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Abstract

We derive a formula for the quasi-potential of one-dimensional symmetric exclusion process
in weak contact with reservoirs. The interaction with the boundary is so weak that, in the
diffusive scale, the density profile evolves as the one of the exclusion process with reflecting
boundary conditions. In order to observe an evolution of the total mass, the process has to be
observed in a longer time-scale, in which the density profile becomes immediately constant.
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tuation theory
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1 Introduction

The investigation of the nonequilibrium stationary states of interacting particle systems in contact
with reservoirs has attracted a lot of attention in the last years [3, 12, 5, 22, 11, 8, 10].

In this article, we examine the one-dimensional symmetric exclusion process in weak contact
with reservoirs. The interaction of the system with the reservoirs is so weak that the hydrodynamic
equation describing the macroscopic time evolution of the empirical density is the heat equation
with Neumann boundary conditions, the equation which represents the density evolution of the
exclusion process with reflecting boundary conditions.

The total mass changes in a much longer macroscopic time-scale. In this very long time-scale,
the empirical density immediately reaches the stationary profile of the heat equation with Neumann
boundary conditions, that is, a constant profile with a certain time-dependent value.

There are therefore two important time-scales. In the first one, the density profile evolves
according to the heat equation with Neumann boundary conditions and converges, as time increases,
to a constant density profile without modifying its total mass. In the second much longer time-scale,
the constant density profile evolves smoothly, modifying the total mass according to an ODE, until
it reaches the value determined by the interactions of the system with the boundary.

∗ Corresponding author: sonia.velasco@parisdescartes.fr
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This picture extends to the dynamical large deviations. Denote byK[0,T ](u) the cost of observing
a trajectory u(t) in the time interval [0, T ]. For each t, u(t) is a density profile. Assume that the
total mass of u(t) is constant in time (

∫
K
u(t, x)dx = c). As the interaction with the boundary is

small, this cost coincides with that of an exclusion process with reflection at the boundary [15].
Denote the later cost by KNeu

[0,T ](u), so that K[0,T ](u) = KNeu
[0,T ](u).

To consider the large deviations of the total mass, observe the system in the longer time-scale
at which the total mass evolves. Fix a trajectory a : [0, T ′] → [0,M ], where M represents the
length (or volume) of the interval where particles are interacting, and denote by I[0,T ′](a) the cost
of observing a trajectory u(t), 0 ≤ t ≤ T ′, whose total mass at time t is equal to a(t). Theorem 2.8
below states the dynamical large deviations principle for the total mass and provides a formula for
I[0,T ′](a).

We turn to the quasi-potential. The existence of two time-scales creates an obstruction in its
derivation. Denote by ρ̄m, 0 ≤ m ≤ M , the constant density profile with total mass equal to
m. Let V Neu

m (·) be the quasi-potential associated to the exclusion dynamics with reflection at the
boundary: for a density profile ρ whose total mass is equal to m, V Neu

m (ρ) = infT>0 infuK
Neu
[0,T ](u),

where the second infimum is carried over all trajectories u with time-independent total mass and
such that u(0) = ρ̄m, u(T ) = ρ.

Fix a density profile ρ whose total mass is equal to m, and let uNeu
ρ be the relaxation trajec-

tory, that is, the trajectory which describes the typical evolution of the density profile when the
initial condition is ρ. As this evolution corresponds to the solution of the heat equation with Neu-
mann boundary conditions, uNeu

ρ (t) → ρ̄m as t → ∞. Let uR,Neu
ρ be the time-reflected trajectory:

uR,Neu
ρ (t) = uNeu

ρ (−t). As the exclusion process with reflecting boundary conditions is reversible,

V Neu
m (ρ) = KNeu

(−∞,0](u
R,Neu
ρ ).

Since the dynamical large deviations rate functional of the exclusion process with weak interac-
tion at the boundary coincides with the one with reflection at the boundary, the quasi-potentials
also coincide. The infimum is therefore reached at the time-reversed relaxation trajectory: for any
density profile ρ with density m,

Vm(ρ) := inf
T>0

inf
u
K[0,T ](u) = inf

T>0
inf
u
KNeu

[0,T ](u) = KNeu
(−∞,0](u

R,Neu
ρ ) = V Neu

m (ρ) .

Moreover, as the stationary states of the exclusion process with reflecting boundary conditions
are the uniform measures with fixed total number of particles,

Vm(ρ) := V Neu
m (ρ) =

∫
K

{
ρ(x) log

ρ(x)

m
+ [1− ρ(x)] log

1− ρ(x)

1−m

}
dx

for any density profile ρ(·) whose total mass is equal to m.
The quasi-potential V (·) associated to the mass evolution, is given by V (m) := infT>0 infa IT (a),

where the second infimum is carried over all trajectories a : [0, T ] → [0,M ] such that a(0) = γ,
a(T ) = m. In this formula, γ stands for the typical mass under the stationary state, determined by
the weak interaction of the system with the boundary.

Fix a mass m and let am be the relaxation path of the total mass which starts from m and
converges to γ as t → ∞. Denote by aRm the time-reversed trajectory. In Lemma 2.7 and its proof
we show that

V (m) = I(−∞,0](a
R
m) = M

{
m log

m

γ
+ [1−m] log

1−m

1− γ

}
.
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Theorem 2.9 asserts that V is indeed the large deviations rate function of the total mass under the
stationary state.

We conclude this section with heuristics to derive the quasi-potential for the symmetric exclusion
process with weak interaction at the boundary. Fix a density profile ρ(·) with mass m. As time
evolves, it relaxes to a constant density equal to m. In a longer time-scale the total mass relaxes
to γ. Hence, reasoning backwards, it is expected that to fluctuate to ρ, the system first changes its
mass from γ to m following the relaxation path reflected in time. Then, its density profile evolves
from one which is constant in space and has total mass equal to m, to ρ, following the relaxation
path reflected in time. The total cost of this trajectory is given by

I(−∞,0](a
R
m) + KNeu

(−∞,0](u
R,Neu
ρ ) = V (m) + Vm(ρ) .

By the previous identities,

W (ρ) := V (m) + Vm(ρ) =

∫
K

{
ρ(x) log

ρ(x)

γ
+ [1− ρ(x)] log

1− ρ(x)

1− γ

}
dx ,

is the quasi-potential for the symmetric exclusion process with weak interaction at the boundary.
To prove that W is indeed the quasi-potential, one should consider a time-inhomogeneous dy-

namics in which the process evolves diffusively in a time interval [0, T ], and properly time-rescaled,
so as to observe an evolution of the total mass in a time interval [T, T + S].

It is also possible to use the matrix representation of the stationary state to derive the above
equation for the quasi-potential [1]. It coincides with the quasi-potential for the symmetric exclusion
process with Robin boundary conditions as the interaction with the boundary vanishes [11, 8, 9].

2 Notation and results

Denote the state space by ΩN := {0, 1}ΣN , N ≥ 1, where ΣN = {1, ..., N−1}, and by η its element,
so that for any x ∈ ΣN , η(x) = 1 if site x is occupied and η(x) = 0 if it is empty.

Consider the infinitesimal generator LN = N2LN,0 + LN,b defined as follows. For any function
f : ΩN → R,

(LN,0f)(η) =

N−2∑
x=1

(
f(ηx,x+1)− f(η)

)
,

(LN,bf)(η) =
∑

x∈{1,N−1}

[rx(1− η(x)) + (1− rx)η(x)] (f(η
x)− f(η))

with r1 = α, rN−1 = β, where 0 < α, β < 1. In this formula, for x ∈ {1, ..., N−2}, the configuration
ηx,x+1 is obtained from η by exchanging the occupation variables η(x) and η(x+ 1), i.e.,

ηx,x+1(y) =

 η(x+ 1), if y = x
η(x), if y = x+ 1
η(y), otherwise,

(2.1)

and for x ∈ {1, N − 1}, the configuration ηx is obtained from η by flipping the occupation variable
η(x), i.e,

ηx(y) =

{
1− η(y), if y = x
η(y), otherwise.

(2.2)

3



Hydrodynamical limit and large deviations

Here, we recall the results established in [2], resp. [15] regarding the hydrodynamic limit, resp.
large deviations for the process with generator LN known as the SSEP with slow boundaries. For
that, let us first introduce some notation. We fix a time horizon T > 0.

Given a metric space A, DT
A denotes the space of trajectories on [0, T ] which are right continuous

with left limits and with values in A. Given a measure µN on ΩN , PµN
is the probability measure

induced on DT
ΩN

by {ηt, t ∈ [0, T ]} when η0 has law µN . Also, denote by EµN
the expectation with

respect to PµN
. Introduce

M := {µ is a positive measure on [0, 1] such that µ([0, 1]) ≤ 1},

which we equip with the weak topology. Denote by M0 ⊂ M the subset of elements which are
absolutely continuous with respect to the Lebesgue measure and with density between zero and
one.

Introduce the empirical measure associated to an element η ∈ ΩN as the the element of M
defined by

πN (η,du) = πN (du) :=
1

N

N−1∑
x=1

η(x)δ x
N
(du)

where δ x
N

is the Dirac measure at point x/N . The process (πN
t )0≤t≤T of empirical measures

associated to (ηt)0≤t≤T is a Markov process inducing a measure on DT
M.

For a continuous function F : [0, 1] → R, write

⟨πN , F ⟩ = 1

N

N−1∑
x=1

η(x)F (x/N)

and for F,G ∈ L2([0, 1]),

⟨F,G⟩ =
∫ 1

0

F (x)G(x)dx.

Denote by Ci,j = Ci,j([0, T ]× [0, 1]) the set of functions that are of class Ci in time and of class
Cj in space with i, j possibly infinite, and Ci([0, T ]) resp. Ci([0, 1]) the functions that are Ci in
time, resp. space. To lighten notation, given G : [0, T ]× [0, 1] → R, we will sometimes write Gt(x)
instead of G(t, x) and ∂tG(t, x) denotes its partial time derivative.

We say that a sequence of probability measures (µN )N≥1 on ΩN is associated to the profile
ρ0 : [0, 1] → [0, 1] if for any δ > 0 and any continuous function G,

lim
N→∞

µN

[∣∣⟨πN , G⟩ − ⟨ρ0, G⟩
∣∣ > δ

]
= 0.

The following results established in [2] and [15] hold:

Theorem 2.1. (Hydrodynamic limit, c.f. [2]) Consider a sequence (µN )N≥1 associated to a measur-
able profile ρ0 : [0, 1] → [0, 1]. Then, for every t ≥ 0, δ > 0 and continuous function f : [0, 1] → R,

lim
N→∞

PµN

[ ∣∣⟨πN
t , f⟩ − ⟨ρt, f⟩ > δ

∣∣ ] = 0,
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where ρ(t, .) is the unique weak solution of the heat equation with Neumann boundary conditions ∂tρ(t, x) = ∂2xρ(t, x), for t > 0, x ∈ (0, 1),
∂xρ(t, 0) = ∂xρ(t, 1) = 0, for t > 0,
ρ(0, x) = ρ0(x), for x ∈ [0, 1].

(2.3)

We write L2(0, 1) the space of L2 functions defined on [0, 1] and denote by ∥.∥L2(0,1), the as-
sociated norm. Let H1(0, 1) be the subset of L2(0, 1) such that for any F ∈ H1(0, 1), there is
∂xF ∈ L2(0, 1) satisfying ⟨∂xF,G⟩ = −⟨F, ∂xG⟩, for any G ∈ C∞ with compact support in (0, 1).
For F ∈ H1(0, 1) define the norm

∥F∥H1 :=
(
∥F∥2L2 + ∥∂xF∥2L2

)1/2
.

Let L2([0, T ],H1) be the space of measurable functions F : [0, T ] → H1 such that

∥F∥2L2([0,T ],H1) :=

∫ T

0

∥Ft∥2H1dt <∞.

Define the energy functional E : DT
M → [0,∞], as in [15], by E(π) = sup

H
EH(π) with the supremum

taken over elements in C0,1 with compact support and where,

EH(π) =


∫ 1

0

∫ T

0
∂xH(t, x)ρ(t, x)dtdx− 2

∫ 1

0

∫ T

0
H2(t, x), if π ∈ DT

M0
and πt(dx) = ρt(x)dx

+∞ otherwise.

Introduce
F =

{
π ∈ DT

M, ⟨πt, 1⟩ = ⟨π0, 1⟩, ∀t ∈ [0, T ]
}
.

For H ∈ C1,2, define the linear functional J̃H(π) : DT
M → [0,∞] as

J̃H(π) =


⟨ρT , HT ⟩ − ⟨ρ0, H0⟩ −

∫ T

0
⟨ρs, ∂sHs⟩ds+

∫ T

0
⟨∂xρs, ∂xHs⟩ds

−
∫ T

0
⟨ρs(1− ρs), (∂xHs)

2⟩ds, if π ∈ F and E(π) <∞ with πt = ρt(x)dx,

+∞ otherwise.

The rate function ĨT : DT
M → [0,+∞] that appears in the large deviations principle proved in [15]

and recalled below (Theorem 2.2) is given by:

ĨT (π) = sup
H∈C1,2

J̃H(π).

