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Abstract

We derive a formula for the quasi-potential of one-dimensional symmetric exclusion process
in weak contact with reservoirs. The interaction with the boundary is so weak that, in the
diffusive scale, the density profile evolves as the one of the exclusion process with reflecting
boundary conditions. In order to observe an evolution of the total mass, the process has to be
observed in a longer time-scale, in which the density profile becomes immediately constant.

Keywords: Boundary driven exclusion process, Large deviations, quasi-potential, Macroscopic fluc-
tuation theory
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1 Introduction

The investigation of the nonequilibrium stationary states of interacting particle systems in contact
with reservoirs has attracted a lot of attention in the last years [3, 12, 5, 22, 11, 8, 10].

In this article, we examine the one-dimensional symmetric exclusion process in weak contact
with reservoirs. The interaction of the system with the reservoirs is so weak that the hydrodynamic
equation describing the macroscopic time evolution of the empirical density is the heat equation
with Neumann boundary conditions, the equation which represents the density evolution of the
exclusion process with reflecting boundary conditions.

The total mass changes in a much longer macroscopic time-scale. In this very long time-scale,
the empirical density immediately reaches the stationary profile of the heat equation with Neumann
boundary conditions, that is, a constant profile with a certain time-dependent value.

There are therefore two important time-scales. In the first one, the density profile evolves
according to the heat equation with Neumann boundary conditions and converges, as time increases,
to a constant density profile without modifying its total mass. In the second much longer time-scale,
the constant density profile evolves smoothly, modifying the total mass according to an ODE, until
it reaches the value determined by the interactions of the system with the boundary.
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This picture extends to the dynamical large deviations. Denote by Ko 71(u) the cost of observing
a trajectory u(t) in the time interval [0, T]. For each t, u(t) is a density profile. Assume that the
total mass of u(t) is constant in time ([, u(t,z)dx = c). As the interaction with the boundary is
small, this cost coincides with that of an exclusion process with reflection at the boundary [15].
Denote the later cost by K[lgzli] (u), so that Ko r)(u) = K[lgf%‘] (u).

To consider the large deviations of the total mass, observe the system in the longer time-scale
at which the total mass evolves. Fix a trajectory a: [0,7'] — [0, M], where M represents the
length (or volume) of the interval where particles are interacting, and denote by Ifg 7/(a) the cost
of observing a trajectory u(t), 0 <t <T" whose total mass at time ¢ is equal to a(t). Theorem 2.8
below states the dynamical large deviations principle for the total mass and provides a formula for
Ijo,r(a).

We turn to the quasi-potential. The existence of two time-scales creates an obstruction in its
derivation. Denote by p,,, 0 < m < M, the constant density profile with total mass equal to
m. Let VN°U(.) be the quasi-potential associated to the exclusion dynamics with reflection at the
boundary: for a density profile p whose total mass is equal to m, V.N%(p) = infy~ginf, K[%Ifj‘i] (u),
where the second infimum is carried over all trajectories v with time-independent total mass and
such that «(0) = pp, w(T) = p.

Fix a density profile p whose total mass is equal to m, and let ugeu be the relaxation trajec-
tory, that is, the trajectory which describes the typical evolution of the density profile when the
initial condition is p. As this evolution corresponds to the solution of the heat equation with Neu-
mann boundary conditions, uye“(t) — pm as t — oo. Let uff’Ne“ be the time-reflected trajectory:
up N (t) = upy(—t). As the exclusion process with reflecting boundary conditions is reversible,
V() = KNew | (uftNew),

Since the dynamical large deviations rate functional of the exclusion process with weak interac-
tion at the boundary coincides with the one with reflection at the boundary, the quasi-potentials
also coincide. The infimum is therefore reached at the time-reversed relaxation trajectory: for any
density profile p with density m,

e e N _ N R,N _ N
Vnlp) i= jnf inf Kiomy(u) = inf inf KNG (u) = KL o (ufoNen) = vier(p)
Moreover, as the stationary states of the exclusion process with reflecting boundary conditions
are the uniform measures with fixed total number of particles,

R O O ) RV ¢ R O
Vile) = Vo) = [ {pto)t0x 22+ (1= plo)] log 2

for any density profile p(-) whose total mass is equal to m.

The quasi-potential V (+) associated to the mass evolution, is given by V(m) := infr~¢ inf, I7(a),
where the second infimum is carried over all trajectories a: [0,7] — [0, M] such that a(0) = 7,
a(T) = m. In this formula, v stands for the typical mass under the stationary state, determined by
the weak interaction of the system with the boundary.

Fix a mass m and let a,, be the relaxation path of the total mass which starts from m and
converges to v as t — 0o. Denote by af the time-reversed trajectory. In Lemma 2.7 and its proof
we show that

m 1—-m
V(m) = f(fooyo](affl) = M{m log; + [1—m)] 10gﬁ}.



Theorem 2.9 asserts that V' is indeed the large deviations rate function of the total mass under the
stationary state.

We conclude this section with heuristics to derive the quasi-potential for the symmetric exclusion
process with weak interaction at the boundary. Fix a density profile p(-) with mass m. As time
evolves, it relaxes to a constant density equal to m. In a longer time-scale the total mass relaxes
to . Hence, reasoning backwards, it is expected that to fluctuate to p, the system first changes its
mass from v to m following the relaxation path reflected in time. Then, its density profile evolves
from one which is constant in space and has total mass equal to m, to p, following the relaxation
path reflected in time. The total cost of this trajectory is given by

I—oo0(am) + K% o (ug™) = V(m) + Viu(p) .
By the previous identities,

W(e) = Vom) + Vo) = [ { o) 10822 o+ 1 plo) 10g 12 Y
K v -

is the quasi-potential for the symmetric exclusion process with weak interaction at the boundary.

To prove that W is indeed the quasi-potential, one should consider a time-inhomogeneous dy-
namics in which the process evolves diffusively in a time interval [0, T], and properly time-rescaled,
so as to observe an evolution of the total mass in a time interval [T,T + S].

It is also possible to use the matrix representation of the stationary state to derive the above
equation for the quasi-potential [1]. It coincides with the quasi-potential for the symmetric exclusion
process with Robin boundary conditions as the interaction with the boundary vanishes [11, 8, 9].

2 Notation and results

Denote the state space by Qp := {0,1}*¥, N > 1, where S = {1,..., N — 1}, and by 7 its element,
so that for any « € Xy, n(x) = 1 if site x is occupied and n(z) = 0 if it is empty.

Consider the infinitesimal generator Ly = N2L ~,0 + L, defined as follows. For any function
f : QN — R,

N-2
(Lnof)n Z 0"t = f(n),
LnpH)m) = > [re(l=n@) + 1 =ra)n@)] (f(n") = f(n)

ze{l,N—-1}
with 7 = «, ry—1 = 8, where 0 < «, 8 < 1. In this formula, for z € {1,..., N —2}, the configuration
n®*+1 is obtained from 7 by exchanging the occupation variables n(z) and n(z + 1), i.e

n+1), ify=x
N y) = (@), ify=x+1 (2.1)
n(y), otherwise,

and for x € {1, N — 1}, the configuration n* is obtained from 7 by flipping the occupation variable

n(z), i.e, oo
70 ={ o e, 22



Hydrodynamical limit and large deviations

Here, we recall the results established in [2], resp. [15] regarding the hydrodynamic limit, resp.
large deviations for the process with generator £y known as the SSEP with slow boundaries. For
that, let us first introduce some notation. We fix a time horizon 7" > 0.

Given a metric space A, DY denotes the space of trajectories on [0, 7] which are right continuous
with left limits and with values in A. Given a measure py on Qy, P, is the probability measure
induced on DgN by {n:, t € [0,T]} when 1o has law pn. Also, denote by E,, the expectation with
respect to P, . Introduce

M = {u is a positive measure on [0, 1] such that u([0,1]) < 1},

which we equip with the weak topology. Denote by My C M the subset of elements which are
absolutely continuous with respect to the Lebesgue measure and with density between zero and
one.

Introduce the empirical measure associated to an element n € Qy as the the element of M
defined by

N-1
¥ (n,du) = 7V (du) := % Z n(x)d = (du)
=1

where §= is the Dirac measure at point z/N. The process (7N)o<i<T of empirical measures

associated to (m:)o<i<7 is a Markov process inducing a measure on Df/l.
For a continuous function F': [0, 1] — R, write

1 N—-1
(N F) = = 3" (@) F(a/N)

and for F,G € L?([0,1]),
(F.G) = / F(2)G(x)da.
0

Denote by C* = C%3(]0,T] x [0, 1]) the set of functions that are of class C? in time and of class
C7 in space with 4,j possibly infinite, and C*([0,T]) resp. C%([0,1]) the functions that are C? in
time, resp. space. To lighten notation, given G : [0,7T] x [0,1] — R, we will sometimes write G¢(x)
instead of G(t,z) and 9;G(t,x) denotes its partial time derivative.
We say that a sequence of probability measures (uy)n>1 on Qy is associated to the profile
po: [0,1] — [0,1] if for any 6 > 0 and any continuous function G,
lim gy [[(7™, G) = (po, G)| > 6] = 0.

N—o00
The following results established in [2] and [15] hold:

Theorem 2.1. (Hydrodynamic limit, c.f. [2]) Consider a sequence (un)n>1 associated to a measur-
able profile po: [0,1] = [0,1]. Then, for everyt >0, § > 0 and continuous function f :[0,1] — R,

N Puy [ (77, F) = oo f) > 8] ] =0,



where p(t,.) is the unique weak solution of the heat equation with Neumann boundary conditions

Oip(t,z) = 02p(t,x), fort>0, x € (0,1),
0:p(t,0) = Ozp(t, 1) =0, fort >0, (2.3)
p(0,2) = po(z), forx €0,1].

We write L?(0,1) the space of L? functions defined on [0,1] and denote by ||.|[12(0,1), the as-
sociated norm. Let H'(0,1) be the subset of L?(0,1) such that for any F' € H!(0,1), there is
0. F € L?(0,1) satisfying (0, F,G) = —(F,8,G), for any G € C* with compact support in (0, 1).
For F € H'(0,1) define the norm

1/2
1F Nl = (IF 172 + 10 F1172)
Let L2([0,T],H') be the space of measurable functions F : [0,T] — H! such that

T
1P oy = [ I1Filadt < .

