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AVERAGING FOR STOCHASTIC PERTURBATIONS OF INTEGRABLE SYSTEMS

We are concerned with averaging theorems for ε-small stochastic perturbations of integrable equations in

where I = (I 1 , . . . , In) is the vector of actions, I j = 1 2 v j 2 . The vectorfunctions θ and W are locally Lipschitz and non-degenerate. Perturbations of these equations are assumed to be locally Lipschitz and such that some few first moments of the norms of their solutions are bounded uniformly in ε, for 0 ≤ t ≤ ε -1 T . For I-components of solutions for perturbations of (1) we establish their convergence in law to solutions of the corresponding averaged I-equations, when 0 ≤ τ ∶= εt ≤ T and ε → 0. Then we show that if the system of averaged I-equations is mixing, then the convergence is uniform in the slow time τ = εt ≥ 0.

) we construct well posed effective stochastic equations for v(τ ) ∈ R 2n (independent of ε) such that when ε → 0, the actions of solutions for the perturbed equations with t ∶= τ ε converge in distribution to actions of solutions for the effective equations. Again, if the effective system is mixing, this convergence is uniform in the slow time τ ≥ 0.

We provide easy sufficient conditions on the perturbed equations which ensure that our results apply to their solutions.

1. Introduction 1.1. Setting and problems. The goal of this paper is to present an averaging theory for stochastic differential equations, obtained by diffusive perturbations of integrable deterministic differential equations. All equations in our work have locally Lipschitz coefficients.

In previous publication [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF], written by two of us, an easier problem of stochastic perturbations of linear systems with imaginary spectrum was considered. This work may be regarded as a natural continuation of [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]. Both papers are based on the Khasminski approach to the averaging in stochastic systems and use some technical ideas, developed by the authors and A. Maiocchi in their work on stochastic PDEs [START_REF] Kuksin | Khasminsii-Whitham averaging for randomly perturbed KdV equation[END_REF][START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF][START_REF] Huang | Time-averaging for weakly nonlinear CGL equations with arbitrary potential[END_REF][START_REF] Huang | On averaging and mixing for stochastic PDEs[END_REF]. We consider two classes of problems as above. Firstly, given an integrable system in R d × T n , 1 İ = 0, φ = θ(I),

(I, ϕ) ∈ R d × T n , T n = R n 2πZ n , (1.1) 
1 If n = d and θ(I) = ∇h(I) for some C 1 -function h on R d , then (1.1) is an integrable Hamiltonian system on the symplectic space (R n × T n , dI ∧ dϕ) with the Hamiltonian function h. Otherwise (1.1) is integrable in some general sense.

we study the asymptotic properties, as ε → 0, of solutions for perturbed systems of the form dI = εP I (I, ϕ)dt + √ ε Ψ I (I, ϕ)dβ(t), dϕ = θ(I) + εP ϕ (I, ϕ) dt + √ ε Ψ ϕ (I, ϕ)dβ(t),

where β(t) is the standard Wiener process in R d1 and the matrices Ψ I and Ψ ϕ have corresponding dimensions. We also consider stochastic perturbations of integrable equations in

R 2n 2 vk = W k (I)v ⊥ k , k = 1, 2, . . . , n, (1.3) where v k = (v k , v -k ) t ∈ R 2 , v ⊥ k = (-v -k , v k )
t and I k is the k-th action 1 2 v k 2 . Similar to the above we are interested in stochastic perturbations of the form

dv k = W k (I)v ⊥ k + εP k (v) dt + √ ε n1 j=1
B kj (v)dβ j (t), k = 1, . . . , n.

(1.4)

For convenience of language, below we call systems of equations like (1.3) and (1.4) just "equations".

Our goal is to study the asymptotic behaviour of solutions for systems (1.2) and (1.4) as ε → 0 on time-interval of length ∼ ε -1 , and the limiting behaviour of the solutions for 0 ≤ t ≤ ∞ when ε → 0, provided that suitable mixing assumptions hold.

To study this behaviour it is convenient to pass to the slow time τ = εt, and this is what we do below in the main text. In the introduction we discuss our results using both the original fast time t and slow time τ . 1.2. The results. Systems (1.2) are examined in the first part of our work (Sections 2-4). The first main result of this analysis is Theorem 4.3 which describes the statistical behaviour of components I ε (t) of solutions for (1.2) on time-intervals of order ε -1 . There we assume that the mapping θ is nondegenerate in sense of Anosov (i.e. for almost all I ∈ R d the components of the vector θ(I) are rationally independent), that the diffusion in the I-equation in (1.2) is bounded non-degenerate, that the coefficients of equation (1.2) satisfy some mild regularity assumptions and that certain a-priori estimates for solutions of (1.2) hold uniformly in ε. The theorem states that the vector of I-components I ε (ε -1 τ ) of a solution for 0 ≤ τ ≤ T converges in law to a solution I 0 (τ ) of an averaged stochastic differential equation, obtained by means of an appropriate averaging in ϕ of coefficients of the I-equation in (1.2). More precisely, the theorem states that DI ε (ε -1 τ ) ⇀ DI 0 (τ ), (1.5) where D signifies the distribution of a r.v. (random variable), the arrow stands for weak convergence of measures and I 0 (τ ) is a solution of a stochastic equation dI(τ ) = ⟨P I ⟩(I)dτ + ⟨⟨Ψ I ⟩⟩(I)dβ(τ ).

(1.6)

In (1.6) ⟨P I ⟩ is the averaging of P I in angles and matrix ⟨⟨Ψ I ⟩⟩(I) is obtained from Ψ I using the rules of stochastic averaging, see in Subsection 3.2. In Section 5, assuming the mixing, we examine the asymptotic in time behaviour of components I ε (τ ). More precisely, Proposition 5.2 states that if in addition to the above-mentioned assumptions system (1.2) and the averaged equation (1.6) both are mixing with stationary measures ν ε and µ 0 respectively, 3 then the I-projection of ν ε weakly converges to µ 0 as ε → 0. So for any solution (I ε , ϕ ε ) of (1.2) we have lim ε→0 lim τ →∞ DI ε (τ ) = µ 0 .

(1.7) 2 If W (I) = ∇h(I) for some C 1 -function h, then (1.3) is a Hamiltonian equation in R 2n , integrable in the sense of Birkhoff. 3 Concerning the mixing in SDEs and its basic properties which we use see [START_REF] Khasminskii | Stochastic Stability of Differential Equations[END_REF][START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF] and references in [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF].

Convergence (1.5), valid for any finite time T , jointly with (1.7) suggest that, in fact, convergence (1.5) holds uniformly in τ ≥ 0. Later in Section 5 we show that indeed this is the case. Namely, let µ 1 -µ 2 * L be the dual-Lipschitz distance between measures µ 1 , µ 2 , see Definition 5.3. 4 In Theorem 5.5, assuming that equation (1.6) is mixing with a mild quantitative property of the rate of mixing, 5 we prove that lim ε→0 sup τ ≥0 DI ε (ε -1 τ ) -DI 0 (τ ) * L = 0.

(1.8)

The behaviour of I-components of solutions for deterministically perturbed equation (1.2) with Ψ I = 0 and Ψ ϕ = 0 for typical initial data on time-intervals of order ε -1 is the subject of the classical averaging theory due to Anosov-Kosuga-Neishtadt, see [START_REF] Arnold | Mathematical Aspects of Classical and Celestial Mechanics[END_REF]Sec. 6.1] and [START_REF] Lochak | Multiphase Averaging for Classical Systems[END_REF]. Moreover, due to Neishtadt and Bakhtin the set of atypical initial data for which the averaging fails has measure ≲ ε γ , where γ > 0 depends on "how non-degenerate mapping θ is". Theorem 4.3 is a natural counterpart of that theory for stochastic perturbations of integrable equations. But stochastic convergences (1.7) and (1.8), established in Proposition 5.2 and Theorem 5.5 and valid for any initial data, seem to have no deterministic analogy.

Equation (1.2) is a fast-slow stochastic system with fast variable ϕ and slow variable I. The averaging in such systems (which allows to approximatively describe the law of the slow variable I on time-integrals of order ε -1 ) is a well developed topic of stochastic analysis, e.g. see [START_REF] Khasminski | On the avaraging principle for Ito stochastic differential equations[END_REF][START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF][START_REF] Liu | Stochastic Averaging and Stochastic Extremum Seeking[END_REF][START_REF] Yu | On the averaging principle for systems of stochastic differential equations[END_REF][START_REF] Yu | Stochastic versions of Anosov's and Neistadt's theorems on averaging[END_REF]. But in big majority of the corresponding works the fast motion of angles ϕ is given not by an ODE, but by a stochastic differential equation with I-depending coefficients and non-degenerate diffusion. Even if the fast motion of ϕ was given by a non-random ODE, then strong restrictions were imposed on ergodic properties of the latter (e.g. see [25, Section II.3]), and system (1.3) fails to meet them. We were not able to find the result of Theorem 4.3 in the literature. Its proof, given in Sections 3-4 and its exact statement are important for other parts of our work and are used there.

Second part of the paper, made by Sections 6-10, is dedicated to equation (1.4), where we again assume that the frequency mapping W is Anosov-nondegenerate and that equation (1.4) satisfies some other restrictions, similar to those, imposed on system (1.2). It is convenient to rewrite the equation in terms of the action-angle variables (I, ϕ) ∈ R n + × T n , where I k = 1 2 v k 2 and ϕ k = arctan(v k v -k ). Then the corresponding I-equation reads

dI k = εP I k (I, ϕ)dt + √ εB I kj (I, ϕ)dβ j (t), k = 1, . . . , n, (1.9) 
where P I and B I are quadratic functions of v, P k (v) and B kj , while the ϕ-equation

is dϕ k (t) = W k (I)dt + [. . . ],
(1.10) where [. . . ] stands for the drift and dispersion terms of order ε and √ ε, respectively, which are singular when I k = 0. See equations (6.10) and (6.11). We wish to apply the results from the first part to this system of (I, ϕ)-equations. This is not at all straightforward since the coefficients of the (I, ϕ)-system have singularities at the locus ℵ = {v ∈ R 2n ∶ v j = 0 for some j}, and the dispersion in (1.9) vanishes on ℵ. This difficulty is overcome with the help of two additional groups of results. Firstly, in the rather technical Lemma 6.8 we establishe that trajectories of eq. (1.4) stay in the vicinity of locus ℵ only a short time, uniformly in ε. This result allows us to prove in Theorem 6.7 that if we write solutions I ε of (1.9) as I ε (ε -1 τ ), 0 ≤ τ ≤ T, then their laws are pre-compact 4 Also known as the Kantorovich-Rubinstein distance. 5 and without assuming that system (1.2) is mixing.

in the space of measures on C(0, T ; R n ) and every limiting point of this family is a weak solution I(τ ) of the corresponding averaged I-equation (see equation (6.12)). Unfortunately the latter is an equation without uniqueness of a solution (see Remark 6.5), so we cannot conclude that the laws DI ε (ε -1 τ ) converge to a limit when ε → 0. To resolve this problem we use the second additional result. Namely, in Section 7 we return from the (I, ϕ)-system (1.9)-(1.10) back to the original equation (1.4), remove from them the fast terms W k v ⊥ k dt and re-write the obtained equation in the slow time τ as dv(τ ) = P (v)dτ + B(v)dβ(τ ),

where P = (P 1 , . . . , P n ), B = (B kj ) and β = (β 1 , . . . , β n1 ). Then we formally average this equation with respect to the natural action of the torus T n on R 2n (see (7.1)), using the rules of stochastic averaging. Thus we get a stochastic equation

dv(τ ) = ⟨P ⟩(v)dτ + ⟨⟨B⟩⟩(v)dβ(τ ), (1.11) 
which we call the effective equation. The coefficients of (1.11) are locally Lipschitz, so its solution, if exists, is unique. The key step of our analysis of the averaging in equation (1.4) is Theorem 8.2, stating that the weak solution I(τ ) of the averaged I-equation, which has been obtained as a limit in law of some sequence I εj of solutions for (1.9), written in the slow time τ , can be lifted to a weak solution v(τ ) of (1.11) (i.e. I(τ ) = I(v(τ ))). Since a solution v(τ ) of (1.11) is unique, then as a consequence we get in Theorem 8.6 that the actions I ε of solutions for equation (1.4), written in slow time τ , converge in law to a limit:

DI ε (ε -1 τ ) ⇀ DI(τ ) for 0 ≤ τ ≤ T as ε → 0, (1.12) 
where I(τ ) is a weak solution of the averaged I-equation. The latter can be lifted to a unique weak solution v(τ ) of (1.11).

Similarly to the uniform convergence (1.8), we show in Theorem 10.4 that if some few moments of solutions for equation (1.4) are bounded uniformly in time and in ε, and if the effective equation (1.11) is mixing, then convergence (1.12) is uniform in τ ≥ 0. Proposition 10.9 provides an easy sufficient condition which implies that all the assumptions, required for the validity of results in Sections 6-10 are met.

When we apply Theorem 8.6 (which ensures convergence (1.12)) to stochastic perturbations of "real" integrable Hamiltonian equations, we arrive at a difficulty due to the fact that often integrable Hamiltonian equations which appear in mechanics and physics can be put to the Birkhoff normal form (1.3) (with W = ∇h) not on the whole R 2n , but only locally. 6 Vey's theorem (see [START_REF] Eliasson | Normal forms for hamiltonian systems with poisson commuting integralselliptic case[END_REF], [9, Section 2.3]) and references there) provides an instrumental sufficient condition which allows to write an integrable Hamiltonian equation in the form (1.3) in a neighbourhood of some point. Without lost of generality we assume that this point is the origin, and assume that the equation is written in the from (1.3) in the closure BR of domain B R = {v ∶ I(v) < R}, for some R > 0. Accordingly, in Section 9 we discuss a local problem of examining equation (1.3) in BR . There for any initial data v 0 ∈ B R we consider the exit time θ ε R of a corresponding trajectory v ε (t) of (1.4) from B R . We show that, firstly, θ ε R is a random variable of order ε -1 and, secondly, that for the trajectory v ε , stopped at t = θ ε R , a variation of Theorems 8.6 applies and implies that the action-vector I(v ε (t)), written in the slow time τ = εt, for τ ≤ εθ ε R converges in distribution to a solution I(τ ) of the averaged I-equation, stopped when I = R. Similar to Theorem 8.6, this solution I(τ ) may be lifted to a solution v(τ ) of the effective equation (1.11), stopped at ∂B R . 6 But see Example 6.3 in Section 6 for a class of equations (1.4) in R 2n which appear in the non-equilibrium statistical physics.

Long time behaviour of deterministic perturbations of integrable systems (1.3) (in various parts of the phase-space R 2n ) is a classical problem of dynamical systems. If the initial data are allowed to be arbitrarily close to the locus ℵ, additional difficulty appears. In the case of Hamiltonian perturbations see [START_REF] Arnold | Mathematical Aspects of Classical and Celestial Mechanics[END_REF]Section 6.3.7] for corresponding KAM theorems, and see [START_REF] Niederman | Nonlinear stability around an elliptic equilibrium point in an Hamiltonian system[END_REF] for a version of Nekhoroshev's theorem. It seems that for non-Hamiltonian perturbations of (1.3) no convenient averaging theorem, valid up to ℵ, is known. Similarly it seems that no systematical study of the averaging for stochastic perturbations of system (1.3) was performed before our work.

On the proofs. Our presentation and proofs are based on the approach to stochastic averaging, originated in the celebrated paper [START_REF] Khasminski | On the avaraging principle for Ito stochastic differential equations[END_REF] by R. Khasminskii. In that we partially follow our previous works [START_REF] Huang | On averaging and mixing for stochastic PDEs[END_REF][START_REF] Huang | Time-averaging for weakly nonlinear CGL equations with arbitrary potential[END_REF][START_REF] Kuksin | Khasminsii-Whitham averaging for randomly perturbed KdV equation[END_REF][START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF], dedicated to the averaging in stochastic perturbations of linear (the first two paper) and non-linear (the last two) PDEs. The Khasminskii approach, as presented in our work, is a flexible form of stochastic averaging, applicable to study stochastic perturbations of integrable equations, linear and nonlinear, in finite and infinite dimensions. In particular, to study stochastic perturbations of linear and integrable PDEs. See [START_REF] Huang | Time-averaging for weakly nonlinear CGL equations with arbitrary potential[END_REF][START_REF] Huang | On averaging and mixing for stochastic PDEs[END_REF] and references in [START_REF] Huang | On averaging and mixing for stochastic PDEs[END_REF] for perturbations of linear PDEs, including "linear analogies" for them of Theorems 8.6 and 10.4. Also see [START_REF] Kuksin | Khasminsii-Whitham averaging for randomly perturbed KdV equation[END_REF] for an analogy of Theorem 4.3 for perturbations of the KdV equation by dissipation ε∆ and a white noise of order √ ε, and see [START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF] for an analogy for that equation of Theorems 8.2 and 8.6.7 

Notation. For a matrix A we denote by A t its transposed and by R n + denote the set of vectors in R n with non-negative components. For a Banach space E and R > 0, B R (E) stands for the open R-ball {e ∈ E ∶ e E < R}, and BR (E) -for its closure { e E ≤ R}; C b (E) stands for the space of bounded continuous function on E, and C([0, T ], E) -for the space of continuous curves [0, T ] → E, given the sup-norm. By D(ξ) we denote the law of a random variable ξ, by ⇀ -the weak convergence of measures, and by P(M ) -the space of Borel probability measures on a metric space M . For a measurable mapping F ∶ M 1 → M 2 and µ ∈ P(M 1 ) we denote by

F ○ µ ∈ P(M 2 ) the image of µ under F ; i.e. F ○ µ(Q) = µ(F -1 (Q)). For v = (v 1 , . . . , v n ) ∈ R n we set v 2 = ∑ n k=1 v k 2 and v = ∑ n k=1 v k .
We denote M n×k the space formed by n×k real matrices with the Hilbert-Schmidt norm ⋅ HS , i.e. the square root of the sum of the squares of all its elements. If L = R d × T n , n ≥ 0 (we set T 0 ∶= {0}) and m ≥ 0, then Lip m (L, E) is the collection of locally Lipschitz maps F ∶ L → E such that for any R > 0 we have

(1 + R ) -m sup ξ∈ BR (R d )×T n F (ξ) E =∶ C m (F ) < ∞. (1.13)
For a set Q we denote by 1 Q its indicator function, by Q c -its complement, and by L(Q) -its Lebesgue measure if Q ⊂ R n . For a function f , depending on angles ϕ ∈ T n (and maybe on some other variables) we denote

⟨f ⟩ = (2π) -n T n f dϕ. (1.14)
Finally, for real numbers a and b, a ∨ b and a ∧ b indicate their maximum and minimum.

Problem setup

Let d 1 ∈ N, (Ω, F, P) be a probability space, β(t), t ≥ 0, be a standard d 1dimensional Brownian motion defined on it, and {F t } be the natural filtration, generated by the process β(s), 0 ⩽ s ⩽ t.