Theorem 2.2. (Large deviations principle, c.f. [15]) Consider a sequence of deterministic config-
urations (ηN )N≥1 associated to a continuous profile ρ0 which is bounded away from 0 and 1. The
sequence of probability measures (PδηN

)N≥1 satisfies the following large deviations principle:

(i) (Upper bound) For any closed subset C of DT
M,

lim
N→∞

1

N
logPδηN

[C] ≤ − inf
π∈C

ĨT (π)

(ii) (Lower bound) For any open subset O of DT
M,

lim
N→∞

1

N
logPδηN

[O] ≥ − inf
π∈O

ĨT (π).

5



Main results

To observe an evolution of the total mass of the process (ηt)t≥0, time has to be accelerated by a
factor N , that is, by speeding-up the exclusion part by N3 and the boundary dynamics by N .

Fix one and for all a time horizon T > 0 and denote by {ζt, t ∈ [0, T ]} the Markov process with
generator

LN = N3LN,0 +NLN,b = NLN .

We will often refer to {ζt, t ∈ [0, T ]} as the accelerated process. Given a measure µN on ΩN , P̃µN

is the probability measure induced on DT
ΩN

by the speeded up process {ζt, t ∈ [0, T ]} when ζ0 has

law µN . Also, denote by ẼµN
the expectation with respect to P̃µN

.
For π ∈ M, introduce

m̂(π) = ⟨1, π⟩ = π([0, 1])

the total mass of π. Then, the process
(
m̂(πN (ζt, .)

)
0≤t≤T

, which we will denote by
(
m̂(πN

t )
)
0≤t≤T

defines a hidden Markov process with state space [0, 1] and induces a probability measure on DT
[0,1],

the space of trajectories defined on [0, T ] that are right continuous with left limits and taking their
values in [0, 1].

The results established in this paper are given in the following subsections.

Hydrodynamic limits

Tsunoda [22] proved a law of large numbers for the total mass m̂(πN
t ). An extra argument provides

the following law of large numbers for the density profile.

Theorem 2.3. (Hydrodynamic limit for the accelerated process). Fix a measurable profile ρ0 :
[0, 1] → [0, 1] and consider a sequence (µN )N≥1 associated to ρ0. For any t ∈ (0, T ], δ > 0 and
H ∈ C0([0, 1]),

lim
N→∞

P̃µN

[∣∣∣⟨πN
t , H⟩ −m(t)⟨1, H⟩

∣∣∣ > δ
]
= 0,

where m : [0, T ] → [0, 1] is the unique solution of{
∂tm = − 2 (m− γ)

m(0) =
∫ 1

0
ρ0(x)dx,

(2.4)

where γ := (α+ β)/2.

For N ≥ 1 fixed, both Markov processes (ηt)0≤t≤T and (ζt)0≤t≤T are irreducible with finite
state space and their generators are proportional. They therefore admit a unique same stationary
measure on ΩN that we denote by µN

ss.
Next result is due to Baldasso, Menezes, Neumann and Souza [2]. Tsunoda [22] provided an

alternative proof.

Theorem 2.4. (Law of large numbers for the invariant measures). For any H ∈ C0([0, 1]),

lim
N→∞

EµN
ss

[ ∣∣∣⟨πN , H⟩ − γ⟨1, H⟩
∣∣∣ ] = 0.
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Large deviations principles

We start by defining the rate function that will appear in the dynamical large deviations principle.

Definition 2.5. For T > 0 fixed and G ∈ C1([0, T ]), define JT,G : DT
[0,1] → R by

JT,G(a) =: aTGT − a0G0 −
∫ T

0

∂sGsasds−
∫ T

0

AG(a)(s)ds, (2.5)

where
AG(a) := 2γ(1− a)

(
eG − 1

)
+ 2
(
1− γ

)
a
(
e−G − 1

)
. (2.6)

The rate function is defined as follows.

Definition 2.6. Define IT (.) : DT
[0,1] → R∪{+∞} by IT

(
a
)
= sup

G∈C1([0,T ])

JT,G(u) and for m ∈ [0, 1],

IT
(
a|m

)
=

{
IT
(
a
)

if a(0) = m
+∞ otherwise.

We define V : [0, 1] → [0,+∞] the quasi potential for the rate function IT ( . |γ):

V (m) := inf
T>0

inf
a(.), a(T )=m

IT (a|γ) ,

where the infimum is taken over elements of C1([0, T ]).

Lemma 2.7. The quasi potential satisfies:

∀m ∈ [0, 1], V (m) = S(m),

where

S(m) := m log

(
m

γ

)
+ (1−m) log

(
1−m

1− γ

)
. (2.7)

We are now in position to state the dynamic and static large deviations principle.

Theorem 2.8. (Dynamical large deviations). Fix m0 ∈ (0, 1) an initial mass and consider a
sequence of configurations (ηN )N≥1 such that m̂(πN (ηN )) converges to m0. The sequence of prob-

ability measures P̃δηN
satisfies the following large deviations principle:

(i) For any closed subset F of DT
[0,1],

lim
N→∞

1

N
log P̃δηN

[(
m̂(πN

t )
)
0≤t≤T

∈ F
]
≤ − inf

a∈F
I(a|m0).

(ii) For any open subset O of DT
[0,1],

lim
N→∞

1

N
log P̃δηN

[(
m̂(πN

t )
)
0≤t≤T

∈ O
]
≥ − inf

a∈O
I(a|m0).

Theorem 2.9. (Static large deviations principle).
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(i) For any closed subset F of [0, 1],

lim
N→∞

1

N
logµN

ss

[
m̂(πN ) ∈ F

]
≤ − inf

m∈F
V (m). (2.8)

(ii) For any open subset O of [0, 1],

lim
N→∞

1

N
logµN

ss

[
m̂(πN ) ∈ O

]
≥ − inf

m∈O
V (m). (2.9)

We prove Theorem 2.3 in section 3, Theorem 2.8 in Section 5 and Theorem 2.9 in Section 7.

3 Hydrodynamic limits

Dynamical law of large numbers for the accelerated process

To prove Theorem 2.3, which is a pointwise hydrodynamic result, we first establish the hydrody-
namic limit of the total mass (Proposition 3.1). The latter is also stated pointwisely but we prove
that the convergence of the mass trajectory holds in law, which yields the pointwise convergence. For
that, we follow the standard steps. First we prove tightness of the sequence of probability measures
induced by the mass process (Lemma 3.2). Then, we perform a superexponential replacemment
lemma (Lemma 3.3) which will also be used for the proof of the large deviations principle. For that,
we use some Dirichlet estimates (Lemma 3.4).

Fix ρ ∈ (0, 1) and define

DN (f) =

∫
ζ

N−2∑
x=1

(√
f(ζx,x+1)−

√
f(ζ)

)2
dνNρ (ζ),

and

DN,b(f) =

∫
ζ

∑
x∈{1,N−1}

[rx(1− ζ(x)) + (1− rx)ζ(x)]
(√

f(ζx)−
√
f(ζ)

)2
dνNρ (ζ),

for f : ΩN → R. In this formula, νNρ represents the Bernoulli product measure on ΩN with density
ρ.

Fix a constant m0 ∈ [0, 1]. We say that a sequence of probability measures (µN )N≥1 on ΩN is
associated to the mass m0 if, for any δ > 0,

lim
N→∞

µN

[∣∣m̂(πN )−m0

∣∣ > δ
]
= 0.

Proposition 3.1. (Hydrodynamic limit for the total mass). Fix m0 ∈ [0, 1] and consider a sequence
of measures (µN )N≥1 on ΩN associated to the mass m0. Then, for any t ∈ [0, T ] and any δ > 0,

lim
N→∞

P̃µN

[ ∣∣∣m̂(πN
t )−m(t)

∣∣∣ > δ
]
= 0,

where m : [0, T ] → [0, 1] is the unique solution of (2.4) with m(0) = m0.
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Lemma 3.2. For any sequence of measures (µN )N≥1 on ΩN , the sequence of probability measures

(P̃µN
)N≥1 induced by m̂(πN

t ) when η0 ∼ µN , is tight for the Skorohod topology. Moreover, all limit
points are concentrated on continuous paths.

Proof. It is enough to show that for any ε > 0,

lim
δ→0

lim sup
N→∞

P̃µN

[
sup

|t−s|≤δ

|m̂(πN
t )− m̂(πN

s )| > ε

]
= 0. (3.1)

By Dynkin’s formula (see [18, Appendix 1]),

MN
t = m̂(πN

t )− m̂(πN
0 )−N3

∫ t

0

LN,0m̂(πN
s )ds−N

∫ t

0

LN,bm̂(πN
s )ds

is a martingale with respect to the natural filtration Ft := σ(ηs, s ≤ t). As the bulk dynamics is
conservative,

LN,0m̂(πN
s ) = 0.

Also, computations yield:

NLN,bm̂(πN
s ) = α− ζs(1) + β − ζs(N − 1),

so

MN
t = m̂(πN

t )− m̂(πN
0 )−

∫ t

0

(α+ β − ζs(1)− ζs(N − 1))ds.

Therefore, (3.1) holds if

lim
δ→0

lim sup
N→∞

ẼµN

[
sup

|t−s|≤δ

∣∣∣MN
t −MN

s

∣∣∣] = 0 (3.2)

and

lim
δ→0

lim sup
N→∞

ẼµN

[
sup

|t−s|≤δ

∣∣∣ ∫ t

s

(
α+ β − ζr(1)− ζr(N − 1)

)
dr
∣∣∣] = 0. (3.3)

Denote by ⟨MN
t ⟩ the quadratic variation of MN

t . By Doob’s inequality,

ẼµN

[
sup

|t−s|≤δ

∣∣∣MN
t −MN

s

∣∣∣] ≤ 2ẼµN

[
sup

0≤t≤T

∣∣∣MN
t

∣∣∣] ≤ 4ẼµN

[
⟨MN

T ⟩
]1/2

.

Dynkin’s formula and the fact that the bulk dynamics is conservative yields the following expression
for ⟨MN

t ⟩:

⟨MN
t ⟩ = N

∫ t

0

[
LN,bm̂(πN

s )2 − 2m̂(πN
s )LN,bm̂(πN

s )
]
ds

=
1

N

∫ t

0

∑
x∈{1,N−1}

[rxζs(x) + (1− rx)(1− ζs(x))] ds .
(3.4)

Hence, as ζs(x) is bounded, ⟨MN
t ⟩ −→

N→∞
0, as claimed in (3.2). To prove (3.3), simply note that for

0 ≤ s ≤ t, NLN,0m̂(πN
s ) = α+ β − ζs(1)− ζs(N − 1) is uniformly bounded.
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Lemma 3.3. (Superexponential Replacemment Lemma). Given g ∈ C([0, T ]), for any sequence of
probability measures µN on ΩN , t ∈ [0, T ], δ > 0 and x ∈ {1, N − 1},

lim
N→∞

1

N
log P̃µN

[ ∣∣∣ ∫ t

0

g(s)(ζs(x)− m̂(πN
s ))ds

∣∣∣ > δ

]
= −∞.

For the proof of that, we use the following :

Lemma 3.4. For any density f with respect to νNρ ,

(i) ⟨LN,0

√
f,

√
f⟩νN

ρ
= − 1

2DN (f)

(ii) ⟨LN,b

√
f,

√
f⟩νN

ρ
= − 1

2DN,b(f) + UN where (UN )N≥1 is a uniformly bounded sequence.

Proof.

(i) This point comes from the invariance of νNρ under the dynamics generated by LN,0 and a
change of variables.

(ii) Developing the term ⟨LN,b

√
f,

√
f⟩νN

ρ
and performing the change of variables ζ → ζx we get

that

⟨LN,b

√
f,
√
f⟩νN

ρ
= −1

2
DN,b(f)

+
1

2

∫ ∑
x∈{1,N−1}

[rxζ(x) + (1− rx)(1− ζ(x))] f(ζ)

(
ρ

1− ρ

)1−2ζ(x)

dνNρ (ζ).

Now, using that f is a density, that the jump rates are bounded and that ρ ∈ (0, 1), the result
follows.