Define the energy functional € : DY, — [0,00], as in [15], by £(7) = sup €y () with the supremum
H
taken over elements in C%! with compact support and where,
fol fOT O, H(t,x)p(t, z)dtds — 2[01 fOT H2(t,z), if m € D}, and m(dx) = py(x)dx

Eu(m) =
+00 otherwise.

Introduce
F={meDly, (m,1) = (m,1), V¢t €[0,T]}.

For H € C'2, define the linear functional Jp(r) : DL, — [0, 0c] as

<pTa HT> - <PO; HO> - fOT<Ps, 85H3>d8 + f0T<ampsaast>dS
Ju(m) = - fOT<pS(1 —ps), (0.H)?)ds, if 7 € F and () < oo with 7 = py()dux,

+00 otherwise.

The rate function Ir : D%, — [0, +00] that appears in the large deviations principle proved in [15]
and recalled below (Theorem 2.2) is given by:

Ir(7) = sup Ju(n).
HeC1:2

Theorem 2.2. (Large deviations principle, c.f. [15]) Consider a sequence of deterministic config-
urations (UN)Nzl associated to a continuous profile pg which is bounded away from 0 and 1. The
sequence of probability measures (IP’(;WN)Nzl satisfies the following large deviations principle:

(i) (Upper bound) For any closed subset C of D%,

T ]- . =
dim - logPs  [C] < —inf Ir(r)

(ii) (Lower bound) For any open subset O of D},

1 ~
i 7 logPs [O] = — inf Iz ().



Main results

To observe an evolution of the total mass of the process (1;):>0, time has to be accelerated by a
factor N, that is, by speeding-up the exclusion part by N3 and the boundary dynamics by N.
Fix one and for all a time horizon T' > 0 and denote by {(;, t € [0,T]} the Markov process with
generator
ey =N*Lyno+ NLyy=NLy.

We will often refer to {¢;, t € [0,T]} as the accelerated process. Given a measure py on Qy, Py,
is the probability measure induced on D¢, by the speeded up process {(;, ¢ € [0,T]} when (o has

law ppn. Also, denote by E;m the expectation with respect to P, .
For m € M, introduce
m(m) = (1,m) = =([0,1])

the total mass of 7. Then, the process (m(7™ ({;,.)) which we will denote by (7(m7))

0<t<T? 0<t<T
defines a hidden Markov process with state space [0, 1] and induces a probability measure on D[j(;’l],
the space of trajectories defined on [0, 7] that are right continuous with left limits and taking their
values in [0, 1].

The results established in this paper are given in the following subsections.

Hydrodynamic limits

Tsunoda [22] proved a law of large numbers for the total mass m (/). An extra argument provides
the following law of large numbers for the density profile.

Theorem 2.3. (Hydrodynamic limit for the accelerated process). Fixz a measurable profile py :
[0,1] — [0,1] and consider a sequence (un)n>1 associated to py. For any t € (0,T], § > 0 and
H € C°([0,1)),

im B, H<7r,{V,H> - m(t)(l,H)’ > 6] =0,

where m : [0, T] — [0, 1] is the unique solution of

{@m:—ﬂm—ﬂ

m(0) = [ po(x)dz, (2.4)

where v := (a + B)/2.

For N > 1 fixed, both Markov processes (1:)o<t<r and ((;)o<t<r are irreducible with finite
state space and their generators are proportional. They therefore admit a unique same stationary
measure on () that we denote by uX.

Next result is due to Baldasso, Menezes, Neumann and Souza [2]. Tsunoda [22] provided an
alternative proof.

Theorem 2.4. (Law of large numbers for the invariant measures). For any H € C°([0,1]),

lim E,~ { ‘<7TN,H> —7(1,H>‘ ] ~0.

N—oo /s



Large deviations principles
We start by defining the rate function that will appear in the dynamical large deviations principle.

Definition 2.5. For T > 0 fized and G € C*([0,T)), define Jr.c : D[{LI] — R by

T T

Jr.c(a) =: arGr — apGo — / 0,Gsasds — / Ag(a)(s)ds, (2.5)
0 0
where
Ag(a) :=2v(1 —a) (eG —1)+2(1- ’y)a(e_G -1). (2.6)
The rate function is defined as follows.
Definition 2.6. Define I (.) : D[TO i~ RU{+oc} by Ir(a) = sup Jrg(u) and form € [0,1],
’ Geci([o,T])
_ IT(a) if a(0)=m
Ir (a|m) - { +00 otherwise.

We define V : [0,1] — [0, 4+00] the quasi potential for the rate function I ( . |7):

Vim) = %I;fo a(.), %):m Ir (ahy).

where the infimum is taken over elements of C1([0,T7).
Lemma 2.7. The quasi potential satisfies:

Ym € [0,1], V(m) = S(m),
where

m 1-m
S(m) :=mlog () + (1 —m)log () . (2.7)
gl L—n
We are now in position to state the dynamic and static large deviations principle.

Theorem 2.8. (Dynamical large deviations). Fixz mg € (0,1) an initial mass and consider a
sequence of configurations (n™)n>1 such that m(7™N (nN)) converges to mg. The sequence of prob-
ability measures IP’(;nN satisfies the following large deviations principle:

(i) For any closed subset F of D[j(;,l]’

: 1 ~ . .
lim Nlog Ps x {(m(ﬂtN))(KKT € ]-"] < —122 I(almy).

N—o00
(i) For any open subset O of D[j(;l],

: 1 - Py
lim Nlog Ps n [(m(wi\]

N —o0

))0<t<T € O} e 12(% I(a|my).

Theorem 2.9. (Static large deviations principle).



(i) For any closed subset % of [0,1],

— 1 N~/ N .
—_ < — . .
Jim S log i [(™) € F] < — inf V(m) (2.8)

(ii) For any open subset O of [0,1],

1
NlijmOo i log u2y, [m(7N) € 0] > —nilrelfﬁV(m). (2.9)

We prove Theorem 2.3 in section 3, Theorem 2.8 in Section 5 and Theorem 2.9 in Section 7.

3 Hydrodynamic limits

Dynamical law of large numbers for the accelerated process

To prove Theorem 2.3, which is a pointwise hydrodynamic result, we first establish the hydrody-
namic limit of the total mass (Proposition 3.1). The latter is also stated pointwisely but we prove
that the convergence of the mass trajectory holds in law, which yields the pointwise convergence. For
that, we follow the standard steps. First we prove tightness of the sequence of probability measures
induced by the mass process (Lemma 3.2). Then, we perform a superexponential replacemment
lemma (Lemma 3.3) which will also be used for the proof of the large deviations principle. For that,
we use some Dirichlet estimates (Lemma 3.4).
Fix p € (0,1) and define

Dy = [ > (VA@ - /0) a0

and

Dralf) = [ 30 el =) + (=)o) (VI VD) )

for f: Qx — R. In this formula, I//]JV represents the Bernoulli product measure on (2 with density
p-
Fix a constant mg € [0,1]. We say that a sequence of probability measures (un)n>1 on Qp is
associated to the mass my if, for any § > 0,
. ~/ N .
A}gnoo pn [|m(r™) = mo| > 6] = 0.

Proposition 3.1. (Hydrodynamic limit for the total mass). Fiz mg € [0,1] and consider a sequence
of measures (in)N>1 on Qn associated to the mass mg. Then, for any t € [0,T] and any 6 > 0,

lim B, | ‘fﬁ(wN) - m(t)’ > 9] =0,

N—o0

where m : [0, T] — [0, 1] is the unique solution of (2.4) with m(0) = my.



Lemma 3.2. For any sequence of measures (un)n>1 on Sy, the sequence of probability measures
(Puy)N>1 induced by m(md) when no ~ uy, is tight for the Skorohod topology. Moreover, all limit
points are concentrated on continuous paths.

Proof. 1t is enough to show that for any € > 0,
H i P . =~ (N =~ (N —
lim limsup P, | sup |m(m')—m(n,' )| >e| =0. (3.1)
=0 Nooo [t—s|<d

By Dynkin’s formula (see [18, Appendix 1]),

t t
MY = () — w(r) — N / Lo om(rN)ds — N / L )ds
0 0

is a martingale with respect to the natural filtration F; := o(ns, s < t). As the bulk dynamics is
conservative,
EN,()T/)’\I(T(?]) =0.

Also, computations yield:
S0

Therefore, (3.1) holds if

lim limsup IF:HN sup ‘MtN — MSN

] =0 (3.2)

00 Nooo [t—s|<d
and
t
lim limsup E,,, | sup / (a+B—¢ (1) =G (N —1))dr|| =0. (3.3)
00 N—ooo [t—s|<8 s

Denote by (M) the quadratic variation of M}¥. By Doob’s inequality,

E.y | sup ‘MtN—MSN

jt—s|<5

< ZINEHN [ sup ‘MtN
0<t<T

} < 4B, [(Mp)]"?.

Dynkin’s formula and the fact that the bulk dynamics is conservative yields the following expression
for (MN):

(M) =N /O t [Lnpm(m)? = 2m(a) Ly pim(n)] ds
1 (3.4)
= N/o o IreGol@) + (L= ) (1= (o())] ds .

ze{l,N—-1}

Hence, as (s(z) is bounded, (M) e 0, as claimed in (3.2). To prove (3.3), simply note that for
— 00
0<s<t, NCyom(ml) =a+ B —(s(1) — (s(N — 1) is uniformly bounded. O



Lemma 3.3. (Superezponential Replacemment Lemma). Given g € C([0,T]), for any sequence of
probability measures py on Qu, t € [0,T], 6 >0 and x € {1, N — 1},

I L log B, [ ’/ (Wév))ds‘ > 5} = 0.

For the proof of that, we use the following :

Lemma 3.4. For any density f with respect to V,J)V,

(i) (LnoVF, \/f>u;y = —1iDn(f)
(it) (LnoVT, \/f>,j/17v = —1Dny(f) + Un where (Un)n>1 is a uniformly bounded sequence.
Proof.

(i) This point comes from the invariance of Vl])V under the dynamics generated by Ly, and a
change of variables.