We start to examine a diffusive perturbation (1.2) of integrable systems (1.1). There ε ∈ (0, 1] is a small parameter, P I is a d-dimensional vector function, θ and P ϕ are n-dimensional functions, while Ψ I (⋅) and Ψ ϕ (⋅) are d×d 1 -and n×d 1 -matrix functions. Our first goal is to study system (1.2) for 0 ≤ t ≲ ε -1 . After passing to the slow time τ = εt, the system takes the form

dI ε = P I (I ε , ϕ ε )dτ + Ψ I (I ε , ϕ ε )dβ(τ ), dϕ ε = 1 ε θ(I ε ) + P ϕ (I ε , ϕ ε ) dτ + Ψ ϕ (I ε , ϕ ε )dβ(τ ), (2.1) 
where 0 ≤ τ ≤ T for some fixed T > 0. It is equipped with an initial condition

I ε (0) = I 0 , ϕ ε (0) = ϕ 0 . (2.2)
Here (I 0 , ϕ 0 ) ∈ R d × T n is either deterministic, or is a r.v., independent of the process β. We will mostly dwell on the first case since the second can be directly generalized from the first one (see Remark 4.4 and Amplification 8.8). Our goal is to examine the limiting behaviour of the distribution of a solution (I ε (⋅), ϕ ε (⋅)) as ε → 0. In particular, to show that in the limit the law of I ε (⋅) is a weak solution of a certain averaged equation, independent of ϕ and ε.

In what follows we always assume that the following conditions are fulfilled for system (2.1)-(2.2): Assumption 2.1.

(1) The Lebesgue measure of (1.13)). (4) There exists T > 0 such that for every

I ∈ R d for which θ(I) is ratio- nally dependent equals zero, that is L ⋃ k∈Z n ∖{0} {I ∈ R d ∶ k ⋅ θ(I) = 0} = 0. (2) The matrix a(I, ϕ) = a ij (I, ϕ) ∶= Ψ I (I, ϕ)(Ψ I ) t (I, ϕ) satisfies the uni- form ellipticity condition, that is, there exists λ > 0 such that λ ξ 2 ≤ a(I, ϕ)ξ ⋅ ξ ≤ λ -1 ξ 2 for all ξ ∈ R d and all (I, ϕ) ∈ R d × T n . (3) There exists q > 0 such that θ ∈ Lip q (R d , R n ), P m ∈ Lip q (R d × T n , R d ) and Ψ m ∈ Lip q (R d × T n , M dm×d1 ), m = I, ϕ and d I = d, d ϕ = n (see
(I 0 , ϕ 0 ) ∈ R d × T n , system (2.1)-(2.2)
has a unique strong solution

I ε (τ ), ϕ ε (τ ) ∶= I ε , ϕ ε (τ ; I 0 , ϕ 0 ), τ ∈ [0, T ],
equal (I 0 , ϕ 0 ) at τ = 0. Moreover, there exists q 0 > (q ∨ 2) such that

E sup τ ∈[0,T ] I ε (τ ) 2q0 ≤ C( I 0 , T ) ∀ε ∈ (0, 1], (2.3) 
where C(⋅) is a non-negative continuous function on R 2 + non-decreasing in both arguments.

Throughout the text the time T > 0 is fixed and the dependence on it usually is not indicated. The process (I ε (τ ), ϕ ε (τ )), τ ∈ [0, T ] is always understood as a unique strong solution of the system (2.1)-(2.2). Remark 2.2. Item (1) in Assumption 2.1 is called the Anosov condition 8 and is rather mild. E.g. it clearly holds if the mapping θ is C 1 -smooth, n ≥ d and the set of I's for which rank ∂ I θ(I) < d has zero measure. But it also may hold for systems (1.1) with n < d (even for systems with n = 1). In particular, it holds for any n, d if the mapping θ is analytic and satisfied Rüssmann's condition: there exists N ∈ N such that for every I ∈ R d the vectors

∂ q θ(I) ∂ q1 1 . . . ∂ q d d , q ∈ Z d + , q ≤ N,
8 "The set of slow variables I for which the motion of fast variable ϕ is not ergodic has zero measure," see [START_REF] Lochak | Multiphase Averaging for Classical Systems[END_REF], p. 12, assumption iii).

jointly span R n . Indeed, if this condition holds, then for any non-zero vector s ∈ R n the function θ(I) ⋅ s does not vanish identically (see [1, Section 6.3.2], item 7 ○ ). Then by analyticity the set in (1) has zero measure.

Since item (4) of Assumption 2.1 is formulated not in terms of coefficients of equations (2.1), we provide here a sufficient condition that ensures its validity. Proposition 2.3. Let all coefficients of equation (2.1) be globally Lipschitz continuous. Then for any T > 0 and (I 0 , ϕ 0 ) ∈ R d × T n problem (2.1)-(2.2) has a unique solution, and inequality (2.3) holds for every q 0 ∈ N.

Proof. Under the above assumptions, for any (I 0 , ϕ 0 ) system (2.1)-(2.2) has a unique solution. 9 For q 0 ∈ N we need to show that estimate (2.3) holds with a constant C(q 0 , I 0 , T ) that does not depend on ε. Let us fix an arbitrary R > I 0 2q0 and introduce the stopping time

τ ε R = inf{τ > 0 ∶ I ε (τ ) 2q0 > R}. By Itô's formula, the process I ε (τ ∧ τ ε R ) 2q0 satisfies the equation I ε (τ ∧ τ ε R ) 2q0 = I 0 2q0 + q 0 τ ∧τ ε R 0 I ε (s) 2(q0-1) I ε (s), P I (I ε (s), ϕ ε (s)) ds + 1 2 τ ∧τ ε R 0 Trace Ψ I (I ε , ϕ ε ) t ∇ 2 I I ε 2q0 Ψ I (I ε , ϕ ε )ds + τ ∧τ ε R 0 q 0 I ε (s) 2(q0-1) I ε (s), Ψ I (I ε (s), ϕ ε (s))dβ(s) .
(2.4)

Taking the expectation and using the global Lipschitz continuity of coefficients we conclude that

E I ε (τ ∧ τ ε R ) 2q0 ⩽ C 1 + C 2 τ 0 E I ε (s ∧ τ ε R ) 2q0 ds
with constants C 1 and C 2 that depend continuously on q 0 , I 0 and the global Lipschitz constants of the coefficients and do not depend on ε and on R. By Gronwall's lemma,

E I ε (τ ∧ τ ε R ) 2q0 ⩽ C 1 exp(C 2 τ
). Since for any fixed τ the sequence τ ∧ τ ε R a.s. converges to τ as R → ∞, then by the Fatou lemma,

E I ε (τ ) 2q0 ⩽ C 1 exp(C 2 τ ), ∀τ ⩾ 0. (2.5)
Now consider equation (2.4) without the stopping time τ ε R . For any T > 0, we have

E sup 0⩽τ ⩽T I ε (τ ) 2q0 ⩽ I 0 2q0 + T 0 E I ε (τ ) 2q0 dτ + E sup τ ∈[0,T ] M (τ ),
where M (τ ) is the martingale term in (2.4). Due to (2.5), the estimate (2.3) follows by applying Doob's inequality to M (τ ).

Assumption 2.1.(4) also holds for systems (1.2) where the coefficients are not globally Lipschitz, but items (2) and (3) of the assumption are valid and the vector field P is coercive. Cf. below Proposition 10.9, where this is discussed for system (1.4). 9 To prove this we regard (2.1) as an equation on R d × R n with periodic in ϕ coefficients, evoke the usual theorem on stochastic equations in R d+n with Lipschitz coefficients (see for instance [14, Theorem 2.9]) to get a solution for this equation, and next apply the projection

R d × R n → R d × T n to obtain a solution in R d × T n .

Tightness and averaged equation

In this section we first show the collection of the laws of the processes I ε (τ ), τ ∈ [0, T ] with ε ∈ (0, 1] is tight. Then we introduce the averaged equation and finally prove key technical statements.

Since T > 0 is fixed, then dependence of constants on it usually is not indicated. (the coefficient 1 ε θ should be taken without the factor ε -1 ). This a bit unusual way to write the locally Lipschitz property is convenient for the calculation below. Lemma 3.1. For any fixed (I 0 , ϕ 0 ) the family of laws of processes

I ε (τ ) (τ ∈ [0, T ], ε ∈ (0, 1]) which are the I-components of solutions (I ε , ϕ ε )(τ ; I 0 , ϕ 0 ), is tight in the Banach space C([0, T ]; R d ).
Proof. According to (4) of Assumption 2.1, for any δ > 0 there exists

R = R(δ) > 0 such that P{ sup τ ∈[0,T ] I ε (τ ) > R} < δ. Denoting by τ ε R the exit time τ ε R = inf{τ > 0 ∶ I ε (τ ) > R} and denoting by (I ε R , ϕ ε R ) the stopped process (I ε (τ ∧ τ ε R ), ϕ(τ ∧ τ ε R )), we have P{(I ε (⋅), ϕ ε (⋅)) = (I ε R (⋅), ϕ ε R (⋅)) on [0, T ]} < δ. By (3 
) of Assumption 2.1 the functions P I and Ψ I are bounded in the ball { I ≤ R(δ)}. Therefore for any moments 0 ≤ τ 1 ≤ τ 2 ≤ T we have 3.2. The averaged equation. The vector field P I (I, ϕ) in the I-equation of (2.1) depends explicitly both on I-variables and ϕ-variables. Since we are interested in the evolution of the I-component of the system as ε → 0, then we introduce in consideration the vector field ⟨P I ⟩, obtained by the averaging of P I in angles ϕ,

E I ε R (τ 2 ) -I ε R (τ 1 ) 4 = E τ2∧τ ε R τ1∧τ ε R P I (I ε , ϕ ε )ds + τ2∧τ ε R τ1∧τ ε R Ψ I (I ε , ϕ ε )dβ(s) 4 ≤ C R ( τ 2 -τ 1 4 + τ 2 -τ 1 2 ),
⟨P I ⟩(I) = T n P I (I, ϕ) dϕ.
If an I is such that the vector θ(I) is rationally independent, then lim

N →∞ 1 N N 0 P I I, ϕ + tθ(I) dt = ⟨P I ⟩(I), (3.2) 
and the convergence is uniform in ϕ. Moreover, ⟨P I ⟩ ∈ Lip q (R d , R d ) with the same q as for P I , C q (⟨P I ⟩) = C q (P I ), and for ⟨P I ⟩ the function ν(N ) (as in (3.1) is the same as for P I ; see [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]Section 3.2]. The convergence to the limit on the l.h.s. of (3.2) is the faster, the more diophantine is the vector θ(I) (see [1, Section 6.1.5] for a related discussion).

Similarly we set

⟨a I ⟩(I) = T n Ψ I (I, ϕ) Ψ I (I, ϕ) t dϕ.
By (2) of Assumption 2.1,

λ ξ 2 ⩽ ⟨a I ⟩(I)ξ ⋅ ξ ⩽ λ -1 ξ 2 , ∀ξ, I ∈ R d .
Let ⟪Ψ I ⟫(I) be the principal square root of ⟨a I ⟩(I). 10 By the estimates above and [26, Theorem 5.2.1], ⟪Ψ I ⟫(⋅) belongs to Lip q (R d , M d×d ) and satisfies the uniform ellipticity condition as in (2) of Assumption 2.1 (with the same λ > 0). We introduce the averaged equation for the limiting as ε → 0 evolution of Ivariables, dI(τ ) = ⟨P I ⟩(I(τ ))dτ + ⟪Ψ I ⟫(I(τ ))dW (τ ), I(0

) = I 0 , (3.3) 
where W (τ ) is a standard d-dimensional Wiener process. As we discussed above, coefficients of (3.3) are locally Lipschitz, therefore for each I 0 ∈ R d the equation has at most one solution I(τ ; I 0 ). We will show in the next section that as ε → 0, the I-component I ε (τ ) of a solution for (2.1) with (I(0), ϕ(0)) = (I 0 , ϕ 0 ), for any ϕ 0 ∈ T n converges in law to solution I(τ ; I 0 ) (in particular, the latter exists). The key technical results, needed to establish this convergence, are proved in the next subsection.

3.3. Main lemmas.

Lemma 3.2. For the process (I ε (τ ), ϕ ε (τ )), τ ∈ [0, T ], we have

Υ ε ∶= E max 0≤τ ≤T τ 0 P I (I ε (s), ϕ ε (s)) ds - τ 0 ⟨P I ⟩(I ε (s)) ds → 0 as ε → 0. (3.4)
A proof of this relation relies on a number of auxiliary statements, given below.

Let us first define a family of sets A δ N,R , where N, R > 0 and 0 < δ ≤ 1, made by vectors I such that θ(I) has poor diophantine properties, and so the rate of convergence in (3.2) is slow: 

A δ N,R = I ∈ R d ∶ I < R, max
E T ∧τ ε R 0 1 A δ N,R (I ε (τ )) dτ ≤ C(R) L(A δ N,R ) 1 d , (3.6) 
where

τ ε R is the exit time of I ε from the ball B R = {I ∈ R d ∶ I < R}.
The constant C(R) does not depend on ε, N and δ.

Proof. Since the process I ε (τ ) satisfies Itô's equation dI = P I dτ + Ψ I dβ(τ ), where the diffusion matrix Ψ I (Ψ I ) t is uniformly non-degenerate by (2) of Assumption 2.1, then the assertion follows from [START_REF] Krylov | Controlled Diffusion Processes[END_REF]Theorem 2.2.4]. Indeed, by the latter result, choosing there f (τ, ⋅) to be the characteristic function of the set A δ N,R , we obtain

E T ∧τ ε R 0 1 A δ N,R (I ε (τ )) dτ ≤ C(R) 1 A δ N,R L d (B R ) = C(R) L(A δ N,R ) 1 d ,
and the assertion of the lemma is proved. Due to (3.6), 4) of Assumption 2.1 and Chebyshev's inequality we get that probability P{τ ε R < T } tends to zero as R → ∞, uniformly in ε ∈ (0, 1]. Combining this fact with Lemma 3.3 to estimate the r.h.s. of (3.7) we conclude that for any δ > 0 there exists a positive function

T 0 P{I ε (τ ) ∈ A δ N } dτ ≤ C(R) L(A δ N,R ) 1 d + T P{τ ε R < T }. (3.7) Since {ω ∶ τ ε R < T } ⊂ {ω ∶ sup 0≤τ ≤T I ε (τ ) ≥ R}, then by (
N ↦ α δ N , N > 0, converging to zero as N → ∞, such that T 0 P{I ε (τ ) ∈ A δ N } dτ ≤ α δ N , ∀ ε ∈ (0, 1]. (3.8) 
We are now in position to prove Lemma 3.2

Proof. [of Lemma 3.2] Step 1: Take N > 0 and τ 0 ∈ [0, εN ) which will be specified later and consider a partition of [τ 0 , T ) to intervals [τ j , τ j+1 ) =∶ ∆ j , 0 ≤ j ≤ j N , where τ j = τ 0 + jεN , j N is the biggest j such that τ j < T , and τ j N +1 ∶= T . We assume that εN ≤ 1 3 (1 ∧ T ) -below we deal with N 's such that εN ≪ 1, so this assumption is not a restriction. Then j N ≤ 2 (εN ).

Next let us introduce the random variable

L ε,δ N,τ0 (ω) = # j ∈ [0, j N ] ∶ I ε (τ j ) ∈ A δ N
, which counts the moments τ j 's for which the frequency vector θ(I ε (τ j )) has poor diophantine properties. Since

L ε,δ N,τ0 = j N j=0 1 A δ N (I ε (τ j )),
we obtain

EL ε,δ N,τ0 = j N j=0 P{I ε (τ j ) ∈ A δ N }.
Integration of this equality in the variable τ 0 over interval [0, εN ) yields

εN 0 EL ε,δ N,τ0 dτ 0 = j N j=0 εN 0 P{I ε (τ j (τ 0 )) ∈ A δ N } dτ 0 = T 0 P{I ε (τ ) ∈ A δ N } dτ ≤ α δ N ,
where the last estimate follows from (3.8). Therefore there exists a non-random

number τ * 0 ∈ [0, εN ) such that EL ε,δ N,τ * 0 ≤ α δ N (εN ) -1 . (3.9) 
From now on we fix this τ * 0 for the choice of τ 0 in the definition of the partition {∆ j } of interval [τ 0 , T ). So from now on τ j ∶= τ * 0 + jεN for all j, and below we write L ε,δ N,τ0 simply as L ε,δ N .

Step 2: We define the first good event for our argument (there will be three of them) as a collection E 1 of all ω such that L ε,δ N (ω) is relatively small:

E 1 = L ε,δ N ≤ (α δ N ) 1 2 (εN ) -1 .
In view of (3.9) and Chebyshev's inequality, for the complement

E c 1 = Ω ∖ E 1 we have P(E c 1 ) ≤ (α δ N ) 1 2 . (3.10)
Due to (3) and ( 4) of Assumption 2.1, for any j the stochastic terms on the right-hand sides of (2.1) admit the following upper bounds:

E τj+1 τj Ψ m (I ε (s), ϕ ε (s)) dβ(s) 2 ≤ E τj+1 τj Ψ m (I ε (s), ϕ ε (s)) 2 ds ≤ C τj+1 τj E ( I ε + 1) 2q dτ ≤ C 1 εN, m = I, ϕ.
Therefore, by Doob's inequality we have

E sup τ ∈∆j τ τj Ψ m (I ε (s), ϕ ε (s)) dβ(s) 2 ≤ C 2 εN, m = I, ϕ. (3.11) 
Similar, by ( 3) and ( 4) of Assumption 2.1 we have

E sup τ ∈∆j τ τj P m (I ε (s), ϕ ε (s)) ds 2 ≤ εN E τj+1 τj P m (I ε (s), ϕ ε (s)) 2 ds ≤ εN C τj+1 τj E ( I ε + 1) 2q dτ ≤ C 1 (εN ) 2 , m = I, ϕ.
(3.12)

Step 3: For j = 0, . . . , j N we measure the size of the perturbative part in eq. ( 2.1) on interval ∆ j by the random variable

ζ j = m=I,ϕ sup τ ∈∆j τ τj Ψ m (I ε (s), ϕ ε (s)) dβ(s) + sup τ ∈∆j τ τj P m (I ε (s), ϕ ε (s)) ds ,
and introduce another random variable which counts the number of large ζ j 's: 

Lε,δ N = # j ∶ ζ j ≥ ε 1 4 . We have Eζ j ≤ C 3 (εN ) 1 2 . Indeed, Eζ j ≤ Eζ 2
Eζ 2 j ≤ C εN + (εN ) 2 ≤ CεN
(we recall that εN ≤ 1 3). By Chebyshev's inequality P{ζ j ≥ ε

1 4 } ≤ C 3 N 1 2 ε 1 4 , then E Lε,δ N = E j 1 {ζj ≥ε 1 4 } = j E 1 {ζj ≥ε 1 4 } = j P{ζ j ≥ ε 1 4 } ≤ T C 3 N 1 2 ε 1 4 εN = C 3 T N -1 2 ε -3 4 .
Now we define the second good event for our argument as the set, where Lε,δ N is not too big:

E 2 = ω ∈ Ω ∶ Lε,δ N ≤ ε -7 8
. Again due to Chebyshev's inequality, the probability of its complement satisfies

P(E c 2 ) ≤ C 3 T N -1 2 ε 1 8 . (3.13) Denote M j ∶= {ω ∈ Ω ∶ ζ j ≤ ε 1 4
and sup

0⩽τ ⩽T I ε (τ ) ≤ ν(N )},
where ν(N ) is defined in (3.1). Then for each ω ∈ M j on the interval ∆ j the curve I(τ ) is close to I(τ j ):

sup τ ∈∆j I ε (τ ) -I ε (τ j ) ≤ sup τ ∈∆j τ τj P I (I ε (s), ϕ ε (s)) ds + sup τ ∈∆j τ τj Ψ I (I ε (s), ϕ ε (s)) dβ(s) ≤ ε 1 4 . (3.14) Due to the definition of ν(N ), for ω ∈ M j τ τj (θ(I ε (s) -θ(I ε (τ j )) ds ⩽ N τ τj sup τ ∈∆j I ε (s) -I ε (τ j ) ds ⩽ ε 5 4 N 2 .
Therefore, for ω from the event M j , on the interval ∆ j the curve ϕ(τ ) is close to its linear approximation:

sup τ ∈∆j ϕ ε (τ ) -ϕ ε (τ j ) - τ -τ j ε θ(I ε (τ j )) ≤ sup τ ∈∆j τ τj P ϕ (I ε (s), ϕ ε (s)) ds + sup τ ∈∆j 1 ε τ τj (θ(I ε (s) -θ(I ε (τ j )) ds + sup τ ∈∆j τ τj Ψ ϕ (I ε (s), ϕ ε (s)) dβ(s) ≤ N 2 ε 1 4 + 2ε 1 4 . 
(3.15)

Step 4: Consider now a random collection of intervals ∆ j = [τ j , τ j+1 ) such that

I ε (τ j ) ∈ A δ N (cf. event E 1 ), ζ j ≤ ε 1 4 (cf. event E 2 ) and sup τ ∈∆j I ε (τ ) ≤ ν(N ). (3.16)
We call these intervals typical. Clearly, if ∆ ω j is typical, then ω ∈ M j .