Proof of Lemma 3.3. Fix ρ ∈ (0, 1) and x ∈ {1, N − 1} . For s ∈ [0, t] and g ∈ C([0, T ]), write
V g
s (ζ) = g(s)(ζs(x)− m̂(πN

s )). Using that
∣∣∣dµN

dνN
ρ

∣∣∣ ≤ eCN and Tchebychev’s inequality,

P̃µN

[ ∣∣∣ ∫ t

0

V g
s (ζ)ds

∣∣∣ > δ

]
≤ exp(−(cδ − C)N)× ẼνN

ρ

[
exp

(
cN
∣∣∣ ∫ t

0

V g
s (ζ)ds

∣∣∣)] , (3.5)

for any c > 0. Therefore,

1

N
log P̃µN

[ ∣∣∣ ∫ t

0

V g
s (ζ)ds

∣∣∣ > δ

]
≤ C − cδ +

1

N
log ẼνN

ρ

[
exp

(
cN
∣∣∣ ∫ t

0

V g
s (ζ)ds

∣∣∣)] . (3.6)

Let us deal with the last term. As e|x| ≤ ex + e−x, and

lim
N→∞

1

N
log(aN + bN ) ≤ max

(
lim

N→∞

1

N
log aN , lim

N→∞

1

N
log bN

)
, (3.7)

we bound that term without the absolute values.
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Let V N (ζ) = ζ(x)−⟨1, πN ⟩. By Feynman-Kac’s inequality, stated, for instance in [18, Appendix
1], Lemma 3.4 and the fact that DN,b is non negative,

ẼνN
ρ

[
exp

(
cN

∫ t

0

V g
s (ζ)ds

)]
≤ exp

(∫ t

0

sup
f

{∫
cNg(s)V N (ζ)f(ζ)dνNρ (ζ) +N3⟨LN,0

√
f,
√
f⟩+N⟨LN,b

√
f,
√
f⟩
}
ds

)

≤ exp

(∫ t

0

sup
f

{∫
cNg(s)V N (ζ)f(ζ)dνNρ (ζ)− N3

2
DN (f) +NUN

}
ds

)
,

(3.8)

where the supremum is carried over densities with respect to νNρ . Without loss of generality, suppose
x = N − 1. Then,∫

ζ

V N (ζ)f(ζ)dνNρ (ζ) =
1

N

N−1∑
y=1

∫
ζ

(ζ(N − 1)− ζ(y))f(ζ)dνNρ (ζ)

=
1

N

N−1∑
y=1

N−2∑
i=y

∫ (
ζ(i+ 1)− ζ(i)

)
f(ζ)dνNρ (ζ)

=
1

2N

N−1∑
y=1

N−2∑
i=y

∫ (
ζ(i+ 1)− ζ(i)

)(
f(ζ)− f(ζi,i+1)

)
dνNρ (ζ),

where we performed the change of variable ζ → ζi,i+1 in the last line. Now, write

f(ζ)− f(ζi,i+1) =
(√

f(ζ)−
√
f(ζi,i+1)

)(√
f(ζ) +

√
f(ζi,i+1)

)
.

By Young’s inequality and using the fact that ζ is bounded, the above is less than

B

4N

N−1∑
y=1

N−2∑
i=y

∫ (√
f(ζi,i+1)−

√
f(ζ)

)2
dνNρ (ζ) +

1

4NB

N−1∑
y=1

N−2∑
i=y

∫ (√
f(ζi,i+1) +

√
f(ζ)

)2
dνNρ (ζ)

≤ B

4N

N−1∑
y=1

DN (f) +
N

B
,

for any B > 0, where we used that f is a density. Taking the log of (3.8), dividing it by N and
using the above inequality yields

1

N
log ẼνN

ρ

[
exp

(
cN

∫ t

0

V g
s (ζ)ds

)]
≤
∫ t

0

sup
f

{c|g(s)|B
4

DN (f) +
cN

B
|g(s)| − N2

2
DN (f) + UN

}
ds

≤ T sup
f

{c∥g∥∞B
4

DN (f) +
cN

B
∥g∥∞ − N2

2
DN (f) + UN

}
≤ T

{c2∥g∥2∞
N

+ UN

}
,
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where to get the last inequality we took B = 2N2

c∥g∥∞
. As UN is uniformly bounded by a constant

C0, we are left with

lim
N→∞

1

N
log ẼνN

ρ

[
exp

(
cN

∫ t

0

V g
s (ζ)ds

)]
≤ TC0

and by (3.6),

lim
N→∞

1

N
log P̃νN

ρ

[ ∣∣∣ ∫ t

0

V g
s (ζ)ds

∣∣∣ > δ

]
≤ C − cδ + TC0.

Taking c→ +∞ yields the result.

Proof of Proposition 3.1. From (3.4), we have that

ẼµN

[
sup

0≤t≤T

∣∣∣MN
t

∣∣∣ ] −→
N→∞

0,

and using Lemma 3.3, for any ε > 0, for any t ∈ [0, T ]

P̃µN

[ ∣∣∣m̂(πN
t )− m̂(πN

0 )−
∫ t

0

2(γ − m̂(πN
s ))ds

∣∣∣ > ε

]
−→
N→∞

0.

Since all limit points of the sequence (P̃µN
)N≥1 are concentrated on continuous trajectories, by

PortManteau’s Lemma, for any limit point Q∗ of (P̃µN
)N≥1, for any ε > 0 and t ∈ [0, T ],

Q∗
[ ∣∣∣m̂(πt)− m̂(π0)−

∫ t

0

2(γ − m̂(πs))ds
∣∣∣ > ε

]
= 0. (3.9)

Taking ε→ 0, for any t ∈ [0, T ],

Q∗
[
m̂(πt)− m̂(π0) =

∫ t

0

2(γ − m̂(πs))ds

]
= 1. (3.10)

Taking a dense subset of times and using the right-continuity of the trajectories yields that

Q∗
[
∀t ∈ [0, T ] m̂(πt)− m̂(π0) =

∫ t

0

2(γ − m̂(πs))ds

]
= 1. (3.11)

If (µN )N≥1 is associated to a mass m0,

Q∗
[
∀t ∈ [0, T ] m̂(πt) = m0 +

∫ t

0

2(γ − m̂(πs))ds

]
= 1,

so Q∗ is the unique measure concentrated on δm(t) where m is the unique solution of (2.4) with
m(0) = m0. Convergence in law to a deterministic measure implies convergence in probability so
we proved Proposition 3.1. Note that m is explicitly given by

m(t) = γ + (m0 − γ) e−2t. (3.12)

This completes the proof of the proposition.
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Now, we move on to the proof of Theorem 2.3, the hydrodynamic limit of the empirical measure
associated to the accelerated process. The idea is to use the fact that the hydrodynamic limit of
the non accelerated process is the heat equation with Neumann boundary conditions (see Theorem
2.1) and that the solution of that equation converges in time to a flat profile given by the total mass
of the initial condition (Lemma 3.6). The accelerated process then only evolves according to the
hydrodynamic limit of the mass, stated in Proposition 3.1. This is the object of Proposition 3.5.

Proposition 3.5. Consider (µN )N≥1 a sequence of probability measures, fix a > 0 and H ∈
C0([0, 1]). There is a t0 > 0, depending on a and H such that

lim
N→∞

P̃µN

[ ∣∣∣⟨πN
t
N
, H⟩ − m̂(πN

0 )⟨1, H⟩
∣∣∣ > a

]
= 0, (3.13)

for any t ≥ t0.

To prove Proposition 3.5 we use the following Lemma for which a proof can be found for instance
in [13] or [20], Chapter 4.

Lemma 3.6. Consider a measurable profile ρ0 : [0, 1] → [0, 1] and let ρ be the solution in H1(0, 1)
of (2.3). Then, for any t ≥ 0,

∥ρ(t, .)−
∫ 1

0

ρ0(x)dx∥2L2 ≤ ∥ρ(0, .)−
∫ 1

0

ρ0(x)dx∥2L2e−2λ1t ≤ 2e−2λ1t,

where λ1 is the smallest non zero eigenvalue of the Laplacian associated to Neumann boundary
conditions.

Proof of Proposition 3.5.
Fix a > 0, and H ∈ C0([0, 1]). Consider t0 > 0 such that 2e−λ1t0∥H∥L2(0,1) <

a
2 and fix t ≥ t0.

Let (Nk)k≥1 be a sequence along which the probability (3.13) converges. Let us show that the limit
is necessarily zero. It is enough to prove that there is a subsequence of (Nk)k≥1 such that the limit
is zero.

Define At ⊂ Dt
M0

as the set of trajectories {ρ(r, ·), 0 ≤ r ≤ t} whose density ρ is a solution

of (2.3) for some initial condition. The process (πN
r
N
)0≤r≤t has generator LN and by the proof of

Theorem 2.1 in [2], the sequence of probability measures P̃µN
on Dt

M induced by (πN
r
N
)0≤r≤t when

πN
0 ∼ µN , is tight and all its limit points P∗ satisfy

P∗ (At) = 1.

Consider (Nj)j≥1 a subsequence of (Nk)k≥1 such that P̃µNj
converges to a probability measure P∗.

Then,

lim
j→∞

P̃µNj

[∣∣∣⟨πNj
t

Nj

, H⟩ − m̂(π
Nj

0 )⟨1, H⟩
∣∣∣ > a

]
= P∗

[(∣∣∣⟨ρ(t), H⟩ −
∫ 1

0

ρ(0, x)dx⟨1, H⟩
∣∣∣ > a

)⋂
(ρ ∈ At)

]
.

(3.14)

By Lemma 3.6, for any ρ ∈ At,

|⟨ρt, H⟩ −
∫ 1

0

ρ(0, x)dx⟨1, H⟩| ≤ ∥ρ(t, .)−
∫ 1

0

ρ(0, x)dx∥L2(0,1)∥H∥L2(0,1)

≤ 2e−λ1t∥H∥L2(0,1).
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Therefore, for any t ≥ t0 and ρ ∈ At

|⟨ρt, H⟩ −
∫ 1

0

ρ(0, x)dx⟨1, H⟩| < a

2
,

which implies that the limit in (3.14) is necessarily zero.

Proof of Theorem 2.3. Fix H ∈ C0([0, 1]). The idea is to split the term |⟨πN
t , H⟩ − m(t)⟨1, H⟩|

into two parts involving the total mass process m̂(πN
t ). One part is dealt with thanks to the hy-

drodynamic limit for the total mass given in Theorem 3.1. The other part relies on Proposition
3.5.

Fix a t ∈ (0, T ]. We have

|⟨πN
t , H⟩ −m(t)⟨1, H⟩| ≤ |⟨πN

t , H⟩ − m̂(πN
t )⟨1, H⟩|

+ |m̂(πN
t )−m(t)||⟨1, H⟩|.

By Theorem 3.1, the second term above converges in probability to zero under P̃µN
. Let us prove

that
lim

N→∞
P̃µN

[ ∣∣∣⟨πN
t , H⟩ − m̂(πN

t )⟨1, H⟩
∣∣∣ > ε

]
= 0

for all ε > 0. Consider t0 such that

2e−λ1t0∥H∥L2(0,1) <
ε

4
,

where we recall that λ1 was introduced in Lemma 3.6. Also, consider N large enough so that
t− t0

N ≥ 0. We have∣∣⟨πN
t , H⟩ − m̂(πN

t )⟨1, H⟩
∣∣ ≤ ∣∣∣⟨πN

t , H⟩ − m̂
(
πN
t− t0

N

)
⟨1, H⟩

∣∣∣
+
∣∣∣m̂(πN

t− t0
N

)
− m̂(πN

t )
∣∣∣ |⟨1, H⟩| .

By Lemma 3.2,

lim
N→∞

P̃µN

[ ∣∣∣m̂(πN
t− t0

N

)
− m̂(πN

t )
∣∣∣∣∣⟨1, H⟩

∣∣ > ε

2

]
= 0.

Now, we are left to show that

lim
N→∞

P̃µN

[ ∣∣∣⟨πN
t , H⟩ − m̂

(
πN
t− t0

N

)
⟨1, H⟩

∣∣∣ > ε

2

]
= 0.

Consider the process
(
π̃N
s := πN

t− t0
N + s

N

)
s≥0

so that π̃N
0 = πN

t− t0
N

and π̃N
t0 = πN

t . As the process is

Markovian,

P̃µN

[ ∣∣∣⟨πN
t , H⟩ − m̂

(
πN
t− t0

N

)
⟨1, H⟩

∣∣∣ > ε

2

]
= P̃S

t− t0
N

(µN )

[ ∣∣∣⟨π̃N
t0 , H⟩ − m̂(π̃N

0 )⟨1, H⟩
∣∣∣ > ε

2

]
,

where St− t0
N
(µN ) is the push-forward of the measure µN under the dynamics. By Proposition 3.5

and the choice of t0, this goes to zero as N goes to infinity.

14



Static law of large numbers for the accelerated process

In order to prove Theorem 2.4, we start by proving the static law of large numbers for the total
mass of the process (see Proposition 3.7). This result follows from the fact that any solution to the
O.D.E (2.4) of the total mass converges to γ. Then, we use a similar argument as in the proof of
Theorem 2.3 which consists in moving by a factor t/N back in time, to recover the static law of
large numbers for the accelerated process of empirical measures.

Recall that µN
ss denotes the unique stationary measure on ΩN relatively to the dynamics induced

by the generator LN .

Proposition 3.7. The sequence of invariant measures (µN
ss)N≥1 satisfies:

lim
N→∞

EµN
ss

[ ∣∣∣m̂(πN )− γ
∣∣∣ ] = 0,

where EµN
ss

is the expectation under µN
ss on ΩN .

Proof. As
(
m̂(πN )− γ

)
N≥1

is µN
ss-almost surely bounded, it is enough to prove the convergence in

probability to zero. Fix ε > 0 and choose T = T (ε) such that for any m0 ∈ [0, 1],
∣∣m0−γ

∣∣e−2T ≤ ε.
Consider (Nk)k≥1 a sequence such that

lim
N→∞

µN
ss

( ∣∣∣m̂(πN )− γ
∣∣∣ > ε

)
= lim

k→∞
µNk
ss

( ∣∣∣m̂(πNk)− γ
∣∣∣ > ε

)
.

