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Saclay, Gif-sur-Yvette
91190, France and
3INRA Centre de
Bordeaux Aquitaine,
Villenave 33140,
France

∗Corresponding
author. E-mail:
maria.piles@uv.es

Received 25 July
2022; Revised 24
January 2023;
Accepted 1 February
2023

ABSTRACT
Environmental change is a consequence of many interrelated factors. How vegetation responds to natural
and human activity still needs to be well established, quantified and understood. Recent satellite missions
providing hydrologic and ecological indicators enable better monitoring of Earth system changes, yet there
is no automatic way to address this issue directly from observations. Here, we develop an observation-based
methodology to capture evidence of changes in global terrestrial ecosystems and attribute these changes to
natural or anthropogenic activity. We use the longest time record of global microwave L-band soil moisture
and vegetation optical depth as satellite data and build spatially explicit maps of change in soil and
vegetation water content and biomass reflecting large ecosystem changes during the last decade, 2010–20.
Regions of prominent trends (from−8% to 9% per year) are observed, especially in humid and semi-arid
climates. We further combine such trends with land cover change maps, vegetation greenness and
precipitation variability to assess their relationship with major documented ecosystem changes. Several
regions emerge from our results.They cluster changes according to human activity drivers, including
deforestation (Amazon, Central Africa) and wildfires (East Australia), artificial reforestation (South-East
China), abandonment of farm fields (Central Russia) and climate shifts related to changes in precipitation
variability (East Africa, North America and Central Argentina). Using the high sensitivity of soil and
vegetation water content to ecosystem changes, microwave satellite observations enable us to quantify and
attribute global vegetation responses to climate or anthropogenic activities as a direct measure of
environmental changes and the mechanisms driving them.

Keywords: soil moisture, vegetation water content, ecosystem, trend, remote sensing, soil moisture and
ocean salinity satellite

INTRODUCTION
The ‘dry gets drier, wet gets wetter’ paradigm was
suggested to describe the evident effects of climate
warming in most terrestrial ecosystems [1–3]. Land
water availability is a crucial resource for vegetation
development and health status, as the limitation of
freshwater can induce permanent changes in ecosys-
tems. Coupling between soil and vegetation water
content is key to understanding ecological dynam-
ics in large ecosystems and their interaction with cli-
mate and human activities [4,5]. Plants play a cru-
cial role in mediating the interactions between the
land and the atmosphere.However, it is unclear how
these interactions might shift with a changing cli-
mate, such as drier air, increased temperatures or

changing rainfall patterns. In addition, human activ-
ity increasingly threatens the viability and resilience
of ecosystems and the human societies that depend
upon them. The effects of these threats can be pro-
found and, in recent years, have become increasingly
observable [2]. Nevertheless, how can one identify
and disentangle natural and anthropogenic drivers
of vegetation change globally, objectively and solely
from observational data?

Identifying dominant drivers of change and their
interactions with other stressors is problematic
partly because not all ecological variables can be
measured with comparable accuracy. Note that they
are only typically available over short periods and are
subject to noise, making their sensitivity harder to
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assess. Also, trends are difficult to assess since they
depend on the specific space and time scale consid-
ered and the interactions between drivers. Climate
shifts and human activities can cause large ecosys-
tem changes at global and interannual scales. Dif-
ferentiating between the two is a very challenging
yet needed endeavour. Changes in air temperature
andprecipitation can limit vegetation growth and in-
duce changes in large ecosystems [6]. On the other
hand, human activity directly impacts the Earth’s
vegetation through forest management, such as de-
forestation, reforestation and cultivation abandon-
ment. Humans consume large amounts of resources
for their own needs. Some examples include min-
ing natural resources like coal, human appropriation
of net primary production and biomass, and clear-
ing forests for urbanisation andwooduse [7].Defor-
estation and forest degradation can happen quickly,
such as when a forest is clear-cut to make way for a
palm oil plantation or a new settlement [8]. Never-
theless, this may also happen gradually due to ongo-
ing forest degradation as temperatures rise due to cli-
mate change and in response to selective logging and
fragmentation of forests [9–11].

Identifying the different causes that are driving
ecosystem functioning is a non-trivial problem on
a global scale. In particular, there is a need to un-
derstand the ecological dynamics of these climate
impacts, identify hotspots of vulnerability and re-
silience and identify management interventions that
may assist biosphere resilience to climate change.
Some studies relying on satellite data havedetected a
global increase in vegetationgreenness [12–14].The
attribution of these changes is usually reported as cli-
mate change consequences dominatedby land cover
changes of different origins. A review can be found
in [15]. Regionally, these trends can specifically be
attributed to changes in precipitation [16,17], an in-
crease inwater vapour pressure deficit due to a rise in
air temperature [18,19] or landmanagement change
[1].