(3.17)

For a typical interval ∆ j we will estimate the following quantity:

τj+1 τj P I (I ε (s), ϕ ε (s)) -⟨P I ⟩(I ε (s)) ds ≤ τj+1 τj P I (I ε (s), ϕ ε (s)) -P I (I ε (τ j ), ϕ ε (τ j ) + s-τj ε θ(I ε (τ j ))) ds + τj+1 τj P I (I ε (τ j ), ϕ ε (τ j ) + s-τj ε θ(I ε (τ j ))) -⟨P I ⟩(I ε (τ j )) ds + τj+1 τj ⟨P I ⟩(I ε (τ j )) -⟨P I ⟩(I ε (s)) ds = J 1 + J 2 + J 3 .
Due to (3.14), (3.15) and (3.17),

J 1 ≤ CN 2 ε 5 4 + CN 3 ε 5 4 = CN 3 ε 5 4 , J 3 ≤ CN 2 ε 5 4
. Considering (3.5) and Lemma 3.3 we find that

J 2 = τj+1 τj P I (I ε (τ j ), ϕ ε (τ j ) + s-τj ε θ(I ε (τ j ))) -⟨P I ⟩(I ε (τ j )) ds = εN 1 N N 0 P I (I ε (τ j ), ϕ ε (τ j ) + ξθ(I ε (τ j ))) -⟨P I ⟩(I ε (τ j )) dξ ≤ δεN.
Thus for a typical interval ∆ j we have:

τj+1 τj P I (I ε (s), ϕ ε (s)) -⟨P I ⟩(I ε (s)) ds ≤ CN 3 ε 5 4 + δεN . (3.18) 
Step 5: We introduce the third good event

E 3 = {ω ∈ Ω ∶ sup 0≤τ ≤T I ε (τ ) ≤ ν(N )}
(corresponding to the third condition in the definition (3.16) of a typical interval). Due to (4) of Assumption 2.1,

P(E c

3 ) → 0 as N → ∞, and the rate of convergence is independent of ε. Finally we set

E = E 1 ∩ E 2 ∩ E 3 .
Then by (3.10) and (3.13)

P(E c ) ≤ P(E c 1 ) + P(E c 2 ) + P(E c 3 ) ≤ (α δ N ) 1 2 + C 3 T N -1 2 + P(E c 3 ) =∶ β δ N , where β δ N → 0 as N → ∞, for each δ > 0.
Note that although the sets E and E j depend on ε, δ and N , the upper bound

β δ N for P(E c ) is independent of ε. Denote I ε ∶= sup 0≤τ ≤T τ 0 P I (I ε (s), ϕ ε (s)) -⟨P I ⟩(I ε (s)) ds and I ε j ∶= τj+1 τj P I (I ε (s), ϕ ε (s)) -⟨P I ⟩(I ε (s)) ds , 0 ≤ j ≤ j N .
Apart from I ε let us consider I ε N , defined as follows:

I ε N ∶= sup τ =τ1,...,τj N τ τ0 P I (I ε (s), ϕ ε (s)) -⟨P I ⟩(I ε (s)) ds .
Since E ⊂ E 3 , then for ω ∈ E the norms of vector fields P I (I ε (s), ϕ ε (s)) and ⟨P I ⟩(I ε (s)) are bounded by N (we recall (3.1)). Therefore,

I ε -I ε N ≤ CN 2 ε for ω ∈ E. (3.19)
Conditions ( 3) and ( 4) of Assumption 2.1 imply that

E(I ε N ) 2 , E(I ε ) 2 ≤ CT and E(I ε j ) 2 ≤ CεN. (3.20) 
Due to (3.20) and (3.19),

Υ ε = E I ε = E 1 E I ε + E 1 E c I ε N ≤ E 1 E I ε N + (CT ) 1 2 (β δ N ) 1 2 + CN 2 ε. (3.21)
Step 6:

Let us estimate E 1 E I ε N . Denoting J = J ε = {j ∶ ∆ j is typical} we have that E 1 E I ε N ≤ E j∈J I ε j + E 1 E j∉J I ε j =∶ S 1 + S 2 . (3.22) 
From the definitions of sets E 1 , E 2 we see that for any ω ∈ E,

#J c ≤ (α δ N ) 1 2 (εN ) -1 + ε -7 8 .
Since for each ω ∈ E 3 all I ε j are trivially bounded by CεN , then by the above estimate

S 2 ≤ C (α δ N ) 1 2 + N ε 1 8 .
Due to (3.18), for each (3.22) and the estimates for S 1 and S 2 ,

ω j∈J I ε j ≤ j N CN 3 ε 5 4 + δεN ≤ C 1 N 2 ε 1 4 + δ . So S 1 ≤ C 1 N 2 ε 1 4 + δ . By (3.21),
Υ ε ≤ C ′ β δ N + C 1 N 2 ε 1 4 + δ + C (α δ N ) 1 2 + N ε 1 8 + CN 2 ε. Now for any δ > 0 we choose N = N (δ) so big that C ′ β δ N + C(α δ N ) 1 2 ≤ δ. For this N we have Υ ε ≤ δ + C 1 N 2 ε 1 4 + C 1 δ + CN ε 1 8 + CN 2 ε.
Taking ε small enough we achieve that Υ ε ≤ (C 1 + 2)δ. Since δ is an arbitrary positive number, then (3.4) follows.

With exactly the same proof we also have Lemma 3.5. The following convergence holds as ε → 0:

E sup 0≤τ ≤T τ 0 Ψ I (I ε (s), ϕ ε (s))(Ψ I (I ε (s), ϕ ε (s))) t -⟨a I ⟩(I ε (s)) ds → 0.

The averaging theorem

In the section we show that the limiting laws of the family {D(I ε (⋅))}, as ε → 0, are solutions of the martingale problem for the averaged equation (3.3), thus are weak solutions of the later. We begin with the corresponding definition. Let us introduce a natural filtered measurable space for the problem we consider

( Ω, B T , {B τ , 0 ⩽ τ ⩽ T }), (4.1) 
where Ω is the Banach space C([0, T ];

R d ) = {a(τ ), τ ∈ [0, T ]}, B T is its Borel σ- algebra and a σ-algebra B τ ⊂ B T is generated by the restriction mapping Ω ∋ a(⋅) ↦ a(⋅) [0,τ ] .
Consider the process

N I (τ ; a) ∶= a(τ ) - τ 0 ⟨P I ⟩(a(s))ds, a ∈ Ω, τ ∈ [0, T ],
and note that for any 0 ⩽ τ ⩽ T , N I (τ ; ⋅) is a B τ -measurable continuous functional on Ω.

Definition 4.1. (see [26,[START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]). A measure Q on the space (4.1) is called a solution of the martingale problem for equation (3.3), if a(0) = I 0 Q-a.s. and 1) the process {N I (τ ; a) ∈ R d , τ ∈ [0, T ]} is a vector-martingale on the filtered space (4.1) with respect to the measure Q;

2) for any k, j = 1 . . . , d the process

N I k (τ ; a)N I j (τ ; a) -∫ τ 0 ⟨a I ⟩ kj (a(s)
)ds is a martingale on the space (4.1) with respect to the measure Q.

For each ε > 0 we define a probability measure Q ε on ( Ω, B T ) as the law of {I ε (⋅)} and denote by E Q ε the corresponding expectation. According to Lemma 3.1 the family

{Q ε } is tight in P(C([0, T ], R d ). Take a sequence ε j → 0 such that Q εj ⇀ Q 0 , as ε j → 0 in P(C([0, T ], R d )). (4.2)
Lemma 4.2. The probability measure Q 0 above is a solution of the martingale problem for the averaged equation (3.3).

Proof. For any s ∈ [0, T ], let Φ(⋅) be a bounded continuous functional defined on C([0, s]; R d ). Then, for any τ ∈ [0, T ] such that 0 ≤ s ≤ τ ≤ T , we have

E Q 0 N I (τ ; a) -N I (s; a) Φ(a([0, s])) = lim εj →0 E Q ε j N I (τ ; a) -N I (s; a) Φ(a([0, s])) = lim εj →0 E I εj (τ ) -I εj (s) - τ s ⟨P I ⟩(I εj (u)) du Φ(I εj ([0, s])) = lim εj →0 E τ s P I (I εj (u), ϕ εj (u)) -⟨P I ⟩(I εj (u)) du Φ(I εj ([0, s])) + lim εj →0 E I εj (τ ) -I εj (s) - τ s P I (I εj (u), ϕ εj (u)) du Φ(I εj ([0, s])) ,
where to get the first equality we have used the fact that the r.v.'s I ε q C([0,T ]) are uniformly integrable, which is guaranteed by ( 3) and (4) of Assumption 2.1 (cf. [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]Lemma 4.4]). The first limit on the r.h.s of the last equality vanishes due to Lemma 3.2 and the second one vanishes because

I ε (τ ) -∫ τ 0 P I (I ε (u), ϕ ε (u)) du is a martingale. Therefore, E Q 0 N I (τ ; a) -N I (s; a) Φ(a([0, s])) = 0,
for each Φ as above. So the process N I (τ ; a), τ ∈ [0, T ], is a martingale with respect to the measure Q 0 and filtration {B τ }.

Arguing in the same way and evoking Lemma 3.5 we conclude that the processes

N I k (τ ; a)N I j (τ ; a) -∫ τ 0 ⟨a I ⟩ kj (a(s))ds, τ ∈ [0, T ], k, j = 1, . . . , d, also are (Q 0 , B τ )- martingales.
Hence, the assertion of the lemma is proved.

As we have discussed before, since the drift term ⟨P I ⟩ and the dispersion matrix ⟪Ψ I ⟫ in (3.3) are locally Lipschitz with respect I, then by the Yamada-Watanabe theorem (see [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]Section 5.3.D]) the just obtained solution of the martingale problem for (3.3) is unique. So, in particular, the limit Q 0 in (4.2) does not depend on the choice of ε j , and the whole family Q ε converges as ε → 0 to the measure Q 0 . Thus we have obtained the following result. 

(I 0 , ϕ 0 ) ∈ R d × T n we have D(I ε (⋅)) ⇀ Q 0 as ε → 0 in P(C([0, T ], R d )),
where Q 0 is the law of a weak solution I 0 (τ ) for problem (3.3). Moreover, for q 0 and C(⋅) as in

(2.3) we have E sup τ ∈[0,T ] I 0 (τ ) 2q0 ⩽ C( I 0 , T ).
The last assertion follows directly from the Skorokhod 2) the initial data (I 0,ε , ϕ 0,ε ) depends on ε and converges to a limit (I 0 , ϕ 0 ) as ε → 0.

2) The result in Theorem 4.3 admits an immediate generalization to the case when the initial data (I 0 , ϕ 0 ) is a random variable. Cf. Amplification 8.8.

Stationary solutions

The goal of this section is to characterize the asymptotic behaviour of stationary solutions of equations (2.1) and to find out their relation with a stationary solution of averaged equation (3.3). We recall that a solution (I ε (τ ), ϕ ε (τ )), τ ⩾ 0, of equation (2.1) is called stationary if there exists ν ε ∈ P(R d × T n ) such that D (I ε (τ ), ϕ ε (τ )) = ν ε for all τ ⩾ 0. Then the measure ν ε is called a stationary measure for equation (2.1). A stationary solution and stationary measure of the averaged equation (3.3) are defined in the same way.

Throughout this section a strengthened version of Assumption 2.1 is imposed on the system (2.1). Namely, we assume that Assumption 5.1. i) Items ( 1)-(3) of Assumption 2.1 hold true.

ii) For each ε ∈ (0, 1] and any

(I 0 , ϕ 0 ) ∈ R d × T n problem (2.1)-(2.2) has a unique strong solution I ε , ϕ ε (τ ; I 0 , ϕ 0 ), τ ∈ [0, +∞), satisfying E sup T ′ ⩽τ ⩽T ′ +1 I ε (τ ; I 0 , ϕ 0 ) 2q0 ⩽ C q0 ( I 0 ), (5.1) 
for each T ′ ⩾ 0 and some number q 0 > (q ∨ 2). iii) Equation (2.1) is mixing. So it has a stationary weak solution

I ε st (τ ), ϕ ε st (τ ) such that D I ε st (τ ), ϕ ε st (τ ) ≡ ν ε ∈ P(R d × T n ), and 
D I ε (τ ; I 0 , ϕ 0 ), ϕ ε (τ ; I 0 , ϕ 0 ) ⇀ ν ε in P(R d × T n ) as τ → +∞, (5.2) 
for each (I 0 , ϕ 0 ). As a consequence of (5.1) and (5.2) by a straightforward argument (e.g. see in [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF] Lemma 5.3 and its proof), we obtain that the stationary solution (I ε st , ϕ ε st ) satisfies the following estimate

Under

E sup T ′ ⩽τ ⩽T ′ +1 I ε st (τ ) 2q0 ⩽ C q0 (0). (5.3) 
Using (5.3) we derive from the first equation in (2.1) that for any N ∈ N, the collection of measures

{D(I ε st [0,N ] ), 0 < ε ⩽ 1} is tight. Choosing for each N a sequence ε (N ) l → 0 such that D(I ε (N ) l st [0,N ] ) ⇀ Q 0 in P C([0, N ], R d )
and applying the diagonal procedure we conclude that for a subsequence {ε l } the relation

D(I ε l st ) ⇀ Q 0 holds in P(X), where X is the complete separable metric space X = C([0, ∞), R d ) with the distance dist(a 1 , a 2 ) = ∞ N =1 2 -N a 1 -a 2 C([0,N ],R d ) 1 + a 1 -a 2 C([0,N ],R d ) , a 1 , a 2 ∈ X . Denote µ ε I (τ ) = D(I ε st (τ )) = I ○ ν ε . Then µ ε l I (0) ⇀ µ 0 ∶= Q 0 τ =0 . Let I 0 (τ ) be a solution of equation (3.
3) with an initial condition I 0 , distributed as µ 0 . Then, by Remark 4.4,

D(I ε l st (⋅)) ⇀ D(I 0 (⋅)) in X, (5.4) 
and for any τ ≥ 0 we have

Q 0 (τ ) = D(I 0 (τ )) = lim ε l →0 DI( ε l st (τ )) = lim ε l →0 D(I ε l st (0)) = µ 0 .
We obtained the following statement: Proposition 5.2. The process I 0 is a stationary weak solution of the averaged equation (3.3) and D(I 0 (τ )) ≡ µ 0 , τ ∈ [0, ∞). In particular, any limiting point of the collection of measures {µ ε I ∶= D(I ε st (τ ))} as ε → 0 is a stationary measure of the averaged equation (3.3). If the latter is mixing, then its stationary measure is unique, and so convergence (5.4) holds as ε → 0. 5.1. Uniform convergence in the averaging theorem. To describe quantitively the weak convergence of measures in Theorem 4.3 we introduce the dual-Lipschitz distance. Definition 5.3. Let M be a complete and separable metric space. For any two measures µ 1 , µ 2 ∈ P(M ) we define the dual-Lipschitz distance between them as

µ 1 -µ 2 * L,M ∶= sup f ∈C b (M ), f L ⩽1 ⟨f, µ 1 ⟩ -⟨f, µ 2 ⟩ = sup f ∈C b (M ), f L ⩽1 ⟨f, µ 1 ⟩ -⟨f, µ 2 ⟩ ≤ 2,
where

f L = f L,M = Lip f + f C(M ) .
In this definition and below we denote

⟨f, µ⟩ ∶= M f (m)µ(dm).
(5.5)

The dual-Lipschitz distance converts P(M ) to a complete metric space and induces on it a topology, equivalent to the weak convergence of measures, e.g. see [5, Sec-

tion 1.3]. If equation (3.
3) is mixing with a quantitive property as in the following assumption, then the convergence in Theorem 4.3 is uniform in time with respect to the dual-Lipschitz distance.

Assumption 5.4. 1) i) and (ii) of Assumption 5.1 hold true.

2) The averaged equation (3.3) is mixing with a unique stationary measure µ 0 . Moreover, for each M > 0 and any I 0 , I 1 ∈ BM (R d ) the laws of solutions for (3.3) with these initial data satisfy

D(I 0 (τ ; I 0 )) -D(I 0 (τ ; I 1 )) * L,R d ⩽ f M (τ )
, where f M is a positive continuous function of (M, τ ) which goes to zero when τ → ∞ and is non-decreasing in M . 

(I 0 , ϕ 0 ) ∈ R d × T n we have lim ε→0 sup τ ⩾0 D(I ε (τ ; I 0 , ϕ 0 )) -D(I 0 (τ ; I 0 )) * L,R d = 0.
Concerning the theorem's proof see Subsection 10.1. Assumptions 5.1 and 5.4 allow for an instrumental sufficient condition, cf. below Proposition 10.9.

Perturbations of integrable equations in R 2n

In this section we study diffusive perturbations of integrable equations in R 2n in the framework of previous sections. By bold italic letters we denote various vectors in R 2 (regarded as column-vectors).

Let us consider a perturbed integrable equation (1.4) for a vector v = (v k , k = 1, . . . , n) ∈ R 2n and write it in the slow time τ = εt:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ dv k = ε -1 W k (I)v k dτ + P k (v)dτ + ∑ n1 j=1 B kj (v)dβ j (τ ), k = 1, . . . , n, v(0) = v 0 ∈ R 2n . (6.1) 
Here As in previous sections, the initial data v 0 can be deterministic or random, and a solution of problem (6.1) will be denoted v ε (τ

v k = v k v -k ∈ R 2 , v k = -v -k v k , B kj (v)
; v 0 ) = (v ε k (τ ; v 0 ), k = 1, . . . n),
or simply v(τ ). We will focus on the deterministic case, always assuming that equation (6.1) satisfies the following assumption. 