By stationarity of µN
ss,

µNk
ss

( ∣∣∣m̂(πNk)− γ
∣∣∣ > ε

)
= P̃

µ
Nk
ss

( ∣∣∣m̂(πNk

T )− γ
∣∣∣ > ε

)
.

By Lemma 3.2, one can extract from P̃
µ
Nk
ss

a converging subsequence P̃
µ
Nj
ss

with limit P∗, so that

lim
k→∞

µNk
ss

( ∣∣∣m̂(πNk)− γ
∣∣∣ > ε

)
= lim

j→∞
P̃
µ
Nj
ss

( ∣∣∣m̂(π
Nj

T )− γ
∣∣∣ > ε

)
= P∗

( ∣∣∣m̂(πT )− γ
∣∣∣ > ε

)
= P∗

( ∣∣∣m̂(π0)− γ
∣∣∣e−2T > ε

)
= 0,

where the last line comes from (3.9) and the choice of T .

Remark 3.8. One can deduce from the proof of Proposition 3.7 that there is a sequence (εN )N≥1 ↓ 0
such that µN

ss (BεN ) converges to 1, where BεN is the set of measures with total mass less than εN
away from γ:

BεN = {π ∈ M, |m̂(π)− γ| < εN} .

Proof of Theorem 2.4. Consider (πN
t )t≥0 the accelerated process of empirical measures, that is,

with generator LN , and such that πN
0 ∼ µN

ss. Fix G ∈ C0([0, 1]) and T > 0 which will be taken
sufficiently large later on. As the generator of the accelerated process is proportional to the one for
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the non accelerated one, µN
ss is invariant for that process, therefore,

µN
ss

[ ∣∣∣⟨πN , G⟩ − γ⟨1, G⟩
∣∣∣ ] = EµN

ss

[ ∣∣∣⟨πN
T , G⟩ − γ⟨1, G⟩

∣∣∣ ]
≤ EµN

ss

[ ∣∣∣⟨πN
T , G⟩ − m̂(πN

T− t0
N

)⟨1, G⟩
∣∣∣ ] := aN,T,t0

+ EµN
ss

[ ∣∣∣m̂(πN
T− t0

N

)− m̂(πN
T )
∣∣∣⟨1, G⟩ ] := bN,T,t0

+ EµN
ss

[ ∣∣∣m̂(πN
T )− γ

∣∣∣⟨1, G⟩ ] := cN,T

(3.15)

where N is large enough so that T − t0
N > 0. By Proposition 3.7, cN,T → 0, when N → ∞ and then

T → ∞.
To control bN,T,t0 , using the proof of Lemma 3.2 we get:

lim
N→∞

bN,T,t0 ≤ lim
N→∞

EµN
ss

[
sup

|s−t|≤ t0
N

∣∣∣MN
t −MN

s

∣∣∣ ]+ lim
N→∞

EµN
ss

[
sup

|s−t|≤ t0
N

∣∣∣N ∫ t

s

LN,bm̂(πN
r )dr

∣∣∣ ] = 0.

Finally, to control aN,T,t0 , introduce the process
(
π̃N
s := πN

t− t0
N + s

N

)
s≥0

as in the proof of Theorem

2.3. By Markov’s property,

aN,T,t0 = EµN
ss

[ ∣∣∣⟨π̃N
t0 , G⟩ − ⟨π̃N

0 , 1⟩⟨1, G⟩
∣∣∣ ].

By Lemma 3.2, (P̃µN
ss
)N≥1 is tight so we can extract from it a sequence (P̃

µ
Nk
ss

)k≥1 converging to a

probability measure Q∗. By Theorem 2.1,

Q∗
(
π ∈ At0

)
= 1,

where
At0 =

{(
ρ(t, x)dx

)
t∈[0,t0]

, ρ is a weak solution of (2.3)
}
.

Therefore,

lim
N→∞

E
µ
Nk
ss

[ ∣∣∣⟨π̃Nk
t0 , G⟩ − ⟨π̃Nk

0 , 1⟩⟨1, G⟩
∣∣∣ ] = EQ∗

[∣∣∣⟨πt0 , G⟩ − ⟨π0, 1⟩⟨1, G⟩
∣∣∣1π∈At0

]
≤ EQ∗

[
∥ρ(t0, .)−

∫ 1

0

ρ(0, x)dx∥L2(0,1)∥G∥L2(0,1)1π∈At0

]
≤ 2e−λ1t0∥G∥L2(0,1) −→

t0→∞
0.

Hence lim
t0→∞

lim
N→∞

aN,T,t0 = 0 and the result follows.

4 Large deviations functional

In this section, we list some properties on the large deviations functional IT , introduced in Definition
2.6, that will be used later on. We prove the IT - density, used for the proof of the lower bound of
Theorem 2.8, and we prove Lemma 2.7.
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4.1 Some properties on IT

It is immediate to see that IT is lower semi-continuous, as the supremum of linear functions and
therefore continuous functions. Furthermore, we show that it is infinite on non continuous trajec-
tories, that it has compact level sets and that its variational formulation is solvable on a particular
class of elements of DT

[0,1].

Proposition 4.1. If a ∈ DT
[0,1] satisfies IT (a) <∞, then a is continuous.

Proof. Consider 0 ≤ s < t ≤ T such that t − s ≤ 1 and let Hs,t : [0, T ] → R be given by
Hs,t(r) = log(1/(t− s))1[s,t](r). Also, consider a smooth approximation Hp

s,t : [0, T ] → R of Hs,t in
the sense that for any element f of C∞([0, T ]),∫ T

0

f(r)Hp
s,t(r)dr −→

p→∞

∫ T

0

f(r)Hs,t(r)dr, and

∫ T

0

f(r)∂rH
p
s,t(r)dr −→

p→∞

∫ T

0

f(r)∂rHs,t(r)dr

where ∂rH
p
s,t resp. ∂rHs,t refers to the weak derivative of Hp

s,t resp. Hs,t. Then, recalling the
definition of JT,H and using that the weak derivative of Hs,t is given by:∫ T

0

f(r)∂rHs,t(r)dr = f(T )Hs,t(T )− f(0)Hs,t(0)− log(1/(t− s))(f(t)− f(s)),

we have

lim
p→∞

JT,Hp
s,t
(π) = log(1/(t− s))

(
a(t)− a(s)

)
−
∫ t

s

[
2γ
(
1− a(r)

)( 1

t− s
− 1

)
+ 2(1− γ)a(r)(t− s− 1)

]
dr.

(4.1)

Now, as lim
N→∞

JT,Hp
s,t
(a) ≤ IT (a) <∞ and a is bounded, there are constants C1, C2 > 0 such that

|a(t)− a(s)| ≤
[
log(1/(t− s))

]−1
[IT (a) + (t− s)C1 + C2] (4.2)

and the right hand side of this inequality goes to zero as s→ t, hence the result.

For q ≥ 0, the q-level set of I is defined as

Eq =
{
a ∈ DT

[0,1] IT (a) ≤ q
}
.

A corollary of the proof of Proposition 4.1 is the following:

Lemma 4.2. The level sets of IT are compact in DT
[0,1].

Proof. Fix q ≥ 0. By lower semi continuity of IT , Eq is closed so we just need to show that it is
relatively compact. For that, we show that

lim
δ→0

sup
u∈Eq

sup
0≤s,t≤T
|t−s|<δ

|a(t)− a(s)| = 0

but this is an immediate consequence of (4.2).
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Remark 4.3. By Proposition 4.1, any level set of IT is a subset of C([0, T ]) and the proof of Lemma
4.2 shows that a level set is compact in C([0, T ]) for the topology of uniform convergence.

Proposition 4.4. Fix a ∈ C2([0, T ]) and consider H ∈ C1([0, T ]) a solution of the following partial
differential equation,

∂ta(t) = 2γ
(
1− a(t)

)
eH(t) − 2(1− γ)a(t)e−H(t). (4.3)

Then, H solves the following variational problem

IT (a) = sup
G∈C1([0,T ])

JT,G(a) = JT,H(a).

Proof. For G ∈ C1([0, T ]), performing an integration by part we get

JT,G(a) =

∫ T

0

Gs∂sasds −
∫ T

0

AG(a)(s)ds,

where recall that AG(a) was defined in (2.6). Now, writing JT,G(a) = JT,G(a)− JT,H(a) + JT,H(a)
we check that JT,G(a)− JT,H(a) ≤ 0. Replacing ∂sas thanks to (4.3) we have,

JT,G(a)− JT,H(a) =

∫ T

0

(Gs −Hs)∂sasds−
∫ T

0

[
AG(a)(s)−AH(a)(s)

]
ds

=

∫ T

0

(Gs −Hs)
[
2γ(1− as)e

Hs − 2(1− γ)ase
−Hs

]
ds

−
∫ T

0

[
2γ(1− as)(e

Gs − eHs) + 2(1− γ)as(e
−Gs − e−Hs)]

]
ds

=

∫ T

0

Fa,Hs
(Gs)ds,

(4.4)

where for ǎ ∈ [0, 1], x, y ∈ R,

Fǎ,y(x) := 2γ(1− ǎ)
[
(x− y)ey − (ex − ey)

]
− 2ǎ(1− γ)

[
(x− y)e−y + e−x − e−y

]
.

We have that Fǎ,y is a concave function of x and F ′
ǎ,y(y) = 0 so it reaches its maximum at y, where

Fǎ,y(y) = 0. It follows that
∫ T

0
Fa,Hs(Gs)ds ≤ 0, hence the result.

We will often make use of the following result: for any a ∈ DT
[0,1] such that IT (a) <∞, for any

t ∈ [0, T ],
IT (a) = It(a) + IT−t(a(.+ t)). (4.5)

In particular, as I is a positive functional, for any t ∈ [0, T ] It(a) ≤ IT (a). To prove that, decom-
posing JT,G(a), for G ∈ C∞([0, T ]), as

JT,G(a) = Jt,G(a) + JT−t,G(a(.+ t)),

we immediately get that IT (a) ≤ It(a) + IT−t(a(. + t)). To prove the reverse inequality, fix ε > 0
and consider G ∈ C1([0, t]) and H ∈ C1([0, T − t]) such that

Jt,G(a) + JT−t,H(a(.+ t)) ≥ It(a) + IT−t(a(.+ t))− 2ε.
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Taking smooth approximations (Kn)n≥1 of G1[0,t) +H(.− t)1[t,T ] in C1([0, T ]), we have that

IT (a) ≥ lim
n→∞

JT,Kn
(a) = Jt,G(a) + JT−t,H(a(.+ t)) ≥ It(a) + IT−t(a(.+ t))− 2ε.

This holds for every ε, thus the converse inequality.

Corollary 4.5. If a ∈ DT
[0,1] then IT (a) = 0 if and only if a is a weak solution of ∂ta = −2(a− γ).

This implies that a is a strong solution of that equation and is therefore in C∞([0, T ]).

Proof. If a ∈ DT
[0,1] is a solution of ∂ta = −2(a−γ), by Proposition 4.4, IT (a) = JH(a) with H = 0,

so IT (a) = 0.
Conversely, fix a ∈ DT

[0,1] and assume that IT (a) = 0. For t ∈ [0, T ], consider the function

Ft : R → R defined by Ft(x) = Jt,x(a), where x refers to the function that is constant in time,
equal to x. Then

Ft(x) = x(at − a0) + 2

∫ t

0

[
γ(ex − 1)− (1− γ)(e−x − 1)

]
asds− 2γt(ex − 1).

By (4.5), we have IT (a) ≥ It(a). As IT (a) = 0, for any t ∈ [0, T ], It(a) = 0. Evaluating JG(a)
with G constant equal to x yields that Ft ≤ 0 on R. As Ft(0) = 0, 0 is a local maximum for Ft so
F ′
t (0) = 0. This implies that for any t ∈ [0, T ],

at − a0 = −2

∫ t

0

asds+ 2γ,

so a is a solution of ∂ta = −2(a− γ).

4.2 The IT – density

The proof follows the same steps as in the seminal papers [21] and [6]. First we approximate
trajectories by ones which follow the hydrodynamic equation on a small time interval (Lemma 4.8)
and are uniformly bounded away from 0 and 1 (Lemma 4.9). Then, we regularize such trajectories
in time (Lemma 4.10).

Definition 4.6. A set A ⊂ DT
[0,1] is said to be IT – dense if for any a in DT

[0,1] such that IT (a) <∞,

there exists a sequence (ap)p≥1 of elements in A such that

ap −→
p→∞

a in DT
[0,1] and IT (ap) −→

p→∞
IT (a).

Let BT be the set of elements a in C2([0, T ]) for which there exists H ∈ C1([0, T ]) such that a
and H are related by the ordinary differential equation (4.3).

Theorem 4.7. The set BT is IT – dense.