Studies typically use the leaf area index, the nor-
malised difference vegetation index (NDVI) or the
gross primary production from satellite observations
as proxies for vegetation changes [12–14,20]. All
these studies have systematically used one index to
identify major changes and their drivers. However,
some recent works have introduced the analysis of
combined indices to study greening with satellite-
derived global vegetation indices, and solar-induced
fluorescence (SIF) [15] to study asynchrony in veg-
etation phenology between NDVI, vegetation opti-
cal depth (VOD) and SIF [21], or for crop yield
monitoring with the combination of vegetation in-
dices, soilmoisture (SM)andmeteorological drivers
[22].

In this work, we alternatively posit that the com-
bined analysis of soil and vegetation water content
is more sensitive to changes in ecosystem function-
ing and can jointly disentangle the different natu-
ral and anthropogenic causes of change in global
terrestrial ecosystems. We use soil moisture and
vegetation optical depth estimates derived from
passive microwave remote sensing sensors to de-
tect large ecosystems sensitive to water content
changes and attribute the causes. In particular, we
use the Soil Moisture and Ocean Salinity (SMOS)
satellite, which provides the longest record of L-
band-based SM and VOD retrievals. VOD indi-
cates vegetation water content and aboveground
biomass since it captures the extinction effects of
the microwave radiation propagating in the vegeta-
tion canopy [23,24]. Both SM and VOD are valu-
able hydrologic and ecological indicators, important
for a breadth of scientific studies and applications
such as biomass estimation [25–27], crop yield as-
sessment [22,28], agricultural drought monitoring
[29,30] and analysis of water exchange in the soil-
plant-atmosphere system [5,31–33]. Here, we in-
vestigate the interannual trends of SM and VOD at
a global scale to identify the distinct factors driv-
ing ecosystems out of balance in recent times. We
use the Mann-Kendall trend test (see the Methods
section) with a spatio-temporal approach to find-
ing significant clusters with concurrent monotonic
changes inSMandVODover the last decade (2010–
22); see the Data section. We cross-validate results
by comparing the extracted trends with precipita-
tion records and vegetation greenness data (NDVI;
see the online supplementary material). Different
spatially homogeneous groups emerge, allowing us
to identify causes/drivers of monotonic changes
in five semantically compact regions using only
satellite-based estimates of soil and vegetation water
content.

RESULTS
Soil and water are dominant natural resources for
plant growth. Soil provides the mechanical support
and nutrient reservoir necessary for plant develop-
ment, while water is essential for plant life processes.
The water exchange in the soil-plant-atmosphere
continuum depends on the species and their prop-
erties. However, it is also conditioned on large-
scale features such as the dominant land cover type,
the soil properties and the climate region. Explor-
ing these dependencies is key to understanding the
main drivers of ecosystem changes. Owing to the
high sensitivity of SM and VOD frommicrowave L-
band satellites to water content variability, they are
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Figure 1. Top: the five identified clusters of SM and VOD trends globally, with their semantic attribution. Bottom: identified
clusters represented in bivariate spaces between (left) trends of SM and VOD, (middle) trends in SM and mean annual SM,
and (right) trends of VOD and mean annual VOD. Each cluster emerges as an independent group from the joint SM and VOD
trend space: (bottom left) clusters A and D show a positive change in both SM and VOD, clusters B and E show negative
SM and VOD changes (more pronounced in E), cluster C shows a negative SM change and a positive VOD change. Estimated
joint and marginal distributions for SM and VOD highlight the distinct monotonic trends of soil and vegetation water content
in each cluster. The relation between the relative trend in VOD to its annual mean (right) shows how regions with low VOD
levels, on average, are more sensitive to VOD changes. Using the SM trends alone (middle) allows us to identify all clusters
but C, an exception due to artificial reforestation and the induced need for groundwater. Clusters A and D become separable
using the trends in VOD and rainfall, which are more pronounced in D. See Fig. S3 within the online supplementary materials.

used here to quantify and attribute large ecosystem
changes to climate or human activities for the last
decade (2010–20). We extracted monotonic trends
of SM and VOD separately by a robust algorithm
[13]; see the Methods section for details. This auto-
matic approach detected significant changes in SM
andVOD, yielding five homogeneous spatial groups
globally; see Fig. 1. Each cluster depicts amonotonic
change in SM and VOD yearly. Interestingly, these
main large ecosystem changes can only be identified
byconsidering the joint distributionof SMandVOD
trends (not the marginals). See the lower plots in
Fig. 1. Actually, better separability cluster scores are
achieved with SM and VOD than with SM or VOD
alone, or with pairwise combinations with NDVI
(see Sec. S3 within the online supplementary mate-
rial). The distinct clusters can be attributed to five
main classes related tonatural andanthropogenic ac-
tivities and have been reported independently in the
literature (Table 1).