(ii) Developing the term (Lx p+/f, \/f)ug,\f and performing the change of variables ¢ — (* we get
that

(Lnav TNy = *EDN,b(f)
/ 3 1—r)(1— ¥ <p 172C(I)dN
o)+ (=m0 = @@ ($25) a0,

ze{1,N—-1}

Now, using that f is a density, that the jump rates are bounded and that p € (0, 1), the result
follows.

O

Proof of Lemma 3.3. Fix p € (0,1) and « € {1, N — 1} . For s € [0,t] and g € C([0,T]), write
VI(C) = g(s)(¢s(x) — m(wl)). Using that ‘ZZ‘;—%‘ < e“N and Tchebychev’s inequality,
p

P, [ ‘/Ot mg(g)ds‘ > 5] < exp(—(c§ — O)N) x E,x {eXp (CN‘ /Ot V;'(g)ds()] , (3.5)

for any ¢ > 0. Therefore,

%bg I@HN { ‘/Ot ng(g)ds‘ > 5] <C—-co+ %log fE,,/z)v {exp (cN‘ /Ot V;’(C)ds’)] . (3.6)

Let us deal with the last term. As el®l < e* 4+ ¢=%, and
lim i1 (any +bn) < Yiil Tiil b (3.7
1m N oglan N max NgnooN ogan, NgnooN ogonN |, .

N —oc0

we bound that term without the absolute values.

10



Let VY (¢) = ¢(x) — (1, 7). By Feynman-Kac’s inequality, stated, for instance in [18, Appendix
1], Lemma 3.4 and the fact that Dy is non negative,

E,x [exp <cN /O t Vf(()ds)]
< exp ( /O t m;p{ / eNg(s)VM (O f(Qdvy () + N Lnov/ ./ F) + N{Lw /T, ﬁ>}ds> (3.8

t NS
< exp ( /0 sup [ eNas V¥ Qs (©) - D) + NUN}ds> ,

where the supremum is carried over densities with respect to V;V . Without loss of generality, suppose
x = N — 1. Then,

1 N—-1
[V¥ @y ©) =5 X [ew -1 - corowm e
¢ y=1 ¢
N—-1N-2
— 3 2 [l ) - @) )
N—-1N-2
o 2 2 [ G+ 1) = CO) Q) - AT 0

where we performed the change of variable ¢ — ¢**+! in the last line. Now, write

FO) = £ = (VIO = V) (VFQ) + VF(CH).

By Young’s inequality and using the fact that ¢ is bounded, the above is less than

N—-1N-2 1N-2

NZZ/ (VG- VTQ) 60 + 15 X 3 [ (VIG+ V7)o
y=1 i=y y=1 i=y

BN1 N

~Z 5D

4Ny:1 ~(

for any B > 0, where we used that f is a density. Taking the log of (3.8), dividing it by N and
using the above inequality yields

tioe By [emp (o [ v20as) | < [ sun{ BB nc () + Tigto) - S )+ Ui s

cllglls B cN N? }
<T AL ) —|lglloc — =D U
< T sup{ SEE=D () + gl = D) + U
2 2

11



2N?
cllgll

where to get the last inequality we took B =
Cy, we are left with

. As Uy is uniformly bounded by a constant

1 N t
— 1 . g <
ngr(l)oNlog E,» {exp (CN/O V (Ods)} <TCy
and by (3.6),
1 - t
o N g <C - .
Jim ~log B, “/0 % (C)ds‘ >5] <C—cd+TCy

Taking ¢ — 400 yields the result.

Proof of Proposition 3.1. From (3.4), we have that

i ’MN‘ 0,
“N[OQ‘ET b N

and using Lemma 3.3, for any ¢ > 0, for any ¢ € [0, 7]

B, [ ’ﬁz(w,fv)—fﬁ(ﬂév)—/OtQ('y—ffL(w;V))ds‘ >5} 0.

N—oc0

Since all limit points of the sequence (J}N”MN) ~N>1 are concentrated on continuous trajectories, by

PortManteau’s Lemma, for any limit point Q* of (P,, )n>1, for any ¢ > 0 and ¢ € [0, T,
t
Q* [ ]m(m) — o) — / 2y — ﬁz(ws))ds‘ > g} —0. (3.9)
0
Taking € — 0, for any ¢ € [0, 7T,
¢
Q" [ m(m) —m(m) = / 2(y — ’//T\L(ﬂ's))d8:| =1 (3.10)
0
Taking a dense subset of times and using the right-continuity of the trajectories yields that
t
Q* {Vt € [0,T] m(m) — m(mg) = / 2(y — ﬁl(?‘(‘s))d5:| =1 (3.11)
0

If (un)N>1 is associated to a mass my,

o [vee 0.1 m) = mo + | Yoy - il ))ds| = 1.

so Q" is the unique measure concentrated on d,,) where m is the unique solution of (2.4) with
m(0) = mp. Convergence in law to a deterministic measure implies convergence in probability so
we proved Proposition 3.1. Note that m is explicitly given by

m(t) =+ (mo —v) e . (3.12)

This completes the proof of the proposition. O
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Now, we move on to the proof of Theorem 2.3, the hydrodynamic limit of the empirical measure
associated to the accelerated process. The idea is to use the fact that the hydrodynamic limit of
the non accelerated process is the heat equation with Neumann boundary conditions (see Theorem
2.1) and that the solution of that equation converges in time to a flat profile given by the total mass
of the initial condition (Lemma 3.6). The accelerated process then only evolves according to the
hydrodynamic limit of the mass, stated in Proposition 3.1. This is the object of Proposition 3.5.

Proposition 3.5. Consider (un)n>1 a sequence of probability measures, fiv a > 0 and H €
C°([0,1]). There is a ty > 0, depending on a and H such that

i B, [ ’Wg,m - m(wév)u,H)‘ > a} —0, (3.13)

for any t > ty.

To prove Proposition 3.5 we use the following Lemma for which a proof can be found for instance
in [13] or [20], Chapter 4.
Lemma 3.6. Consider a measurable profile po : [0,1] — [0,1] and let p be the solution in H(0,1)
of (2.3). Then, for anyt > 0,
1

1
lott) = [ pua)dele < 100, = [ po(oddafae 2t < 202,
0 0

where A1 1s the smallest non zero eigenvalue of the Laplacian associated to Neumann boundary
conditions.
Proof of Proposition 3.5.

Fix a > 0, and H € C°([0,1]). Consider to > 0 such that 2e 1% ||H||;2(9 1) < & and fix ¢t > ¢o.
Let (Ng)k>1 be a sequence along which the probability (3.13) converges. Let us show that the limit
is necessarily zero. It is enough to prove that there is a subsequence of (Ny)x>1 such that the limit
is zero.

Define A; C DY, as the set of trajectories {p(r,-), 0 < 7 < t} whose density p is a solution

of (2.3) for some initial condition. The process (w% Jo<r<t has generator Ly and by the proof of
Theorem 2.1 in [2], the sequence of probability measures P, on DY, induced by (W%V Jo<r<t When
7}’ ~ p, is tight and all its limit points P* satisfy

P* (Ay) =1
Consider (N;);>1 a subsequence of (Ni)r>1 such that If”u v, converges to a probability measure P*.
Then,

fm P, U@N ,H) —m(wévf)u,m‘ > a}

j—o0 N

_p K‘(p(t),l; _ /01 (0, ) (1, H) | > a) N e At)} .

By Lemma 3.6, for any p € Ay,

(3.14)

1 1
(e, H) - / p(0,2)dar(1, H)| < [|p(t,.) - / p(0,2)d ] 201 | H 12011
0 0

< 267/\1tHH||L2(071)-
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Therefore, for any ¢t > tg and p € A,

1
a
(o H) ~ [ pl0,2)da(1, 1] < 5,
0
which implies that the limit in (3.14) is necessarily zero.

Proof of Theorem 2.3. Fix H € C°([0,1]). The idea is to split the term [(z}¥, H) — m(t)(1, H)|
into two parts involving the total mass process m(7{¥). One part is dealt with thanks to the hy-
drodynamic limit for the total mass given in Theorem 3.1. The other part relies on Proposition
3.5.

Fix at € (0,T]. We have

(¥ H) = m(t)(1, H)| < [(m", H) — (") (1, H)|
+ () = m()]|(1, H)l.

By Theorem 3.1, the second term above converges in probability to zero under I@MN. Let us prove
that ~
lim B, | |<7rgV,H> fm(wgv)u,m\ >el =0

N—o0
for all € > 0. Consider ty such that
€

26_)\1t0”H”L2(071) < 4

where we recall that A; was introduced in Lemma 3.6. Also, consider N large enough so that
t—tﬁo > 0. We have

[ H) = () (1 H) | < | H) =i (x] ) (08D

By Lemma 3.2,
lim By [ |7 (7 ) = (=)0, > 5] = 0.

N —o0

Now, we are left to show that

s = N el
i, B [ o) = (w2 ) (0, 80] > 5] =0
Consider the process (frﬁv =N ) so that 7" = 7V, and 7 = mN. As the process is
=N+~ /s>0 - 0

Markovian,

B [ | ) = (w g ) ()| > 5] =B | |70 H) = @) (L) > 5]

where S, « (un) is the push-forward of the measure i under the dynamics. By Proposition 3.5
N
and the choice of tg, this goes to zero as N goes to infinity. O
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Static law of large numbers for the accelerated process

In order to prove Theorem 2.4, we start by proving the static law of large numbers for the total
mass of the process (see Proposition 3.7). This result follows from the fact that any solution to the
O.D.E (2.4) of the total mass converges to . Then, we use a similar argument as in the proof of
Theorem 2.3 which consists in moving by a factor ¢/N back in time, to recover the static law of
large numbers for the accelerated process of empirical measures.

Recall that Y, denotes the unique stationary measure on ) relatively to the dynamics induced
by the generator Ly .

Proposition 3.7. The sequence of invariant measures (ué\g)Nzl satisfies:

lim B, [ ‘ﬁi(ﬂN)—'y‘ } —0,

Nooo = Hes

where E,n is the expectation under ulN on Qp.

Proof. As (ﬁz(ﬂN )— 7) . is uN-almost surely bounded, it is enough to prove the convergence in
1

probability to zero. Fix e > 0 and choose T' = T'(¢) such that for any mq € [0, 1], |mo —~]e T <e.
Consider (Ng)r>1 a sequence such that

ol ([(e™) = o] > 2 ) = tim s (| =) > ).