(I) =∶ (W k (I), k = 1, . . . , n) are rationally dependent is equal to zero. That is, L ∪ k∈Z n ∖{0} {I ∈ R n + ∶ W (I) ⋅ k = 0}) = 0. (2) The 2n × 2n diffusion matrix S(v) = B(v)B(v) t , where B(v) = (B kj (v)),
satisfies the uniform ellipticity condition. That is, there exists λ > 0 such that

λ ξ 2 ⩽ S(v)ξ ⋅ ξ ⩽ λ -1 ξ 2 , ∀v, ξ ∈ R 2n . (6.3) 
(3) There exists q > 0 such that

W (I) ∈ Lip q (R n , R n ), P (v) ∶= (P k (v), k = 1, . . . , n) ∈ Lip q (R 2n , R 2n ) and B(v) ∈ Lip q (R 2n , M 2n×2n1 ) (we recall (1.

13)).

(4) There exists T > 0 such that for every v 0 ∈ R 2n equation (6.1) has a unique strong solution v ε (τ ; v 0 ), τ ∈ [0, T ], equal v 0 at τ = 0. Moreover, there exists q 0 > (q ∨ 4) such that

E sup τ ∈[0,T ] v ε (τ ; v 0 ) 2q0 ⩽ C q0 ( v 0 , T ), ∀ε ∈ (0, 1], (6.4) 
where C q0 (⋅) is a non-negative continuous function on R 2 + , non-decreasing in both arguments. Remark 6.2. 1) In the assumption above, ( 1) is Anosov's condition (see Remark 2.2), and it holds, in particular, if W (I) is a constant vector with rationally independent coefficients. Equations (6.1) with constant frequency vectors W and without assuming that its components are rationally independent are examined in [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF], and for the case W = const the results, given below in Sections 6-10, are special cases of more general theorems in that work. But equations (6.1) with non-constant frequency vectors W (I) are significantly more complicated then those with W = const.

2) Item (4) holds if assumptions (2), ( 3) are valid and if the coefficients of equation (6.1) are globally Lipschitz (cf. Proposition 2.3), or if the vector field P is coercive, see below Proposition 10.9.

Example 6.3. In statistical physics they often examine stochastic perturbations of chains of nonlinear oscillators

qk = -Q(q k ), k = 1, . . . , n, (6.5) 
where Q is a polynomial Q 0 (q) = αq + βq 3 , α, β > 0, or more generally, is a smooth function of the form Q(q) = Q 0 (q) + O(q 4 ). (6.6) System (6.5) may be re-written in the Hamiltonian form as

qk = (∂ ∂p k )H, ṗk = -(∂ ∂q k )H, k = 1, . . . , n, (6.7) 
where

H = ∑ 1 2 p 2 k + ∫ q k
0 Q(l)dl) E.g. see [START_REF] Eckmann | Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures[END_REF] and [START_REF] Bonetto | Fourier's law: A challenge to theorists[END_REF]Section 4]. Under a suitable diagonal symplectomorphism R 2n → R 2n , (q, p) ↦ v = (v 1 , . . . , v n ), v j = F(q j , p j ), system (6.7) may be re-written in the form (1.3), where W k = ω(I k ), k = 1, . . . , n, and ω is a smooth function. See below Appendix B concerning canonical transformations F ∶ R 2 → R 2 with the required properties. In the just cited papers the vector field P = (P 1 , . . . , P n ) in (6.1) is of the type "next neighbour interaction", i.e. P k = P k (v k-1 , v k , v k+1 ). Our results apply to corresponding equations (6.1) with non-degenerate dispersion matrices B if assumptions (1), ( 3) and ( 4) hold. The first two are easy to verify, while (4) holds, for example, if the smooth function Q as in (6.6) fast converges to Cq, C > 0, as q → ∞, since then system (6.1) has Lipschitz coefficients. Usually systems in the works of physicists correspond to equations (6.1) with degenerate diffusion such that only the 2 × 2-matrices B 11 and B nn are non-zero. To treat them the methods of our work should be developed further.

Finally we mention that stochastic perturbations of equations (6.5) with Q(q) = αq, α > 0, and with degenerate (or non-degenerate) diffusion may be examined using the results of [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF].

Let us consider the action-angles mapping

R 2n → R n + × T n , v ↦ (I, ϕ)(v), where 
I(v) = (I k (v), k = 1, . . . , n), I k (v) = 1 2 v k 2 , ϕ(v) = (ϕ k (v), k = 1, . . . , n), ϕ k (v) = Arg(v k ) = arctan v k v -k (6.8) and ϕ k ∶= 0 if v k = 0. Then v k = 2I k (cos ϕ k , sin ϕ k ), k = 1, . . . , n. (6.9) 
By Itô's formula, if v(τ ) is a solution of (6.1), then the equations for the actions

I k (v) read dI k = v t k P k (v)dτ + 1 2 n1 j=1 B kj (v) 2 HS dτ + n1 j=1 v t k B kj (v)dβ j (τ ), k = 1, . . . , n, (6.10) 
where ⋅ HS is the Hilbert-Schmidt norm. Equations for ϕ k (v), k = 1, . . . , n, hold if all v k are non-zero and read

dϕ k (τ ) = ε -1 W k (I)dτ + Φ 1 k (v)dτ + n1 j=1 Φ 2 kj (v)dβ j (τ ), k = 1, . . . , n, (6.11) 
where

Φ 1 k (v) = ∇ v k arctan v k v -k ⋅P k (v)+ 1 2 n1 j=1 Trace B kj (v) ∇ 2 v k arctan v k v -k B kj (v) t ,
and

Φ 2 kj (v) = ∇ v k arctan v k v -k ⋅ B kj (v).
Remark 6.4. Note that in view of (6.9), for I k near zero the r.h.s of (6.10) is a Hölder-1 2 function of I k and the r.h.s. of (6.11) has a strong singularity when I k vanishes. Moreover, the dispersion part of (6.10) vanishes with I k . Hence, system (6.10)+(6.11) is singular and degenerated at the set ⋃ n k=1 {(I, ϕ) ∶ I k = 0}. As in previous sections, we introduce the averaged equations for I k (τ ), k = 1, . . . , n, as

dI k (τ ) = F k (I)dτ + n j=1 K kj (I)dβ j (τ ), F k (I) = ⟨v t k P k ⟩(I) + 1 2 ⟨ j B kj 2 HS ⟩(I), (6.12) 
with the initial condition I(0) = I 0 = I(v 0 ). (6.13) The brackets ⟨⋅⟩ signify the averaging in ϕ, see (1.14), and the dispersion matrix K(I) = K kj (I) 1⩽k,j⩽n is chosen to be the principal symmetric square root of the averaged diffusion matrix S(I) = (S km (I)) 1⩽k,m⩽n of equation (6.10),

S km ∶= ⟨ n1 j=1 v t k B kj B t mj v m ⟩(I), k, m = 1, . . . , n. (6.14) So K = K t ≥ 0 and n j=1 K kj (I)K mj (I) = S km (I), k, m = 1, . . . , n.
Remark 6.5. Under (3) of Assumption 6.1, the drift and dispersion terms of (6.12) are only Hölder-1 2 smooth with respect to I k (and Lipschitz with respect to √ I k ), k = 1, . . . , n. Moreover, the dispersion term vanishes at I k = 0. If we strengthen the assumption by assuming that the vector-field P and the dispersion matrix B are C 2 -smooth, then by a straightforward application of Whitney's theorem (see in [START_REF] Whitney | Differentiable even functions[END_REF] Theorem 1 and the last remark of the paper), the drift term in (6.12) will be C 1 -smooth in I. However, this will not improve the fact that the dispersion term vanishes with I k (and may have there a square-root singularity, see [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]Proposition 6.2] for an example). Thus the well-posedness of equation (6.12) is a delicate question. Remark 6.6. Dispersion matrix K of equation (6.12) should not necessarily be neither symmetric nor square, and if we replace it by another (possibly non-square) matrix K such that K Kt = S, we would get a new equation with the same set of weak solutions. See [26, Section 5.3] and [14, Section 5.4.B]. This fact concerning equation (6.12) and other SDEs is systematically used below.

The following analogue of Theorem 4.3 holds for solutions of equation (6.1). Theorem 6.7. Under Assumption 6.1, for any v 0 ∈ R 2n the collection of laws of the processes {I(v ε (τ

; v 0 )), τ ∈ [0, T ]}, 0 < ε ≤ 1, is tight in P(C([0, T ], R n + )). If we take any sequence ε j → 0 such that D(I(v εj (⋅; v 0 )) ⇀ Q 0 ∈ P(C([0, T ], R n + ))
, then Q 0 is the law of a weak solution I 0 (τ ), τ ∈ [0, T ], of the averaged equation (6.12), equal

I 0 = I(v 0 ) at τ = 0. Moreover, E sup τ ∈[0,T ] I 0 (τ ) q0 ⩽ C q0 ( v 0 , T ), (6.15) 
and for k = 1, . . . , n,

E T 0 1 {I k ∈[0,δ]} (I 0 (τ ))dτ → 0 as δ → 0. (6.16)
As we discussed in Remark 6.5, the uniqueness of a solution to the averaged equation (6.12), (6.13) is a delicate issue. Therefore in the above theorem we state the convergence only for a subsequence ε j → 0. In Section 7 we construct an effective equation in v-variables such that for its solution v(⋅) with the same initial data v 0 the process of actions I(v(⋅)) is exactly the weak solution I 0 (τ ) from the theorem above. This equation has locally Lipschitz coefficients, so its solution is unique, and thus the convergence in Theorem 6.7 holds as ε → 0.

Let us denote

I ε (τ ) = I(v ε (τ ; v 0 )) and ϕ ε (τ ) = ϕ(v ε (τ ; v 0 )), τ ∈ [0, T ].
Denote also S δ = {I ∈ R n + ∶ min 1≤j≤n I j ⩽ δ} and ĀN,δ = A δ N ∖ S δ , where A δ N is defined as in (3.5), but with P I replaced by the drift term in (6.10). The following lemma is a key technical result for a proof of Theorem 6.7. It states that with high probability the process I ε (τ ), τ ∈ [0, T ] stay away from the locus S 0 = ∪ n k=1 {I ∈ R n + ∶ I k = 0}, for most of the time, uniformly in ε. Lemma 6.8. Under Assumption 6.1, there exist a function κ(δ) and a function α(δ, N ) ∶ R + × R + ↦ R + such that κ(δ) → 0 as δ → 0, α(δ, N ) → 0 as N → ∞ for each δ > 0, and

E T 0 1 S δ (I ε (τ )) dτ ≤ κ(δ), (6.17) 
E T 0 1 ĀN,δ (I ε (τ ))dτ ⩽ α(δ, N ) (6.18)
for any δ > 0, uniformly in 0 < ε ≤ 1.

A proof of (6.18) follows from the same argument as in the demonstration of Lemma 3.4 since the diffusion in (6.10) is non-degenerate outside S δ . That of (6.17) is rather technical due to the degeneracy at the locus S 0 and presence of the ε -1 -term in (6.1). The proof of this inequality is based on an argument, similar to that used in [START_REF] Kuksin | Khasminsii-Whitham averaging for randomly perturbed KdV equation[END_REF][START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF] for an infinite-dimensional stochastic equation. It relies on introducing a family of auxiliary processes which are suitable rotations of a solution v ε (τ ; v 0 ). They are constructed as Itô processes such that their actions coincide with I ε 's, while presence of the rotations allows to remove terms of order ε -1 from the equations for these processes. Detail of the proof of (6.17) is provided in Appendix A.

With the help of Lemma 6.8 the proof of Theorem 4.3 can be adapted to demonstrate Theorem 6.7. We only give here a sketch of the corresponding argument, emphasizing the differences and leaving detail to the reader.

Sketch of the proof of Theorem 6.7: We introduce the starting time τ 0 , number N and intervals ∆ j in the same way as at Step 1 in the proof of Lemma 3.2. In particular, ∆ j = [τ j , τ j+1 ) = [τ 0 + jεN, τ 0 + (j + 1)εN ). By the argument from the proof of Lemma 3.1 and Chebyshev's inequality, for any δ > 0 and N > 0 it holds that P max

0⩽τ ′ <τ ′′ ⩽τ ′ +εN ⩽T I ε (τ ′ ) -I ε (τ ′′ ) ⩾ δ 2 → 0, as ε → 0. (6.19)
By Prokhorov's theorem this relation implies the tightness of the family {I ε (⋅)} in the space C([0, T ]; R n ). So any sequence ε j → 0 has a subsequence such that along it the laws L(I ε (⋅)) converge weakly in C([0, T ]; R n ) to a limit probability measure Q 0 . From Lemma 6.8 and convergence (6. [START_REF] Krylov | Controlled Diffusion Processes[END_REF]) we derive that for any δ > 0 and N > 0

lim ε→0 E # j ∶ {I ε (τ ) ∶ τ ∈ ∆ j ∩ S δ 2 = ∅ T (εN ) = 0.
For this proof we call an interval ∆ j typical, if in addition to the properties, listed in (3.16), the curve {I ε (τ ) ∶ τ ∈ ∆ j } does not intersect the set S δ

2

. Then direct analogies of Lemmas 3.2 and 3.5 hold for the process (I ε (τ ), ϕ ε (τ )) due to the argument, used in Section 3 and enriched by Lemma 6.8. Next, arguing in the same way as in Section 4, we show that the limiting measure Q 0 is a solution of the martingale problem for equation (6.12), satisfying Q 0 {I(0) = I 0 } = 1. Relation (6.16) follows from (6.18).

The effective equation

In this section we construct an effective equation for (6.1) with small ε. This is a v-equation such that under the mapping v ↦ I(v) its weak solutions go to weak solutions of (6.12). Thus by Theorem 6.7 the equation controls the behaviour of actions I k (v ε (τ ; v 0 )) as ε → 0. The construction of the effective equation is a finitedimensional modification of the infinite-dimensional construction, used in [START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF] for purposes of averaging a stochastic PDE with analytic nonlinearity.

To get the effective equation we firstly remove from equation (6.1) the fast rotating terms ε -1 W k v k , and then average the resulting equation with respect to the action of the n-torus on R 2n , using the rules of the stochastic averaging, similar to how we earlier got the averaged I-equation (3.3) from the I-equation in (2.1). The action of T n = {θ} on R 2n is given by the block-diagonal matrix

Φ θ = diag{Φ 1 θ , . . . , Φ n θ }, Φ k θ = cos θ k -sin θ k sin θ k cos θ k , 1 ⩽ k ⩽ n. (7.1)
The drift in the effective equation is the averaging ⟨P ⟩ = (⟨P⟩ 1 , . . . , ⟨P⟩ n ) of the vector field P in (6.1) with respect to the action Φ θ . For convenience of future calculation we abbreviate ⟨P ⟩

(v) = R(v) = (R 1 (v), . . . R n )(v). Then R k (v) ∶= ⟨P⟩ k (v) = T n Φ k -θ P k (Φ θ v)dθ, k = 1, . . . , n (cf. [9, Section 3]).
To obtain the dispersion matrix ⟪B⟫(v) of the effective equation we start with 2n × 2n matrix X(v) = X km (v) 1⩽k,m⩽n , formed by 2 × 2-blocks X km (v),

X km (v) ∶= n1 j=1 T n Φ k -θ B kj (Φ θ v) B mj (Φ θ v) t Φ m θ dθ. That is, X(v) = ∫ T n Φ -θ B(Φ θ v)(B(Φ θ v)) t Φ θ dθ
, where we denoted by B the block matrix B = B kj . The dispersion matrix in question ⟪B⟫(v) = ⟪B kj ⟫(v) 1⩽k,j⩽n is the principal square root of X(v) (see the 10-th footnote). So

n j=1 ⟪B kj ⟫(v)⟪B mj ⟫ t (v) = n1 j=1 T n Φ k -θ B kj (Φ θ v) B mj (Φ θ v) t Φ m θ dθ (7.2) for 1 ⩽ k, m ⩽ n.
Then the effective equation for (6.1) is the following one:

dv k (τ ) = R k (v)dτ + n j=1 ⟪B kj ⟫(v)dβ j (τ ), k = 1, . . . , n, (7.3) 
or

dv(τ ) = R(v) + ⟪B⟫(v)dβ(τ ),
where β(τ ) = (β 1 , . . . , β n )(τ ) is a standard Wiener process in R 2n , defined on the space (6.2).

Proposition 7.1. Under ( 2) and (3) of Assumption 6.1, i) the vector-function R(v) and matrix functions X(v) and ⟪B⟫(v) are locally Lipschitz in v;

ii) for any

θ ∈ T n , R(Φ -θ v) = Φ -θ R(v), while X(Φ -θ v) = Φ -θ X(v)Φ θ and ⟪B⟫(Φ -θ v) = Φ -θ ⟪B⟫(v)Φ θ .
Proof. i) The local Lipschitz continuity of R(v) and X(v) follow from the relations which define them. Since the operator BB t (v) is uniformly elliptic (see (6.3)), then X(v) is uniformly elliptic as well, so the Lipschitz continuity of ⟪B⟫(v) = (X(v)) 1 2 is a consequence of [26, Lemma 5.2.1 and Theorem 5.2.2] and the Lipschitz continuity of X(v).

ii) The relations for R(v) and X(v) are direct consequences of their definitions, and the relation for ⟪B⟫ follows from that for X.

Since the coefficients of equation (7.3) are locally Lipschitz, then its strong solution, if exists, is unique. So by the Yamada-Watanbe theorem (see in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]) we have Proposition 7.2. If v 1 (τ ) and v 2 (τ ), 0 ≤ τ ≤ T , are weak solutions of equation

(7.3) such that D(v 1 (0)) = D(v 2 (0)), then D(v 1 (⋅)) = D(v 2 (⋅))
, and a strong solution with the initial data v 1 (0) exists for 0 ≤ τ ≤ T .

Since for a matrix Q we have Q 2 HS =tr QQ t , then taking the trace of relation (7.2) with k = m we get that

∑ n j=1 ⟨⟨B kj ⟩⟩(v) 2 HS = ∑ n1 j=1 ∫ T n Φ k θ B kj (Φ θ v) 2
HS . Using this equality we write Itô's formula for the actions I k (v(τ )), k = 1, . . . , n, of a solution v(τ ) for (7.3), as

dI k = v t k R k (v)dτ + 1 2 n j=1 T n Φ k θ B kj (Φ θ v) 2 HS dθ dτ + n j=1 v t k ⟪B kj ⟫(v)dβ j (τ ).
(7.4) The first term of the drift in this equation may be re-written as

v t k R k (v) = v t k T n Φ k -θ P k (Φ θ v)dθ = T n (v t k P k )(Φ θ v)dθ = ⟨v t k P k ⟩(I). Since Φ k θ B kj (Φ θ v) 2 HS = B kj (Φ θ v) 2
HS , then in the second term of the drift we have

∫ T n Φ k θ B kj (Φ θ v) 2 HS dθ = ⟨ B kj 2 
HS ⟩(I). Therefore the drift in (7.4) is F k (I), i.e. is the same as that in (6.12).