Clusters A and D show a positive change in both
SM and VOD, clusters B and E show negative SM
and VOD changes (more pronounced in E), and
cluster C shows a negative SM change and a posi-
tive VOD change. Five regions emerged with posi-
tive SMchange, placed inRussia, AfricanEastCoast,
Indian Peninsula, Argentina and North America
(A and D in Fig. 1). This group of positive SM and
VODchange can be split into two by observing their
joint trend in annual cumulative precipitation, with
cluster A exhibiting a bigger change in rainfall (see
Fig. S3 within the online supplementary material).
Focusing on the clusters with negative SMandVOD
change, we found three regions in Amazonia, Cen-
tral Africa and the East Coast of Australia (B and E
in Fig. 1). Here, the Australian region differentiates
from the tropical forest areas in Amazonia and Cen-
tral Africa due to its stronger SM and VOD negative
trends over the last decade. A special case is found
in South-East China (C in Fig. 1), where a positive
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Table 1. Clusters and area of each identified region in Fig. 1; semantic classification and attribution of the clusters according
to the literature.

Cluster Regions Area (103 · km2) Classification References

A Russia 1338 Natural [34,35]
North America 385 reforestation [36–38]
East Africa 1461 [17,39–41]

B Amazon 1698 Deforestation [42–46]
Central Africa 1144 [47,48]

C Southeast China 469 Artificial [49–51]
reforestation

D India 1103 Rain shift or [1,52–56]
Argentina 269 irrigation change [35,38,57]
Russia 631 [34,35]
Central North America 1117 [36–38]

E East Australia 657 Wildfires [58–62]

change in VOD but negative SM with no major
change in rainfall is observed (see Fig. 2C). No clus-
ters were centred between the axis of negative VOD
and positive SM changes except for cluster A, where
VOD change is spatially heterogeneous, presenting
mainly positive but also negative changes.

The positive change in SM and VOD observed
in the African East Coast, Central Russia and
North America results from natural herbaceous en-
croachment (Africa) and woody-plant encroach-
ment (Russia and North America) (Fig. 1, cluster
A). The Eastern Africa region is mainly arid and
semi-arid, where vegetation growth is strongly water
limited; thus, an increase in rainfall is followed by an
increase in biomass, which is observed as an increase
in SM and VOD (Fig. 2D) [17,39–41].The Central
Russia region is characterised by the abandonment
of farm fields after the fall of the Soviet Union, which
led to an increase in biomass [34,35]. Here, vegeta-
tion is not water limited, yet a parallel increase in SM
and VOD is also observed; cf. Fig. 2A. The Central
North American pattern can be explained by a com-
bined increase in annual cumulative rainfall, farm-
land use and irrigation [38]. The increase in irriga-
tion in this area is probably linked to an increase in
groundwater [63].

Thenegative change in SMandVODobserved in
the Amazon, Central Africa and (to a greater ex-
tent) in eastern Australia (Fig. 1, clusters B and E)
corresponds to deforestation and wildfires and
match with previous uncored global deforested
regions [64]. Australia shows a stronger decrease in
SM and VOD over the last decade, which may be
related to the rapid degradation of forest areas, prob-
ably caused by an increase in wildfires due to cli-
mate change and Australia’s government agreement
in 2009 to legalise the land clearing to extract wood
[35,59]. The Central Africa region does not show a

significant change in SM but a clear monotonic de-
crease in VOD. This can be explained by deforesta-
tion,which is plausible given thewildfire and shifting
to cultivated areas by smallholders reported in the
literature [47,48,65].The observed pattern of defor-
estation in the Amazon can be further separated into
three subclusters. The northern region is sensitive
to dry conditions that follow a monotonic decrease
in SM but not in VOD, where a decrease in rainfall
frequency has been reported [45]. The middle and
southern regions present a heavy decrease in VOD
levels followed by a similar decrease in SM, where
the middle region is probably related to deforesta-
tion and the southern region to the land-use change
[42–44]. These patterns are further discussed in
Fig. 3 below.

Clusters that emerged as a positive change in
SM and VOD in the Indian peninsula, Central Ar-
gentina and Central North America correspond to
major land-use changes (Fig. 1, clusterD).The India
cluster is noted to have an annual variation in VOD
but not in SM; see Fig. 2D. This pattern was previ-
ously reported as an increase in croplands, mostly
over the northern area of the peninsula, where there
is no significant change in annual rainfall but a signif-
icant change in irrigation management [52,54–66]
(see Fig. S4 within the online supplementary mate-
rial). A similar pattern is found inCentral Argentina,
where an increase in cropland and farm area over the
last decade has also been reported [57]. The Cen-
tral North American pattern can be explained by a
combined decrease in livestock production followed
by the encroachment of grassland becoming forest
[38].

As shown in Fig. 1, there is a pattern related to
an increase in VOD, but a decrease in SM placed
in southeast China (cluster C).This region presents
non-significant changes in annual rainfall over the
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Figure 2. Boxplots of annual trends (in percentages) of SM, VOD, NDVI and accumu-
lated precipitation (left column) and land cover change (right column) for the period
2010–20 for clusters A to E (cf. Fig. 1 and Table 1). Land cover changes and trends
unmask the major changes in the identified clusters. Cluster A is related to natural
reforestation and shows increasing trends in SM and precipitation followed by an in-
crease in VOD. This reflects increased water supply and plant growth, mainly related to
cereal croplands. Cluster B is related to deforestation and rainfall change and reflects
a decreasing trend in all four variables. It appears more pronounced in SM and VOD,
and the degradation of forested areas transitioning to grasslands. Cluster C, related
to artificial reforestation, shows an increase in VOD and a notable decrease in SM,
probably related to the increasing water demand of new forested areas. The fact that
the NDVI changes are less pronounced can be due to the saturation effect of optical
indices in high biomass regions, which does not affect VOD in the L-band. Cluster D,
related to rain shift or irrigation changes, shows a notable increase in VOD, followed
by SM and precipitation, which correspond to two major land-use changes depending
on the region: either expansion of broadleaf croplands (e.g. northern India peninsula)
or encroachment of grassland becoming forest (e.g. Central North America). Cluster E,
related to wildfires and land clearance, shows a notable decrease in all four variables
and conversion of forest and grasslands into shrublands.