For the proof, of Theorem 4.7, we establish the IT – density of some intermediate sets. Denote
by ΠT

1 the set of elements in DT
[0,1] such that for any a ∈ ΠT

1 , there is a δ > 0 such that on [0, δ], a
is a solution of the ordinary differential equation

∂tλ = −2λ+ 2γ. (4.6)
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Lemma 4.8. The set ΠT
1 is IT – dense in DT

[0,1].

Proof. Consider a in DT
[0,1] such that IT (a) <∞ and λ : [0, T ] → [0, 1] the unique solution of (4.6)

with initial condition a(0). For δ > 0, define aδ as follows:

aδ(t) =

 λ(t), if t ∈ [0, δ]
λ(2δ − t), if t ∈ [δ, 2δ]
a(t− 2δ), if t ∈ [2δ, T ].

(4.7)

It is clear that aδ converges to a in DT
[0,1] as δ ↓ 0 and, by construction, aδ belongs to ΠT

1 . By lower

semi continuity of v 7→ IT (v),
IT (a) ≤ lim inf

δ→0
IT (a

δ).

We are therefore left to show that

IT (a) ≥ lim sup
δ→0

IT (a
δ).

Decomposing JT,G(a
δ) into the sum of the contributions on each time interval [0, δ], [δ, 2δ] and

[2δ, T ] we get:

JT,G(a
δ) = aδTGT − aδ2δG2δ −

∫ T

2δ

∂sGsa
δ
sds−

∫ T

2δ

AG(a
δ)(s)ds

+ aδ2δG2δ − aδδGδ −
∫ 2δ

δ

∂sGsa
δ
sds−

∫ 2δ

δ

AG(a
δ)(s)ds

+ aδδGδ − aδ0G0 −
∫ δ

0

∂sGsa
δ
sds−

∫ δ

0

AG(a
δ)(s)ds,

(4.8)

where we recall that the definition of AG is given in (2.6). The first term is bounded above by
IT−2δ(a) and recall, by arguments detailed in the proof of Corollary 4.5, that IT−2δ(a) ≤ IT (a).
The last term in (4.8) equals Iδ(aδ) = Iδ(λ) = 0 because λ solves (4.6) on [0, δ]. Finally, let us show
that

lim sup
δ→0

sup
G∈C1([0,T ])

{
aδ2δG2δ − aδδGδ −

∫ 2δ

δ

∂sGsa
δ
sds−

∫ 2δ

δ

AG(a
δ)(s)ds

}
= 0. (4.9)

For G ∈ C1([0, T ]),

aδ2δG2δ − aδδGδ −
∫ 2δ

δ

∂sGsa
δ
sds−

∫ 2δ

δ

AG(a
δ)(s)ds =

∫ 2δ

δ

Gs∂sa
δ
sds−

∫ 2δ

δ

AG(a
δ)(s)ds

=

∫ δ

0

G2δ−s∂sa
δ(2δ − s)ds−

∫ δ

0

AG(a
δ)(2δ − s)ds,

(4.10)

therefore,

sup
G∈C1([0,T ])

{
aδ2δG2δ − aδδGδ −

∫ 2δ

δ

∂sGsa
δ
sds−

∫ 2δ

δ

AG(a
δ)(s)ds

}

= sup
G∈C1([0,T ])

{∫ δ

0

Gs∂sasds−
∫ δ

0

AG(a)(s)ds

}
,

(4.11)
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where a(s) = aδ(δ− s) = λ(δ− s). Using that a0 ∈ (0, 1) and that λ(t) = γ+(a0 − γ) e−2t we have
that for any t > 0,

0 < γ(1− e−2δ) ≤ a(s) ≤ γ + (1− γ) e−2δ < 1.

We can therefore define the continuous function

H(t) = log

(
a′(t) +

√
a′(t)2 + 16γ(1− γ)(1− a(t))a(t)

4γ(1− a(t))

)
(4.12)

on [0, δ]. Furthermore, this belongs to C1([0, T ]), and a and H are related by (4.3). It follows by
Proposition 4.4 applied to the time interval [0, δ] that

sup
G∈C1([0,T ])

{∫ δ

0

Gs∂sasds−
∫ δ

0

AG(a)(s)ds

}
=

∫ δ

0

Hs∂sasds−
∫ δ

0

AH(a)(s)ds.

Using that Hs∂sas and AH(a)(s) are continuous functions, the second term converges to zero as
δ ↓ 0, hence the result.

Denote by ΠT
2 the set of elements a in ΠT

1 such that for every δ > 0, a is uniformly bounded
away from 0 and 1 on [δ, T ], that is, there is an ε > 0, such that for all t ∈ [δ, T ], ε ≤ a(t) ≤ 1− ε.

Lemma 4.9. The set ΠT
2 is IT – dense in ΠT

1 .

Proof. Fix an a in ΠT
1 such that IT (a) < ∞. For ε > 0, introduce aε = (1 − ε)a + ελ, where

λ : [0, T ] → [0, 1] is the unique solution of (4.6) with initial condition a(0). By definition, aε

belongs to ΠT
1 and aε converges to a in DT

[0,1] as ε ↓ 0. Furthermore, using that

λ(t) = γ + (a0 − γ) e−2t,

with a0 ∈ [0, 1], the following inequalities hold: for any δ > 0 and t ∈ [δ, T ],

0 < εγ
(
1− e−2δ

)
≤ aε(t) ≤ 1− ε+ ε

[
γ + (1− γ) e−2δ

]
< 1

so aε is in ΠT
2 . Again, by semi continuity of IT , lim inf

ε↓0
IT (a

ε) ≥ IT (a). Then, by linearity of JT,G,

JT,G(a
ε) = (1− ε)JT,G(a) + εJT,G(λ) ≤ (1− ε)JT,G(a) ≤ (1− ε)IT (a),

where we used that JT,G(λ) ≤ 0 in the first inequality. Taking the lim sup we get the desired
result.

Denote by ΠT
3 the set of elements in ΠT

2 belonging to C2([0, T ]).

Lemma 4.10. The set ΠT
3 is IT – dense in ΠT

2 .

Proof. Consider a ∈ ΠT
2 such that IT (a) < ∞. By Proposition 4.1, a is continuous. Let δ > 0 be

such that a is solution to (4.6) on [0, 3δ]. Consider ϕ : R → R smooth with compact support in

(0, 1) and
∫ 1

0
ϕ(s)ds = 1. For ϵ > 0, define ψ(ϵ, s) = 1

ϵϕ
(
s
ϵ

)
. Then, (ψ(ϵ, .))ϵ>0 is an approximation

of the identity on compact sets in the sense that for any ρ ∈ C(R) with compact support, t 7→
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∫
R ρ(t + s)ψ(ϵ, s)ds converges uniformly to ρ on R as ϵ → 0. Consider ε : [0, T ] → [0, 1] a smooth
non decreasing function such that

ε(t) =

 0, if t ∈ [0, δ]
0 < ε(t) < 1, if t ∈ (δ, 2δ)
1, if t ∈ [2δ, T ]

(4.13)

and for p ∈ N, define εp(t) = ε(t)
p . Introduce the sequence ap(t) =

∫ 1

0
a(t+ εp(t)s)ϕ(s)ds, where we

extend a on [T, T +1] by letting, for t ∈ [0, 1], a(t+T ) = λ̃(t), where λ̃ is the solution to (4.6) with
initial condition a(T ).

By construction of ϕ, the sequence ap converges to a in DT
[0,1]. For t ∈ [0, δ], ap(t) = a(t), where

a is solution to (4.6), so ap ∈ ΠT
1 . As a ∈ ΠT

2 , the convolution product ensures that ap is also in

ΠT
2 . For t ∈ [0, 2δ), ap(t) =

∫ t

0
a(t+ εp(t)s)ϕ(s)ds. As a is smooth on [0, 3δ), for p large enough, ap

is smooth on [0, 2δ). For t ∈ (δ, T ], εp(t) > 0 and the following change of variable holds:

ap(t) =

∫ εp(t)

0

a(t+ s)
1

εp(t)
ϕ

(
s

εp(t)

)
ds =

∫ t+εp(t)

t

a(s)ψ(εp(t), s− t)ds

=

∫
R
a(s)ψ(εp(t), s− t)ds

and this is smooth in t. Hence, ap is smooth on [0, T ] and it follows that ap ∈ ΠT
3 .

To conclude the proof, let us check that lim
p→∞

IT (a
p) ≤ IT (a). For G ∈ C1([0, T ]), decomposing

JT,G(a
p) as in (4.8) we have:

JT,G(a
p) = apTGT − ap2δG2δ −

∫ T

2δ

∂sGsa
p
sds−

∫ T

2δ

AG(a
p)(s)ds

+ ap2δG2δ − apδGδ −
∫ 2δ

δ

∂sGsa
p
sds−

∫ 2δ

δ

AG(a
p)(s)ds

+ apδGδ − ap0G0 −
∫ δ

0

∂sGsa
p
sds−

∫ δ

0

AG(a
p)(s)ds.

(4.14)

Again, the last term is negative. The first term in (4.14) is given by∫ 1

0

[
τ s

p
a(T )GT − τ s

p
a(2δ)G2δ −

∫ T

2δ

∂sGsτ s
p
a(t)dt+

∫ T

2δ

JG(τ s
p
a)(t)dt

]
ϕ(s)ds

where τ s
p
a(t) = a

(
t+ s

p

)
. Bound this by

∫ 1

0
IT (τ s

p
a)ϕ(s)ds. Using that a solves (4.6) on [T, T +1],

this is less than
∫ 1

0
IT (a)ϕ(s)ds = IT (a).

Now we deal with the second term in (4.14). By regularity of ap we can perform the following
integration by part

ap2δG2δ − apδGδ −
∫ 2δ

δ

∂tGta
p
t dt =

∫ 2δ

δ

∂ta
p
sGsds.

Therefore,

ap2δG2δ − apδGδ −
∫ 2δ

δ

∂tGta
p
t dt−

∫ 2δ

δ

AG(a
p)(s)ds =

∫ 2δ

δ

∂sa
p
sGsds−

∫ 2δ

δ

AG(a
p)(s)ds.
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Using Proposition 4.4 and the fact that ap is smooth on [δ, 2δ] and uniformly bounded away from
0 and 1, we have that

sup
G̃∈C1([0,T ])

∫ 2δ

δ

∂sa
p
sG̃sds−

∫ 2δ

δ

AG̃(a
p)(s)ds =

∫ 2δ

δ

∂sa
p
sHsds−

∫ 2δ

δ

AH(ap)(s)ds (4.15)

where

H(t) = log

(
(ap)′(t) +

√
(ap)′(t)2 + 16γ(1− γ)(1− ap(t))ap(t)

4γ(1− ap(t))

)
.

Since a solves the ODE (2.4) on [0, 3δ],

∂ta
p
t =

∫
R
∂ta(t+ s)ψ(εp(t), s)ds+

∫
R
a(t+ s)∂tψ(εp(t), s)ds

= −2

∫
R
a(t+ s)ψ(εp(t), s)ds+ 2γ + rp(t)

with

rp(t) :=

∫
R
a(t+ s)∂tψ(εp(t), s)ds.

Hence,
∂ta

p
t = −2apt + 2γ + rp(t), (4.16)

and the right hand side term in (4.15) equals∫ 2δ

δ

(−2ap(s) + 2γ)H(s)ds+

∫ 2δ

δ

rp(s)H(s)ds−
∫ 2δ

δ

AH(ap)(s)ds.

Therefore, the second term in (4.14) is less than∫ 2δ

δ

(−2ap(s) + 2γ)H(s)ds+

∫ 2δ

δ

rp(s)H(s)ds−
∫ 2δ

δ

AH(ap)(s)ds. (4.17)

Now, ∫ 2δ

δ

(−2ap(s) + 2γ)H(s)ds−
∫ 2δ

δ

AH(ap)(s)ds ≤ 0.

Indeed, for any G ∈ C1([0, T ])) and a ∈ C([0, T ]) with values in [0, 1], for any s ∈ [0, T ],

AG(a)(s) + 2(a− γ)G(s) ≥ 0.

To see that, for s ∈ [0, T ], write AG(a)(s) + 2(as − γ)Gs as fas
(Gs), where fa is a convex function

achieving its minimum at 0 where it is vanishes.

To conclude, we show that lim
p→∞

∫ 2δ

δ
rp(s)H(s)ds = 0. Recall that

∫ 1

0
ϕ(s)ds = 1, so∫

R
∂tψ(εp(t), s)ds = 0.

We then have

rp(t) =

∫
R
[a(t+ s)− a(t)] ∂tψ(εp(t), s)ds
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and as a is smooth, so Lipschitz on [δ, 2δ], there is a C(δ) > 0 such that |a(t+ s)− a(t)| ≤ C(δ)s.

Following the same lines as in the proof of Lemma 5.6 in [19], we prove that rp(t) ≤ C(δ,ϕ)
p which

yields the desired result.

Proof of Theorem 4.7. By Lemma 4.10, it is enough to check that ΠT
3 ⊂ BT . For that, fix

a ∈ ΠT
3 and t ∈ (0, T ], and define

H(t) = log

(
a′(t) +

√
a′(t)2 + 16γ(1− γ)(1− a(t))a(t)

4γ(1− a(t))

)
.