Using once again (7.2) we see that the diffusion matrix in (7.4) 

is S = ( Skm ) with Skm ∶= j v t k ⟪B kj ⟫(v)(⟪B mj ⟫(v)) t v m = j T n (Φ k θ v k ) t B kj (Φ θ v)(B mj (Φ θ v)) t Φ m θ v m dθ = ⟨ j v t k B kj (v)B t mj (v)v m ⟩(I) = S km (I),
where S km (I) is as in (6.14). We conclude that the diffusion matrices of equations (7.4) and (6.12) also coincide. Hence, Proposition 7.3. Let the process v(τ ) ∈ R 2n , 0 ⩽ τ ⩽ T be a weak solution of (7.3). i) Then the process

I(v(τ )), v(τ ) ∈ R n + × R 2n , 0 ⩽ τ ⩽
T is a strong solution of system (7.4)+(7.3), driven by the set of Brownian motions, corresponding to the weak solution v.

ii) The drift and diffusion matrix in (7.4) are functions of the actions {I k } and are the same as in equation (6.12). So the process I(v(τ )), 0 ⩽ τ ⩽ T is a weak solution of (6.12). A disadvantage of system (7.4)+(7.3) is that dispersion matrix in (7.4) depends both on the actions I and angles ϕ, despite the corresponding diffusion matrix depends only on the actions. To fix this let us denote by ( 2I(v), 0) the 2n-vector with components

( 2I i (v), 0) t , i = 1, . . . , n. Then ( 2I(v), 0) = Φ -ϕ(v) v, so by Proposition 7.1.ii), v t k ⟪B kj ⟫(v)dβ j (τ ) = ( 2I k (v), 0)Φ k -ϕ(v) ⟪B kj ⟫(Φ ϕ(v) ( 2I(v), 0))dβ j (τ ) = ( I k (v), 0)⟪B kj ⟫(( 2I(v), 0))Φ j -ϕ(v) dβ j (τ ) = M kj (I)d βj (τ ).
Here d βj (τ ) = Φ j -ϕ(v) dβ j (τ ), j = 1, . . . , n, are differentials of independent standard Brownian motions in R 2 and M kj (I) is the 2-vector ( √ I k , 0)⟪B kj ⟫ ( √ I, 0) . Then equation (7.4) can be re-written as

dI k = F k (I)dτ + n j=1 M kj (I), d βj (τ ) , k = 1, . . . , n. (7.5)
When driven by the set of Brownian motions { βj (τ )}, the effective equation ( 7.3) reads

dv k = R k (v)dτ + n j=1 Bkj (v)d βj (τ ), k = 1, . . . , n, (7.6) 
where Bkj (v) = ⟪B kj ⟫(v)Φ j ϕ(v) . The system (7.5)+(7.6) is just the system (7.4)+ (7.3), written using another standard Wiener process in R 2n , so the two systems have the same sets of weak solutions. In difference with equation (7.3), dispersion matrix B(v) in (7.6) is not locally Lipschitz. But for any N ≥ 1 and δ

> 0 it is Lipschitz in domain {v ∶ v ≤ N, v j > δ ∀ j}.
The drift and diffusion in equation (7.5) are the same as in (7.4), so by Proposition 7.3 ii) they are the same as in equation (6.12). Thus equations (7.5) and (6.12) have the same set of weak solutions. We have established Lemma 7.4. Systems (7.5)+(7.6) and (7.4)+ (7.3) have the same set of weak solutions. So do equations (7.5) and (6.12).

we will divide [0, T ) into finite or countable set of random closed intervals Λ j , j ⩾ 0, and ∆ j , j ⩾ 1, such that (1)

Λ 0 ⩽ ∆ 1 ⩽ Λ 1 ⩽ ∆ 2 ⩽ . . . , (2) 
[I 0 ] ⩾ δ on each Λ j , and [I 0 ] ⩽ 2δ on each ∆ j . For definiteness we assume that [I 0 ] ≥ δ.

Next we iteratively construct on these intervals a process v δ (τ ) such that

I(v δ (τ )) ≡ I 0 (τ ), a.e. (8.4) 
Suppose that we already know v δ at the left end point of some Λ j . To construct v δ (τ ) on Λ j we note that since on every Λ j we have [I(v δ (⋅))] = [I 0 (⋅)] ⩾ δ , then by Lemma 8.1 there equation (7.6) is equivalent to (7.5)+(8.1). As I(τ ) = I 0 (τ ) is known, it remains to solve (8.1), regarded as a stochastic equation with progressively measurable coefficients for n-vector ϕ(τ ). Since the initial value of ϕ is given on the left end point of Λ j , such a solution ϕ is uniquely determined. Then for τ ∈ Λ j we set v δ (τ ∶= V ϕ(τ ) (I 0 (τ )). By Lemma 8.1 this v δ solves (7.6) weakly on Λ j . Clearly, (8.4) is satisfied.

On the next interval ∆ j+1 we have [I 0 ] ⩽ 2δ. We want to extend v δ (τ ) to ∆ j+1 , keeping the property (8.4), so that when eventually v δ is constructed on all Λ j 's and ∆ k 's, we may obtain the desired weak solution of (7.6) by taking a limit as δ → 0. Such a task turns out to be not easy since by (8.4) we have

v k = 2I k (τ ) cos ϕ k (τ ), 2I k (τ ) sin ϕ k (τ )
with some phase function ϕ k , and so on ∆ j+1 a-priori vk ∼ δ -1 2 . Hence, a naive extension may fail to guarantee the existence of a limit as δ → 0. To construct a right lifting of I 0 (τ ) when it is small, we use the fact the I 0 (τ ) is a limit of the process I εi (τ ) ∶= I(v εi (τ )), where v εi solves equation (6.1) with ε = ε i . The process v εi (τ ) is a lifting of I εi (τ ) which is singular as ε i → 0. In Appendix A for each ε i > 0 a modified process vεi (τ ) is constructed such that I(v εi (τ )) = I(v εi (τ )) and d dτ vεi ∼ 1 as ε i → 0. A limit in law of processes vεi (⋅) as ε i → 0 provides a right lifting of I 0 on interval ∆ j+1 . We thus extend the process v δ (τ ) to ∆ j+1 in such a way that (8.4) holds and vδ ∼ 1.

By iterating the two constructions above we obtain a process v δ (τ ) which solves (7.6) for τ ∈ ∪Λ j and satisfies good estimates on the complementary set ∪∆ j . By Theorem 6.7 the Lebesgue measure of ∪∆ j becomes small with δ. This allows us to show that any limit distribution of the process v δ (⋅) as δ → 0 gives a weak solution v(⋅) for (7.6).

To run this construction we need good upper bounds for the numbers of intervals Λ j and ∆ j , which could be large when the norm of the process I 0 (τ ) is large. To get the bounds we begin the proof by introducing the stoping times τ N = inf τ { I 0 (τ ) = N 2} and replacing I 0 (τ ) by a trivial modification for τ ⩾ τ N . Then we first obtain a weak solution v N (τ ), corresponding to the modified process I 0 N (τ ), and next take the limit as N → ∞ to get a real weak solution v(τ ) of (7.6).

Proof. Let us introduce a natural filtered measurable space {Ω, B, {B τ }, 0 ⩽ τ ⩽ T } for the problem we consider, where Ω is the Banach space

Ω = Ω I × Ω v ∶= C([0, T ], R n + ) × C([0, T ], R 2n ), (8.5) 
B is its Borel σ-algebra and B τ is the σ-algebra generated by the set of random variables {r(s) ∶ 0 ⩽ s ⩽ τ and r(⋅) ∈ Ω}. Denote by π I and π v the natural projections π I ∶ Ω → Ω I and π v ∶ Ω → Ω v . We will prove the theorem by constructing a probability measure Q on Ω such that π I ○ Q = D(I 0 (⋅)), π v ○ Q is the distribution of a weak solution of (7.6), and Q-a.s. for (I ′ (⋅), v ′ (⋅)) ∈ Ω we have I(v ′ ) = I ′ . This will be achieved in four steps.

Step 1. Redefine the equations for large amplitudes.

For any ∈ N consider the stopping time

τ N = inf{τ ∈ [0, T ] v(τ ) 2 = 2 I(v(τ )) = N },
(here and in similar situations below τ N = T if the set is empty). For τ ⩾ τ N and each ε > 0 we redefine equation (6.1) to the trivial equation

dv k = dβ k (τ ), k = 1, . . . , n, (8.6) 
and redefine accordingly equations (6.10), (7.5) (7.6) and (8.1). We denote the new equations as (6.1) N , (6.10) N (7.5) N , (7.6) N and (8.1) N . So if v ε N (τ ) is a solution of (6.1) N , then I ε N (τ ) ∶= I(v ε N (τ )) satisfies (6.10) N . That is, for τ ⩽ τ N , it satisfies (6.10), while for τ ⩾ τ N it is a solution of the equation

dI k = 1 2 dτ + (v k dβ k + v -k dβ -k ) = 1 2 dτ + 2I k dw k (τ ), k = 1, . . . , n, where w k (τ ) is the Wiener process ∫ τ 0 (cos ϕ k dβ k (τ ) + sin ϕ k dβ -k (τ ))
. So (6.10) N is the equation

dI k = 1 τ ⩽τ N ⋅ ⟨r.h.s of (6.10)⟩ + 1 τ ⩾τ N ( 1 2 dτ + 2I k dw k (τ )), k = 1, . . . , n.
Accordingly, the averaged equation (7.5) N reads

dI k = 1 τ ⩽τ N F k (I)dτ + n j=1 M kj (I), d βj (τ ) +1 τ ⩾τ N 1 2 dτ + 2I k d βk (τ ) , k = 1, . . . , n.
Here βj (τ ), j = 1, . . . , n, are independent standard Brownian motions in R 2 .

For the sequence ε i → 0, where we have the convergence D(I εi (⋅)) ⇀ D(I 0 (⋅)), choosing a suitable subsequence (if neccessary) we achieve that also D(I εi N (⋅)) ⇀ D(I N (⋅)) for some process I N (τ ), for each N ∈ N. Proof. i) The first part of the statement follows from the same argument as in the proof of Theorem 6.7. Recalling that, for each ε > 0, D(I ε N (⋅)) = D(I ε (⋅)) =∶ Q ε for τ ⩽ τ N and passing to the limit as ε i → 0 we get the second assertion of the lemma. As Q ε {τ N < T } ⩽ CN -1 uniformly in ε, then the last assertion also follows.

ii) The assertion follows by the same argument as that used to prove Lemma 8.1.

Now we fix any N ∈ N. Our goal is to construct for each δ > 0 a measure Q N δ on Ω such that for its natural process

(I N δ (τ ), v N δ (τ )), τ ∈ [0, T ] we have (1) D(I N δ (⋅)) = D(I N (⋅)); (2) I(v N δ (⋅)) ≡ I N δ (⋅), Q N δ -a.s; (3) the process v δ N (τ )
is an Itô process with bounded (in terms of N ) drift term and diffusion matrix. Moreover, it solves (7.6) N for τ outside a small random set, where [I(τ )] ≲ δ (see (8.3)).

Next we will prove the assertion of Theorem 8.2 by taking the limits δ → 0 and N → ∞.

Step 2: Construction of the measure Q δ ∶= Q N δ for every δ > 0 and N fixed. We start with finding an auxiliary Itô process w(τ ) which covers a version of the process I N (τ ) (but has no relation with the effective equation (7.6)). Since N is fixed, then below in the step the index N usually is dropped. Lemma 8.4. There exists a continuous B -adapted process ( Ī(τ ), w(τ )) ∈ R n + ×R 2n , 0 ⩽ τ ⩽ T , such that D( Ī(⋅)) = D(I N (⋅)), Ī(⋅) = I( w(⋅)) a.s., and w(τ ) is an Itô process in R 2n of the form

d w(τ ) = B(τ )dτ + a(τ )dβ(τ ), τ ∈ [0, T ], B(τ ) ⩽ C, C -1 I ⩽ a(τ ) a(τ ) t ⩽ CI, (8.7) 
where the constant C depends only on N , and β(τ ) is a standard Brownian motion in R 2n .

Proof. By the construction in Appendix A (see there (A.5)), for each ε > 0 there exists an Itô process wε (τ ) ∈ R n , 0 ⩽ τ ⩽ T , as in (8.7) with a uniform in ε constant C > 0 depending only on N , and I( wε (⋅)) = I(v ε (⋅)), a.s., where v ε solves equation (6.1) N . Since the laws D I( wε (⋅)), wε (⋅)

ε∈(0,1]
are tight in Ω, then taking a subsequence of ε i → 0 (if necessary) we achieve that the corresponding laws weakly converge to a measure Q on Ω. Let ( Ī(τ ), w(τ )), 0 ⩽ τ ⩽ T , be the natural process of the measure Q. Then clearly this is a desired process. Now let ( Ī(τ ), w(τ )), 0 ⩽ τ ⩽ T , be a continuous process as in Lemma 8.4. Fix any δ > 0. For the process Ī(τ ), 0 ⩽ τ ⩽ T , we define stopping times τ ± j ⩽ T such that ⋯ < τ - j < τ + j < τ - j+1 < . . . , similarly to the stopping times in Appendix A. Namely,

(1) If [ Ī(0)] ⩽ δ, then τ - 1 = 0; otherwise τ + 0 = 0. (2) If τ - j is defined, then τ + j is the first moment after τ - j when [ Ī(τ )] ⩾ 2δ (if this never happens, then we set τ + j = T ; similar in the item below). (3) If τ + j is defined, then τ - j+1 is the first moment after τ + j when [ Ī(τ )] ⩽ δ. We denote ∆ j = [τ - j , τ + j ], Λ j = [τ + j , τ - j+1 ] and set ∆ δ = ∪∆ j , Λ δ = ∪Λ j .
See Figure 1.

τ [ Ī(τ )] τ - 1 τ + 1 δ 2δ τ + 0 Λ 0 ∆ 1 Λ 1 ∆ 2 τ - 2 τ + 2 Figure 1.
A typical behaviour of the stopping times τ ± j By Theorem 6.7,

E L(∆ δ ) = o δ (1), so E L(Λ δ ) = T -o δ (1), (8.8) 
i) D(I δ (⋅)) = D(I N (⋅)); ii) I(v δ (⋅)) = I δ (⋅) δ -a.s.;
iii) for τ ∈ Λ δ the process v δ is a weak solution of (7.6) N , while for τ ∈ ∆ δ v δ (τ ) is an Itô process as in (8.7), where C does not depend on N .

Step 3. Limit δ → 0. From the construction we know that the set of measures {Q N δ , 0 ⩽ δ ⩽ 1} is tight. Let Q N be any limiting measure as δ → 0. Then

Q N δj ⇀ Q N as δ j → 0, (8.10) 
for some sequence

{δ j }. Since D(I δ (⋅)) = D( Ī(⋅)) = D(I N (⋅)) ∀δ > 0, then π I ○Q N = D(I N (⋅)).
For the projection of Q N to Ω v we have Lemma 8.5. The measure P N ∶= π v ○ Q N is a solution of the martingale problem for equation (7.6) N .

Proof. Let us denote the drift terms and dispersion terms of (7.6) N as R N k (τ, v) and BN kj (τ, v), respectively. Consider the natural process

v δ = (v 1,δ , ⋯, v n,δ ) of the measure P N δ ∶= π v ○ Q N δ on Ω v . It satisfies the system of Itô equations, dv k (τ ) = 1 τ ∈Λ δ R N k (τ, v) + 1 τ ∈∆ δ B k (τ ) dτ + 1 τ ∈Λ δ n j=1 BN kj (τ, v)dβ j (τ ) + 1 τ ∈∆ δ n j=1 a kj (τ )dw j (τ ) =∶ A δ k (τ )dτ + n j=1 G δ kj (τ, v)dβ j (τ ) + C δ kj (τ )dw j (τ ) , k = 1, . . . , n. (8.11) 
Here B(τ ) and a(τ ) are the drift and dispersion, corresponding to the Itô process v δ on ∆ δ (see item d)iii) of Step 2), so dispersion matrices G δ kj (τ ) and C δ kj (τ ) are supported by non-intersecting unions of random time-intervals Λ δ and ∆ δ . Furthermore, for any δ > 0 and k, m = 1, . . . , n, we have i) the process

γ δ k (τ ) = v k (τ ) -∫ τ 0 A δ k (s)ds ∈ R 2 is a P N δ -martingale; ii) the process Γ δ km = γ δ k (τ ) γ δ m (τ ) t -1 2 ∫ τ 0 X δ km (s) + Y δ km (s) ds, where X δ km (s) = n j=1 G δ kj (s) G δ mj (s) t , Y δ km (s) = n j=1 C δ kj (s) C δ mj (s) t ,
is a P N δ -martingale. Note that for any δ > 0, by (8.8), we have

E P N δ sup 0⩽τ ⩽T τ 0 (A δ k (s) -R N k (s, v(s))ds ⩽ E P N δ ∆ δ R N k (s, v(s)) + B k (s) )ds ⩽ C(N )o δ (1). (8.12) 
By (8.10),

P N δj ⇀ P N ∶= π v (Q N ) as δ j → 0. (1) We first show that the process γ 0 k (τ ) = v k (τ ) -∫ τ 0 R N k (s, v(s))ds is a P N - martingale. Let us take any 0 ⩽ τ 1 ⩽ τ 2 ⩽ T and Ψ ∈ C b (Ω v ) such that Ψ(ξ(⋅)) depends only on ξ(τ ) with τ ∈ [0, τ 1 ].
We have to show that

E P N γ 0 k (τ 2 ) -γ 0 k (τ 1 ) Ψ(ξ) = 0. ( 8.13) 
The l.h.s equals

lim δj →0 E P N j γ 0 k (τ 2 ) -γ 0 k (τ 1 )Ψ(ξ) = lim δj →0 E P N δ j Ψ(ξ) v k (τ 2 ) -v k (τ 1 ) - τ2 τ1 R N k (s, v(s))ds = lim δj →0 E P N δ j Ψ(ξ) τ2 τ1 (A δ k (s) -R N k (v(s)))ds = 0,
where in the second equality we use the fact that γ δ k is a P N δ -martingale and in the third we use (8.12). So (8.13) is established, and so

γ 0 k (τ ) is a P N -martingale. (2) We then show the process Γ 0 km (s) = (γ 0 k (τ ))(γ 0 m (τ )) t -1 2 ∫ τ 0 X 0 km (s)ds is a P N -martingale, where X 0 km (s) = ∑ n j=1 BN kj (s, v(s)) BN mj (s, v(s)) t .
Note that by the definition, for δ > 0 we have

E sup 0⩽τ ⩽T τ 0 (X 0 km (s) -X δ km (s) -Y δ km (s))ds ⩽ C(N )E P N δ 1 s∈∆ δ ⩽ C(N )o δ (1).
Then Γ 0 km is a P N -martingale due to the same reasoning as in [START_REF] Arnold | Mathematical Aspects of Classical and Celestial Mechanics[END_REF]. This finishes the proof of the lemma.

Step 4. Limit N → ∞. By the construction and estimate (6.15) the set of measures {Q N , N ∈ N} is tight. Consider any limiting measure Q for this family as N → ∞. Repeating in a simpler way the proof of Lemma 8.5, we find that π v ○ Q solves the martingale problem of (7.6). Therefore, it is a weak solution for (7.6) 

with π v ○ Q(v(0) = V θ (I)) = 1 and I ○ π v ○ Q = D(I 0 (⋅)).
E sup 0⩽τ ⩽T v(τ ; v 0 ) 2q0 ⩽ C q0 ( v 0 , T ) < +∞, (8.14) 
where C q0 (⋅, ⋅) is the same as in Assumption 6.1. ii) For any

v 0 ∈ R 2n , solution v ε (τ ; v 0 ) of equation (6.1) with v ε (0; v 0 ) = v 0 satisfies D I(v ε (⋅; v 0 )) ⇀ D I(v(⋅; v 0 )) in P(C[0, T ], R n + ) as ε → 0. ( 8.15) 
Moreover, the process I 0 (τ ) ∶= I(v(⋅; v 0 )), τ ∈ [0, T ] is a weak solution of (6.12), equal I 0 = I(v 0 ) at τ = 0.