last decade (see Fig. 2C) that appear to be unrelated
to deforestation or climate shifts. An intense refor-
estation practice that has been reported in this re-
gion, impulsed by China’s government, in particu-
lar, to fight back the soil loss [49–51]. Furthermore,
reported rural depopulation in this region has in-
duced a decrease in harvested area and an increase in
tree cover [67]. Planting trees in bare soils is prob-
ably causing a soil drying trend due to the increas-
ing demand for water availability from new forested
areas. We should note the modest increase in VOD
and NDVI though in Fig. 2C, where the increase
in NDVI looks smaller. This could be attributed to
the fact that most of the reforestation in southeast
China replaced grasslands and broadleaf croplands
with evergreenbroadleaf forests [49].The sensitivity
of VOD to this class cover change is (slightly) higher
than that of NDVI, which saturates in densely vege-
tated areas, while L-band VOD does not.

Our results show that the high capabilities of L-
band microwave sensors to monitor SM and VOD
allow us to recover information on major ecosys-
tem changes related to human and climate changes.
Furthermore, themaps extracted fromL-bandVOD
also reveal interesting results about the sensitivity of
different regions. As shown in Fig. 1 (bottom right),
semi-arid regions are found to be more sensitive to
changes than high biomass regions, though.

On the evolution of change
in reforestation, deforestation
and abandonment
Defining and quantifying the properties of envi-
ronmental changes require defining the appropri-
ate space and time of variation. The identified clus-
ters are spatially homogeneous, and the associated
grid cells showed an interannual monotonic change
in SM and/or VOD over the last decade with the
same sign of change per region. Homogeneous spa-
tial distribution of interannual trends follows the
spatio-temporal relation inside each cluster. Look-
ing for strict monotonic significant changes over
time allowed us to uncover a set of spatial clusters
with a well-differentiated change precursor (Fig. 1,
Table 1). Now, we turn to characterising the time
evolution of the different clusters to extract impor-
tant information related to the nature of the changes
(Fig. 2).

Spatio-temporal covariation between re-
gions can explain common causes. Note that, by
definition, all of them are monotonic changes.
Nevertheless, a difference between fast and slow
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Figure 3. Trend analysis over the three identified subclusters in the Amazon rainforest of cluster B: subcluster 1 (southern region), subcluster 2 (northern
region), subcluster 3 (middle region). Top: spatial distribution of changes over 2010–20 for the subclusters with distinct trends. The dotted pixels
represent a monotonic change with a p-value<0.01. Bottom: annual boxplots of SM, VOD, NDVI and precipitation in each subcluster with its estimated
mean linear trend (central line) and standard deviation (shaded area). The three subclusters have in common the monotonic decrease in SM and
accumulated precipitation but differ in the VOD trend. NDVI is insensitive to major changes. Precipitation interannual changes are mostly related to
climate variability.

time changes can be noted and used to differentiate
the causes, which could have anthropogenic (e.g.,
deforestation/reforestation, abandonment, farm-
land growth) and natural (e.g., wildfires, rain shift)
origins. Also, severe droughts or wet periods at the
beginning of the observation record can induce an
observed perturbation of vegetation. Trends in soil
moisture and vegetation water content over land
ecosystems are related to changes in rainfall patterns
and vegetation cover. To compare the changes
in the observed variables, we use rainfall and
vegetation data as proxies (see the Data section).
Changes in rainfall patterns are typically reflected by
intensity, frequency or seasonality, but cumulative

precipitation (CumPrecip) is often a better proxy
to define a bioclimatic region. We use the NDVI,
which is a proxy of greenness and canopy structure,
as a vegetation density parameter like the leaf area
index and fraction cover. Furthermore, changes
in land cover, such as farmlands or deforestation,
reflect the changes produced in the ecosystems. To
compare the observed patterns and discriminate
between climate and land cover changes, we used
a global land cover map and extracted its changes
over the studied decade.

