ACC PARALLEL LOOP COLLAPSE(2) DEFAULT(PRESENT)
	29	#ELIF defined KER			
	30	!$ACC KERNELS DEFAULT(PRESENT)	
	31	#ENDIF				
	32 #ENDIF				
	33 DO j = 1, m				
	34	DO i = 1, n			
	35	x(i,j) = x(i,j) + y(i,j) * z(i,j)	
	36	ENDDO				
	37 ENDDO				
	38 #IFDEF _OpenACC			
	39	#IF defined KER			
	40	!$ACC END KERNELS			

  This complex loop structure incurs additional overhead in terms of loop initialization and control. However, it offers the advantage of minimizing paging activity and maximizing the reuse of data already present in the cache. When running the code on the CPU, the loop-tailing version exhibits better performance.

	46 SUBROUTINE mmontailing (x, y, z, n, is, js, ks)
	47 DIMENSION x(n,n), y(n,n), z(n,n)	
	48 #IFDEF _OPENACC			
	49	#IF defined KER			
	50	!$ACC KERNELS DEFAULT(PRESENT)	
	51	#ENDIF				
	52 #ENDIF				
	53 x(:,:) = 0.				
	54 DO it = 1, n, is			
	55	DO jt = 1, n, js			
	56	DO kt = 1, n, ks			
	57	DO j = jt, min(n, jt+js-1)	
	58	DO k = kt, min(n, kt+ks-1)	
	59	DO i = it, min(n, it+is-1)	
	60		x(i,j) = x(i,j) + y(i,k) * z(k,j)
	61	ENDDO			
	62	ENDDO			
	63	ENDDO				
	64	ENDDO				
	65	ENDDO				
	66 ENDDO				
	67 #IFDEF _OPENACC			
	68	#IF defined KER			
	69	!$ACC END KERNELS			
	70	#ENDIF				
	71 #ENDIF				
	72 ENDSUBROUTINE mmontailing		
	%	cumulative	self		self	total
	time	seconds	seconds	calls	s/call	s/call name
	72.72	5.46	5.46	1	5.46	5.46 caching_mmnotailing_
	27.67	7.54	2.08	1	2.08	2.08 caching_mmontailing_
	0.00	7.54	0.00	1	0.00	0.00 MAIN_
	0.00	7.54	0.00	1	0.00	7.54 caching_cachemanager_

  We can employ a similar approach as previously mentioned to facilitate loop vectorization. The call can be positioned after the loop (if feasible).

	88 SUBROUTINE proyv(x, y, z, n, m)
	89 DIMENSION z(n,m), y(n,m), x(n,m)
	90 #IFDEF _OpenACC
	91	#IF defined LOO
	92	!$ACC PARALLEL LOOP COLLAPSE(2) PRESENT(x,y,z)
	93	#ELIF defined KER
	94	!$ACC KERNELS PRESENT(x,y,z)
	95	#ENDIF
	96 #ENDIF
	97 DO j = 1, m
	98	DO i = 1, n
	99	
		1.-EXP(-x(i,j))
	76	IF (y(i,j).GE.0.5) THEN
	77	CALL ipslerr_p(3,'Oops -> An erros is found', &
	78	'All values must be smaller than 0.5', &
	79	'Check the calculations', '')
	80	ENDIF
	81	ENDDO
	82 ENDDO
	83 ENDSUBROUTINE pronov
		The compiler report indicates:
	73, Loop not vectorized/parallelized: contains call

  Similar behavior is observed when running the code on a GPU. Despite the compiler's efforts to parallelize both versions, the version without branching achieves faster execution on the GPU. The compiler report and execution times for the two versions are provided below:

	ifsindo1:				
	225, Generated vector simd code for the loop
	ifsindo2:				
	252, Generated vector simd code for the loop
	%	cumulative	self		self	total
	time	seconds		seconds	calls ms/call ms/call name
	79.27	0.19	0.19	1	190.25	190.25 vectorial_ifsindo1_
	20.86	0.24	0.05	1	50.07	50.07 vectorial_ifsindo2_
	0.00	0.24	0.00	1	0.00	0.00 MAIN_
	0.00	0.24	0.00	1	0.00	240.31 vectorial_vec_
	ifsindo1:				
	219, Generating present(x(:,:),z(:,:),y(:,:))
		Generating Tesla code	
		224, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
		225,	! blockidx%x threadidx%x collapsed
	ifsindo2:				
	246, Generating present(x(:,:),z(:,:),y(:,:))
		Generating Tesla code	
		251, !$acc loop gang, vector(128) collapse(2) ! blockidx%x threadidx%x
		252,	! blockidx%x threadidx%x collapsed
	Time(%) Total Time (ns)			Name
	0 -					

MODULE functions

CONTAINS