Remark 8.7. A straightforward analysis of the proof shows that it goes through without changes if v ε (τ ; v ε0 ) solves (6.1) with an initial data v ε0 which converges to v 0 as ε → 0. In this case still

D I(v ε (⋅; v ε0 ) ⇀ D I(v(⋅; v 0 )) in P(C[0, T ], R n + ) as ε → 0. (8.16)
The result in Theorem 8.6 admits an immediate generalization to the case when the initial data v 0 in (8.15) is a random variable: Amplification 8.8. Let v 0 be a random variable independent of the Wiener processes β j (τ ), j = 1, . . . , n 1 . Then still convergence (8.15) holds.

Proof. Let v ε be a weak solution of (6.1) with v ε (0) = v 0 . Let (Ω ′ , F ′ , P ′ ) be some probability space and ξ ω ′ 0 be a r.v. on Ω ′ , distributed as v 0 . Then v εω (τ ; ξ ω ′ 0 ) is a weak solution of (6.1), defined on the probability space Ω ′ × Ω = {(ω ′ , ω)}. Take f to be a bounded continuous function on C([0, T ], R n + ). Then by theorem above, for each

ω ′ ∈ Ω ′ lim ε→0 E Ω f I v εω (⋅; ξ ω ′ 0 ) = E Ω f I v ω (⋅; ξ ω ′ 0 ) ,
where v ω (⋅; ξ ω ′ 0 ) is a weak solution of (7.3) with v ω (0) = ξ ω ′ 0 . Since f is bounded, then by the Lebesgue dominated convergence theorem we have

lim ε→0 Ef (I(v ε (⋅; v 0 ))) = lim ε→0 E Ω ′ E Ω f (I(v εω (⋅; ξ ω ′ 0 ))) = E Ω ′ E Ω f (I(v ω (⋅; ξ ω ′ 0 ))) = Ef (I(v(⋅; v 0 ))
). This implies the required convergence (8.15). Proposition 8.9. 1) A weak solution v θ , θ ∈ T n , as in Theorem 8.2 may be chosen to be v θ (τ ) = Φ θ v(τ ; v 0 ), where v(τ ; v 0 ) is the strong solution from Theorem 8.6.

2) More generally, if τ is a non-negative constant and θ ∈ T n is a r.v., measurable with respect to F τ (see (6.2)), then the process v(τ ) = Φ θ v(τ ; v 0 ), τ ≥ τ , is a weak solution of equation (7.3).

Proof. It suffices to prove 2) since it implies 1) if we choose τ = 0. Substituting in (7.3) 

v(τ ) = Φ -θ v(τ ) we get that dv(τ ) = Φ θ R Φ -θ v(τ ) dτ + Φ θ ⟨⟨B⟩⟩ Φ -θ v(τ ) dβ(τ ).
Or, using Proposition 7.1.ii), that

dv(τ ) = R(v(τ ))dτ + ⟨⟨B⟩⟩(v(τ ))Φ θ dβ(τ ).
Since the r.v. θ is F τ -measurable, then the process t ↦ Φ θ β(t + τ ) -β(τ ) is a standard Wiener process in R 2n . Thus, v(τ ), τ ≥ τ , is a weak solution of (7.3).

Equations in bounded domains

In this section we consider problem (6.1) in the set

B = {v ∈ R 2n ∶ I(v) ∈ B},
where B = B R (R n ) for some R > 0. We assume that all coefficients in (6.1) are defined and Lipschitz continuous on the set B (so W (I) is defined and Lipschitz continuous on B). We also assume that conditions of items (1)-(2) of Assumption 6.1 are fulfilled on B. Let us consider the effective equation (7.3) as in Section 7 on set B (note that to calculate coefficients of the equation on B it suffices to know P, B and W only where they are defined).

Let v ε (τ ) be a solution of (6.1) with the v 0 as above. Denote by τ ε R its exit time from domain B. Then

τ ε R = inf{τ > 0 ∶ I ε (v(τ )) ∈ ∂B}, where I ε (τ ) ∶= I ε (v(τ )
) satisfies (6.10). Similarly, let τ h R stands for the exit time from B of a solution v(τ ) of equation (7.3), equal v 0 at τ = 0. Again, it equals the exit time of I(v(τ )) from B.

Theorem 9.1. Under the above assumptions, for any T > 0 and any v 0 ∈ B, as ε → 0 the family of processes {I ε (⋅ ∧ τ ε R )} converges in law, weakly in the space (C([0, T ]; R n ), B T ), to a weak solution I h (⋅ ∧ τ h R ) of problem (6.12), (6.13). The latter solution is obtained as the action-vector for a unique weak solution of the effective equation (7.3), equal v 0 at τ = 0 and stopped at ∂B.

Proof. The required statement is essentially a consequence of 6.7 and 8.2. Indeed, by Lemma 5.2 in [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF] coefficients P k (v) and B kj (v) can be extended from the set B to the whole space R 2n in such a way that the extensions are bounded, Lipschitz continuous, and the extended matrix B(v)B(v) t is positive definite. Using the same lemma we also extend W (I) to a Lipschitz continuous vector-function W on R d with compact support.

Consider the function Γ on R n ,

Γ(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ exp -1 x -R , x > R, 0, x ≤ R.
It is smooth, globally Lipschitz, and is flat on ∂B. For α ∈ R define vector-functions W α on R n as W α (x) = α∇Γ(x) + W (x). All of them are continuations of W to R n .

Lemma 9.2. There is at most countable number of α's for which the components of W α are rationally dependent on a set of positive measure.

Proof. Since W α = W on BR , then in view of Assumption 6.1.( 1) it suffices to examine intersections of the sets of rational dependence of components of W α with R n ∖ B.

Assume that there exists two distinct α 1 , α 2 and a non-zero vector

m ∈ Z n such that L {x ∈ R n ∖ B ∶ m ⋅ W α1 = 0 and m ⋅ W α2 = 0} > 0.
Then m ⋅ ∇Γ(x) = 0 on a set of positive measure in R n ∖ B. But Γ(x) may be written as f ( x 2 ), where f (r) is a smooth function, vanishing for r ≤ R 2 . Then ∇Γ(x) = 2xf ′ ( x 2 ) and we see that the set under discussion has zero measure since f ′ (r) > 0 for r > R 2 . Therefore for each δ > 0 and any non-zero vector m ∈ Z n the number of α's for which L {x ∈ R d ∖ B ∶ m ⋅ ∇W α = 0} > δ is at most countable. This implies the assertion.

Denote X T = C([0, T ], R n ), take any number α 0 , different from the countable family in the lemma above, and choose W α0 for the extentson of W . Then by Proposition 2.3 Assumption 6.1.(4) holds, and so Theorems 6.7 and 8.2 apply to the obtained stochastic equation in R 2n . Thus for any T > 0 the corresponding process I ε converges in law in X T as ε → 0 to a solution of the averaged equation (6.12) and may be lifted to a solution of the corresponding effective equation. The initial condition remains unchanged.

Let τ R (I) = min T, inf{τ ∈ (0, +∞) ∶ I(τ ) ∈ ∂B} . For an arbitrary bounded continuous functional R on X T , consider there another functional

R B (I) = R I(τ ∧ τ R (I)) , I ∈ X T .
It is not continuous. However, the following statement ensures that it is almost surely continuous with respect to the measure on X T , generated by the limit process I h , constructed in Theorem 8.6 (and called there I 0 ). Lemma 9.3. Under the standing assumptions, let v(τ ) be any solution of the corresponding effective equation in R 2n and I h (τ ) = I(v(τ )). Then

P inf{τ > 0 ∶ I h (τ ) ∈ ∂B} = inf{τ > 0 ∶ I h (τ ) ∈ B} = 1.
Proof. The desired inequality is an immediate consequence of the fact that the diffusion coefficient of the process v(τ ) at ∂B does not degenerate in the direction of a normal vector to ∂B.

Combining this with the statements of Theorems 6.7, 8.2 and [2, Theorem 5.2] we conclude that the law of

I ε (τ ∧ τ ε R ) converges to that of I h (τ ∧ τ h R ).
It should be noted that the distribution of τ ε R does not concentrate in the of zero, as ε → 0. So Theorem 9.1 with high probability describes the behaviour of solutions for (6.1) on t-time intervals of order ε -1 . More precisely, as a consequence of the tightness of the family {I ε (v(⋅))} we have Proposition 9.4. Let v 0 < R. Then for any δ > 0 there exists s = s(δ, R-v 0 ) > 0 such that P{τ ε R < s} < δ, ∀ε ∈ (0, 1]. Proof. By Theorem 6.7 the laws for the process {I(v ε (τ

; v 0 )), τ ∈ [0, T ]}, 0 < ε ⩽ 1, are tight in P(C([0, T ], R d + )
). So by Prokhorov's theorem for any δ > 0 there exists

a compact set M δ in C([0, T ], R d + ) such that P{I(v(⋅)) ∈ M δ } > 1 -δ.
Now the required statement is a consequence of the equicontinuity of functions from M δ , granted by the Arzelà-Ascoli theorem.

Mixing and uniform convergence

In this section we establish the uniform in time convergence in distribution of the actions of solutions for equation (6.1) to those for solutions of effective equation (7.3), with respect to the dual-Lipschitz metric (see Definition 5.3) in the space of probability measures. The proof uses the approach developed in [START_REF] Huang | On averaging and mixing for stochastic PDEs[END_REF][START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF], where a similar result was obtained in the easier case when the frequency vector W in equation (6.1) is constant (cf. Remark 6.2.1)).

Proposition 10.1. Under the assumption of Amplification 8.8 let the r.v. v 0 be such that v 0 ≤ R a.s., for some R > 0. Then the rate of convergence in (8.15) with respect to the dual-Lipschitz distance depends only on R.

Proof. The proof of Amplification 8.8 shows that it suffices to verify that for a non-random initial vector v 0 ∈ BR (R 2n ) the rate of convergence in (8.15) depends only on R. Assume the opposite. Then there exist a δ > 0, a sequence ε j → 0 and vectors v j ∈ BR (R 2n ) such that

D I(v εj (⋅; v j )) -D I(v 0 (⋅; v j )) * L,C([0,T ],R n + ) ⩾ δ.
(10.1) By (6.4) and (8.14), using the same argument as in the proof of Lemma 3.1, we know that the two sets of probability measures {D I(v εj (⋅; v j )) } and {D v 0 (⋅; v j ) } are tight, respectively in P(C([0, T ], R n + )) and P(C([0, T ], R 2n )). Therefore, there exists a sequence k j → ∞ such that ε kj → 0, v kj → v 0 ,

D(I(v ε k j (⋅; v kj ))) ⇀ Q I 0 in P(C([0, T ], R n + )), and 
D(v 0 (⋅; v kj )) ⇀ Q v 0 in P(C([0, T ], R 2n 
)). Then due to (10.1),

Q I 0 -I ○ Q v 0 * L,C([0,T ],R n + ) ⩾ δ. (10.2)
Since in the well-posed eq. ( 7.3) the drift and dispersion are locally Lipschitz and its solutions satisfy estimates (8.14), then the law D(v 0 (⋅; v ′ )) is continuous with respect to the law of the initial condition v ′ . Therefore the limiting measure Q v 0 is the unique weak solution of the effective equation (7.3) with initial condition v 0 (0) = v 0 . By (8.16) the measure Q I 0 equals I ○ Q v 0 . This contradicts (10.2) and proves the assertion.

In this section, we make the following assumption concerning system (6.1) and the corresponding effective equation (7.3).

Assumption 10.2. The first three items (1)-(3) of Assumption 6.1 hold, and (4) For any v 0 ∈ R 2n a strong solution v ε (τ ; v 0 ) of (6.1) is such that for some q 0 > (q ∨ 4) we have

E sup T ′ ⩽τ ⩽T ′ +1 v ε (τ ; v 0 ) 2q0 ⩽ C q0 ( v 0 ), (10.3) 
for every T ′ ⩾ 0 and ε ∈ (0, 1], where C q0 is a continuous non-decreasing function.

(5) Effective equation (7.3) is mixing with a stationary measure µ 0 and a (strong) stationary solution v st (τ ), τ ≥ 0. (6) For any its solution v(τ ), τ ≥ 0, such that D(v(0)) =∶ µ and ⟨ v 2q0 , µ(dz)⟩ = E v(0) 2q0 ≤ M ′ for some M ′ > 0 (we recall notation (5.5)) we have

D(v(τ )) -µ 0 * L,R 2n ⩽ g M ′ (τ, d) ∀τ ⩾ 0, if µ -µ 0 * L,R 2n ⩽ d ⩽ 2. (10.4)
Here the function

g ∶ R + × [0, 2] × R + ∋(τ, d, M ) ↦ g M (τ, d),
is continuous, vanishes with d, converges to zero when τ → ∞ and is such that for each fixed M ≥ 0 the function

(τ, d) ↦ g M (τ, d) is uniformly con- tinuous in d, for (τ, d) ∈ [0, ∞) × [0, 2]. 11
We emphasize that we assume the mixing only for the effective equation ( 7.3), but not for the original equation (6.1). Since Assumption 10.2 implies Assumption 6.1, then the assertions of Section 8 with any T > 0 hold for solutions of equation ( 6.1) which we analyse in this section.

Assumption [START_REF] Eckmann | Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures[END_REF] above may seem rather restrictive. But it is not, as shows the next result: Proposition 10.3. If we keep all the conditions in Assumption 10.2 except [START_REF] Eckmann | Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures[END_REF] and assume that for each M > 0 and any v 1 , v 2 ∈ BM (R 2n ) we have

D(v(τ ; v 1 )) -D(v(τ ; v 2 )) * L,R 2n ≤ g M (τ ), (10.5) 
where g is a non-negative continuous function of (M, τ ) ∈ R 2 + which goes to zero when τ → ∞ and is non-decreasing in M , then [START_REF] Eckmann | Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures[END_REF] holds with a suitable function g.

For a proof of the proposition we refer the reader to [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]Section 7.1]. Note that (10.5) holds (with g replaced by 2g) if

Dv(τ ; v) -µ 0 * L,R 2n ≤ g M (τ ) ∀ v ∈ BM (R 2n ). (10.6) 
Usually a proof of mixing for eq. ( 7.3) in fact establishes (10.6). So, given assumptions (1)-( 5), condition ( 6) is a rather mild restriction.

Theorem 10.4. Under Assumption 10.2, for any

v 0 ∈ R 2n lim ε→0 sup τ ⩾0 I ○ D(v ε (τ ; v 0 )) -I ○ D(v 0 (τ ; v 0 )) * L,R n + = 0,
where v ε (τ ; v 0 ) and v 0 (τ ; v 0 ) solve respectively (6.1) and (7.3) with the same initial condition v 0 .

Proof. Below we abbreviate ⋅ * L,R n + to ⋅ * L . Since v 0 is fixed, we also abbreviate v ε (τ ; v 0 ) to v ε (τ ). Due to (10.3)

E v ε (τ ) 2q0 ⩽ C q0 ( v 0 ) =∶ M * ∀ τ ≥ 0.
(10.7) By (10.7) and (8.15) also Since D(v 0 (τ ; 0)) ⇀ µ 0 as τ → ∞, then from the above with v 0 = 0 we get that ⟨ v 2q0 , µ 0 ⟩ ≤ C q0 (0) ≤ M * . (10.9) The constants in estimates below depend on M * , but usually this dependence is not indicated. For any T ≥ 0 we denote by v 0 T (τ ), τ ≥ 0, a weak solution of effective equation ( 7.3) such that D(v 0 T (0)) = D(v ε (T )).

E v 0 (τ ; v 0 ) 2q0 = ⟨ v 2q0 , D(v 0 (τ ; v 0 ))⟩ ≤ M * ∀ τ ≥ 0. ( 10 
(10.10) Thus v 0 T (τ ) depends on ε, and v 0 0 (τ ) = v 0 (τ ; v 0 ). Below in this proof by κ j (⋅), j = 1, . . . , 5, we denote various monotonically increasing continuous functions R + → R + , vanishing at zero and positive outside it. A function κ j may depend on the functions κ l with l < j.

It is straightforward to see that the proof of Lemma 6.8 implies that the process

I ε (τ ) = I(v ε (τ ; v 0 )) satisfies the estimate below (recall that [I] = min 1⩽j⩽n I j ) T ′ +1 T ′ P {[I ε (τ )] < γ} ⩽ κ 1 (γ), ∀T ′ ⩾ 0, ∀γ, ε ∈ (0, 1], (10.11) 
for some fixed function κ 1 (⋅), and that the action-vector of the stationary solution v st (τ ) of equation ( 7.3) also meet this estimate. Then

P {[I(v st (τ ))] < γ} < κ 1 (γ), ∀τ ⩾ 0, ∀γ ∈ (0, 1]. ( 10 
.12)

We will say that a moment of time

τ ⩾ 0 is (γ, ε) -typical, where ε, γ ∈ (0, 1], if P {[I ε (τ )] < γ} ⩽ κ 1 (γ).
In view of (10.11), we have

Lemma 10.5. For each γ, ε ∈ (0, 1], every interval [T ′ , T ′ + 1], T ′ ⩾ 0, contains an (γ, ε)-typical moment of time τ = τ (T ′ , γ, ε).
We continue with two technical lemmas, needed to prove principal Lemma 10.8. By (10.7) and (10.9) and Chebyshev's inequality, for any τ ≥ 0 and R > 0,

⟨Dv ε (τ ), B R ⟩, ⟨µ 0 , B R ⟩ ≥ 1 -R -2q0 M * =∶ 1 -κ 2 (R -1 ).
(10.13) Lemma 10.6. For any ε ∈ (0, 1] and τ ≥ 0, Then there exists a function12 κ 5 (δ) and for each δ > 0 exists r = r( T , δ, ε) ∈ J and a r.v. θ = θ( T , δ, ε) ∈ T n , measurable with respect to F r (see (6.2)), such that

DI(v ε (τ )) -I ○ µ 0 * L ≤ κ 3 Dv ε (τ ) -µ 0 * L,R 2n . (10.14) Proof. Let us abbreviate Dv ε (τ ) =∶ m. For R ⩾ 2, consider a function G R (t) on R + as in Figure 2. 1 0 R -1 R t G R Figure 2. Then G R ⩽ 1 and Lip G R ⩽ 1. For any f ∈ C b (R n + ), f L ⩽ 1 we have ⟨f, I ○ m⟩ -⟨f, I ○ µ 0 ⟩ = ⟨(f G R ) ○ I, m⟩ -⟨(f G R ) ○ I, µ 0 ⟩ + ⟨(f (1 -G R )) ○ I, m⟩ -⟨(f (1 -G R )) ○ I, µ 0 ⟩ ⩽ 2R m -µ 0 * L,R 2n + 2κ 2 ( 1 R - 
vε (r) ∶= Φ θ v ε (r) satisfies Dv ε (r) -µ 0 * L,R 2n ≤ κ 5 (δ). (10.15) 
Proof. For τ ∈ J let us denote