This is well defined because a is in ΠT
2 . Since a ∈ C2([0, T ]), H is in C1([0, T ]) and by construction

of H, it is related to a by (4.3). Therefore a belongs to BT .

4.3 Proof of Lemma 2.7

The proof of Lemma 2.7 relies on an argument introduced in [4]. Let us recall some notation. The
quasi potential V : [0, 1] → [0,+∞] relatively to IT ( . |γ) is defined by

V (m) := inf
T>0

inf
a(.), a(T )=m

IT (a|γ) , (4.18)

where the second infimum is taken over elements a of C1([0, T ]). The aim is to show that V = S,
where we recall that S was defined in (2.7).

To prove that V (m) ≤ S(m), one exhibits a path a connecting γ to m in [0, T ] such that
IT (a|γ) ≤ S(m). Recall the variational definition of IT given in Definition 2.6. To prove that
V (m) ≥ S(m), we show that for any path a connecting γ, at time 0, to m at time T , IT (a) ≥ S(m)
from which the inequality follows.

First we prove the following result:

Lemma 4.11. For κ ∈ (0, 1), let aκ : [0, 1] → [0, 1] be given by aκ(t) = κt+ γ. Then,

I1(aκ|γ) −→
κ→0

0.

Proof. Choose κ ∈ [0, 1) so that t 7→ κt+ γ is an element of Π1
3 (that is, uniformly bounded away

from 0 and 1 and in C2). Then, I1(κt+ γ|γ) = J1,Hκ(κt+ γ), with

Hκ(t) = log

(
κ+

√
κ2 + 16γ(1− γ)a(t)(1− a(t))

4γ(1− a(t))

)
,

where a(t) = κt+ γ. Therefore,

I1(κt+ γ|γ) = κ

∫ 1

0

Hκ(s)ds−
∫ 1

0

[
2γ(1− a(s))(eHκ(s) − 1) + 2(1− γ)a(s)(e−Hκ(s) − 1)

]
ds

= κ

∫ 1

0

Hκ(s)ds−
∫ 1

0

[
2γ(1− κs)(eHκ(s) − 1) + 2(1− γ)κs(e−Hκ(s) − 1)

]
ds

−
∫ 1

0

[
2γ(1− γ)(eHκ(s) − 1) + 2(1− γ)γ(e−Hκ(s) − 1)

]
ds.

The last term is less than I1(γ|γ) = 0. Using that Hκ converges weakly to zero, that it is uniformly
bounded in κ and t ∈ [0, t] and the dominated convergence theorem, the above converges to zero.
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Let us now prove Lemma 2.7.

Proof. Let us first prove that V (m) ≤ S(m). Consider m ∈ (0, 1) and fix 0 < ε < 1. Denote by a∗

the unique solution of the Cauchy problem: ∂ta
∗ = −2a∗ + 2γ, a∗(0) = m. It is immediate to see

that there is T1 > 0 such that for any t ≥ T1, |a∗(t)−γ| < ε. Now, consider the following trajectory
m∗ defined on [0, T1 + 1] by  a∗(T1)t+ γ(1− t), if t ∈ [0, 1]

a∗(T1 + 1− t), if t ∈ [1, T1 + 1].
(4.19)

By definition, V (m) ≤ IT1+1(m
∗|γ), and by (4.5),

IT1+1(m
∗|γ) = I1(m

∗|γ) + IT1(m
∗(.+ 1))

= I1(m
∗|γ) + IT1(a

∗(T1 − .)).
(4.20)

Let us compute the second term in (4.20) . Denote by a(s) = a∗(T1 − s) for s ∈ [0, T1]. Then a
satisfies the Cauchy problem ∂sa = 2a − 2γ, a(0) = a∗(T1), and one can check that H, as defined
in (4.12) associated to a is given by:

H(t) = log

(
(1− γ) a(t)

γ (1− a(t))

)
=: log

(
v(t)

w(t)

)
. (4.21)

We claim that

JT1,H(a∗(T1 − .)) = m log

(
(1− γ)m

γ(1−m)

)
− a∗(T1) log

(
(1− γ)a∗(T1)

γ(1− a∗(T1))

)
+ log

(
1−m

1− γ

)
. (4.22)

The proof relies on a long but straightforward computation detailed in Appendix A. Collecting
(4.20) and (4.22) we have

V (m) ≤ I1
(
(a∗(T1)−γ)t+γ|γ

)
+m log

(
(1− γ)m

γ(1−m)

)
−a∗(T1) log

(
(1− γ)a∗(T1)

γ(1− a∗(T1))

)
+log

(
1−m

1− γ

)
.

Take ε→ 0 and T1 → ∞ so that a∗(T1) → γ. By Lemma 2.7, the first term on the right hand side
of (4.22) goes to zero. The rest converges to S(m) so V (m) ≤ S(m).

Now, we prove that V (m) ≥ S(m). It is enough to show that for any T > 0, for any a ∈ DT
[0,1]

such that a(0) = γ and a(T ) = m, IT (a|γ) ≥ S(m). Fix T > 0, suppose that a is in ΠT
3 and define,

for t ∈ [0, T ], H(t) = log
(

(1−γ)a(t)
γ(1−a(t))

)
. By definition, IT (a|γ) ≥ JT,H(a). Now, let us compute

JT,H(a):

JT,H(a) = mHT − γH0 −
∫ T

0

as∂sHsds−
∫ T

0

AH(a)(s)ds.

We have ∂sHs =
∂sas

as(1−as)
, so −

∫ T

0
as∂sHsds = [log(1− as)]

T
0 . Furthermore,

AH(a)(s) = 2γ

[
(1− γ)as
γ(1− as)

+
γ(1− as)

(1− γ)as

]
as + 2(1− 2γ)as − 2γ

(1− as)as
(1− γ)as

as − 2
(as − γ)

1− as

= 2(1− γ)
a2s

1− as
− 2γ(1− as) + 2as − 4γas +

2γ

1− as
− 2as

1− as
= 0.
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We are left with
JT,H(a|γ) = mHT − γH0 + [log(1− as)]

T
0 = S(m).

To extend this fact for any trajectory a ∈ DT
[0,1] such that a(0) = γ and a(T ) = m, use the IT –

density of ΠT
3 in DT

[0,1]. Indeed, if a ∈ DT
[0,1], using the approximation aδ from the proof of Lemma

4.8 of a and aδ,ε the approximation of each aδ from the proof or Lemma 4.9, we have

lim
ε,δ→0

IT (a
δ,ε|γ) = IT (a|γ) ≥ S(m).

5 Dynamical large deviations principle

In this section, we prove the dynamical large deviations principle (Theorem 2.8) following the
approach in [21], or [6]. The steps are by now standard. For the upper bound, we use an exponential
martingale and, for the lower bound, we perturb the dynamics to turn typical a trajectory.

5.1 Large deviations upper bound

We first prove the upper bound for compact sets. For that, we use an exponential martingale as
well as the superexponential replacement lemma (Lemma 3.3). To extend the result to closed sets,
we prove exponential tightness of the process (Proposition 5.1).

5.1.1 Upper bound for closed compact sets

For G ∈ C1([0, T ]) consider, for t ∈ [0, T ], F (t, ηt) = N⟨πN
t , Gt⟩ = Nm̂

(
πN
t

)
Gt and

Mt(G) = exp

{
F (t, ηt)− F (0, η0)−

∫ t

0

e−F (s,ηs)(∂s + L)eF (s,ηs)ds

}
.

Then (Mt(G))0≤t≤T is an exponential martingale of mean 1 with respect to the natural filtration
and a computation yields:

Mt(G) = exp

{
N

(
m̂
(
πN
t

)
Gt − m̂

(
πN
0

)
G0 −

∫ t

0

∂sGsm̂
(
πN
s

)
ds

−
∫ t

0

∑
x∈{1,N−1}

[
rx(1− ηs(x))(e

Gs − 1) + (1− rx)ηs(x)(e
−Gs − 1)

]
ds

 .

(5.1)

Fix m0 ∈ (0, 1) and consider a sequence of configurations (ηN )N≥1 such that m̂(πN (ηN ))N≥1

converges to m0. For δ > 0, introduce the following event:

SG
δ =

{
(ηs)0≤s≤T ∈ DT

ΩN
,
∣∣∣ ∫ T

0

∑
x∈{1,N−1}

[
rx(1− ηs(x))(e

Gs − 1) + (1− rx)ηs(x)(e
−Gs − 1)

]
ds

−
∫ T

0

[
2γ
(
1− m̂(πN

s )
)(
eGs − 1

)
+ 2m̂(πN

s )(1− γ)
(
e−Gs − 1

)]
ds
∣∣∣ < δ

}
.

(5.2)
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Let F be a closed subset of DT
[0,1]. Introduce

Hm0,δ =
{
a ∈ DT

[0,1], |a(0)−m0| < δ
}
.

Using inequality (3.7), we have

lim
N→∞

1

N
log P̃δηN

[(
m̂
(
πN
t

))
0≤t≤T

∈ F ∩Hm0,δ

]
≤ max

(
lim

N→∞

1

N
log P̃δηN

[(
m̂
(
πN
t

)
∈ F ∩Hm0,δ

)
∩
(
πN
t ∈ SG

δ

)]
, lim
N→∞

1

N
log P̃δηN

[
πN
t ∈

(
SG
δ

)c])
,

where, from now on, we forget the subscript 0 ≤ t ≤ T in
(
m̂
(
πN
t

))
0≤t≤T

and (πN
t )0≤t≤T in order

to lighten the notation. By Lemma 3.3, the second limit is −∞. Now, writing

P̃δηN

[(
m̂(πN

t ) ∈ F ∩Hm0,δ

)
∩
(
πN
t ∈ SG

δ

)]
= ẼδηN

[
1(m̂(πN

t )∈F∩Hm0,δ)∩(πN
t ∈SG

δ )
MG

T (MG
T )−1

]
,

using the fact that MG
T is a martingale with mean 1 and upper bounding (MG

T )−1 yields that this
is less than

sup
π∈SG

δ ∩m−1(F)

exp

{
−N

(
m̂(πN

T )GT − m̂(πN
0 )G0 −

∫ T

0

∂sGsm̂(πN
s )ds

−
∫ T

0

[
2γ
(
1− m̂(πN

s )
)(
eGs − 1

)
+ 2m̂(πN

s )(1− γ)
(
e−Gs − 1

)]
ds

)}
exp(Nδ)

(5.3)

where we used the definition of the event SG
δ . Therefore, for any G ∈ C1([0, T ]),

lim
N→∞

1

N
log P̃δηN

[(
m̂(πN

t )
)
0≤t≤T

∈ F ∩Hm0,δ

]
≤ − inf

a∈F∩Hm0,δ

{
aTGT − a0G0 −

∫ T

0

∂sGsasds

−
∫ T

0

[
2γ
(
1− as

)(
eGs − 1

)
+ 2as(1− γ)

(
e−Gs − 1

)]
ds
}
+ δ

≤ − inf
a∈F∩Hm0,δ

JG(a) + δ.

(5.4)

Now, as m̂(πN (ηN ))N≥1 converges to m0,

lim
N→∞

1

N
log P̃δηN

[(
m̂
(
πN
t

))
0≤t≤T

∈ F ∩Hc
m0,δ

]
= −∞,

so we are left with

lim
N→∞

1

N
log P̃δηN

[(
m̂
(
πN
t

))
0≤t≤T

∈ F
]
≤ − inf

a∈F∩Hm0,δ

JG(a) + δ

and taking δ → 0,

lim
N→∞

1

N
log P̃δηN

[(
m̂
(
πN
t

))
0≤t≤T

∈ F
]
≤ − inf

a∈Fm0

JG(a),
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where Fm0 is the set of elements of F with initial data m0. Optimizing this inequality over G yields

lim
N→∞

1

N
log P̃δηN

[(
m̂(πN

t )
)
0≤t≤T

∈ F
]
≤ − sup

G∈C1([0,T ])

inf
a∈Fm0

JT,G (a) . (5.5)

If F is a compact subset of DT
M, so is Fm0 and one can exchange the supremum and infimum.

Indeed, at any fixed G ∈ C1([0, T ]), a 7→ JG(a) is a linear and continuous function so one can apply
Varadhan’s argument (as done in [18]). In that case we get

lim
N→∞

1

N
log P̃δηN

[(
m̂(πN

t )
)
0≤t≤T

∈ F
]
≤ − inf

a∈Fm0

IT (a) = − inf
a∈F

IT (a|m0) . (5.6)

5.1.2 Upper bound for closed sets

In the previous subsection, we have established the large deviations upper bound for compact sets.
To extend the result to closed sets we use the standard method presented in [18], Chapter 10, and
based on the so called exponential tightness of the process, stated in the following Proposition.

Proposition 5.1. For every ℓ ∈ N, there exists a compact set Kℓ ∈ DT
[0,1] such that

lim
N→∞

1

N
log P̃δηN

[(
m̂(πN

t )
)
0≤t≤T

∈ Kc
ℓ

]
≤ −ℓ. (5.7)

To build a sequence of compact sets satisfying Proposition 5.1, one proves the following estimate:

Lemma 5.2. For ε, δ > 0, introduce the set

Cδ,ε = {a ∈ DT
[0,1], sup

s≤t≤s+δ
|at − as| ≤ ε}.