Figure 2 summarises the changes in each
cluster related to the sensitivity of SM, VOD,
NDVI and annual CumPrecip over the last decade
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2010–20, together with the land cover changes
between the year 2020 and the year 2010. Let us
now review the general attributions in what follows.
Figure 2A shows a positive change in annual cumu-
lative rainfall, soil moisture and vegetation water
content. Land cover changes are mostly related to
an increase in cereal cropland and a reduction in
shrubland. Figure 2B, which has been identified as a
deforestation pattern, shows a significant reduction
in vegetation water content, followed by a high loss
of evergreen broadleaf forest area, with a decrease in
soil moisture due to climate trends [68]. Figure 2C,
located in southeast China, shows a decline in soil
moisture followed by an increase in the vegetation
water content, being insensitive to NDVI and the
annual CumPrecip. Changes in land cover are low
compared to the rest of the clusters. Figure 2D,
related to land-use change, shows a positive change
in soil and vegetation water content and NDVI but
not in the cumulative rainfall. Land cover change is
diverse and mostly represents the abandonment of
cereal crop fields eventually converted into forests.
Figure 2E, located on the Eastern Coast of Australia,
is related to heavy deforestation and wildfires. An-
nual changes in soil and vegetation water content,
NDVI and cumulative rainfall are strongly negative,
reflected in the land cover where there is a high loss
of evergreen forest areas becoming shrublands.

Because of the change in climatic variability, rain-
fall patterns impact soil moisture in the short term.
However, they have a long-term lagged effect on
vegetation, shorter in grassland and shrubland and
longer in forests. As can be seen in Fig. 2A, clus-
ter A reveals a positive change in soil moisture and
annual cumulative rainfall. This change has a dif-
ferent response for each region in the cluster. The
North American region is mostly located in the corn
belt, which accounts for major changes in the cereal
cropland area with an increase in area and positive
change in annual cumulative rainfall [38]. The East-
ern Africa region is mostly related to changes in the
seasonality of rain and the herbaceous ecosystems’
short-term response, making spring rainfall more in-
tense and less frequent [39]. Here, we can note the
high temporal correlation (R2 = 0.83) between soil
and vegetation water content due to the interan-
nual variability of the rain and the short response
of both variables [39]. The Russian region is an ex-
tension of old abandoned farmlands due to the col-
lapse of the SovietUnion [34].This region is distinct
from natural reforestation and shows a positive re-
sponse to an increase in annual cumulative rainfall
[35]. In the three analysed regions, rainfall patterns
changed and produced soil moisture and vegetation
changes, reflecting the loss of shrublands in the last
decade.

Identifying and quantifying distinct
deforestation subclusters
The regions of the Amazon andCentral African rain-
forests are largely reported as areas suffering con-
tinuous deforestation due to human activity as land
clearing for primarymatter extraction and expansion
of pasture and crop fields [43,45–48]. As a result of
forest degradation, large areas of the evergreen forest
became grassland (see Fig. 2B).

In the case of Central Africa, soil and vegetation
water content decreased in differentiated areas, with
the eastern region being drier (lower SM) and the
western region more related to vegetation change
(lower VOD). Rain patterns do not change signif-
icantly in this region during the study period, and
the NDVI is not particularly sensitive to changes in
vegetation.The estimated deforested area inCentral
Africa here is 11 000 km2 in front of the 22 000 km2

reported in the bibliography [48]. This decadal un-
derestimation could probably be due to the coarse
spatial resolution used here, which cannot detect
small changes in local scales yet is enough to identify
changes in continental scales [69].

The Amazon rainforest suffered continuous de-
forestation and loss of evergreen forest area over the
last decade. The temporal evolution of degradation
is steady over the studied period, and the spatial dis-
tribution of rainfall degradation is equal across the
region. In the detection of monotonic changes, we
identify three subclusters with distinct annual trends
(see Fig. 3), which represent the different spatial dis-
tributions of the estimated joint changes in soil and
vegetation water content. A decrease in soil mois-
ture is generally detected in the three subclusters,
which is spatially correlatedwith the changes in rain-
fall patterns (mean decrease of 0.0053 of m3 ·m−3

per year and4.7mmper year, respectively).The tem-
poral evolution of cumulative rainfall also shows the
effect of the strong El Niño event of 2015–6, which
induced drought over the Amazon as reflected by
the soil moisture evolution. In subcluster 2 (north-
ern region), the annual accumulated rainfall shows a
continuous decrease followed by a strong soil mois-
ture decrease [68,70–72]. In [43], a trend analysis
of aboveground biomass (AGB) during 2010–9 us-
ing L-band VOD of the Amazon region was pre-
sented. The AGB losses were attributed to defor-
estation and degradation, probably due to the recent
withdrawal of forest protection policies. The spatial
patterns generally match ours.

Changes in vegetation water content are pri-
marily negative in subcluster 3 (middle region),
clearly characterisedby a steady and strongdecrease.
This subcluster correlates spatially with reported
deforestation areas during the studied decade [43].
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It contains the major land cover changes related
to the loss of evergreen forests. They correspond
to areas with a high decrease in vegetation water
content. The estimated area of deforestation here is
36 000 km2 compared to 42 000 km2 reported in
the bibliography [46]. This shows that soil mois-
ture in the Amazon rainforest is sensitive to changes
in rainfall patterns. However, vegetation water con-
tent is sensitive to rainforest loss and biomass loss.
We note that, as in the case of Central Africa, the
NDVI is not sensitive to large biomass changes in
rainforest areas, unlike SM (subcluster 2) and VOD
(subcluster 3). See Sec. S5 within the online sup-
plementary material for a discussion on the SMOS-
IC L-VOD product and its sensitivity as proxies to
biomass.