I(v ε (τ )) = I ε τ , ϕ(v ε (τ )) = ϕ ε τ , I(v st (τ )) = I st τ , ϕ(v st (τ )) = ϕ st τ (we recall that Dv st (τ ) ≡ µ 0 ). Then v ε (τ ) = V ϕ ε τ (I ε τ ) and v st (τ ) = V ϕ st τ (I st τ ) (see (8.2))
. By Lemma 10.5 and (10.12) for any γ ∈ (0, 1] there exists τ = τ ( T , γ, ε)

∈ J such that P([I ε τ ] < γ), P([I st τ ] < γ) ≤ κ 1 (γ). (10.16) On P(R n + ) consider the Kantorovich distance µ -ν K = sup Lip(f )≤1 ⟨f, µ⟩ -⟨f, ν⟩ , µ, ν ∈ P(R n + ).
Then by (10.7) and (10.9)

DI ε τ -DI st τ K ≤ κ 4 ( DI ε τ -DI st τ * L ) ≤ κ 4 (δ) (10.17) 
for some function κ 4 . See [START_REF] Boritchev | One-dimensional turbulence and the stochastic Burgers equation[END_REF]Section 11.4] and [START_REF] Villani | Optimal Transport[END_REF]Chapter 7]. Now consider the r.v. vε

τ ) = V ϕ st τ (I ε τ ). Then vε (τ ) = Φ ϕ st τ -ϕ ε τ (v ε (τ )). ( 
Also, since ϕ(v ε (τ )) = ϕ(v st (τ )), then for each ω and any γ > 0

vε (τ ) -v st (τ ) ≤ 1 2 √ γ I ε τ -I st τ if [I ε τ ], [I st τ ] ≥ γ. (10.19) 
Let us set χ γ (l) = 1 l≤γ and take any function

f ∈ C b (R 2n ), f L ⩽ 1. For τ = τ ( T , γ, ε) ∈ J as in (10.16) we have E f (v ε (τ )) -f (v st (τ )) =E f (v ε (τ )) -f (v st (τ )) χ γ ([I(v ε (τ ))] ∧ [I st τ ]) + E f (v ε (τ )) -f (v st (τ )) (1 -χ γ )([I(v ε (τ ))] ∧ [I st τ ]) .
Since f ⩽ 1, then by (10.16) the first term in the r.h.s. is bounded by 4κ 1 (γ). As Lip f ≤ 1 and 0 ≤ 1-χ γ ≤ 1, then by (10.19) and (10.17) the second term is bounded by

1 2 √ γ E I ε τ -I st τ ≤ 1 2 √ γ DI ε τ -DI st τ K ≤ κ 4 (δ) 2 √ γ
We have seen that

E f (v ε (τ )) -f (v st (τ )) ⩽ 4κ 1 (γ) + 1 √ 2γ κ 4 (δ).
Minimizing in γ ∈ (0, 1] we achieve that the r.h.s. is less then κ 5 for some γ( T , δ, ε), that is for some τ (γ( T , δ, ε), ε) =∶ r( T , δ, ε). Since f is any continuous function with f L ≤ 1, then Dv ε (r( T , δ, ε)) -Dv st (r( T , δ, ε)) * L,R 2n ≤ κ 5 (δ). This relation and (10.18) prove the lemma. Now we state and prove a key lemma for the proof of the theorem. Below functions κ 3 and κ 5 are as in Lemmas 10.6 and 10.7, and we recall notation (10.10).

Lemma 10.8.

(1) For any T > 0 and δ > 0 there exists

ε 1 = ε 1 (δ, T ) > 0 such that if ε ≤ ε 1 , then sup τ ∈[0,T ] I ○ D(v ε ( T + τ )) -I ○ D(v 0 T (τ )) * L,R n + ⩽ δ 2 ∀ T ⩾ 0. ( 10.20) 
(2) For any δ > 0, choose a function T * = T * (δ) ≥ 0 such that κ 3 (g M * (T, 2)) ⩽ δ 2 for any T ⩾ T * (δ). Then there exists ε 2 = ε 2 ∈ (0, 1] with the following property: assume that T ′ = T ′ (δ, ε) ≥ 0 is such that for every 0 < ε ≤ ε 2 it holds that

I ○ D(v ε (T ′ )) -I ○ µ 0 * L ⩽ δ (10.21) and Dv ε -µ 0 * L,R 2n ≤ κ 5 (δ) (10.22 
)

for vε = vε (T ′ ) = Φ θ (v ε (T ′ ))
, where θ is some r.v. (depending on δ and ε), measurable with respect to F T ′ . Then for 0 < ε ≤ ε 2 we have

sup θ∈[0,1] I ○ D(v ε (T ′ + T * + θ)) -I ○ µ 0 * L ⩽ δ, (10.23) 
and

sup τ ∈[T ′ ,T ′ +T * +1] I ○ D(v ε (τ )) -I ○ µ 0 * L ⩽ δ 2 + κ 3 max θ∈[0,T * +1]
g M * (θ, κ 5 (δ)) . (10.24)

Proof. For a measure ν ∈ P(R 2n ) we denote by v ε (τ ; ν) a weak solution of eq. ( 6.1) such that D(v ε (0)) = ν, and define v 0 (τ ; ν) similarly. Since eq. (6.1) defines a Markov process in R 2n (e.g. see [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]Section 5.4.C] and [16, Section 3.3]), then

I ○ D(v ε (τ ; ν)) = R 2n I ○ D(v ε (τ ; v)) ν(dv),
and a similar relation holds for I ○ D(v 0 (τ ; ν)).

(

) Denote ν ε = D(v ε ( T )). Then D(v ε ( T + τ )) = D(v ε (τ ; ν ε )), D(v 0 T (τ )) = D(v 0 (τ ; ν ε )). 1 
By (10.13), for any δ > 0 there exists

K δ > 0 such that for each ε, ν ε (R 2n ∖ BK δ ) ≤ δ 8, where BK δ ∶= BK δ (R 2n ). So ν ε = A ε ν ε δ + Āε νε δ , A ε = ν ε ( BK δ ), Āε = ν ε (R 2n ∖ BK δ ), where ν ε δ and νε δ are the conditional probabilities ν ε (⋅ BK δ ) and ν ε (⋅ R 2n ∖ BK δ ). Accordingly, D(v κ (τ ; ν ε )) = A ε D(v κ (τ ; ν ε δ )) + Āε D(v κ (τ ; νε δ ))
, where κ = ε or κ = 0. Therefore,

I ○ D(v ε (τ ; ν ε )) -I ○ D(v 0 (τ ; ν ε )) * L ≤ A ε I ○ D(v ε (τ ; ν ε δ )) -I ○ D(v 0 (τ ; ν ε δ )) * L + Āε I ○ D(v ε (τ ; νε δ )) -I ○ D(v 0 (τ ; νε δ )) * L .
The second term on the r.h.s obviously is bounded by 2 Āε ⩽ δ 4 . While by Proposition 10.1, there exists ε 1 > 0, depending only on K δ and T , such that for 0 ≤ τ ≤ T and ε ∈ (0, ε 1 ] the first in the r.h.s. is ⩽ δ 4 . Due to (10.25) this proves the first assertion.

(2) Let us choose ε 2 (δ) ∶= ε 1 (T * (δ) + 1, δ). We have 

sup τ ∈[0,1] I ○ D(v ε (T ′ + T * + τ )) -I ○ µ 0 * L ⩽ sup τ ∈[0,1] I ○ D(v ε (T ′ + T * + τ ) -I ○ D(v 0 T ′ (T * + τ )) * L + sup τ ∈[0,1] I ○ D(v 0 T ′ (T * + τ )) -I ○ µ 0 * L . ( 10 
D(v 0 (T * + τ ; vε )) -µ 0 * L,R 2n ⩽ g M * (T * + τ, κ 5 (δ))
. So in view of Lemma 10.6 the second term in the r.h.s of (10.26) is bounded by sup τ ∈[0,1] κ 3 (g M * (T * +θ, κ 5 (δ))), which is ⩽ δ 2 due to the definition of T * (δ). This proves (10.23).

Similarly,

sup τ ∈[T ′ ,T ′ +T * +1] I ○ D(v ε (τ )) -I ○ µ 0 * L ⩽ sup θ∈[0,T * +1] I ○ D(v ε (T ′ + θ)) -I ○ D(v 0 (θ; vε )) * L + sup θ∈[0,T * +1] I ○ D(v 0 (θ; vε )) -I ○ µ 0 *
L By (10.20) and the definition of ε 2 , the first term in the r.h.s is less than δ 2, while by (10.4) and Lemma (10.6), the second term is bounded by κ 3 (λ), where λ = max θ∈[0,T * +1] g M * (θ, κ 5 (δ)). Thus we proved (10.24). Now we are ready to prove the theorem. Let us fix arbitrary δ > 0 and take some 0 < δ 1 ≤ δ 4. Below in the proof the functions ε 1 , ε 2 and T * are as in Lemma 10.8. We will abbreviate T * (δ 1 ) =∶ T * , ε 2 (δ 1 ) =∶ ε 2 and will always assume that 0 < ε ≤ ε 2 . g M * θ, κ 5 (δ 1 ) , ∀ τ ≥ 0.

By the assumption, imposed in (6) of Assumption 10.2 on function g M , g M (t, d) is uniformly continuous in d and vanishes at d = 0. Recall that κ 3 and κ 5 are both monotonically increasing continuous functions, vanishing at 0. Therefore we have that there exists δ * > 0, which we may assume to be ⩽ δ 2, such that if δ 1 ≤ δ * , then κ 3 (g M * (θ, κ 5 (δ 1 ))) ⩽ δ 2 for all θ ⩾ 0 . Then by the estimate above,

I ○ D v ε (τ )) -I ○ D v 0 (τ ; v 0 ) * L ≤ δ, ∀τ ⩾ 0 if ε ≤ ε 2 (δ * δ)
> 0, for every positive δ. This proves the theorem's assertion.

We end this section with a sufficient condition for the validity of ( 4)-( 6) in Assumption 10.2. Proposition 10.9. Assume that (2)-(3) of Assumption 6.1 hold true and that there exist α 1 > 0 and α 2 ⩾ 0 such that (P (v), v) ⩽ -α 1 v + α 2 , ∀v ∈ R 2n , (10.34)

where P (v) = (P k (v), k = 1, . . . , n) as in (6.1) and (v, w) = ∑ n j=1 v j ⋅ w j is the inner product on R 2n . Then (4)-( 6 By the definition of the diffusion matrix of equation ( 7.3) we know that the uniform ellipticity condition as in (2) of Assumption 6.1 holds for the effective equation (7.3).

Then the assertion of proposition directly follows from [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]Proposition 9.3].

Remark 10.10. The assumption in Proposition 10.9 also ensures the mixing in equation (6.1) for each ε ∈ (0, 1], see in [START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF]. In this case, for corresponding stationary measures µ ε , the measures I ○ µ ε converge weakly to I ○ µ 0 as ε → 0.

and

I k = 1 2 v k 2 satisfies dI δ k = v k , k (v) dτ + n1 i=1 1 2 B ki (v(τ )) 2 HS dτ + v k , B ki (v) dβ i (τ )
.

By construction we have the following relations for the drift and diffusion term of these two equations:

vδ k , Pk (v δ k , v) + 1 2 n1 i=1 Bki (v δ k , v) 2 HS = vδ k v k v k , P k (v) + 1 2 n1 i=1 B ki (v) 2 HS , vδ k , Bki (v δ k , v) = vδ k v k v k , B ki (v) .
For the squared difference (I k -I δ k ) 2 we have, We define

d(I k -I δ k ) 2 = 2(I k -I δ k ) v k -vδ k v k v k , P k (v) + ( v k -vδ k ) 2 v k 2
Pk (v δ k , v, s) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Pk (v δ k , v), if s ∈ ∪ j Λ j , U j 1 ε W k (I)v k + P k (v) , if s ∈ ∪ j ∆ j ,
where U j = U (v k (τ - j ), (v k (τ - j ))), and

Bki (v δ k , v, s) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Bki (v δ k , v), if s ∈ ∪ j Λ j , U j B ki (v(s)), if s ∈ ∪ j ∆ j .
Then vδ k satisfies the equation Step 3: Taking a limit as δ → Now fix R > 0. We denote vδ,R k (⋅) still as vδ k (⋅). Argue as in Lemma 3.1 we find that the family of processes vδ,R k (⋅), δ ∈ (0, 1] is tight in C([0, T ], R 2 ). Therefore, for a subsequence δ j → 0, D(v 

Y δ k (τ ′′ ) -Y δ k (τ ′ ) ≤ C P R,k τ ′′ -τ ′ + C W R,k ε -1 ⋃ j [τ - j , τ + j ] ∩ [τ ′ , τ ′′ ] .
From the definition of τ ± j and τ + j it follows that

E ⋃ j ∆ j ∩ [τ ′ , τ ′′ ] ≤ E ⋃ j ∆ j ∩ [0, T ] ≤ E T 0 1 { v k (τ ) ≤2δ} dτ.
By Theorem 2.2.4 in [START_REF] Krylov | Controlled Diffusion Processes[END_REF] for each ε > 0 the term on the right-hand side of this inequality tends to zero as δ → 0. Therefore, E ⋃ So Y 0 k (τ ) = ∫ τ 0 ρ 0 k (s) ds with ρ(s) ≤ C P R,k . The processes M δ k are continuous square integrable martingales with respect to the natural filtration. Since their second moment are bounded uniformly in δ, then the limit process M 0 k is also a square integrable martingale. Denoting by ⟨M δ k ⟩ (τ ) the quadratic characteristic of M δ k (τ ), from Corollary VI.6.7 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] we deduce that ⟨M δ k ⟩ (τ ) → ⟨M 0 k ⟩ (τ ) as δ → 0. Under Assumption 6.1 the quadratic characteristic of M δ k satisfies the estimates

C m (τ ′′ -τ ′ ) ζ 2 ≤ [⟨M δ k ⟩ (τ ′′ ) -⟨M δ k ⟩ (τ ′ )])ζ, ζ ≤ C -1 m (τ ′′ -τ ′ ) ζ 2 , ζ ∈ R 2 ,
for some constant C m > 0. Then the quadratic characteristic of M 0 k also meets these estimates. Thus there exists a progressively measurable random matrix function The desired statement is now an immediate consequence of Theorem 2.2.4 in [START_REF] Krylov | Controlled Diffusion Processes[END_REF].

if 0 < p < δ ′ we have that G(p, q) = (p, q) on B ′ ∖ {0}. Therefore G extends Q B δ ′ to a SCCC of R 2 . We define the wanted SCCC as Ψ = G ○ Q -1 and the assertion of the theorem follows.

3. 1 .

 1 Tightness. Notice that under condition (3) of Assumption 2.1 there exists an increasing function ν(N ) ∶ R + → R + such that ν(N ) → ∞ as N → ∞, and in the set {(I, ϕ) ∶ I ≤ ν(N )} norms and Lipschitz constants of all coefficients in equations (2.1) do not exceed N (3.1)

  and the assertion follows by a direct application of the Prokhorov theorem, cf.[START_REF] Huang | Averaging and mixing for stochastic perturbations of linear conservative systems[END_REF] Lemma 2.2].

0 P 1 N ∫ N 0 P

 010 I (I, ϕ + tθ(I)) dt -⟨P I ⟩(I) > δ . (3.5) We set A δ N ∶= A δ N,∞ = ∪ R>0 A δ N,R . Lemma 3.3. For any δ > 0 and R > 0 we have lim N →∞ L(A δ N,R ) = 0 Proof. For N > 0 denote b N (I) = max ϕ∈T n I (I, ϕ + tθ(I))dt -⟨P I ⟩(I) . If the vector θ(I) is non-resonant, then by (3.2) b N (I) → 0 as N → ∞, So, by (1) of Assumption 2.1, b N (I) → 0 a.s., and the assertion follows since the a.s. convergence implies the convergence in measure. Lemma 3.4. For any R, N, δ > 0 the probability P{I ε (τ ) ∈ A δ N,R } admits the upper bound

2 =

 2 10 I.e. ⟪Ψ I ⟫(I) is a non-negative self-adjoint matrix such that ⟪Ψ I ⟫ ⟨a I ⟩.

  j

1 2

 1 and due to (3.11) and(3.12) 

Theorem 4 . 3 .

 43 Under Assumption 2.1, for any

  Assumption 5.1 equation (2.1) defines in R d × T n a Markov process with the transition probability Σ ε τ (I, ϕ) ∈ P(R d × T n ), τ ≥ 0, (I, ϕ) ∈ R d × T n , where Σ ε τ (I, ϕ) = D I ε (τ ; I, ϕ), ϕ ε (τ ; I, ϕ) ; e.g. see [14, Section 5.4.C].

Theorem 5 . 5 .

 55 Under Assumption 5.4, in the setting of Theorem 4.3 for any initial data

are 2 ×

 2 2 matrix functions, I = (I 1 , . . . , I n ) with I k = 1 2 v k 2 and β j (τ ) = β j (τ ) β -j (τ ) are independent standard Brownian motions in R 2 , defined on a filtered probability space Ω, F, {F τ }, P . (6.2) The unperturbed part (1.3) of equation (6.1) is integrable, and the functions I k (v), k = 1, . . . , n, are its integrals of motion. If W (I) = ∇h(I) for some C 1 -function h, then equation (1.3) is Hamiltonian with the Hamiltonian function h(I(v)), and then it is is called integrable in the sense of Birkhoff.

Assumption 6 . 1 .

 61 [START_REF] Arnold | Mathematical Aspects of Classical and Celestial Mechanics[END_REF] The Lebesgue measure of I ∈ R n + for which components of the vector W

Lemma 8 . 3 .

 83 For every N ∈ N, i) the process I N (τ ), 0 ⩽ τ ⩽ T , is a weak solution of (7.5) N such that D(I N ) = D(I 0 ) for τ ⩽ τ N and D(I N (⋅)) ⇀ D(I 0 (⋅)) as N → ∞.ii) the statement in Lemma 8.1 holds true with (7.6) N and (7.5) N +(8.1) N .

  Hence the assertion of Theorem 8.2 is established. Theorem 8.2, Proposition 7.2 and Theorem 6.7 jointly imply the following. Theorem 8.6. Under Assumption 6.1, i) For any v 0 ∈ R 2n effective equation (7.3) has a unique strong solution v(τ ; v 0 ), τ ∈ [0, T ], equal v 0 at τ = 0. It satisfies

. 8 )

 8 11 So g M extends to a continuous function on [0, ∞] × [0, 2] which vanishes when τ = ∞ or d = 0.

  1 ), since on the ball B R we have I ⩽ R 2 and Lip I ⩽ 2R. Minimizing the r.h.s in R ⩾ 2, we get (10.14). Lemma 10.7. Let ε ∈ (0, 1]. For any ≥ 0 consider solution v ε (τ ) on the interval J = [ T , T + 1] and denote δ ∶= sup τ ∈J D(I(v ε (τ )) -I ○ µ 0 * L .