N—o0

By stationarity of u¥,

,ui\g"( ‘ﬁz(ﬂ'N’“) —’y‘ > 5) :PMNk< ‘ffL(ﬂ'éYk) —’y‘ >e )

By Lemma 3.2, one can extract from I@szk. a converging subsequence I@ij with limit P*, so that

lim MN( ‘m(ﬁNk)—yj >5> = lim P Nj( ‘ﬁ%(ﬂévj)—w‘ >e)

k—o0 Jj—oo  HMss
:IP’*( ‘ﬁl(ﬂ‘T) —7‘ > 5)
- ]P’*( \m(wo) - 7](” > ) =0,
where the last line comes from (3.9) and the choice of T'. O

Remark 3.8. One can deduce from the proof of Proposition 3.7 that there is a sequence (en)n>1 4 0
such that X, (B, ) converges to 1, where B., is the set of measures with total mass less than
away from ~y:

B, ={mreM, |m(r)—~v|<en}.

Proof of Theorem 2.4. Consider (m}N )i>0 the accelerated process of empirical measures, that is,
with generator £y, and such that 7Y ~ pX. Fix G € €°([0,1]) and T > 0 which will be taken
sufficiently large later on. As the generator of the accelerated process is proportional to the one for
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the non accelerated one, p2, is invariant for that process, therefore,

il [ [7,6) = (1, 6)| | =By [ |(r,6) = (1,6 |

<Euy | [(ed.6) =iy )(LG)| | = anra

N (3.15)
+Euy | [N o) = () (1,G) | = b,
+EuN [ "fl\”t(ﬂqj\!) - 7’(1,G> } ‘=CN,T

where N is large enough so that T — tﬁ" > 0. By Proposition 3.7, ¢y, — 0, when N — oo and then
T — oo.
To control by 1+,, using the proof of Lemma 3.2 we get:

lim by, 74 < hm ]EHN [ sup MtN— }—!— lim E,~ sup / Ly pym(m dr‘ ] =
N—o00 89 t N—o00 t
[s—t|< s—t|<F
Finally, to control ay 1+,, introduce the process (frév = 7rtN g s ) as in the proof of Theorem
TNTN/s>0

2.3. By Markov’s property,

antay =By [ |G, 6) = G D(LG)] .

By Lemma 3.2, (EDMQ’S)NZl is tight so we can extract from it a sequence (]P)MNk )k>1 converging to a
probability measure Q*. By Theorem 2.1,

Q* (7T € .At()) =1,

where
Ay = {(p(t,x)dz)te[o to? P is a weak solution of (2.3)}.

Therefore,

Tm E w, [ ]moac,w (7] ‘,1><1,G>‘ ] :E@*[mo,@— (70, 1)(1, G)|1

N—oo HMss

ﬂGAtO}
1

<Bo[lltor) = | p(0,2)dollpai0 G0 Lneat,
0

< 2e7 MG 20,1y oY

Hence lim lim an T.t, = 0 and the result follows.
to—0oN—o0

4 Large deviations functional
In this section, we list some properties on the large deviations functional I, introduced in Definition

2.6, that will be used later on. We prove the I - density, used for the proof of the lower bound of
Theorem 2.8, and we prove Lemma 2.7.
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4.1 Some properties on Iy

It is immediate to see that Ir is lower semi-continuous, as the supremum of linear functions and
therefore continuous functions. Furthermore, we show that it is infinite on non continuous trajec-
tories, that it has compact level sets and that its variational formulation is solvable on a particular
class of elements of DE‘SJ].

Proposition 4.1. Ifa € D[TO 1] satisfies It(a) < 0o, then a is continuous.

Proof. Consider 0 < s < ¢t < T such that t —s < 1 and let Hs; : [0,7] — R be given by
H, (r) =log(1/(t — s))1s (7). Also, consider a smooth approximation HY, : [0,T] — R of H,; in
the sense that for any element f of C*°([0,T7),

T T T T
/ f(r)Hf,t(r)dr — f(r)Hs(r)dr, and / f(r)@er’t(r)dr — / f(r)0pHy 1 (r)dr
0 0 P 0

p— Jq —00

where (97«H§7,5 resp. OpH, . refers to the weak derivative of Hﬁt resp. Hg;. Then, recalling the
definition of Jr g and using that the weak derivative of H, ; is given by:

T
/O f(r)0,Hs 1 (r)dr = f(T)Hs+(T) — f(0)Hs,(0) — log(1/(t — 8))(f () — f(s)),
we have

i Jy v () = log(1/(t — )) (a(t) — a(s))

_ /: [M(l —a(r)) (1 - 1) 21— ya(r)(t — s —1)| dr. (4.1)

t—s

Now, as NE Jp,ur,(a) < Ir(a) < oo and a is bounded, there are constants C1,C2 > 0 such that
—00 S

la(t) — a(s)| < [log(1/(t — s))]f1 [Ir(a) + (t — 5)C1 + C4] (4.2)
and the right hand side of this inequality goes to zero as s — t, hence the result. O

For g > 0, the g-level set of I is defined as
B, = {a € Dby Ir(a) < q}.
A corollary of the proof of Proposition 4.1 is the following:

Lemma 4.2. The level sets of IT are compact in D[%’”.

Proof. Fix ¢ > 0. By lower semi continuity of I, £, is closed so we just need to show that it is
relatively compact. For that, we show that

lim sup sup |a(t) —a(s)| =0
=0 yeFE, 0<s,t<T
[t—s|<&

but this is an immediate consequence of (4.2). O
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Remark 4.3. By Proposition 4.1, any level set of I is a subset of C([0,T]) and the proof of Lemma
4.2 shows that a level set is compact in C([0,T]) for the topology of uniform convergence.

Proposition 4.4. Fiz a € C*([0,T]) and consider H € C1([0,T]) a solution of the following partial
differential equation,

dra(t) = 2y(1 — a(t)) e ™ — 2(1 — y)a(t)e H®). (4.3)
Then, H solves the following variational problem
IT((Z) = sup JTvg(a) = JT7H(G,).
Gect([o,1])

Proof. For G € C1([0,T)), performing an integration by part we get

Jr.a(a / Gaans—/ Ag(a

where recall that Ag(a) was defined in (2.6). Now, writing Jr g(a) = Jr.g(a) — Jr,u(a) + Jr g(a)
we check that Jr g(a) — Jr,g(a) < 0. Replacing dsa, thanks to (4.3) we have,

T

T
Jr.6(a) — Jr.p(a) = /(G ~ H)oads — [ [Ae(a)(s) ~ An(a)(s)]ds

0

/T ) [27(1 — a)efs —2(1 — y)ase "+ ]ds
0 (4.4)

T
/ 2v(1 — ag) (e — efs) +2(1 — y)as(e % — e’HS)]]dS
0

T
/ Fa,H& S,
0

where for a € [0,1], z,y € R,
Fiy(z):=2y(1—a)[(z —y)e? — (" —e¥)] —2a(l —7)[(x —y)e Y+ e —e Y]

We have that Fj , is a concave function of x and Fj , (y) = 0 so it reaches its maximum at y, where
Fy4(y) = 0. It follows that fo w.i.(Gs)ds <0, hence the result. O

We will often make use of the following result: for any a € D[q(;)l} such that Ir(a) < oo, for any
t € 0,77,
Ir(a) = Ii(a) + Ir—¢(a(. + 1)). (4.5)

In particular, as I is a positive functional, for any ¢ € [0,T] I;(a) < Ir(a). To prove that, decom-
posing Jr.g(a), for G € C*([0,T)), as

Jrala) = Jia(a) + Jr—cla(. + 1)),

we immediately get that Ir(a) < Ii(a) + Ir—¢(a(. +t)). To prove the reverse inequality, fix € > 0
and consider G € C!([0,t]) and H € C1([0,T — ¢]) such that

Jia(a) + Jr—em(a(. +1t)) > I(a) + Ir—(a(. + 1)) — 2e.
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Taking smooth approximations (Kp)n>1 of Gl 4 + H(. — ¢)1 7y in C*([0,T7]), we have that

IT(CL) > lim JT,Kn (a) = Jtvg(a) + JT_t7H(a(. + t)) > It(a) + IT_t(a(. + t)) — 2e.

n—oo
This holds for every ¢, thus the converse inequality.

Corollary 4.5. Ifa € D[T(; 1] then Ip(a) = 0 if and only if a is a weak solution of Oya = —2(a — 7).
This implies that a is a strong solution of that equation and is therefore in C*([0,T)).

Proof. If a € D[TM] is a solution of d;a = —2(a — =), by Proposition 4.4, I7(a) = Jy(a) with H = 0,
so It(a) = 0.

Conversely, fix a € D[EH and assume that Ir(a) = 0. For t € [0,7T], consider the function
F; : R — R defined by Fy(z) = J;,(a), where z refers to the function that is constant in time,
equal to x. Then

Fy(x) = 2(a; — ag) +2 / [y(e® = 1) = (1= 7)(e™™ — 1)] auds — 2yt(e” — 1).

By (4.5), we have Ip(a) > I;(a). As Ip(a) = 0, for any t € [0,T], I:(a) = 0. Evaluating Jg(a)
with G constant equal to z yields that F; < 0 on R. As F;(0) =0, 0 is a local maximum for F}; so
FJ(0) = 0. This implies that for any ¢ € [0, 77,

¢
a; — ag = —2/ asds + 27,
0
0 a is a solution of dra = —2(a — 7). O

4.2 The Iy — density

The proof follows the same steps as in the seminal papers [21] and [6]. First we approximate
trajectories by ones which follow the hydrodynamic equation on a small time interval (Lemma 4.8)
and are uniformly bounded away from 0 and 1 (Lemma 4.9). Then, we regularize such trajectories
in time (Lemma 4.10).

Definition 4.6. A set A C D[{) ) s said to be Iy — dense if for any a in D[j(; 1) such that Ir(a) < o0,
there exists a sequence (ap)p>1 of elements in A such that

T
ap =3 ain D,y and Ir(ap) v Ip(a).