Global hotspots of reforestation,
abandonment and deforestation
Artificial reforestation is called active reforestation
when it involves human action by planting trees or
facilitating the conditions to correct forest develop-
ment. China is an example of how human action can
change large areas of degraded vegetation by plant-
ing trees to restore forest areas [49–51]. The iden-
tified cluster C in southeast China shows a signif-
icant positive increase in vegetation water content
(+4.3% per year) and NDVI (+2.5% per year),
and a strong decrease in soil moisture (−10.6% per
year) with no significant changes in NDVI and an-
nual accumulated rainfall. It has been reported that
L-band VOD is almost insensitive to saturation ef-
fects even in dense forest canopies, unlike optical in-
dices likeNDVI (cf. Sec. S5within theonline supple-
mentary material and [73–75]). Land cover change
reveals a low change from cropland to forest areas
(6000 km2), which results from the reforestation
that started in the 2000s [1,51]. An increase in water
content and a decrease in soilmoisture is interpreted
as an extra drain of soil water due to the new trees
in a new forested area without an unbalanced water
cycle and the water stress induced by the younger
forest.

Human activity has an impact on the ecosystem
and so on vegetation cover. Besides, the degrada-
tion of vegetated areas occurs due to increased hu-
man activities such as natural resource extraction
or expansion of farmlands and croplands. Contrac-
tion of human activities such as agricultural inten-
sification also impacts the ecosystem, allowing the
restoration of forest lands. Cluster D, referred to
in Fig. 1, Table 1 and Fig. 2D, has been identified
as a result of a reduction in human activities due
to the abandonment of farm fields and croplands.

The identified regions cover parts of North America,
Argentina and Russia that present an increase in
soil and vegetation water content followed by an in-
crease in deciduous broadleaf forests and a reduc-
tion of grassland areas (Fig. 2D). Literature has re-
ported changes in these regions due to population
migration to urbanised areas as in the case of North
America and Argentina [38,57] and the collapse of
the Soviet Union in Russia [34,35]. The increase in
vegetation water content was, on average, 3.9% per
year. Also, its time evolution is highly correlatedwith
the soil moisture changes, increasing at a ratio of
2.7% per year. Another region is identified in the
same cluster located in the Indian peninsula, show-
ing a different vegetation land cover evolution. Iden-
tified areas are insensitive to changes in soil mois-
ture,NDVI and annual cumulated rainfall, but have a
high increase in vegetation water content (5.1% per
year on average). Land cover change reveals a loss
of 8000 km2 of cereal cropland becoming broadleaf
cropland, and shrubland and deciduous broadleaf
forest (6000, 2000 and 700 km2, respectively; see
Fig. S4 within the online supplementary material).
Major changes observed in the Indian peninsula
are related to cropland change [1]. Changes in soil
and vegetation water content are highly time cor-
related (R2 = 0.52) in cropland areas, whose sur-
face area is relatively stable, and is likely related
to development in irrigation systems, as reported
elsewhere [1,52].

The East Coast of Australia has suffered an in-
crease in wildfires due to climate change [60–62]
and an increase in deforestation due to land clear-
ing policy change [58,59]. This region is suscepti-
ble to climate variability induced by the Pacific and
Indian Oceans [60] and is very sensitive to wild-
fires [61]. Furthermore, after the 2008 global finan-
cial crisis, many countries became laxer with en-
vironmental conservation policies to allow the ex-
ploitation of natural resources, as in the case of Aus-
tralia [58,59]. As we show in Fig. 2E, both soil and
vegetation water content have suffered a heavy de-
crease (5.1% and 7.2% per year, respectively) over
the last decade, followed by a decrease in NDVI
and annual cumulative rainfall (2.4% and 5.2% per
year, respectively). This is also reflected in the ob-
served land cover change, where evergreen forest
and grassland lost 29 000 and 20 000 km2, respec-
tively, and shrubland areas increased by 40 000 km2