For any ε > 0,

lim
δ↓0

lim
N→∞

1

N
log P̃δηN

[
m̂(πN

t ) /∈ Cδ,ε
]
= −∞. (5.8)

We refer to [18], or [16] for precise details on how to recover the large deviations upper bound
for closed sets from Proposition 5.1, how to derive Proposition 5.1 from Lemma 5.2 and for a proof
of Lemma 5.2.

5.2 Large deviations lower bound

To prove the lower bound in Theorem 2.8, we follow the usual strategy which consists in finding a
perturbation of the process under which a trajectory satisfying some regularity assumptions becomes
typical. The large deviation functional then appears as the entropy of the measure induced by the
perturbed process, relatively to the one induced by the initial process. To extend this to any
trajectory, proceeding as in [6], we use an IT -density argument.
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5.2.1 Hydrodynamic limit of a perturbation of the process

Given G ∈ C1([0, T ]), consider the following generator:

(LG
N,bf)(η) =

∑
x∈{1,N−1}

[
eG(t)rx(1− η(x)) + e−G(t)η(x)(1− rx)

]
(f(ηx)− f(η)) . (5.9)

We will write Gt instead of G(t). Denote by {ηNt , t ∈ [0, T ]} the Markov process with generator
NLN , where

LN = N2LN,0 + LG
N,b.

Given µN a measure on ΩN , denote by PG

µN
the probability measure on DT

ΩN
induced by (ηNt )t≥0

when η0 ∼ µN , and EG

µN
its associated expectation. In particular, for ηN ∈ ΩN , PG

δηN
is the measure

induced starting from ηN . Denote by πN
t the empirical measure associated to ηNt and m̂(πN

t ) its
total mass.

Theorem 5.3. (Hydrodynamic limit for the total mass of the perturbed process). Fix m0 ∈ [0, 1]
and consider a sequence of measures (µN )N≥1 on ΩN associated to the mass m0. Then, for any
t ∈ [0, T ] and any δ > 0,

lim
N→∞

PG

µN

[ ∣∣∣m̂(πN
t )−m(t)

∣∣∣ > δ
]
= 0,

where m : [0, T ] → [0, 1] is the unique solution of{
∂tm(π)(t) = 2γ

(
1−m(π)(t)

)
eGt − 2(1− γ)m(π)(t)e−Gt

m(0) = m0.
(5.10)

The proof of Theorem 5.3 follows the same lines as that of Theorem 3.1. Indeed, start by writing
the martingale associated to m̂(πN

t )

M
N

t := m̂(πN
t )− m̂(πN

0 )−N3

∫ t

0

LN,0m̂(πN
s )ds−N

∫ t

0

LG
N,bm̂(πN

s )ds

= m̂(πN
t )− m̂(πN

0 )−
∫ t

0

∑
x∈{1,N−1}

[
eGsrx(1− ηs(x))− e−Gsηs(x)(1− rx)

]
ds.

(5.11)

Using the quadratic variation of M
N

t one proves tightness of the sequence of measures PG

µN
. Then,

one proves the replacement lemma: given g ∈ C([0, T ]), for any t ∈ [0, T ] and δ > 0, for any
x ∈ {1, N − 1},

lim
N→∞

1

N
log PG

µN

[ ∣∣∣ ∫ t

0

g(s)(ηs(x)− m̂(πN
s ))ds

∣∣∣ > δ

]
= −∞. (5.12)

From this, one proves that a limit point must lie on a solution of (5.10). Uniqueness of the solution
of (5.10) is immediate.

For the proof of (5.12), use that there is a uniform constant C0 such that

⟨LG,t
N,b

√
f,
√
f⟩νN

ρ
≤ C0.

To prove that, proceed as in the proof of (ii) in Lemma 3.4 and use that the transition rates of the
dynamics are bounded in N . Then, to recover (5.12), proceed as in the proof of Lemma 3.3 using
this estimate.
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5.2.2 Proof of the lower bound

Fix m0 in [0, 1] and consider a sequence (ηN )N≥1 such that m̂(πN (ηN ))N≥1 converges to m0. We
wish to prove that for any open subset O of DT

[0,1],

lim
N→∞

1

N
log P̃δηN

[
m̂(πN ) ∈ O

]
≥ − inf

a∈O
I (a|m0) .

Consider a profile a ∈ O ∩ ΠT
3 such that IT (a|m0) < ∞. For ε > 0 denote by B̂ε(a) the ball of

radius ε and centered in a for the Skorohod distance. Consider H ∈ C1([0, T ]) such that a and H

are related by (4.3). As O is open, there is ε > 0 such that B̂ε(a) ⊂ O, so

P̃δηN

[
m̂(πN ) ∈ O

]
≥ P̃δηN

[
m̂(πN ) ∈ B̂ε(a)

]
= EH

δηN

 dP̃δηN

dPH

δηN

1m̂(πN )∈B̂ε(a)


= EH

δηN

 dP̃δηN

dPH

δηN

∣∣∣∣∣∣ m̂(πN ) ∈ B̂ε(a)

PH

δηN

[
m̂(πN ) ∈ B̂ε(a)

] (5.13)

The Radon-Nikodym derivative in the expectation is given by:

(MT (H))
−1

= exp

{
−N

(
m̂T (π

N )HT − m̂0(π
N )H0 −

∫ T

0

∂sHsm̂s(π
N )ds

−
∫ T

0

∑
x∈{1,N−1}

[
rx(1− ηNs (x))(eHs − 1) + (1− rx)η

N
s (x)(e−Hs − 1)

]
ds

 .

(5.14)

For a justification of that, see for instance [18], Appendix 1. Therefore,

1

N
log P̃δηN

[
m̂(πN ) ∈ O

]
≥ 1

N
log EH,ε

δηN

[
MT (H)−1

∣∣∣m̂(πN ) ∈ B̂ε(a)
]
+

1

N
log PH

δηN

[
m̂(πN ) ∈ B̂ε(a)

]
.

(5.15)

By the hydrodynamic limit of the perturbed process (Theorem 5.3), the last term goes to 0 when
N → ∞. Using Jensen’s inequality in the conditional expectation, the replacement lemma 3.3 and
the martingale computations in Subsection 5.1.1, we get that the right hand side is bounded below
by −JT,H (a) = −IT (a). Therefore,

lim
N→∞

1

N
log P̃δηN

[
m̂(πN ) ∈ O

]
≥ −I(a) ∀a ∈ O ∩ΠT

3 .

Optimize this in a ∈ O ∩ΠT
3 and the lower bound follows by IT - density of ΠT

3 (see Lemma 4.10).
Again, we refer to [18], Chapter 10 for more details.

6 Static large deviations

In this section, we prove Theorem 2.9, that is, that the quasi potential V is the large deviations
functional for the total mass under the stationary profile. First we prove the lower bound, then
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the upper bound. In both cases we make use of the dynamic large deviations principle (Theorem
2.8). In the lower bound we use the hydrostatic limit for the total mass (Theorem 3.7) and for the
upper bound, inspired by [17], [7] and [14], we use a Markov chain representation of the invariant
measure. For δ > 0, denote by

Bδ = {π ∈ M, |m̂(π)− γ| < δ} . (6.1)

6.1 Proof of the lower bound

Fix an open set O in [0, 1]. By definition of V , it is enough to prove that for any m ∈ O, for any
T > 0 and for any a ∈ C([0, T ]) such that a(0) = γ and a(T ) = m,

lim
N→∞

1

N
logµN

ss

[
m̂(πN ) ∈ O

]
≥ −IT (a|γ).

Fix â ∈ C([0, T ]) such that â(0) = γ and â(T ) = m. Recall (see Remark 3.8) that there is a
sequence (εN )N≥1 ↓ 0 such that µN

ss (BεN ) converges to 1. Consider such a sequence (εN )N≥1. By
stationarity of µN

ss,

µN
ss

[
m̂(πN ) ∈ O

]
= ẼµN

ss

[
P̃δη

(
m̂(πN

T ) ∈ O
)]

≥ ẼµN
ss

[
P̃δη

(
m̂(πN

T ) ∈ O
)
1η∈(πN )−1(BεN )

]
≥ µN

ss (BεN ) inf
η∈(πN )−1(BεN )

P̃δη

[
πN
T ∈ O

]
≥ 1

2
inf

η∈(πN )−1(BεN )
P̃δη

[
πN
T ∈ O

]
,

where we used that for N large enough, µN
ss (BεN ) ≥ 1

2 . Now, since (πN )−1 (BεN ) is finite, the
infimum above is achieved for a certain ηN ∈ (πN )−1 (BεN ), so

lim
N→∞

1

N
logµN

ss

[
m̂(πN ) ∈ O

]
≥ lim

N→∞

1

N
log P̃δηN

[
m̂(πN

T ) ∈ O
]

≥ lim
N→∞

1

N
log P̃δηN

[
m̂
(
(πN

t )t∈[0,T ]

)
∈ OT

]
where OT =

{
a ∈ DT

[0,1], a(T ) ∈ O
}
is an open set because O is open. By the dynamic large

deviations principle and since m̂(πN (ηN )) converges to γ,

lim
N→∞

1

N
log P̃δηN

[
m̂
(
(πN

t )t∈[0,T ]

)
∈ OT

]
≥ − inf

v∈OT

IT (v|γ) ≥ −IT (â|γ).

6.2 Proof of the upper bound

Consider F a closed subset of [0, 1]. If γ ∈ F , inf
m∈F

V (m) = V (γ) = 0 and the upper bound follows.

Now, let us deal with the case where γ /∈ F . There is a δ > 0 such that [γ−3δ, γ+3δ]∩F = ∅.
As mentioned above, the idea is to use a representation of the invariant measure µN

ss in terms of an
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invariant measure for an irreducible dynamics defined on a subset of ΩN , as done in [17], [7] and
[14]. The subset considered is included in the set of configurations η such that

|m̂(πN (η))− γ| < δ,

that is, the configurations whose associated empirical measure is in Bδ, defined in (6.1).
Define the closed set

Rδ = {π ∈ M, 2δ ≤ |m̂(π)− γ| ≤ 3δ}.

For any integer N and any subset A of M, let AN = (πN )−1(A) ∈ ΩN , and denote by τAN :
D(R+,R) → R+ the entry time in AN of ηNt , that is,

τAN = inf{t ≥ 0, ηNt ∈ AN}.

We also denote by F = m̂−1(F ) ∈ M, which is closed because m̂ is continuous and F is closed.
Define ∂BN

δ as the set of configurations η ∈ BN
δ such that there is a finite sequence (ηi)1≤i≤k such

that η0 ∈ RN
δ , ηk = η and

(i) ηi is obtained from ηi−1 by a move which is allowed by the dynamics.

(ii) for any 1 ≤ i < k, ηi /∈ BN
δ .

Define
τ1 = inf{t > 0, ∃ s < t, ηs ∈ RN

δ and ηt ∈ ∂BN
δ }.

Lemma 6.1. The sequence (ητk)k≥1, where τk is obtained by iterating τ1, is an irreducible Markov
chain.

Proof. Consider η, ξ ∈ ∂BN
δ and (ηi)1≤i≤k a path connecting η0 ∈ RN

δ to η. By irreducibility of
the original dynamics, there is a sequence (ξi)0≤i≤ℓ connecting ξ0 = ξ to ξℓ = η0. Then, consider
the sequence of configurations z0 = ξ0, ..., zℓ = ξℓ = η0, zℓ+1 = η1, .., zℓ+k = ηk = η connecting ξ to
η. From the path z we can extract a sequence z̃0 = ξ, ..., z̃p = η in ∂BN

δ , such that

P̃z̃i−1

[
ητ1 = z̃i

]
> 0.

Indeed, consider j0 = 0 and for i ≥ 1, let

j2i−1 = min
j>j2i−2

zj∈RN
δ

{j} and j2i = min
j>j2i−1

zj∈∂BN
δ

{j}.

The sequence z̃i = z2j satisfies the assumptions.