Let BT be the set of elements a in C*([0,T]) for which there exists H € C!([0,T]) such that a
and H are related by the ordinary differential equation (4.3).

Theorem 4.7. The set BT is I — dense.

For the proof, of Theorem 4.7, we establish the I — density of some intermediate sets. Denote
by II¥ the set of elements in Dj(; 11 such that for any a € II7, there is a § > 0 such that on [0,4], a
is a solution of the ordinary differential equation

O\ = —2\ + 2. (4.6)
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Lemma 4.8. The set 11T is It — dense in D[El].

Proof. Consider a in D[:G,u such that Ir(a) < oo and A : [0,7] — [0,1] the unique solution of (4.6)
with initial condition a(0). For ¢ > 0, define a’ as follows:
A(t), ifte|0,d]
a®(t) =< N26—t), ift e [0,20] (4.7)
a(t —24), ift€[26,T).

It is clear that a® converges to a in D[q(; 1] 8s § 1 0 and, by construction, a® belongs to II7 . By lower
semi continuity of v — I (v),
Ir(a) < liminf Ip(a®).
6—0

We are therefore left to show that

Ir(a) > limsup Ir(a’).
0—0

Decomposing Jr ¢(a’) into the sum of the contributions on each time interval [0,6], [6,2d] and
[20,T) we get:

T T
Jr.c(a®) = aGr — a35Gas — DsGsa’ds — Ag(a®)(s)ds
26 25
28 26
+ ag5G25 — agG(; — 8SGsagds — / Ac;(a‘s)(s)ds (4.8)
5 5

5 5
+ agGg — agGo — / 8SGsagds — / Ag(aé)(s)ds,
0 0
where we recall that the definition of Ag is given in (2.6). The first term is bounded above by
I7_55(a) and recall, by arguments detailed in the proof of Corollary 4.5, that Ir_ss5(a) < Ir(a).
The last term in (4.8) equals I5(as) = I5(\) = 0 because A solves (4.6) on [0,d]. Finally, let us show
that

20 25
limsup  sup {agéGg(g —alGs — 0sGalds — / Ag(a‘s)(s)ds} =0. (4.9)
5—0  Gecl([0,T]) 5 5
For G € C'([0,T)),
28 26 26 26
ad5Gas — a3Gs — DsGyalds — Ag(a®)(s)ds = Gs05a’ds — Ag(a®)(s)ds

s s
= / G257588a6(25 —8)ds — / Ag(a‘s)(% — 8)ds,
0 0

therefore,

Gec'([o,17) 1

5 5
= sup /Gsﬁsﬁsdsf/ Ag(a)(s)ds ¢,
GeCt([0,T]) 0 0

20

26 26
sup {agéGQ(S —ajGs — 05Gsadds — / Ag(a6)(8)d8}
’ (4.11)



where @(s) = a®(6 — s) = A\(6 — ). Using that ag € (0,1) and that () = v+ (ag — ) e~ we have
that for any ¢ > 0,
0<y(l—eP)<a(s) <y+(1—7)e 2 <1.

We can therefore define the continuous function

H(t) = log (a'(t) + Va0 +167(1 — 7)1 —a()a() ) (412)

4y(1—a(t))

on [0,4]. Furthermore, this belongs to C1([0,T]), and @ and H are related by (4.3). It follows by
Proposition 4.4 applied to the time interval [0, §] that

5 s 5 5
sup {/ G0sasds —/ Ag(a)(s)ds} :/ H,0sa.ds —/ Ag(a)(s)ds.
Gect([o,1]) 0 0 0 0

Using that H;0sas and Ag(@)(s) are continuous functions, the second term converges to zero as
6} 0, hence the result. O

Denote by ITZ the set of elements a in II7 such that for every § > 0, a is uniformly bounded
away from 0 and 1 on [0, T], that is, there is an € > 0, such that for all t € [6,T], e < a(t) <1 —e.

Lemma 4.9. The set 111 is I+ — dense in 11T .

Proof. Fix an a in ¥ such that Ir(a) < co. For ¢ > 0, introduce a° = (1 — ¢)a + ), where
A [0,T] — [0,1] is the unique solution of (4.6) with initial condition «(0). By definition, a®
belongs to I1I{ and a® converges to a in D[TO 1 AS € 4 0. Furthermore, using that
A(t) =7+ (a0 =) e™™,
with ag € [0, 1], the following inequalities hold: for any § > 0 and ¢ € [§, T,
O<ey(l-e?)<a*(t)<l—e+ely+(1-v)e?] <1

so a is in [13". Again, by semi continuity of Ir, limﬁ)anT(aE) > Irp(a). Then, by linearity of Jr g,
£

Jrg(a®) = (1 —¢)Jrgla) +edra(N) < (1 —¢)Jrg(a) < (1 —¢)lr(a),

where we used that Jyg(A) < 0 in the first inequality. Taking the limsup we get the desired
result. O

Denote by I the set of elements in IIZ belonging to C%([0,TY)).
Lemma 4.10. The set 113 is It — dense in 113

Proof. Consider a € I such that Ir(a) < co. By Proposition 4.1, a is continuous. Let § > 0 be
such that a is solution to (4.6) on [0,3d]. Consider ¢ : R — R smooth with compact support in

(0,1) and fol @(s)ds = 1. For € > 0, define ¢ (e, s) = %¢ (f) . Then, (¥(e,.))s is an approximation
of the identity on compact sets in the sense that for any p € C(R) with compact support, ¢ —
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Jg p(t + s)ib(e, s)ds converges uniformly to p on R as € — 0. Consider ¢ : [0,T] — [0,1] a smooth
non decreasing function such that

0, ift € [0,0]
e(t) =< 0<e(t) <1, ifte(d29) (4.13)
1, ift e [26,7T)
and for p € N, define ¢,(t) = ?. Introduce the sequence a? (¢ fo a(t + e,(t)s)d(s)ds, where we

extend a on [T, T + 1] by letting, for ¢t € [0,1], a(t+T) = A(t), Where X is the solution to (4.6) with
initial condition a(T).

By construction of ¢, the sequence a? converges to a in D[o 1" For t € [0, 4], aP(t) = a(t), where
a is solution to (4. 6) S0 ap € IT. As a € TIT, the convolution product ensures that a? is also in
1. For t € [0,26), fo a(t+¢,(t)s)o(s)ds. As a is smooth on [0, 36), for p large enough, a?
is smooth on [0, 26) For t € (8,T], ep(t) > 0 and the following change of variable holds:

ap(t)z/osp(t)a(t—i-s) ! qb(%s(w) ds:/tt+8p(t)a(s)z/)(£p(t),s—t)ds

&p(t)

= / a(s)(ep(t), s —t)ds
R

and this is smooth in ¢. Hence, a? is smooth on [0,7] and it follows that a? € 1%
To conclude the proof, let us check that lim I7(aP) < Ir(a). For G € C*([0,T)), decomposing
p—o0

Jr.c(aP) as in (4.8) we have:

T T
Jra(a?) = dh.Gr — absGas — / 0s;Gsalds — Ag(aP)(s)ds
25 26
26 26
+ absGas — a§Gs — 05Gsalds — / Ag(aP)(s)ds (4.14)
§ §

s 5
+a§Gs — afGo — 0sGsalds — / Ag(aP)(s)ds.
0 0

Again, the last term is negative. The first term in (4.14) is given by

1
J
where T2a(t) = a (t + %) Bound this by fol Ir(r2a)d(s)ds. Using that a solves (4.6) on [T, T'+1],

this is less than fol Ir(a)é(s)ds = Ir(a).
Now we deal with the second term in (4.14). By regularity of a” we can perform the following
integration by part

T T
T2a(T)Gr — 72a(26)Gas — 0sGsT2a(t)dt + Jg(T;a)(t)dt] o(s)ds
26 26

25 25
absGas — alGs — i 0 Graldt = : 0yalGds.
Therefore,

26 25
absGas — afGs — : 0, Gral dt — /5 Ag(aP)(s)ds =

20 25
0sa?Gsds 7/ Ag(aP)(s)ds.
6 3
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Using Proposition 4.4 and the fact that o is smooth on [§, 26] and uniformly bounded away from

0 and 1, we have that

26 R 25 26 25
_sup 0saPGsds — As(aP)(s)ds = 0saP Hyds — Ap(aP)(s)ds
Geer(jo,1)) /6 5 5 5
where \/
_ (a?)'(t) + v/(a?)' (1) + 167(1 — 7)(1 — aP(t))aP(t)
H(t) =log ( 0= @) ) .

Since a solves the ODE (2.4) on [0, 30],

Oal = /Rata(t + ) (ep(t), s)ds + / a(t + 5)0(ep(t), s)ds

R
= _2/a(t+s)¢(ap(t)7s)ds+2,y+rp(t)
R
with
rP(t) == /Ra(t+s)at¢(€p(t)’s)d&

Hence,
Opal = —2al 4+ 2y + rP(t),
and the right hand side term in (4.15) equals
25 25 25
/ (—2aP(s) +2v) H(s)ds + / rP(s)H(s)ds — Apg(a?)(s)ds.
5 5 5

Therefore, the second term in (4.14) is less than

25 25 25
/(s (—2aP(s) +2v) H(s)ds + /5 rP(s)H(s)ds — /5 Ay (aP)(s)ds.
Now,
25 25
/ (—2aP(s) + 29) H(s)ds — / Ap(a)(s)ds < 0.
) )
Indeed, for any G € C*([0,7])) and a € C([0,T]) with values in [0, 1], for any s € [0, T,
Ac(a)(s) +2(a —v)G(s) > 0.

(4.15)

(4.16)

(4.17)

To see that, for s € [0,T7], write Ag(a)(s) + 2(as —¥)Gs as fa.(Gs), where f, is a convex function

achieving its minimum at 0 where it is vanishes.
To conclude, we show that lim f;é rP(s)H (s)ds = 0. Recall that fol ¢(s)ds =1, so
p—o0

/ Oup(ep(t), s)ds = 0.
R

We then have
rP(t) = /]R [a(t + s) — a(t)] Op(ep(t), s)ds
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and as a is smooth, so Lipschitz on [, 2d], there is a C'(§) > 0 such that |a(t + s) — a(t)] < C(0)s.
Following the same lines as in the proof of Lemma 5.6 in [19], we prove that rP(t) < @ which
yields the desired result. O

Proof of Theorem 4.7. By Lemma 4.10, it is enough to check that 112 C BT. For that, fix
a € I} and t € (0,77, and define

H(t) = log (a/(t) + /a0 + 167(1 — ) (1 — a(t))a(t) ) |

4y(1 —af(t))

This is well defined because a is in ITIZ. Since a € C2([0,T]), H is in C1([0,T]) and by construction
of H, it is related to a by (4.3). Therefore a belongs to BT.