due to wildfires and land clearing. In this region,
vegetation water content is spatially correlated with
NDVI (R2 = 0.65) and temporally correlated with
soilmoisture (R2 =0.79),which reflects the fact that
the areas with vegetationwater content loss and veg-
etation degradation have the same evolution in time.
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DISCUSSION AND CONCLUSION
Many studies have suggested that dry regions are
getting drier and wet regions are getting wetter.
Quantitative assessment of univariate time series
of moisture and drought indices has allowed as-
sessing the spatial distribution of the change over
time and the impacts on vegetation covers. How-
ever, no study until now has approached the prob-
lem by considering soil and vegetation jointly. We
studied soil and vegetation water content changes
over the last decade and uncovered clear patterns
and clusters of impacts on terrestrial ecosystems.Us-
ing SM and VOD together allowed us to disentan-
gle global terrestrial ecosystems’ causes of change
(sensitivity) fromnatural andanthropogenic factors.
Clear hotspots of joint SM and VOD trends stand
out and can be semantically attributed to five clear
categories. We uncover regions affected by defor-
estation (Amazon, Central Africa), wildfires (East
Australia), artificial reforestation (southeast China),
abandonment of farm fields (Central Russia, Cen-
tral Argentina, North America, India) and climate
shifts related to changes in precipitation variability
(East Africa, North America, Central Russia). From
the detected changes in the bivariate plane, we anal-
yse the changes by case and biome and quantify the
affected area and the speed of change in the last
decade, 2010–20. Despite the limited spatial resolu-
tion and period considered here, we show that satel-
lite observations can quantify and routinely attribute
environmental responses to human activity. The
study also showed contrastingbehaviour by identify-
ing statistically significant clusters where some ‘wet
regions get drier’, and other ‘dry regions get wet-
ter’. Investigating joint trends of SM and VOD us-
ing a co-clustering approach and allowing for smaller
clusters is a matter of future research. Such an ex-
ercise could be helpful to sharpen the identification
and quantification of terrestrial ecosystem changes,
also covering those occurring at smaller spatial scales
that are not covered here (e.g. deforestation and
wildfires in Indonesia, degradation and forest distur-
bances). Also, the availability of longer time records
of L-bandmicrowave satellite data, as secured by fu-
ture planned missions such as the Copernicus Mi-
crowave Imaging Radiometer, as well as advanced
approaches to enhance the spatial resolution of the
data, could potentially allow for a finer semantic clas-
sification of the clusters into better-resolved combi-
nations of natural and anthropogenic factors.

METHODS
We computed the trends over SM and VOD us-
ing the methodology in [13], which exploits the

standard Mann-Kendall (MK) statistical trend test
[76,77] to estimate a monotonic trend from arbi-
trary time series. The method is applied indepen-
dently for each grid point. Since a strong temporal
autocorrelation is present, we account for an AR(1)
correction following [13], drastically reducing false-
positive rates. We first estimate the temporal au-
tocorrelation at lag t − 1, rt− 1, for each grid cell
and compute the residual as y ′

t = yt − r t−1yt−1.
Then the MK trend test is performed on this new
time series y ′

t . To correct for multiple hypothesis
testing, the method applies a permutation method
based on clustering, such that a threshold for over-
all significance is defined on the number of adja-
cent (neighbouring) significant grid cells and esti-
mated through permutation, where the significance
threshold was set to 0.95 up to the randomly dis-
tributed cluster. The result allows us to preserve
the spatial correlation of the data and minimise the
probability of false positives [13]. To obtainmerged
regions, the test was performed using different quan-
tiles (0.1, 0.25, 0.5, 0.75, 0.9) from the annual dis-
tribution of each pixel. The output is a map with
well-delimited regions by quantile and variable (see
Table 2). Extracted maps from the variable’s quan-
tiles aremerged to obtain the studied cluster (see the
online supplementary material).

Reproducibility: software and data
availability
All the analysis was performed in MATLAB R©. Data
and code snippets are provided for reproducibil-
ity and can be found at https://github.com/IPL-
UV/SM-VOD-Trends.

Data
Soil moisture is an essential climate variable closely
related to other relevant land climate variables and
atmospheric fluxes such as surface temperature,
evapotranspiration and precipitation. SM and VOD
are linked to the water and energy cycles over
land and are important drivers of ecosystem vari-
ability. Quantifying and understanding the spatio-
temporal distribution of global SM and VOD and
their changes is crucial for hydrological, ecological
and climate models.

We use global SM and VOD maps from the
ESA’s SMOS mission for 2010–20. Since its launch
in November 2009, SMOS is providing multian-
gular and full polarimetric L-band brightness tem-
peratures that enable the estimation of global maps
of the Earth’s surface SM moisture (top 5 cm)
every three days with a spatial resolution of∼25 km
and a target accuracy of 0.04 m3·m−3, and of

Page 9 of 13

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/10/5/nw

ad026/7030907 by C
N

R
S - ISTO

 user on 04 Septem
ber 2023



Natl Sci Rev, 2023, Vol. 10, nwad026

Table 2. SM and VOD probability distribution change for each region. Quantiles are calculated from the annual distribution
and spatial average.