Since ∂BN
δ is finite, the irreducible Markov chain thus defined has a unique invariant measure

that we denote by νN . Following [17], [7] and [14], the stationary measure µN
ss can be written as

follows: for every subset A of ΩN ,

µN
ss(A) =

1

CN

∫
∂BN

δ

Ẽδη

(∫ τ1

0

1ηs∈Ads

)
dνN (η) (6.2)
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with CN =
∫
∂BN

δ
Ẽδη (τ1) dνN (η). Therefore,

µN
ss(m̂

−1(F )) =
1

CN

∫
∂BN

δ

Ẽδη

(∫ τ1

0

1ηs∈(πN )−1(m̂−1(F̃))ds

)
dνN (η)

≤ 1

CN
sup

η∈∂BN
δ

Ẽδη

(∫ τ1

0

1ηs∈(πN )−1(m̂−1(F̃))ds

)
≤ 1

CN
sup

η∈∂BN
δ

P̃δη [τFN < τ1] sup
η∈FN

Ẽδη [τ1] ,

(6.3)

where the last inequality results from the strong Markov property.
For N large, any trajectory in D(R+,ΩN ) starting from FN has to perform at least one jump

before reaching ∂BN
δ , because [γ − 3δ, γ + 3δ] ∩ F = ∅. As the jump rates of the dynamics in

the bulk are of order N3 and those for the dynamics at the boundary are of order N , there is
a constant c > 0 depending on α and β such that CN > 1

cN3 . If the mesh size 1/N of [0, 1] is
small enough, that is N large enough, by continuity of m̂, any trajectory in D(R+,ΩN ) starting
in ∂BN

δ satisfies τRN
δ
≤ τFN . That means that when N is large enough, a flip in the configuration

cannot lead directly from ∂BN
δ to FN without passing through RN

δ . For that same reason, we also
have that for N large enough, any trajectory starting in FN satisfies τ1 = τBN

δ
almost surely. The

second supremum in (6.3) is therefore bounded by supη∈FN Ẽδη

[
τBN

δ

]
and using the strong Markov

property, the first supremum satisfies, for N large enough:

sup
η∈∂BN

δ

P̃δη [τFN < τ1] = sup
η∈∂BN

δ

Ẽδη

[
Ẽητ

RN
δ

[
1τFN <τ1

]
1τ

RN
δ
<τFN

]
≤ sup

η∈RN
δ

P̃δη [τFN < τ1] = sup
η∈RN

δ

P̃δη

[
τFN < τBN

δ

]
.

We are left with

µN
ss(m̂

−1(F )) ≤ cN3 sup
η∈RN

δ

P̃δη

[
τFN < τBN

δ

]
sup
η∈FN

Ẽδη

[
τBN

δ

]
.

Now, to prove the upper bound, it is enough to prove the following result:

Lemma 6.2. (i) For every δ > 0,

lim
N→∞

1

N
log sup

η∈FN

Ẽδη

[
τBN

δ

]
≤ 0. (6.4)

(ii) For every ε > 0, there exists δ > 0 such that

lim
N→∞

1

N
log sup

η∈RN
δ

P̃δη

[
τFN < τBN

δ

]
≤ − inf

m∈F
V (m) + ε. (6.5)

For that, use the following result proved later on.

Lemma 6.3. For every δ > 0, there is T0, C0, N0 > 0 such that for any N ≥ N0 and for any
integer k > 0,

sup
η∈ΩN

P̃δη

[
τBN

δ
≥ kT0

]
≤ exp (−kC0N) . (6.6)
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Proof. (Lemma 6.2)

(i) For δ > 0 and T0, C0, N0 as in the statement of Lemma 6.3, for every N ≥ N0 and every
η ∈ ΩN ,

Ẽδη

[
τBN

δ

]
= T0Ẽδη

[
τBN

δ

T0

]
≤ T0

∞∑
k=0

sup
η∈ΩN

P̃δη

[
τBN

δ
≥ kT0

]
≤ T0

∞∑
k=0

exp (−kC0N) ≤ T0
1− e−C0N

,

therefore,

lim
N→∞

1

N
log sup

η∈FN

Ẽδη

[
τBN

δ

]
≤ lim

N→∞

1

N
log

T0
1− e−C0N

= 0.

(ii) Fix ε > 0 and pick δ > 0, that will be specified according to ε later on. Consider T0, C0 > 0 as
in Lemma 6.3. Since inf

m∈F
V (m) <∞, there is an integer k > 0 such that −kC0 < − inf

m∈F
V (m)

so taking Tδ = kT0 we get, by Lemma 6.3,

lim
N→∞

1

N
log sup

η∈ΩN

P̃δη

[
τBN

δ
≥ Tδ

]
≤ − inf

m∈F
V (m). (6.7)

Now write for η ∈ RN
δ ,

P̃δη

[
τFN < τBN

δ

]
= P̃δη

[(
τFN < τBN

δ

)
∩
(
τBN

δ
< Tδ

)]
+ P̃δη

[(
τFN < τBN

δ

)
∩
(
τBN

δ
≥ Tδ

)]
≤ P̃δη [τFN ≤ Tδ] + P̃δη

[
τBN

δ
≥ Tδ

]
.

Using that lim
N→∞

1
N log(aN + bN ) ≤ max

(
lim

N→∞
1
N log aN , lim

N→∞
1
N log bN

)
and (6.7), we are

left with

lim
N→∞

1

N
log sup

η∈RN
δ

P̃δη

[
τFN < τBN

δ

]
≤ max

(
− inf

m∈F
V (m), lim

N→∞

1

N
log sup

η∈RN
δ

P̃δη [τFN < Tδ]

)

and so it is enough to show that

lim
N→∞

1

N
log sup

η∈RN
δ

P̃δη [τFN < Tδ] ≤ − inf
m∈F

V (m) + ε.

As RN
δ is finite, there is a configuration ηN ∈ RN

δ such that

sup
η∈RN

δ

P̃δη [τFN < Tδ] = P̃δηN
[τFN < Tδ] ≤ P̃δηN

[
m̂(πN ) ∈ Fδ

]
,

where Fδ is the closed set of elements in DTδ

[0,1] such that for a in that set, there is t ∈ [0, Tδ]

such that a(t) or a(t−) is in F . By compactness of M, πN (ηN ) contains a subsequence which
converges to an element ρδ in M0. The continuity of the map m̂ ensures that m̂(ρδ) ∈ Rδ.
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Along that converging subsequence, using the dynamical large deviation principle for the total
mass, one has:

lim
N→∞

1

N
log P̃δηN

[
m̂(πN ) ∈ Fδ

]
≤ − inf

a∈Fδ

ITδ
(a|m̂(ρδ)) .

Finally, we show that there is a δ > 0, such that

inf
a∈Fδ

ITδ
(a|m̂(ρδ)) ≥ inf

m∈F
V (m)− ε.

Assume that this is not true so that for any k > 0, there is ak ∈ F 1
k
⊂ D

T 1
k

[0,1] such that

IT 1
k

(
ak
∣∣m̂(ρ 1

k
)
)
< inf

m∈F
V (m)− ε.

Then, for any k > 0, there is 0 < T ′
k ≤ T 1

k
such that ak(T ′

k) ∈ F or ak(T ′
k−) ∈ F . Without

loss of generality, we assume that ak(T ′
k) ∈ F . We have

inf
m∈F̃

V (m) ≤ V
(
ak (T ′

k)
)
= inf

a,T>0
u(0)=γ, a(T )=ak(T ′

k
)

IT (a|γ) ≤ IT ′
k+1

(
ãk|γ

)
(6.8)

where ãk is defined on [0, T ′
k + 1] by

ãk =


(1− t)γ + tm̂(ρ 1

k
), if t ∈ [0, 1]

ak(t− 1), if t ∈ [1, T ′
k + 1].

(6.9)

Then, by (4.5),

IT ′
k+1

(
ãk|γ

)
= I1

(
(1− t)γ + tm̂(ρ1/N )|γ

)
+ IT ′

k

(
ak|m̂(ρ 1

k
)
)

≤ I1

((
m̂(ρ 1

k
)− γ

)
t|γ
)
+ inf

m∈F
V (m)− ε,

(6.10)

where we used that T ′
k ≤ T 1

k
, so IT ′

k

(
ak|m̂(ρ 1

k
)
)
≤ IT 1

k

(
ak|m̂(ρ 1

k
)
)
.

By Lemma 4.11, for k > 0 large enough, I1

((
m̂(ρ 1

k
)− γ

)
t|γ
)
< ε, so we are left with

inf
m∈F

V (m) ≤ V
(
ak (T ′

k)
)
< ε+ inf

m∈F
V (m)− ε = inf

m∈F
V (m)

which is a contradiction.

To prove Lemma 6.3, we use the following

Lemma 6.4. For every δ > 0, there is a T > 0 such that

inf
{
IT (a), a ∈ DT

[0,1] and a(T ) /∈]γ − δ, γ + δ[
}
> 0.
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Proof. Suppose that the result is not true and consider δ > 0 such that for any T > 0 inf
a∈Dδ,T

IT (a) =

0, where

Dδ,T =
{
a ∈ DT

[0,1] and a(T ) /∈]γ − δ, γ + δ[
}
.

For T > 0 consider (aT,k)k≥0 a sequence in Dδ,T such that I(aT,k) → 0. Recall that by Lemma
4.2 and Remark 4.3, the level sets are compact for the uniform convergence topology so there is
aT ∈ C([0, T ]) a limit of a strong converging subsequence of (aT,k)k≥0 and, by lower semi-continuity
of IT , IT (a

T ) = 0. By Corollary 4.5, aT is therefore a strong solution of ∂ta = −2(a − γ) and
aT (T ) →

T→∞
γ. The strong convergence of aT,k to a also implies that |aT (T )− γ| ≥ δ which yields

a contradiction when T is large enough.

Proof. (Lemma 6.3) Fix a δ > 0. To prove the result, it is enough to show that there is T0, C0 and
an N0 > 0 such that for every N > N0,

sup
η∈ΩN

P̃δη

[
τBN

δ
≥ T0

]
≤ exp(−C0N).

Indeed, using induction and the strong Markov property, one then gets the desired result. Let us
show that there is T0, C0 > 0 such that

lim
N→∞

1

N
log sup

η∈ΩN

P̃δη

[
τBN

δ
≥ T0

]
≤ −C0.

Consider ηN ∈ ΩN such that

sup
η∈ΩN

P̃δη

[
τBN

δ
≥ T0

]
= P̃δηN

[
τBN

δ
≥ T0

]
.

We have, for T̃0 < T0,

P̃δηN

[
τBN

δ
≥ T0

]
≤ P̃δηN

[
τBN

δ
> T̃0

]
≤ P̃δηN

[
m(πN ) ∈ Dδ,T̃0

]
.

By compactness of M and the fact that each configuration in ΩN has at most one particle per site,
πN (ηN ) contains a subsequence converging to some ρ in M0. By continuity of m̂ and the fact that
Dδ,T̃0

is closed, using the dynamical large deviations principle we get, up to some extraction,

lim
N→∞

1

N
log P̃δηN

[
τBN

δ
≥ T0

]
= lim

N→∞

1

N
log P̃δηN

[
m̂(πN ) ∈ Dδ,T̃0

]
≤ − inf

a∈Dγ

IT̃0
(a|ρ).

(6.11)

We then conclude thanks to Lemma 6.4, by taking T̃0 large enough.
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A Proof of (4.22)

Let us compute JT1,H(a∗(T1 − .)):

JT1,H(a∗(T1 − .)) = mH(T1)− a∗(T1)H(0)−
∫ T1

0

as∂sH(s)ds−
∫ T1

0

AH(a)(s)ds.

On the one hand,∫ T1

0

as∂sH(s)ds =

∫ T1

0

2(a(s)− γ)

1− a(s)
ds =

∫ T1

0

∂sas
1− as

ds = − [log (1− a(s))]
T1

0 .

On the other hand,

AH(a)(s) = 2γ

[
v(s)

w(s)
+
w(s)

v(s)

]
a(s) + 2(1− 2γ)a(s)− 2

w(s)

v(s)
a(s)− 2γ

(
v(s)− w(s)

w(s)

)
,

and

2γ

∫ T1

0

v(s)− w(s)

w(s)
ds = 2γ

∫ T1

0

2a(s)− 2γ

2γ(1− a(s))
ds = − [log (1− a(s))]

T1

0 .

We are left with

JH,T1(a
∗(T1 − .)) = mH(T1)− u∗(T1)H(0) + 2 [log (1− u(s))]

T1

0

+ 2γ

∫ T1

0

a(s)

b(s)
u(s)ds+ [2γ − 2]

∫ T1

0

b(s)

a(s)
u(s)ds+ 2(1− 2γ)

∫ T1

0

u(s)ds.
(A.1)

As a(s)
v(s) = 1

2−2γ ,

2 [γ − 1]

∫ T1

0

w(s)

v(s)
a(s)ds = 2γ

∫ T1

0

a(s)ds− 2γT1,

so

2 [γ − 1]

∫ T1

0

w(s)

v(s)
a(s)ds+ 2(1− γ)

∫ T1

0

a(s)ds = 2 [1− γ]

∫ T1

0

a(s)ds− 2γT1. (A.2)

We also have: v(s)a(s)
w(s) = 2 [1− γ] a2(s)

1−a(s) = 2a(s)−γ
1−a(s) − 2 [1− γ] a(s) + 2γ. Therefore,

2γ

∫ T1

0

v(s)

w(s)
a(s)ds = − [log (1− a(s))]

T1

0 − 2 [1− γ]

∫ T1

0

a(s)ds+ 2γT1. (A.3)

Collecting (A.1), (A.2) and (A.3) we are left with

JT1,H(a∗(T1 − .)) = m log

(
(1− γ)m

γ(1−m)

)
− a∗(T1) log

(
(1− γ)a∗(T1)

γ(1− a∗(T1))

)
+ log

(
1−m

1− γ

)
. (A.4)
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