4.3 Proof of Lemma 2.7

The proof of Lemma 2.7 relies on an argument introduced in [4]. Let us recall some notation. The
quasi potential V : [0,1] — [0, +oc] relatively to I7( . |7y) is defined by

V(m) = %r;fo . iar(Lg):m I (aly), (4.18)
where the second infimum is taken over elements a of C*([0,T]). The aim is to show that V = S,
where we recall that S was defined in (2.7).

To prove that V(m) < S(m), one exhibits a path a connecting v to m in [0,7] such that
Ir(aly) < S(m). Recall the variational definition of Ir given in Definition 2.6. To prove that
V(m) > S(m), we show that for any path a connecting v, at time 0, to m at time T, I7(a) > S(m)
from which the inequality follows.

First we prove the following result:

Lemma 4.11. For k € (0,1), let a, : [0,1] — [0,1] be given by a.(t) = Kkt + . Then,

Li(agly) 30.

Proof. Choose k € [0,1) so that ¢ — st + v is an element of II} (that is, uniformly bounded away
from 0 and 1 and in C?). Then, I1(kt +v|y) = J1 g, (kt + ), with

K+ /K2 + 169(1 — v)a(t)(1 — a(t))
Ay(1 —af(t)) 7

H(t) =log (
where a(t) = kt + . Therefore,

Lkt +y) = & /O Ho(s)ds — /O [29(1 — a(s)) () — 1) + 2(1 — 7)a(s) (e~ — 1)]ds

=K 1 H(s)ds — /1 [27(1 - ks)(eHr) — 1) 4 2(1 — y)rs(e Hr(o) — 1)]ds
0 0

— A [27(1 — 7)(6H"‘(S) —1)+2(1 - v)y(e*H“(s) — 1)]ds.

The last term is less than I (y|y) = 0. Using that H, converges weakly to zero, that it is uniformly
bounded in x and ¢ € [0, t] and the dominated convergence theorem, the above converges to zero. O
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Let us now prove Lemma 2.7.

Proof. Let us first prove that V(m) < S(m). Consider m € (0,1) and fix 0 < ¢ < 1. Denote by a*
the unique solution of the Cauchy problem: d:a* = —2a* + 2v, a*(0) = m. It is immediate to see
that there is 77 > 0 such that for any t > T3, |a*(t) —y| < . Now, consider the following trajectory
m™* defined on [0, T + 1] by

a* (T )t +~(1—1t), if t €0,1]

(4.19)
a*(Thy +1—1t), ifte[l,Ty +1].
By definition, V(m) < Ir,+1(m*|y), and by (4.5),
I am ) = Tm* )+ Iy (1) 120)

= Ii(m*|y) + I, (a"(Ty = .)).

Let us compute the second term in (4.20) . Denote by a(s) = a*(Ty — s) for s € [0,T1]. Then a
satisfies the Cauchy problem 9sa = 2a — 2, a(0) = a*(T}), and one can check that H, as defined
in (4.12) associated to a is given by:

(0) = tog (U720 ) = ox (2. (121)

v (1 —a(t)) w(t)

We claim that

Ty m(a*(T1 =) = mlog (W) " (Ty)log (M) +log (11__:1) C(4.22)

The proof relies on a long but straightforward computation detailed in Appendix A. Collecting
(4.20) and (4.22) we have

V(m) < Li((a*(Ty) =)t +7]7) +mlog (m) —a*(Ty) log (W) +log (11_:1) .

Take ¢ — 0 and T7 — oo so that a*(71) — 7. By Lemma 2.7, the first term on the right hand side
of (4.22) goes to zero. The rest converges to S(m) so V(m) < S(m).
Now, we prove that V(m) > S(m). It is enough to show that for any 7' > 0, for any a € D[TO 1

such that a(0) = v and a(T) = m, Ir(aly) > S(m). Fix T > 0, suppose that a is in IT3" and define,
for t € [0,T], H(t) = log ((Wl(fjt);zgg) By definition, Ir(aly) > Jr,u(a). Now, let us compute
JT’H(a):

T T
Jr.p(a) =mHp —vHy — / as0sHgds — / Apg(a)(s)ds.
0 0
We have 0, H, = %, S0 — fOT as0sHsds = [log(1 — as)]OT. Furthermore,

(1 —as)as 2(as —7)

(1 —17)as (1 - ay)
AH(a)s:Q’y[ as +2(1 —2y)as — 2y as —
() Y1 —as)  (1—7)as ( ) (1 —7)as 1—a,
o )% 91— ay) + 20 — dyay + —2 266
= Y 1—a, Y Qs Qs Yas 1—a, 1—a, =
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We are left with

Jr.(aly) = mHy — yHy + [log(1 — a,)]y = S(m).
To extend this fact for any trajectory a € D[{),l} such that a(0) = v and a(T') = m, use the Iy —
density of ITZ in D[T(;,l}' Indeed, if a € D[T(;l]’ using the approximation a’ from the proof of Lemma

4.8 of a and a®° the approximation of each a’ from the proof or Lemma 4.9, we have

lim Ir(a*|y) = Ir(aly) > S(m).

£,0—0

5 Dynamical large deviations principle

In this section, we prove the dynamical large deviations principle (Theorem 2.8) following the
approach in [21], or [6]. The steps are by now standard. For the upper bound, we use an exponential
martingale and, for the lower bound, we perturb the dynamics to turn typical a trajectory.

5.1 Large deviations upper bound

We first prove the upper bound for compact sets. For that, we use an exponential martingale as
well as the superexponential replacement lemma (Lemma 3.3). To extend the result to closed sets,
we prove exponential tightness of the process (Proposition 5.1).

5.1.1 TUpper bound for closed compact sets
For G € C'([0,T]) consider, for ¢ € [0,T], F(t,n;) = N(z',G;) = Nin (7}') G; and

t
M,(G) = exp {F(t, n) — F(0,m0) — / e Flem) (g, + L)eF(S*ns)ds} )
0

Then (My(G))o<t<T is an exponential martingale of mean 1 with respect to the natural filtration
and a computation yields:

M(6) = exp {V (0 () 61— 1 () Go - [ 01 () s
t (5.1)
[ X re-n@)e® - )+ (- rn@e S - 1) ds

ze{l,N—1}

Fix mo € (0,1) and consider a sequence of configurations (n™¥)y>1 such that m(7™ (n™))n>1
converges to mg. For § > 0, introduce the following event:

T
S(? = {(Us)ogng € DgN; ‘ /0 Z [Ti(l - ns('r))(eGS -+ (1- Ta:)ns(x)(e_cs - 1)] ds

ze{l,N—1}
T
7/0 [29(1 = () (% — 1) + 2m(xl) (1L~ 7) (e~ —1)]ds| < 5}
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Let F be a closed subset of D[TM]. Introduce

Hongs = {a € D 1), la(0) = mo| < 3}
Using inequality (3.7), we have

=— 1 = .
lim Nlog ]P’(;nN [(m (TI'tN

N—o0

—_— 1 ~ ~ v 1 T c
< max ( ngnoo Nlog Ps x (M (7)) € FOHumgs) N (7] € Sg;)] , A}gnoo Nlog Ps n LARS (SE) ]> ,

))OStST 6 ‘Fﬂ H77L0,§:|

where, from now on, we forget the subscript 0 < ¢ < T in (ﬁz (ﬂ,{v))0<t<T and (7]¥)o<i<7 in order
to lighten the notation. By Lemma 3.3, the second limit is —oco. Now, writing

EDénN [(m(th) € }-ﬂHmOﬁ) N (WtN € S?)} = E%N []l(m(n{\’)e}‘m-tmo,g)m(wfvesg)Mig(Mjg)_l} )

using the fact that MIQ is a martingale with mean 1 and upper bounding (qu )~! yields that this
is less than

T
sup exp {—N (ﬁz(ﬂ'j]Y)GT —m(rd )Gy — / RERTICARE:
) 0

meSFNm-1(F

T
— / [27(1 — T?L(Trév)) (eGS — 1) + 21%(77?’)(1 —7) (67GS — 1)}d8> } exp(NJ)

0

(5.3)

where we used the definition of the event S§'. Therefore, for any G € C1([0,T7),

F T ]- T ~ N
s B [0

))Ogth € fﬂ'HmO,g}

T
<—  inf {aTGT — ayGo — / 0.Gaqds
a€EFNHmg,s 0

- /OT [27(1 = as) (eGS —1) +2a,(1 - 'y)(e_GS - 1)]ds} +6

< — inf 0.
S el Jala+

Now, as (7" (n™V))N>1 converges to my,

=— 1 = N
J\;gnooﬁlog IF’(;”N [(m (7rt

))ogth €Fn /ano,5:| =%

so we are left with

T 1 0 ~ N .
8 By [0 s € 7] < -, it St

and taking 6 — 0,

v 1 ~ -~ 3
ngnooﬁlog Ps x [(m (ﬂfv))0<t<T € .7:} < — inf Jg(a),



where F,,,, is the set of elements of F with initial data mg. Optimizing this inequality over G yields

— 1, - N
i v log B [

< — ' )
))ogth € ‘7:} = Gecsllg%?),:r]) aelganJT,G (a) (5.5)

If F is a compact subset of DTM, so is F,,, and one can exchange the supremum and infimum.
Indeed, at any fixed G € C1([0,T]), a — Jg(a) is a linear and continuous function so one can apply
Varadhan’s argument (as done in [18]). In that case we get

T ]- o ~ N
s B [0

))ogth € }-} < _aeigfno It (a) = —alg; It (a|mo) . (5.6)

5.1.2 Upper bound for closed sets

In the previous subsection, we have established the large deviations upper bound for compact sets.
To extend the result to closed sets we use the standard method presented in [18], Chapter 10, and
based on the so called exponential tightness of the process, stated in the following Proposition.