SM (m3·m−3) VOD (standard units)

Q10 Q25 Q50 Q75 Q90 Q10 Q25 Q50 Q75 Q90

North America (north) 2011 0.06 0.09 0.15 0.21 0.27 0.07 0.11 0.15 0.22 0.33
2019 0.10 0.15 0.21 0.26 0.31 0.07 0.10 0.15 0.22 0.34

North America (south) 2011 0.02 0.04 0.07 0.16 0.25 0.06 0.10 0.17 0.28 0.48
2019 0.04 0.06 0.12 0.22 0.30 0.09 0.13 0.20 0.31 0.50

Amazon (north) 2011 0.03 0.05 0.11 0.18 0.23 0.14 0.20 0.26 0.32 0.41
2019 0.02 0.04 0.08 0.14 0.19 0.13 0.19 0.25 0.30 0.37

Amazon (south) 2011 0.06 0.11 0.18 0.24 0.29 0.38 0.50 0.67 0.89 1.01
2019 0.05 0.10 0.16 0.21 0.26 0.36 0.46 0.61 0.83 0.97

Argentina 2011 0.12 0.16 0.21 0.26 0.32 0.40 0.68 0.95 1.04 1.08
2019 0.11 0.16 0.22 0.30 0.39 0.37 0.63 0.89 1.00 1.04

East Africa 2011 0.04 0.05 0.07 0.09 0.16 0.03 0.06 0.11 0.17 0.24
2019 0.05 0.07 0.09 0.14 0.25 0.07 0.11 0.16 0.23 0.31

India 2011 0.08 0.13 0.21 0.34 0.48 0.01 0.08 0.17 0.26 0.39
2019 0.07 0.12 0.21 0.35 0.52 0.07 0.13 0.21 0.30 0.42

Central Russia (east) 2011 0.04 0.07 0.13 0.19 0.25 0.02 0.06 0.12 0.22 0.40
2019 0.07 0.11 0.17 0.25 0.36 0.06 0.10 0.16 0.26 0.42

Central Russia (west) 2011 0.04 0.08 0.13 0.18 0.24 0.02 0.06 0.12 0.23 0.38
2019 0.06 0.10 0.15 0.21 0.30 0.05 0.10 0.17 0.29 0.43

Southeast China 2011 0.20 0.31 0.47 0.65 0.84 0.30 0.39 0.49 0.57 0.63
2019 0.13 0.19 0.27 0.35 0.43 0.39 0.48 0.57 0.65 0.70

East Australia 2011 0.05 0.09 0.14 0.20 0.26 0.10 0.14 0.23 0.35 0.56
2019 0.01 0.03 0.06 0.11 0.18 0.02 0.05 0.12 0.24 0.44

VOD, which is the degree of attenuation of mi-
crowaves through the vegetation, and is used here
as a proxy for vegetation water content and biomass.
The SMOS INRA-CESBIO (SMOS-IC) algorithm
was designed by INRA (Institut National de la
Recherche Agronomique) and CESBIO (Centre
d’Etudes Spatiales de la Biosphère) to perform
global retrievals of SM and L-VOD. SMOS-IC is
based on the two-parameter inversion of the L-band
Microwave Emission of the Biosphere model as de-
fined in [24,78] and considers the pixel homoge-
neous.The SMOS-IC version 2 SM and VOD prod-
ucts provided in the 25-km EASEv2 grid and in
NetCDF format are used here [24].

The NDVI from MODIS and rainfall from the
precipitation estimation from remotely sensed
information using artificial neural networks–climate
data record (PERSIANN-CDR) were used as
ancillary data for this study. The terra moderate
resolution imaging spectroradiometer (MODIS)
vegetation indices (MOD13Q1) version 6 data
are generated every 16 days at 250-m spatial res-
olution as a level 3 product. It provides the NDVI
choosing the best available pixel value from all the
acquisitions within the 16 days. The rainfall dataset
comes from PERSIANN-CDR. The precipitation

estimation comes from remotely sensed informa-
tion using artificial neural networks–climate data
record (PERSIANN-CDR) version 2.2 monthly
global rainfall data with a spatial resolution of 0.25◦

between 60S–60N latitudes. The precipitation
estimate is produced using the PERSIANN algo-
rithm on GridSat-B1 infrared satellite data, and the
artificial neural network training is done using the
National Centers for Environmental Prediction
stage IV hourly precipitation data.

The MODIS also provides yearly global land
cover types (2001–20) at 500-m spatial resolution
(MCD12Q1), including six different classification
schemes. The MCD12Q1 collection 6 product was
derived using supervised machine learning methods
withMODIS surface reflectances from the terra and
aqua platforms for improved classification accuracy
[79]. For this work, we have considered the annual
plant functional types classification scheme (type
5), which divides the terrestrial surface into eleven
broad categories:water bodies, evergreenneedle leaf
forest, evergreen broadleaf forest, deciduous needle
leaf forest, deciduous broadleaf forest, grasslands,
shrub lands, cereal croplands, broadleaf croplands,
urban and built-up lands, permanent snow/ice
and barren or sparsely vegetated. The MCD12Q1
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was then spatially degraded to a 30-km spatial
resolution.However, instead of providing only dom-
inant land-cover-type values for the broader 30-km
grid cells to track land cover changes, we computed
annual fractional land cover maps to analyse land
cover changes for the study period (2010–20). We
calculated these maps using the Google Earth En-
gine cloud platform [80], considering 500-m pixel
size categorieswithin eachbroader grid cell (30 km).

All data were harmonised to the common spa-
tial scale of 25 km and monthly temporal resolu-
tion from June 2010 to July 2020. The generated
data are available from Zenodo at https://doi.org/
10.5281/zenodo.7660170.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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