  .26) By(10.20) and the choice of ε 2 , the first term in the r.h.s is less than δ 2 . Let us examine the second one. By Proposition 8.9,D I(v 0 (T * + τ ; vε )) = D I(v 0 T ′ (T * + τ )) , ∀τ ∈ [0, 1]. Thus the second term in the r.h.s of (10.26) equals sup τ ∈[0,1] I ○D(v 0 (T * +τ ; vε ))-I ○ µ 0 * L . Since vε = v ε (T ′ ) , then by (10.21) and(10.4) 

I≤ δ 1 2 + κ 3

 13 i) By the definition of T * , (10.4) and (10.7),D v 0 T (τ )) -µ 0 * L,R 2n ≤ g M * (τ, 2) ∀ T ≥ 0, κ 3 (g M * (τ, 2)) ≤ δ 1 2 ∀ τ ≥ T * . (10.27) ii) By (10.20) sup 0≤τ ≤T * +1 I ○ D v ε (τ )) -I ○ D v 0 (τ ; v 0 ) * ○ D v ε (T * + τ )) -I ○ µ 0 * L < δ 1 . (10.29)iii) By (10.28) and Lemma 10.7 there existsT ′ 1 = T ′ 1 (T * , δ 1 , ε) ∈ [T * , T * + 1] such that apart from(10.29), there exists a r.v. θ 1 ∈ T n , measurable with respect to F T ′ 1 , and such that vε1 (T ′ 1 ) = Φ θ1 v ε (T ′ 1 ) satisfies Dv ε 1 (T ′ 1 ) -µ 0 * L,R 2n ≤ κ 5 (δ 1 ),(10.30)Considering v ε (T ′ 1 +τ ), τ ≥ 0, we get that (10.29) holds with * replaced by T ′ 1 +T * , and an analogy of (10.30) holds for T ′ 1 replaced with someT ′ 2 ∈ [T ′ 1 +T * , T ′ 1 +T * +1]. Iterating this argument we construct a sequence T ′ N , N = 1, . . . , such that T ′ N +1 ∈ [T ′ N + T * , T ′ N + T * + 1], I ○ D v ε (T ′ N )) -I ○ µ 0 * L ≤ δ 1 ∀ N,(10.31)andDv ε N (T ′ N ) -µ 0 * L,R 2n ≤ κ 5 (δ 1 ) ∀ N,(10.32)for vεN (T ′ N ) = Φ θ N v ε (T ′ N ) with a suitable F T ′ N -measurable θ N . So by (10.24) sup τ ∈[T ′ N ,T ′ N +1 ] I ○ D v ε (τ )) -I ○ µ 0 * L max θ∈[0,T * +1]g M * θ, κ 5 (δ 1 ) , (10.33) for every N . iv) Finally, by (10.28) if τ ≤ T ′ 1 and by (10.27) with T = 0 jointly with (10.33) if τ ≥ T ′ 1 , we have thatI ○ D v ε (τ ) -I ○ D v 0 (τ ; v 0 ) * L ≤ δ 1 + κ 3 max θ∈[0,T * +1]

  ) in Assumption 10.2 hold true.Proof. For the drift term in (6.1) b(v) = (ε -1 W k (I)v k + P k (v), k = 1, . . . , n), by (10.34), we have (b(v), v) = (P (v), v) ⩽ -α 1 v + α 2 , ∀v ∈ R 2n . (10.35)For the drift term R in effective equation(7.3), by(10.34) and the definition orR = ⟨P ⟩ we have (R(v), v) = n k=1 T n P k (Φ θ v)⋅Φ k θ v k dθ = T n (P (Φ θ v), Φ θ v)dθ ⩽ -α 1 v +α 2 , ∀v ∈ R 2n .

  n1 i=1 (v k , B ki (v)) 2 dτ + dM δ δ (A.3) with M δ τ being a square integrable martingale. Since I k -I δ k = 1 2 v k -vδ k v k + vδ k , letting J δ k (τ ) = (I k -I δ k ) 2 ((τ ∨τ + j )∧τ - j+1) and taking the expectation in (A.3) we haveEJ δ k (τ ) ≤ EJ δ k (0) + c(δ) τ 0 EJ δ k (s) ds. Since J δ k (τ + j ) = 0, then by Gronwall's lemma, J δ k (τ ) = 0 for τ ∈ Λ j .The assertion of the lemma is proved. By Lemma A.1 we have v k (s) = vδ k (s) for all s ∈ Λ 0 . By (A.2) v k (s) = vδ k (s) for s ∈ ∆ j . Iterating this procedure we conclude that v k (s) = vδ k (s) on the whole interval [0, T ].

2 :

 2 δ k (s), v(s), s) dβ i (s).(A.4) Notice that under Assumption 6.1 the diffusion coefficient in this Ito equation does not degenerate.Step Truncation at a level v = R.Define the stopping timeτ R = inf{τ ∈ [0, T ] ∶ v ⩾ R}. We define the processes v R k equal to v k for τ ∈ [0, τ R ] and satisfying the trivial equation dv R k (τ ) = dβ(τ ) for τ ∈ [τ R , T ]. We also set vδ,R k to be equal to vδ k for τ ∈ [0, τ R ] and for τ > τ R equal to a solution of the equation dv δ,R k = U (v k (τ R ), vδ,R k (τ R ))dβ(τ ). Clearly, vδ,R k ≡ v R k . By (4) of Assumption 6.1 we have P{v R k (τ ) ≠ v k (τ ) for some τ ∈ [0, T ]} → 0 as R → ∞.Therefore, it is sufficient to prove the lemma for v k replaced by v R k with arbitrary R > 0.

  δj k (⋅)) converges to some Q 0 k ∈ P(C([0, T ], R 2 )). Consider the processes δ k (s), v(s), s) dβ i (s),with an obvious change for τ ⩾ τ R . The sequence of pairs (Yδj k (τ ), M δj k (τ )) is tight in C(0, T ; R 4 ). If (Y 0 k (⋅), M 0 k (⋅)) is a limiting in law process as δ j → 0, then Dv k (⋅) = Q 0 k , where vk (τ ) = Y 0 k (τ ) + M 0 k (τ ), τ ∈ [0, T ]. Denote C P R,k = sup{ P k (v) , v ⩽ R} and C W R,k = sup{ W k (I(v)) , v ⩽ R}.Then for any 0 ≤ τ ′ < τ ′′ ≤ T we have

j

  ∆ j ∩ [τ ′ , τ ′′ ] → 0. Using the fact that the set {ϕ ∈ C(0, T ; R 2 ) ; ϕ(τ ′ ) -ϕ(τ ′′ ) ≤ 2C P R,k τ ′ -τ ′′ } is closed we derive from the convergence D(Y δj k (⋅)) ⇀ D(Y 0 k (⋅)) that P Y 0 k (τ ′ ) -Y 0 k (τ ′′ ) ≤ C P,k τ ′ -τ ′′ = 1.

σ 1 2σ 1 2 k

 112 σ k (s) with values in the space of symmetric 2 × 2 matrices such thatC m ζ 2 ≤ (σ k (t)ζ, ζ) ≤ C -1 m ζ 2 for all ζ ∈ R 2 ,and M 0 k (τ ) = ∫ τ 0 (s)dB s , where B s is a standard Wiener process in R 2 . Therefore, the process vk admits the following representation: vk (τ ) = vk (0) + τ 0 ρ 0 k (s) ds + τ 0 (s)dB s (A.5)

  representation theorem (see [2, Section 6 ] and Fatou's Lemma, cf. [11, Remark 4.8]. Remark 4.4. 1) It is straightforward to see that the statement of Theorem 4.3 remains true with the same proof if in (2.

Also see[START_REF] Huang | KdV equation under periodic boundary conditions and its perturbations[END_REF] Section 4.3] for a discussion of the results in[START_REF] Kuksin | Khasminsii-Whitham averaging for randomly perturbed KdV equation[END_REF][START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF].

It depends on functions κ 1 and κ 4 . The latter appears below in the lemma's proof and depends only on the constants in Assumption 10.2.
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Lifting of solutions

In this section we prove that a weak solution I(τ ) of the averaged equation (6.12), constructed in Theorem 6.7, is distributed as I(v(τ )), where v(τ ) is some weak solution of the effective equation (7.3). That is, I(τ ) can be lifted to a weak solution of (7.3). We follow a strategy from [START_REF] Kuksin | Damped-driven KdV and effective equations for long-time behaviour of its solutions[END_REF], where such a lifting is constructed for an infinite dimensional equation. Since we work with weak solutions of the equations, then using Lemma 7.4 we replace averaged equation (6.12) by equation (7.5), and effective equation (7.3) -by equation (7.6). If v(τ ) solves (7.6), then by Itô's formula the equation for the vector of actions is (7.5), while equations for ϕ k 's read

where

and

⋅ Bkj (v). For any θ = (θ 1 , . . . , θ n ) ∈ T n and any vector I = (I 1 , . . . ,

where

Then for a δ > 0 the mapping v ↦ (I, ϕ) defines a diffeomorphism of domain

Therefore we have Lemma 8.1. For any δ > 0, on domain R 2n δ equation (7.6) is equivalent to system (7.5)+(8.1) in the following sense: let τ 1 ⩽ τ 2 be two stopping times with respect to the natural filtration. Then i) if for τ 1 ≤ τ ≤ τ 2 a process v(τ ) lies in R 2n δ and is a weak solution of (7.6), then for such τ 's (I(v), ϕ(v)) is a weak solution of (7.5)+(8.1);

ii) if for τ 1 ≤ τ ≤ τ 2 a process (I(τ ), ϕ(τ )) satisfies [I(τ )] > δ and is a weak solution of (7.5)+ (8.1), where v(τ ) = V ϕ(τ ) (I(τ )), then for such τ 's the process v(τ ) = V ϕ(τ ) (I(τ )) is a weak solution of (7.6).

The following statement is the main result of this section.

is a weak solution of equation (6.12), constructed in Theorem 6.7 by taking the limit along a sequence ε i → 0, then, for any vector θ ∈ T n , there exists a weak solution v θ (τ ) ∈ R 2n , 0 ⩽ τ ⩽ T of the effective equation (7.3) such that (i) the law of I(v θ (⋅)) coincides with that of I 0 (⋅);

The properties of solutions of equation (7.3) are important for analysis in the following sections. They are the subject of Theorem 8.6 below.

We begin with explaining the key ideas of the theorem's proof. Strategy of the proof: By Lemma 7.4 we may regard I 0 (τ ) as a weak solution of equation (7.5). Since the uniqueness of a solution v(τ ) is claimed in Proposition 7.2, then only its existence and properties (i), (ii) should be established. For any δ > 0, where L the Lebesgue measure and o δ (1) goes to zero with δ. Due to the truncation (8.6) for v ⩾ N 1 2 , there exists c(δ, N ) > 0 depending only on N and δ such that for each j, EL(Λ j ) ⩾ c(δ, N ) > 0. (8.9)

For j = 0, 1, . . . we will iteratively construct on segments [0, τ ± j ] continuous process (I(⋅), v(⋅)) (defined on the space Ω as in (8.5)) such that I(τ ) = I(v(τ )) a.s. and D(I(⋅)) = D(I N (⋅)). Moreover, on each segment Λ l ⊂ [0, τ ± j ] the process v(τ ), τ ∈ Λ l , will be a weak solution of (7.6) N . Next we will obtain a desirable measure Q δ as a limit of the laws of these processes as j → ∞.

For the sake of definiteness we assume that [I(0)] > δ, so 0 = τ + 0 . With suitably chosen B τ -adapted Brownian motions { βj , j = 1, . . . , n}, we can assume that the process Ī(τ

, we get for the n-vector ϕ(τ ) an equation, denoted by (S ϕ ), with B τ -adapted coefficients and driven by { βj } (cf. equation (8.1)). Moreover, the drift term and the dispersion matrix are uniformly Lipschitz continuous in ϕ, where the Lipschitz constants may depend on δ and N . Hence, for any θ ∈ T n there exists a unique solution ϕ(τ ), τ ∈ Λ 0 , of (S ϕ ) with ϕ(0) = θ. Then by Lemma 8.3 the process ṽ1 (τ ) = V ϕ(τ ) ( Ī(τ )), τ ∈ Λ 0 , is a weak solution of (7.6) N . Obviously I(ṽ 1 ) ≡ Ī and ṽ1 (0

Consider the process v1 (τ ) ∶= U ṽ1 (τ - 1 ), w(τ - 1 ) w(τ ), τ ≥ τ - 1 . This still is an Itô process of the form as in (8.7) with the same constant C. Moreover, v1 (τ - 1 ) = ṽ1 (τ - 1 ), and I(v 1 (⋅)) = Ī(⋅) a.s. Now consider the continuous process

and denote Q 1,δ ∶= D ( Ī1 (⋅), v1 (⋅)) ∈ P(Ω). Clearly, we have π I ○Q 1,δ = D( Ī1 (⋅)) = D(I N (⋅)), and I(v 1 (⋅)) = Ī1 (⋅), Q 1,δ -a.s. Furthermore the process v1 (⋅) solves (7.6) N weakly on random interval [0, τ + 1 ], while on ∆ 1 and on the whole interval [τ + 1 , T ] it is an Itô process of the form (8.7). c) For τ ∈ Λ 1 , by the same method as in a) we construct a weak solution ṽ2 (τ ),

where v2

δ -a.s. The process v2 (⋅) solves (7.6) N on random intervals Λ j , j = 0, 1 and is an Itô process of the form (8.7) on [0, T ] ∖ ∪ 1 j=0 Λ j . d) Iteratively we construct on the space Ω measures Q j,δ , j ∈ N. Due to (8.9) we know that a.s. the sequence τ ± j stabilizes at τ = T after a finite (random) number of steps. Accordingly, as j → ∞, the sequence of measure Q j,δ converges to a limiting measure Q δ = Q N δ on Ω. Let (I δ (τ ), v δ (τ )), τ ∈ [0, T ] be the natural process of the measure Q δ . We then have 10.1. On the proof of Theorem 5.5. Due Proposition 10.3 the laws of solutions I 0 (τ ) for equation (3.3) obey estimates (10.4) (where v(τ ) is replaced by I 0 (τ )). Now, denoting v ε (τ ) ∶= (I ε (τ ), ϕ ε (τ )) we may repeat for I(v ε (τ )) = I ε (τ ) the proof of Theorem 10.4, given above in Section 10, with I ○ v 0 (τ ) replaced by I 0 (τ ). In fact, a proof of Theorem 5.5 is simpler than that of Theorem 10.4 since in the former theorem the mapping v ε ↦ (I ε , ϕ ε ) is a trivial isomorphism, while in the setting of the latter theorem this is the non-linear action-angle mapping (6.8), which is singular when some v ε j vanishes. Accordingly, to prove an analogy of the key Lemma 10.8 for solutions of equation (2.1) the technical argument, contained in Lemmas 10.5, 10.6 and 10.7 becomes redundant. We skip details of an exact realisation of this sketch.

Appendix A. Proof of Lemma 6.8

We fix ε ∈ (0, 1] and do not indicate the dependence on it. Relation (6.17) is already established. A proof of (6.18) goes in 3 steps.

Step 1: Constructing for a fixed k and any δ ∈ (0, 1] an Itô process vδ k (τ ), τ ∈ [0, T ], such that vδ k ≡ vk , and if vδ k ⩾ δ then no 1 ε -term explicitly appear in the drift term.

Denote by

) be a solution of equation (6.1). We introduce the vector-functions

where k = 1, . . . , n, j = 1, . . . , n 1 . We fix some k and consider the following stochastic equation for vk (τ ) ∈ R 2 :

Its coefficients are well defined for all non-zero v k and vk . The equation (A.1), given some initial data, has a unique solution as long as v k , vk ⩾ δ for any fixed δ > 0.

For an arbitrary δ ∈ (0, 1 2 ) we define the stopping times τ ± j as follows:

Note that τ + 0 ≤ τ - 1 and τ - j < τ + j < τ - j+1 for j ≥ 1. See again Fig. 1, where now the line is the graph of the function v k (τ ) .

Since on each interval Λ j the norm of solution v(τ ) of (6.1) is bonded by δ -1 , then Λ j cannot be too short. So the sequence τ ± j stabilizes at T after a finite random number of steps. Now we construct a continuous process vδ

. For any j ⩾ 0 we define vδ k on the segment Λ j ∶= [τ + j , τ - j+1 ] as a solution of equation (A.1), while on the complementary segments

. By Itô's formula, on the segment Λ j-1 ,

Appendix B. On Birkhoff integrability of Hamiltonian systems with one degree of freedom Consider the plane R = {x = (x, y)}, equipped with the standard area-form dx∧dy. By B r we denote the disc { x < r}, r > 0, and set I(x) = 1 2 x 2 = 1 2 (x 2 +y 2 ). Theorem B.1. Assume that H ∈ C ∞ (R 2 ) satisfies the following: i) dH(0) = 0 and d 2 H(0) is positively definite; ii) for each x ≠ 0, dH(x) ≠ 0; iii) for each a ∈ H(R 2 ∖{0}), the level set

Then there exist a smooth canonical change of coordinates (SCCC) Ψ ∶ R 2 → R 2 , Ψ(0) = 0 and a smooth function h, h ′ (0) ≠ 0, such that H(x) = h I(Ψ(x)) .

Proof. Step 1: By Vey's Theorem (see [START_REF] Eliasson | Normal forms for hamiltonian systems with poisson commuting integralselliptic case[END_REF] and see a 1d version of the theorem in [START_REF] Khesin | Global, local and dense non-mixing of the 3d euler equation[END_REF]Appendix D]), there exist δ ∈ [0, 1 2] and a SCCC

2 ), where f is a smooth function, satisfying f ′ (0) ≠ 0.

Step 2: Now we construct a SCCC Q defined on the whole plane, such that for some 0 < δ ′ < δ we have

if (p, q) is small. Then, decreasing δ if needed, we achieve that the transformation Qδ admits a smooth generating function S(x, q), so Qδ (p, q) = (x, y) if and only if p = ∂ q S, y = ∂ x S (e.g. see [1, Section 1.3]). Since d Qδ (0) = id, then S(x, q) = xq + o( (x, q) 2 ). Now we extend S(x, q) from a small neighbourhood of the origin to the whole (x, q)-plane in such a way that S(x, q) = xq for (x, q) ⩾ 1, keeping the condition ∂ 2 S ∂x∂q > 0 for (x, q) ⩽ 1. The extended S is as a generating function of a SCCC Q

Step 3: Denote H 1 ∶= H ○ Q(p, q). Clearly, conditions i)-iii) stay true for H 1 and in

. By the Loiuville-Arnold theorem in a small neighbourhood of the curve M a0 = {H 1 = a 0 } exists a SCCC Q 1 : (p, q) ↦ (I, ϕ) ∈ R × T, T = R 2π, such that dp ∧ dq = dI ∧ dϕ and H 1 (p, q) = h(I(p, q)) for a smooth function where D(M a ) is the domain enclosed by M a . Hence for each a ∈ H 1 (R 2 ∖ {0}), 2πI(a) is the area enclosed by M a . So the action variable I(p, q) = I(a(p, q)) is well defined globally on R 2 ∖ {0}.

The angle variable ϕ ∈ T is defined modulo a shift ϕ ↦ ϕ + ζ(I), where ζ is any smooth function. To specify its choice we find a smooth curve l 0 ⊂ R 2 from the origin to infinity, such that l 0 ∩ B δ ′ ⊂ {p > 0, q = 0} and l 0 insects each level set M a in exactly one point. Setting ϕ l0 = 0 we get a uniquely defined smooth angle variable ϕ on R 2 ∖ {0}. The constructed variables (I, ϕ) define an action-angle transformation R 2 ∖ {0} → R >0 × T, (p, q) ↦ (I, ϕ). Now let G(p, q) = √ 2I(cos ϕ, sin ϕ). We then have a SCCC G: R 2 ∖ {0} ⟲ such that H 1 (p, q) = h(I(G(p, q))). From (B.2), (B.3) and the normalisation ϕ(p, 0) = 0