Proposition 5.1. For every ¢ € N, there exists a compact set Ky € D[TO 1] such that

1 - R ‘
lim ¥ log Ps [(m(ﬂ-tN))ogth € Kﬂ < L. (5.7)

N—o00
To build a sequence of compact sets satisfying Proposition 5.1, one proves the following estimate:

Lemma 5.2. Fore,d > 0, introduce the set

Cse ={ac D[q(;)l}, sup |a; —as| < e}
s<t<s+d

For any ¢ > 0,
o= 1 5 ~
tm Fm - log By [(r) ¢ Cse] = —oc. (5.8)
We refer to [18], or [16] for precise details on how to recover the large deviations upper bound
for closed sets from Proposition 5.1, how to derive Proposition 5.1 from Lemma 5.2 and for a proof
of Lemma 5.2.

5.2 Large deviations lower bound

To prove the lower bound in Theorem 2.8, we follow the usual strategy which consists in finding a
perturbation of the process under which a trajectory satisfying some regularity assumptions becomes
typical. The large deviation functional then appears as the entropy of the measure induced by the
perturbed process, relatively to the one induced by the initial process. To extend this to any
trajectory, proceeding as in [6], we use an Ip-density argument.
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5.2.1 Hydrodynamic limit of a perturbation of the process

Given G € C([0,T7), consider the following generator:

(LGN = Y [eG“)rm(l —n(@)) + e “On(a) (1 —ro)| (F(n") = F(n)) - (5.9)

ze{1,N—1}

We will write G; instead of G(t). Denote by {7, ¢ € [0,7]} the Markov process with generator
NLy, where B
Ly =N>Lno+ LS,

. =G o . _
Given py a measure on {)y, denote by I, ~ the probability measure on DgN induced by (72)¢>0
=G . . . . =G .
when 7, ~ un, and E,  its associated expectation. In particular, for nN € Qn, Ps 18 the measure
n

induced starting from 7. Denote by 7V the empirical measure associated to 7 and m(7) its
total mass.

Theorem 5.3. (Hydrodynamic limit for the total mass of the perturbed process). Fiz Ty € [0,1]
and consider a sequence of measures (un)n>1 on Qn associated to the mass Tg. Then, for any
t €10,7] and any & > 0,
. =G ~ __
Jim B [ ‘m(wN) - m(t)’ > 5} =0,

where m : [0, T] — [0, 1] is the unique solution of

aym(m)(t) = 2v(1 — () (t)) e — 2(1 — y)m(m)(t)e” %

_ . (5.10)

m(0) = M.

The proof of Theorem 5.3 follows the same lines as that of Theorem 3.1. Indeed, start by writing

the martingale associated to m (")

MY = w(rl) — () - N3 / Laomi(x¥)ds - N / £ () )ds
: (5.11)
— (nl) — () - / S [Cra(l =7y (@)) — ST (@) (1 = )] d.

ze{l,N—1}

. . C . = . =G
Using the quadratic variation of M iv one proves tightness of the sequence of measures IP,, . Then,
one proves the replacement lemma: given g € C([0,7]), for any ¢t € [0,7] and 6 > 0, for any
ze{l,N -1},

N@oo %log ﬁiN [ ‘/Otg(s)(ns(x) - ﬁz(wév))ds‘ > (5] = —00. (5.12)

From this, one proves that a limit point must lie on a solution of (5.10). Uniqueness of the solution
of (5.10) is immediate.
For the proof of (5.12), use that there is a uniform constant Cy such that

(LY N oy < Co.

To prove that, proceed as in the proof of (ii) in Lemma 3.4 and use that the transition rates of the
dynamics are bounded in N. Then, to recover (5.12), proceed as in the proof of Lemma 3.3 using
this estimate.
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5.2.2 Proof of the lower bound

Fix mg in [0, 1] and consider a sequence (n™V)y>1 such that m(7™N (n™))n>1 converges to mg. We
wish to prove that for any open subset O of D[E 1)

. 1 = . :
lim —=logPs [m(r™) e 0] > — 12(%] (almyg) .

N—o0 a

Consider a profile a € O NII% such that It (almg) < co. For € > 0 denote by Ee(a) the ball of
radius € and centered in a for the Skorohod distance. Consider H € C!([0,T]) such that a and H
are related by (4.3). As O is open, there is £ > 0 such that B.(a) C O, so

dP
~ N ~ N ~ —H 6N
IP)%N [m(ﬂ'N) S O] > P(an |:m(7TN) S Ba(a) = EénN @Tlfﬁ(ﬂ]\f)éés(a)
§
) - (5.13)
dP
—H 4 N ~ —H . ~
=E, de;N (7)€ B.(a) | Py , [(x") € B.(a)]
5"71\7 .

The Radon-Nikodym derivative in the expectation is given by:

T
(Mp(H)) ™" = exp {N (ﬁw(wN)HT — mo(r™N)Hy — /O OsHyms (™) ds

’ (5.14)
- [ Y w0+ 0 e - 1] ds
0 ze{1,N-1}
For a justification of that, see for instance [18], Appendix 1. Therefore,
1 .
N log Ps, [(n) € O]
(5.15)

1
N
By the hydrodynamic limit of the perturbed process (Theorem 5.3), the last term goes to 0 when
N — oo. Using Jensen’s inequality in the conditional expectation, the replacement lemma 3.3 and

the martingale computations in Subsection 5.1.1, we get that the right hand side is bounded below
by —Jrp. i (a) = —Ir (a). Therefore,

1 —H,e ~ = = ~ =
> Nlog IE?:N [MT(H)_llm(ﬂN) € B.(a)| + —log IP?;N [m(ﬂN) € B.(a)] .

lim %loglﬁ’gw [m(r") € O] > —I(a) Ya € ONII.

N—oc0

Optimize this in a € O NIIZ and the lower bound follows by Ir - density of 112 (see Lemma 4.10).
Again, we refer to [18], Chapter 10 for more details.

6 Static large deviations

In this section, we prove Theorem 2.9, that is, that the quasi potential V is the large deviations
functional for the total mass under the stationary profile. First we prove the lower bound, then
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the upper bound. In both cases we make use of the dynamic large deviations principle (Theorem
2.8). In the lower bound we use the hydrostatic limit for the total mass (Theorem 3.7) and for the
upper bound, inspired by [17], [7] and [14], we use a Markov chain representation of the invariant
measure. For § > 0, denote by

Bs ={me M, |m(r) —~| < d}. (6.1)

6.1 Proof of the lower bound

Fix an open set ¢ in [0,1]. By definition of V, it is enough to prove that for any m € &, for any
T > 0 and for any a € C([0,T]) such that a(0) =~ and a(T) = m,

1
lim —logul} [(r") € 0] = ~Ir(aly).

N —oc0

Fix @ € C([0,T]) such that a(0) = v and a(T) = m. Recall (see Remark 3.8) that there is a

sequence (ex)n>1 4 0 such that plY, (B., ) converges to 1. Consider such a sequence (ex)y>1. By
stationarity of uY,

where we used that for N large enough, pl) (B.,) > 1. Now, since (7V)~! (B.,) is finite, the
infimum above is achieved for a certain n%v € (7)1 (B., ), so

. 1 N . 1 ~ ~
lim —log ] [m(x") € 6] > lim —log Bs  [i(n}) € 0]

N —oc0 N —oc0

I
> lim Nlog Ps, v [ (7 )iepo,r) € Or)

N—o00

where Op = { a € D[T0,1]7 a(T) € ﬁ} is an open set because & is open. By the dynamic large
deviations principle and since m(7™ (n")) converges to 7,

. 1 ~ . . 5
Jim 7 log Ps [ (7 )ecto.m) € Or) 2 = it Tr(vhy) 2 ~Ir(@ly).

6.2 Proof of the upper bound

Consider .# a closed subset of [0, 1]. If v € .Z, infij(m) = V(v) = 0 and the upper bound follows.
me

Now, let us deal with the case where v ¢ % . There is a § > 0 such that [y — 36,7+ 3] N.F = (.
As mentioned above, the idea is to use a representation of the invariant measure p2; in terms of an
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invariant measure for an irreducible dynamics defined on a subset of Q, as done in [17], [7] and
[14]. The subset considered is included in the set of configurations 7 such that

[m(r™ () —~| <6,

that is, the configurations whose associated empirical measure is in By, defined in (6.1).
Define the closed set
Rs = {r € M, 25 < |i(r) — | < 36).

For any integer N and any subset A of M, let AN = (71V)~1(A) € Qu, and denote by Ty~ :
D(R*,R) — Rt the entry time in AN of 7V, that is,
Tan = inf{t >0, n)¥ € AN

We also denote by § = m~1(.#) € M, which is closed because m is continuous and .% is closed.
Define 8B§V as the set of configurations n € Bév such that there is a finite sequence (1*)1<i<k such
that 7V € Rév, nk =1 and

(i) n is obtained from 1*~! by a move which is allowed by the dynamics.
(ii) for any 1 <i <k, n' ¢ BY.

Define
m =inf{t >0, I3s<t, n, € RY and 1, € OB }.

Lemma 6.1. The sequence (1, )k>1, where Ty, is obtained by iterating 1, is an irreducible Markov
chain.

Proof. Consider n,& € OBY and (n')1<i<x a path connecting n° € RY to n. By irreducibility of
the original dynamics, there is a sequence (£")o<;<¢ connecting £° = ¢ to £ = 7°. Then, consider
the sequence of configurations 20 = €9, ... 26 = ¢6 =0 24+ =l . 2tF = 9% =15 connecting £ to
n. From the path z we can extract a sequence 2 = ¢, ..., 2P = 5 in 6B§V, such that

Pgi—l [’I]Tl = 22] > 0.
Indeed, consider jo = 0 and for i > 1, let

J2i—1 = min {j} and j2i:,>rnin {7}

J>J2i—2 J>J2i-1
=i erly zieoBl
The sequence 3* = 2%/ satisfies the assumptions. O

Since dBY is finite, the irreducible Markov chain thus defined has a unique invariant measure
that we denote by vy. Following [17], [7] and [14], the stationary measure pY, can be written as
follows: for every subset A of Qp,

1 - 1
pl(A) = o / s, ( / ]lnSeAds> dvw (1) (6.2)
~ Josy 0
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with Cy = faBé\] ]E(;n (11) dvn (n). Therefore,

o 1 - m
pas(m~H(F)) = Cn /BBN Es, (/0 lnse(ﬂw)_l(ﬁ—l(g))ds) dvn(n)
)

1 ~ i
< — E 1 i1 and
< gy, ([ Bucenrsmnn) €3)

1 ~ ~
< —— sup Ps, [y <71] sup Es, [7],
N neaBN nesN

where the last inequality results from the strong Markov property.

For N large, any trajectory in D(RT, Qy) starting from FV has to perform at least one jump
before reaching BY, because [y — 36,7 + 36] N .F = 0. As the jump rates of the dynamics in
the bulk are of order N2 and those for the dynamics at the boundary are of order N, there is
a constant ¢ > 0 depending on « and /8 such that Cy > ﬁ If the mesh size 1/N of [0,1] is
small enough, that is N large enough, by continuity of m, any trajectory in D(R™,Qy) starting
in 8Bév satisfies TRY < TgN. That means that when N is large enough, a flip in the configuration
cannot lead directly from 8B§V to §V without passing through Rév . For that same reason, we also
have that for N large enough, any trajectory starting in § satisfies 7, = TRN almost surely. The
second supremum in (6.3) is therefore bounded by sup, ¢z~ Egn [TBM and using the strong Markov
property, the first supremum satisfies, for N large enough:

sup Ps, [rzv <71 = sup Ej, [E,,TRN []lTsN <‘r1} 1y <T:€N]
nedBY nedBY 5 o

< sup Py, [rgv < 71] = sup Ps, [ngv < TB(zsv} :
neRrY neRY

We are left with

uﬁ(ﬁz_l(ﬁ)) < eN? sup I@’gn [ngv < TBév} sup ngn |:TB(1§V:| .
neryY negN

Now, to prove the upper bound, it is enough to prove the following result:

Lemma 6.2. (i) For every 6 >0,

1 -
lim —log sup Es, [TBN] <0. (6.4)
N—oo neFN s

(i) For every e > 0, there exists § > 0 such that

— 1 ~ .
T log s Ps, {Tg,v < TBéV} < — inf V(m)+e. (6.5)

For that, use the following result proved later on.

Lemma 6.3. For every § > 0, there is Ty, Cy, Ng > 0 such that for any N > Ny and for any
integer k > 0,

sup If”(;n |:7'BN > kTO} < exp (—kCoN). (6.6)
neQN g

33



Proof. (Lemma 6.2)

(i)

For 6 > 0 and Ty, Cy, Ny as in the statement of Lemma 6.3, for every N > Ny and every
n S QNa

~ TN
E‘SU I:TBzJSV:| = TOEén |:B‘S:| < TOZ sup P(; |:TBN > kT0:|

TO k=0 neQN
<1 Ze kCoN) < T
0 Xp 0 e*CON7
therefore,
— 1 TO
lim —log sup E5 {TBéV} < ngnoo Nlog T =GN = 0.

N—oc0 negnN

Fix e > 0 and pick § > 0, that will be specified according to ¢ later on. Consider Ty, Cy > 0 as
in Lemma 6.3. Since in;V(m) < 00, there is an integer k£ > 0 such that —kCy < — iangV(m)
mes me
so taking Ts = kT, we get, by Lemma 6.3,
1 .
lim Nlog sup Ps, [ Tpy > T(;} < — inf V(m). (6.7)

N—oo neQN meF

Now write for n € ng\',

1@5,, [Tgw < TBév} = 1@5" [(Tgw < TBéV) N (TBéV < Ts)] +Iﬁ’5" |:(TSN < TBéV) n (TB(JS\I > T[;)}
< ]fbé,, [r3n < T5]+ ]fbgn [Tngf > Tg} .

. — L )
Using that A}gnoo ~ log(an + by) < max (ngnoo ~ logay, hmOO ~ log bN) and (6.7), we are
left with

1 -
Tm 1 P { } < — inf Tm -1 P T
i ognset;pév 5, |TgN < TN maX< Jnf V(m), lim ognilg)]v 5, [Ten < 5}>

and so it is enough to show that

lim —1 P <Ts5]<—inf V .
W 108 b B [ < Tol < = JEVOm) +e

As RY is finite, there is a configuration n?V € RY such that

sup ]pgn [TSN <Ts5] = ]TD,;nN [T{S:N < Ts] < ]fD(ST]N [T/T\l(ﬂ'N) S 95] ,
neRY

where %5 is the closed set of elements in D[o 1] such that for a in that set, there is ¢ € [0, T}]
such that a(t) or a(t—) is in .%. By compactness of M, 7™V (nV) contains a subsequence which
converges to an element ps in My. The continuity of the map m ensures that m(ps) € Rs.
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Along that converging subsequence, using the dynamical large deviation principle for the total
mass, one has:

T 1 I ~ N ar . ~
Aim - logPs [m(r™) € F5] < *alenéé Is (alm(ps)) -

Finally, we show that there is a § > 0, such that

Jnf Ir, (alin(ps)) 2 inf V(m) —e.

Ty
k

[0.1] such that

Assume that this is not true so that for any & > 0, there is a* € ﬁ% cD

Ir, (ak|fﬁ(p%)) < inf V(m) .
Then, for any k > 0, there is 0 < Tj < T such that a*(T}) € F or a*(T},—) € F. Without
loss of generality, we assume that a*(T}) € .Z. We have

. k _ . ~k
inf V(m) < V (a"(T})) = Juf o Ir(ah) < T (@) (6.8)
w(0)=y, a(T)=a®(T})

where a* is defined on [0, 7} + 1] by

(1—1t)y+tm(ps), if t €[0,1]

1
k
ab(t—1), ifte1,T) +1].

Then, by (4.5),

Iy 1 (@) = L (1= t)y + tilpyw)ly) + LI (ak|ﬁl(p%))

<1y ((Mlpy) =7) th) + inf Vim) -,

&

(6.10)

where we used that T}, < Ty, s0 Ity (ak|ﬁz(p%)> <Ir, (aﬂﬁz(p%)) .
3
By Lemma 4.11, for k£ > 0 large enough, Iy ((m(p%) — 'y) t|’y) < g, so we are left with

. < k ! 3 — = i
V) SV (6 (1) < e e VOm) —e = il V(m)

which is a contradiction.

To prove Lemma 6.3, we use the following

Lemma 6.4. For every § > 0, there is a T > 0 such that

inf {IT(a), a€ Dﬁ;,l] and a(T) ¢]y — 0,7+ (5[} > 0.
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Proof. Suppose that the result is not true and consider § > 0 such that for any T" > 0 igf Ir(a) =
a€Ds T

0, where
Dsr = {a € D[j(;l] and a(T) ¢]y — 0,7+ 5[} .

For T > 0 consider (aT"*);>0 a sequence in Dsr such that I(a*¥) — 0. Recall that by Lemma
4.2 and Remark 4.3, the level sets are compact for the uniform convergence topology so there is
aT € C([0,T]) a limit of a strong converging subsequence of (a7**);>0 and, by lower semi-continuity
of I, Ir(a’) = 0. By Corollary 4.5, a® is therefore a strong solution of d;a = —2(a — 7) and
a®(T) L The strong convergence of a’"* to a also implies that |a”(T) — ~| > & which yields

a contradiction when T is large enough. O

Proof. (Lemma 6.3) Fix a § > 0. To prove the result, it is enough to show that there is Ty, Cy and
an Ny > 0 such that for every N > Ny,

sup IFD(;TI |:TBN > TO} < exp(—CyN).
neEQN °

Indeed, using induction and the strong Markov property, one then gets the desired result. Let us
show that there is Ty, Cy > 0 such that

1 .
lim —log sup Ps, [TBN > T0:| < —Co.
N—oo neQN s

Consider nV € Qu such that

sup ED% [TB(JSV > To} :I@%N [TBg\’ > To} .
neQN

We have, for Ty < T,
I@’%N [TBg\’ > To} < ]f”énN {TBg\f > To}
7 N
< ]P)(;nN {m(ﬂ' ) S D5,T0:| .

By compactness of M and the fact that each configuration in Q5 has at most one particle per site,
7V (nN) contains a subsequence converging to some p in My. By continuity of 7 and the fact that
D; 7, is closed, using the dynamical large deviations principle we get, up to some extraction,

BT . N P
A}gnoo Nlogﬂ”gnN |:TB§V > To} = J\;gnoo Nlog]P)(an m(r) € D&TJ

. (6.11)
< — . .
< - inf Iz (alp)

We then conclude thanks to Lemma 6.4, by taking Ty large enough. O
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A Proof of (4.22)

Let us compute Jp, g(a*(Ty —.)):

Jr, g0 (Th —.)) =mH(Th) —a*(Th)H(0) — /0 as0:H (s)ds — ; Ap(a)(s)ds.

On the one hand,

e B T 9(a(s) — ) B B dsa, _ 3 T
/0 asﬁsH(s)dS—/o T—al) ds-/o ds = —[log (1 —a(s))]," -

On the other hand,

and

B als) o)y Ly [ 2
27/0 w(s) d _27/0 27(1—@(3))(1 =~ [log(1 ()" -

We are left with
Jur, (0 (Ty = ) = mH(Ty) — u*(T1) H(0) + 2 [log (1 — u(s))]"
T p(s)

E a(s) n
+ 27/0 @u(s)ds + 2y - 2] /0 Eu(s)ds +2(1— 27)/0 u(s)ds.

2y — 1]/O 1 zéj;a(s)ds = 27/0 1 a(s)ds — 2411,

SO T w(s) Ty T
2[y—1] / a(s)ds +2(1 —7) / a(s)ds = 2[1 — 7] / a(s)ds — 2vT1.
o u(s) 0 0
We also have: 2(a(s) _ o [1—7] lajé(gi) = 2‘11(79()1;3 —2[1 —~]a(s) + 27. Therefore,

w(s)

TIU(S) — o ~als T B Tlas .
”Aimﬂ@““g“ () ﬂlﬂA (s)ds + 21T,

Collecting (A.1), (A.2) and (A.3) we are left with
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